

FOOD-BRIDGE: SYNERGISTISCHE

VERNETZUNG ZUR FÖRDERUNG

NACHHALTIGER

LEBENSMITTELALLOKATION
Verfasser: Dominic Sieber, Philip Tobler

Referent: Daniel Tobler

Co-Referent: Stefan Kapferer

Architekturdokumentation Food-Bridge

Quellennachweis Titelblatt

Foodwaste [Foto]. (ohne Datum). Gefunden am 01. September 2025 unter

https://www.zebrabox.ch/sites/default/files/2023-07/Zebrabox_gegen_foodwaste_teaser.jpeg

Management Summary III

Architekturdokumentation Food-Bridge

Management Summary

Ausgangslage

Mit Food-Bridge wird eine Webplattform entwickelt, die gemeinnützige Organisationen dabei

unterstützt, Lebensmittelverschwendung zu reduzieren. Durch die digitale Vernetzung von

Produzenten, Hilfsorganisationen und Lieferanten können überschüssige, jedoch vollwertige

Lebensmittel effizient und nachhaltig ausgetauscht werden. Food-Bridge soll einen echten

Mehrwert für unsere Gesellschaft und unseren Auftraggeber Schweizer Tafel schaffen. Dazu

soll Food-Bridge eine moderne, skalierbare und praxisnahe Lösung werden.

Ziele

Das Hauptziel ist eine Plattform mit allen Kernfunktionen produktiv zu bringen: Registrierung

und Rollenverwaltung, Inserieren von überschüssigen Lebensmitteln, Echtzeit-Bestellung durch

Hilfsorganisationen sowie Planung und Verwaltung der Abholung durch Lieferanten. Ergänzend

werden CI/CD-Pipelines in Azure DevOps, ein durchdachtes Datenbankmodell,

Sicherheitsmechanismen und Monitoring umgesetzt. Neben der technischen Umsetzung

verfolgt die Arbeit das Ziel, Erfahrungen in modernen Technologien wie Angular, Spring Boot

und PostgreSQL zu vertiefen und diese praxisnah anzuwenden.

Vorgehen

Das Projekt wird agil nach Scrum durchgeführt. In kurzen Iterationen werden Anforderungen

umgesetzt, getestet und durch Stakeholder evaluiert. Technisch basiert die Lösung auf einem

Angular-Frontend, einem Java/Spring-Boot-Backend und einer relationalen SQL-Datenbank.

Eine CI/CD-Pipeline in Azure DevOps stellt Build, Tests und Deployment sicher.

Sicherheitsaspekte wie JSON Web Token und rollenbasierte Zugriffskontrolle werden integriert.

Die Entwicklung folgt einem testgetriebenen Ansatz mit Unit- und Integrationstests, um Qualität

und Stabilität zu gewährleisten.

Erkenntnisse

Die Arbeit zeigt, dass durch eine gezielte digitale Plattform ein wesentlicher Beitrag zur

Reduktion von Food Waste geleistet werden kann. Gleichzeitig verdeutlicht sie die Komplexität

der Vernetzung von Produzenten, Hilfsorganisationen und Lieferanten in einem einzigen

System. Einfach gehaltene Kernprozesse zum Inserieren und Bestellen von Lebensmitteln

sowie eine lose gekoppelte, hexagonale Architektur erweisen sich als Schlüsselfaktoren für die

Praxistauglichkeit und Wartbarkeit. Zudem bestätigt das Projekt, dass moderne Frameworks

wie Angular und Spring Boot in Kombination mit Cloud-Infrastruktur (Amazon Web Services)

eine robuste Grundlage für nachhaltige und skalierbare Anwendungen bieten.

