O OST A Foodbridge

FOOD-BRIDGE: SYNERGISTISCHE
VERNETZUNG ZUR FORDERUNG
NACHHALTIGER
LEBENSMITTELALLOKATION

Verfasser: Dominic Sieber, Philip Tobler
Referent: Daniel Tobler

Co-Referent: Stefan Kapferer

Architekturdokumentation Food-Bridge

Quellennachweis Titelblatt

Foodwaste [Foto]. (ohne Datum). Gefunden am 01. September 2025 unter

https://www.zebrabox.ch/sites/default/files/2023-07/Zebrabox_gegen_foodwaste_teaser.jpeg

Management Summary [

Management Summary

Ausgangslage

Mit Food-Bridge wird eine Webplattform entwickelt, die gemeinnitzige Organisationen dabei
unterstitzt, Lebensmittelverschwendung zu reduzieren. Durch die digitale Vernetzung von
Produzenten, Hilfsorganisationen und Lieferanten kénnen Uberschissige, jedoch vollwertige
Lebensmittel effizient und nachhaltig ausgetauscht werden. Food-Bridge soll einen echten
Mehrwert fur unsere Gesellschaft und unseren Auftraggeber Schweizer Tafel schaffen. Dazu
soll Food-Bridge eine moderne, skalierbare und praxisnahe Losung werden.

Ziele

Das Hauptziel ist eine Plattform mit allen Kernfunktionen produktiv zu bringen: Registrierung
und Rollenverwaltung, Inserieren von Uberschiissigen Lebensmitteln, Echtzeit-Bestellung durch
Hilfsorganisationen sowie Planung und Verwaltung der Abholung durch Lieferanten. Ergénzend
werden CI/CD-Pipelines in Azure DevOps, ein durchdachtes Datenbankmodell,
Sicherheitsmechanismen und Monitoring umgesetzt. Neben der technischen Umsetzung
verfolgt die Arbeit das Ziel, Erfahrungen in modernen Technologien wie Angular, Spring Boot

und PostgreSQL zu vertiefen und diese praxisnah anzuwenden.
Vorgehen

Das Projekt wird agil nach Scrum durchgefiihrt. In kurzen Iterationen werden Anforderungen
umgesetzt, getestet und durch Stakeholder evaluiert. Technisch basiert die Loésung auf einem
Angular-Frontend, einem Java/Spring-Boot-Backend und einer relationalen SQL-Datenbank.
Eine CI/CD-Pipeline in Azure DevOps stellt Build, Tests und Deployment sicher.
Sicherheitsaspekte wie JSON Web Token und rollenbasierte Zugriffskontrolle werden integriert.
Die Entwicklung folgt einem testgetriebenen Ansatz mit Unit- und Integrationstests, um Qualitét

und Stabilitat zu gewébhrleisten.
Erkenntnisse

Die Arbeit zeigt, dass durch eine gezielte digitale Plattform ein wesentlicher Beitrag zur
Reduktion von Food Waste geleistet werden kann. Gleichzeitig verdeutlicht sie die Komplexitét
der Vernetzung von Produzenten, Hilfsorganisationen und Lieferanten in einem einzigen
System. Einfach gehaltene Kernprozesse zum Inserieren und Bestellen von Lebensmitteln
sowie eine lose gekoppelte, hexagonale Architektur erweisen sich als Schlisselfaktoren fir die
Praxistauglichkeit und Wartbarkeit. Zudem bestatigt das Projekt, dass moderne Frameworks
wie Angular und Spring Boot in Kombination mit Cloud-Infrastruktur (Amazon Web Services)

eine robuste Grundlage fur nachhaltige und skalierbare Anwendungen bieten.

Architekturdokumentation Food-Bridge

Management Summary v

Empfehlungen

Das Projektteam empfiehlt die Plattform produktiv einzusetzen. Dabei sollen weitere hilfreiche
Funktionalitaten schrittweise integriert werden, um den Prozess besser abzurunden und die
Nutzerfreundlichkeit zu steigern. Ebenso ist eine enge Zusammenarbeit mit der Schweizer Tafel
und einem Produzenten als Beta-Tester zentral, um die Praxistauglichkeit der Software zu
gewabhrleisten. Auf technologischer Ebene sollten die Skalierbarkeit und Security-Aspekte im
Multiuser-Betrieb beobachtet werden. Mit diesen Massnahmen ist ein offizieller Release im Jahr
2026 ausserst realistisch.