Management Summary IV

Architekturdokumentation Food-Bridge

Empfehlungen

Das Projektteam empfiehlt die Plattform produktiv einzusetzen. Dabei sollen weitere hilfreiche

Funktionalitäten schrittweise integriert werden, um den Prozess besser abzurunden und die

Nutzerfreundlichkeit zu steigern. Ebenso ist eine enge Zusammenarbeit mit der Schweizer Tafel

und einem Produzenten als Beta-Tester zentral, um die Praxistauglichkeit der Software zu

gewährleisten. Auf technologischer Ebene sollten die Skalierbarkeit und Security-Aspekte im

Multiuser-Betrieb beobachtet werden. Mit diesen Massnahmen ist ein offizieller Release im Jahr

2026 äusserst realistisch.

Inhaltsverzeichnis V

Architekturdokumentation Food-Bridge

Inhaltsverzeichnis

Management Summary ...III

Inhaltsverzeichnis ... V

1 Einleitung und Ziele ... 1

1.1 Qualitätsziele ... 1

1.2 Stakeholder ... 2

2 Systemkontext-Diagramm ... 3

3 Lösungsstrategie .. 4

3.1 Leitziele ... 4

3.2 Architekturgrundsätze .. 4

3.3 Technologieentscheidungen .. 5

3.4 Qualitätsziele und Taktiken .. 5

3.5 Deployment-Strategie .. 5

4 Bausteinschicht .. 6

5 Laufzeitschicht ... 7

5.1 Warenangebot erstellen .. 8

5.2 Warenangebot bestellen ...10

5.3 Transportauftrag erstellen...12

6 Verteilungssicht ...14

6.1 Ausführungsumgebung ..14

6.2 Deployment via Pipelines ...14

6.3 Betrieb und Wartung ...14

6.4 Übersicht ..15

7 Querschnittliche Konzepte ...16

7.1 State-Management (NgRx) ...16

7.2 Globales Fehler- und Logging-Konzept ..16

7.3 Security (UI) ...16

7.4 UI-Architektur & Wiederverwendung ...17

8 Entschiedungslog ...19

9 Risikoanalyse ..20

9.1 Massnahmen ..20

Inhaltsverzeichnis VI

Architekturdokumentation Food-Bridge

Selbstständigkeitserklärung ..21

Einleitung und Ziele 1

Architekturdokumentation Food-Bridge

1 Einleitung und Ziele

Im Rahmen dieser Masterarbeit wird eine Webplattform zur Förderung von nachhaltiger

Lebensmittelverteilung zwischen Hilfsorganisationen und Produzenten für die Schweizer Tafel

entwickelt. Die Plattform mit dem Namen «Food-Bridge» leistet damit einen Beitrag zur

Reduktion von Lebensmittelverschwendung und zur Unterstützung gemeinnütziger

Organisationen. Mithilfe einer Anforderungsanalyse und Kundenfeedback werden die

verschiedenen Funktionalitäten mit den Frameworks Angular und Java/Spring-Boot umgesetzt.

Ergänzt wurde die Entwicklung durch den Einsatz einer relationalen SQL-Datenbank, einer

CI/CD-Pipeline in Azure DevOps sowie dem Hosting mittels Amazon Web Services, um einen

stabilen Betrieb sicherzustellen.

1.1 Qualitätsziele

Die Kernanforderungen werden in der nachfolgenden Tabelle aufgelistet und erläutert. In

unserem Wiki haben wir die Anforderungen weiter ausgeführt.

Anforderung Beschreibung

Benutzerregistrierung
und -verwaltung

Benutzer können ein eigenes Konto auf Food-Bridge erstellen. Zudem bietet
die Software eine Rollenverwaltung, um bspw. Admin-Rechte zu vergeben.

Inserieren von
überschüssigen
Lebensmitteln

Benutzer einer Organisation können überschüssige Lebensmittel inserieren.
Dem Warenangebot können mehrere Artikel hinzugefügt werden.

Bestellung durch
Hilfsorganisationen

Die inserierten Lebensmittel können von Hilfsorganisationen bestellt werden.

Planung und
Verwaltung der
Abholung durch
Lieferanten

Der Transport der Bestellung kann über Transportaufträge abgefertigt
werden. Zusätzlich besteht die Möglichkeit, auf einem Transportauftrag
Hinweise für den Lieferanten zu hinterlegen.

Die Webapp muss zusätzlich zu den funktionalen Anforderungen ebenfalls nicht funktionale

Anforderungen erfüllen.

Die Software muss:

- über 99% der Zeit erreichbar sein.

- skalieren, um einen Betrieb von bis zu zehn parallelen Usern zu ermöglichen.

- die Bestimmungen des Datenschutzgesetztes der Schweiz erfüllen.

- die Daten müssen in der Schweiz gehostet werden.

- eine wartbare und erweiterbare Architektur bieten.

Einleitung und Ziele 2

Architekturdokumentation Food-Bridge

1.2 Stakeholder

Nachfolgend sind unsere vier Hauptinteressensgruppen aufgelistet mit einer kurzen

Beschreibung deren Erwartungen.

Stakeholder Erwartung

Schweizer Tafel
Einfache Administration innerhalb der Software. Zudem soll die Lösung
kostengünstig in der Wartung sein.

Produzent
Intuitive Lösung, um überschüssige Lebensmittel zu inserieren, damit die
Lagerplätze für andere Produkte genutzt werden können.

Hilfsorganisation Intuitive Lösung, um Lebensmittel zu bestellen.

Lieferant Einfache Lösung, um Informationen zum Transport einzusehen.

Systemkontext-Diagramm 3

Architekturdokumentation Food-Bridge

2 Systemkontext-Diagramm

In der folgenden Grafik ist unser Systemkontext-Diagramm ersichtlich.

Lösungsstrategie 4

Architekturdokumentation Food-Bridge

3 Lösungsstrategie

Nachstehend wird unsere Lösungsstrategie genauer erläutert.

3.1 Leitziele

- Nachhaltige Lieferketten für Überbestände effizient vermitteln

- Einfach bedienbar für Produzenten, Hilfsorganisationen, Lieferanten

- Robust und erweiterbar (modular, testbar, Cloud-ready)

3.2 Architekturgrundsätze

- Trennung von Frontend und Backend

- Hexagonale Architektur im Backend: Domain unabhängig von Frameworks sowie

Integration von Ports und Adapter, um die Kommunikation mit dem Frontend und der

Datenbank zu separieren.

o Damit die Architektur zwingend eingehalten wird, wurde mit Maven-Submodulen

gearbeitet. Somit ist der Zugriff auf ein unerlaubtes Modul klar geregelt.

o Maven-Submodule: bootstrap (App-Starter und Security-Konfigurationen),

adapters (REST-Controller und Datenbank-Adapter), application (Business-

Logik), domain (Business-Objekte)

Lösungsstrategie 5

Architekturdokumentation Food-Bridge

3.3 Technologieentscheidungen

- Frontend: Angular und TypeScript mit ESLint

- Backend: Java mit Spring Boot und Data JPA

- Datenbank: PostgreSQL

- Mail: Spring Mail (SMTP Provider).

- Container: Docker

- Infrastruktur: Amazon Web Services

o EC2: Virtuelle Ubuntu Umgebung

o ECR: Repository für Docker-Images

o S3: Kleiner Speicher für Docker-Compose- und Variablen-File (env)

o RDS: Datenbankservice für PostgreSQL

- CI/CD: Azure DevOps Pipelines für Tests und Deployment

- AuthGuard, RoleGuard und TokenGuard: Trennung der Sicherheitslogik direkt im Router

- HTTP-Interceptor: Zentrale Stelle für JWT, Error-Handling und Response-Manipulation

- Notification Service: Einheitliche Benutzerkommunikation für Fehler, Warnungen und

Informationen

- NgRx Store mit App State: Zentralisierte State-Verwaltung für Stammdaten

- Language Service (ngx-translate): Einfache Erweiterung um neue Sprachen

3.4 Qualitätsziele und Taktiken

- Sicherheit: JWT, Rollen, Input-Validierung, Argon2 für Passwortverschlüsselung

- Performance: Caching der Stammdaten im Frontend und Datenbank-Indizes

- Wartbarkeit: saubere Ports und Adapter, modulare Services, Code-Style-Checks, Unit-

sowie Integrations-Tests

- Skalierbarkeit: horizontale Skalierung aufgrund von stateless Backend möglich

3.5 Deployment-Strategie

Auf das Deployment wird im Kapitel 6 vertieft eingegangen. Nachfolgend ein kurzer Überblick.

- Prod-Pipeline: Für Frontend und Backend Docker-Image erstellen → Die neusten

Images mittels Docker-Compose auf der EC2-Umgebung deployen

- Rollback: Aufgrund Repository mit versionierten Docker-Images möglich

Bausteinschicht 6

Architekturdokumentation Food-Bridge

4 Bausteinschicht

Die nachfolgende Grafik widerspiegelt grob die wichtigsten Komponenten des Frontend- und

Backend-Projekts. Zum Frontend-Projekt gehört das Presentation-Package und zum Backend-

Projekt gehören die Packages Bootstrap, Adapters, Application und Domain.

Laufzeitschicht 7

Architekturdokumentation Food-Bridge

5 Laufzeitschicht

In diesem Kapitel wird das Zusammenspiel der Komponenten zur Laufzeit aufgezeigt. Nachfolgend sind die wichtigsten Use Cases als

Sequenzdiagramm dargestellt. Für jeden Use Case gibt es einmal das Frontend- und einmal das Backend-Diagramm.

Laufzeitschicht 8

Architekturdokumentation Food-Bridge

5.1 Warenangebot erstellen

Laufzeitschicht 9

Architekturdokumentation Food-Bridge

Laufzeitschicht 10

Architekturdokumentation Food-Bridge

5.2 Warenangebot bestellen

Laufzeitschicht 11

Architekturdokumentation Food-Bridge

Laufzeitschicht 12

Architekturdokumentation Food-Bridge

5.3 Transportauftrag erstellen

Laufzeitschicht 13

Architekturdokumentation Food-Bridge

Verteilungssicht 14

Architekturdokumentation Food-Bridge

6 Verteilungssicht

In diesem Kapitel gehen wir näher auf den Aufbau des Deployments ein.

6.1 Ausführungsumgebung

- Cloud: Amazon Web Services (AWS)

- Compute: EC2 (Ubuntu, Docker + Compose)

- Edge/Proxy: Caddy auf EC2 (TLS, Routing → Frontend, /api → Backend)

- Docker-Container:

o Frontend: Angular + Caddy (statische Auslieferung)

o Backend: Java / Spring Boot

- Datenbank: RDS PostgreSQL

- Storage/Assets: S3

- Registry: ECR (Container-Images)

- Konfig/Secrets: .env- und Docker-Compose-Dateien auf S3

6.2 Deployment via Pipelines

Auf Azure DevOps haben wir eine Frontend- und eine Backend-Pipeline. Diese sorgen dafür,

dass der Code von den Main-Branches in einem Docker-Image bereitgestellt werden, um

anschliessend auf der EC2-Instanz deployt zu werden. Die PostgreSQL-Datenbank wurde über

einen Relational Database Service (RDS) an die EC2-Instanz angebunden.

Stages der Frontend-Pipeline: Docker-Image anhand von Code erstellen (Im Docker ist

ebenfalls der Reverse-Proxy Caddy integriert) → erstelltes Image auf ECR hochladen →

Deployment des aktuellen Images auf der EC2-Instanz

Stages der Backend-Pipeline: Tests ausführen → Docker-Image anhand von Code erstellen

→ erstelltes Image auf ECR hochladen → .env-File anhand von Pipeline-Variablen generieren

und auf S3 hochladen → Docker-Compose-File aus Projekt auf S3 hochladen → .env- und

Docker-Compose-Dateien auf EC2-Instanz herunterladen → Deployment des aktuellen Images

auf der EC2-Instanz

6.3 Betrieb und Wartung

- CI/CD: Damit Änderungen deployt werden können, müssen die produktiven Pipelines

für Frontend und Backend gestartet werden.

- Backups: Die Datenbank wird über automatisierte Snapshots von RDS gesichert.

Verteilungssicht 15

Architekturdokumentation Food-Bridge

- Rollback: Anhand der versionierten Images auf ECR kann ein Rollback über das Docker-

Compose-File veranlasst werden.

6.4 Übersicht

Querschnittliche Konzepte 16

Architekturdokumentation Food-Bridge

7 Querschnittliche Konzepte

In diesem Kapitel gehen wir auf generelle Prinzipien und Lösungsansätze ein, die in vielen

Teilen der Architektur benutzt wurden. Der Inhalt bezieht sich vor allem aufs Frontend, da in den

vorherigen Kapiteln das Backend mit deren Architektur bereits beleuchtet wurde.

7.1 State-Management (NgRx)

- Ziele: Vorhersehbare Zustände, Trennung von UI/Side-Effects, Debugbarkeit, Time-

Travel.

- Store-Struktur: auth, organisation, position, product-offer, order, shipping, user,

dashboard, contact sowie app.

- Selectors: einzige Datenquelle für Container-Komponenten (async pipe).

- Effects: kapseln Side-Effects (HTTP, Routing, Notifications).

- InitialLoad: InitialService dispatcht AppActions.initialDataLoad().

o Lädt Benutzer (me), Organisationen, ConditionTypes, Settings.

o UI wird erst nach initialDataLoaded gerendert.

- Entities: @ngrx/entity für performante Listen (IDs, Adapter, Memoized Selectors).

- Optimistic Updates: bei idempotenten Mutationen mit Rollback.

7.2 Globales Fehler- und Logging-Konzept

- Global Error Handler (ErrorHandler): Fängt ungefangene Fehler, schreibt Log, zeigt

User-Feedback.

- HTTP-Fehler: zentral über Interceptor.

o 401: Logout/Redirect → SignIn

o 403: AccessDenied

o 5xx: Notification + Logging

- LoggerService:

o Logs: userId, tenantId, severity, message, stack, payload.

o Channels: Console (Dev), Backend (Prod).

o PII-Filter: keine sensiblen Daten in Logs.

7.3 Security (UI)

- Guards:

o AuthGuard: nur eingeloggte User

o RoleGuard: prüft Berechtigungen

o TokenGuard: prüft Ablauf von JWT

Querschnittliche Konzepte 17

Architekturdokumentation Food-Bridge

- AuthInterceptor hängt JWT nur an API-Requests (Whitelist).

- Externe Formulare (z. B. Login und Registrierung) → kein Token.

7.4 UI-Architektur & Wiederverwendung

- Container/Presenter (Smart/Dumb).

- Shared: Pipes (ID-Format), Utils (Paginator, Error-Utils, JWT), UI-Controls.

- Feature-Module pro Domäne (Product, Order, Shipping).

Querschnittliche Konzepte 18

Architekturdokumentation Food-Bridge

Entschiedungslog 19

Architekturdokumentation Food-Bridge

8 Entschiedungslog

In der untenstehenden Tabelle sind unsere Entscheidungen festgehalten, die den Projektablauf

massgebend beeinflusst haben.

Datum -
Entscheidung

Beschreibung
Begründung

Änderungsdatum

04.05.2025 –
Mandantenfähigkeit

Die Datenbank wird
mandantenfähig gestaltet,
auch wenn aktuell nur ein
Mandant (Schweizer
Tafel) betrieben wird.

Pro: Zukunftssicherheit, da Erweiterungen (z. B.
Betrieb für andere Organisationen oder Länder)
ohne tiefgreifende Umstrukturierung möglich
sind.

Kontra: Initialer Mehraufwand für
mandantenfähige Datenmodellierung.

04.05.2025 -

Eigene
Benutzerverwaltung

Eigene
Benutzerverwaltung statt
Azure Active Directory
(AzureAD).

Pro: Unabhängigkeit von Microsoft-Diensten,
besser steuerbar für Non-Profit-Use-Cases,
flexibler für zukünftige Erweiterungen (z. B.
externe Partner, OAuth).

Kontra: Mehraufwand für das Handling der
eigenen Benutzerverwaltung inkl.
Datenspeicherung.

28.04.2025 -
Rollenmodell

Benutzer haben Rollen
(z. B. Admin, User,
Superuser), die ihre
Zugriffsrechte auf
Ressourcen steuern.

Pro: Klare Trennung von Rechten und
Verantwortlichkeiten (z. B. wer darf
Organisationen erfassen oder Benutzer
bearbeiten?). Einfach erweiterbar für neue
Nutzergruppen.

Kontra: Erfordert sorgfältiges Rechtekonzept
und Testaufwand.

05.08.2025 -
Hosting

Die gesamte Plattform
wird über Amazon Web
Services betrieben.

Pro: Einheitliches Setup für Frontend, Backend
und Datenbank. Nutzung von AWS-Diensten für
eine virtuelle Umgebung und Datenbank. Dieses
Setup garantiert Skalierbarkeit, Stabilität und
geringen Wartungsaufwand.

Kontra: Einarbeitungszeit für das Kennenlernen
von AWS.

Risikoanalyse 20

Architekturdokumentation Food-Bridge

9 Risikoanalyse

Die folgende Tabelle veranschaulicht die Risiken beurteilt nach Eintrittswahrscheinlichkeit und

Auswirkung.

Wahrscheinlichkeit →

Auswirkung ↓
1 - unwahrscheinlich 2 - neutral 3 - wahrscheinlich

1 - gering
1.1.1 Kosten von Azure
sind nicht mehr tragbar

2 - mittel

2.1.1 Fehlende Tools

2.1.2 Repos werden
gelöscht

2.2.1 Ausfall von
Teammitgliedern

2.3.1 Fehlende
Ressourcen/Zeit um
den gesamten
Projektumfang
abzudecken

2.3.2 Datenverlust
durch
Programmierfehler

2.3.3 Inkonsistenz der
UI-Elemente und
Darstellungsprobleme
auf Endgeräten

3 - hoch

3.1.1 Unklare
Anforderungen oder
Ziele

3.1.2 Kundenfeedback
zu spät einholen

3.2.1 Datenverlust
durch Einsatz von
unbekannten
Technologien (bspw.
Springboot)

3.2.2 Fehlerhaftes
Statemanagement
(NGRX)

3.3.1 Sicherheitslücken
beim Passwort-
Handling

9.1 Massnahmen

Die nachfolgenden Massnahmen sollen dafür sorgen, dass die Risiken mit hoher Auswirkung

und wahrscheinlichem Eintritt verhindert werden können:

- 3.3.1: Bestehendes Passwort-Framework benutzen

- 3.2.1, 3.2.2, 2.3.2, 2.3.3: Testabdeckung hochhalten und zeitnah die Testumgebung

hochziehen für End-to-End Testing / Testumgebung auch frühzeitig dem Kunden

bereitstellen

- 2.3.1: Zu Beginn des Projektes bereits viel Zeit investieren, damit genügend Puffer für

herausfordernde/unerwartete Probleme vorhanden ist

- 2.2.1: Regelmässige Auszeiten planen

Selbstständigkeitserklärung

Hiermit erklären wir, dass wir die vorliegende Masterarbeit im MAS Software Engineering mit

dem Titel «Food-Bridge: Synergistische Vernetzung zur Förderung nachhaltiger

Lebensmittelallokation» selbstständig und ohne unerlaubte fremde Hilfe angefertigt, keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet und die den verwendeten

Quellen und Hilfsmitteln wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht haben. Weiterhin erklären wir, dass wir keine durch Copyright geschützten Materialien

(z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet haben und in dieser Arbeit keine

Adressen, Telefonnummern und andere persönliche Daten von Personen, die nicht zum

Kernteam gehören, publizieren.

9000 St.Gallen, 11.09.2025:

Dominic Sieber

Philip Tobler