Architekturdokumentation Food-Bridge

Inhaltsverzeichnis \Y/

Inhaltsverzeichnis
MaNAgEMENT SUIMIMAIYuiiiiiiieeiiii e ee et e e et e e e et e e e et e e e e et s e e e et e eeeataaeeeesaseeeasnnaeaeees 1l
INNAITSVEIZEICNNIS oo Vv
1 EINIeitUNG UNA ZICIE ...t e e e e e e e aa s 1
R O T T 1] v 574 [L= TP 1
1.2 StAKENOIAEN ... 2
2 SystemKONTEXt-DIAgIaMIMuueeeieiiiiiiieie bbb nsnnnnnnnne 3
3 LOSUNGSSIIALEIC ..o 4
TNt R I =T 1 4 = 4
3.2 ArChIteKIUIGIUNUSALZE. eeiiiiiiiiiieieeeeeeieeee ettt eeseeneennnne 4
3.3 TechnologieentSCNEIAUNGENuuiiiiiiiiiiieiiiiieiieeeeeieeeee bbb eeeeeeeeneeneennnnes 5
3.4 Qualittsziele UNd TaKKEN..........coiiiieee e 5
3.5 DeEPlOYMENT-SIALEIE uueeieiiiieiitieieieteteeeeteeeteeebeeeeeeeeebeeeeeeebeeaesneeeeeeeeennneesnnnnnnnnne 5
N = V0 L= (=T 1= o] Yo o | S 6
I - 10) 74 =T £ o] 1o o | S 7
5.1 Warenangebot ErstellENcoo oo 8
5.2 Warenangebot DESLEIIEN.........ccooi i 10
5.3 Transportauftrag erstellen...........coooiiiiii e 12
6 VertlilUNGSSICNL. ..o e 14
6.1 AUSTUNIUNGSUMUQEDUNG ...ooviiii e e 14
6.2 Deployment Via PIPEINESoiiiiiiiieecee e 14
6.3 Betrieh Und WartUNQG...........ouiiiiiiir e e e e e 14
R U o= £ o] T 15
7 Querschnittiche KONZEPLE ... 16
7.1 State-ManagemeEnt (NGRX)uuuuuuueueeieiiiieteieeeuieeeeeeeeneeeneeeeeeeeere e 16
7.2 Globales Fehler- und LOGQiNg-KONZEPTuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeneininienneennenennn 16
7.3 SECUILY (U] oottt 16
7.4 Ul-ArchiteKtur & WiederverWenNAUNGuueuuuerereieiueeeeneeneeneennsneeeneneeennneeeee. 17
8 ENTSCNIEAUNGSIOQ 1ttt 19
O RISIKOANAIYSE ..t 20
9.1 MaASSNANMIEN.....eeei et e e e e e e e e e e aaas 20

Architekturdokumentation Food-Bridge

Inhaltsverzeichnis Vi
SelbststandigKeitSErKIArUNG ... ccoo e i e e e e e 21

Architekturdokumentation Food-Bridge

Einleitung und Ziele 1

1 Einleitung und Ziele

Im Rahmen dieser Masterarbeit wird eine Webplattform zur Forderung von nachhaltiger
Lebensmittelverteilung zwischen Hilfsorganisationen und Produzenten fir die Schweizer Tafel
entwickelt. Die Plattform mit dem Namen «Food-Bridge» leistet damit einen Beitrag zur
Reduktion von Lebensmittelverschwendung und zur Unterstitzung gemeinnUtziger
Organisationen. Mithilfe einer Anforderungsanalyse und Kundenfeedback werden die
verschiedenen Funktionalitaéten mit den Frameworks Angular und Java/Spring-Boot umgesetzt.
Erganzt wurde die Entwicklung durch den Einsatz einer relationalen SQL-Datenbank, einer
CI/CD-Pipeline in Azure DevOps sowie dem Hosting mittels Amazon Web Services, um einen

stabilen Betrieb sicherzustellen.

1.1 Qualitatsziele

Die Kernanforderungen werden in der nachfolgenden Tabelle aufgelistet und erlautert. In

unserem Wiki haben wir die Anforderungen weiter ausgefihrt.

Anforderung Beschreibung

Benutzerregistrierung | Benutzer kdnnen ein eigenes Konto auf Food-Bridge erstellen. Zudem bietet
und -verwaltung die Software eine Rollenverwaltung, um bspw. Admin-Rechte zu vergeben.

Inserieren von
Uberschissigen
Lebensmitteln

Benutzer einer Organisation kénnen Uberschissige Lebensmittel inserieren.
Dem Warenangebot kénnen mehrere Artikel hinzugefugt werden.

Bestellung durch

) . Die inserierten Lebensmittel kbnnen von Hilfsorganisationen bestellt werden.
Hilfsorganisationen

Planung und
Verwaltung der
Abholung durch
Lieferanten

Der Transport der Bestellung kann Uber Transportauftrage abgefertigt
werden. Zusatzlich besteht die Méglichkeit, auf einem Transportauftrag
Hinweise fiir den Lieferanten zu hinterlegen.

Die Webapp muss zusatzlich zu den funktionalen Anforderungen ebenfalls nicht funktionale

Anforderungen erftllen.
Die Software muss:

- Uber 99% der Zeit erreichbar sein.

- skalieren, um einen Betrieb von bis zu zehn parallelen Usern zu ermdglichen.
- die Bestimmungen des Datenschutzgesetztes der Schweiz erfillen.

- die Daten mussen in der Schweiz gehostet werden.

- eine wartbare und erweiterbare Architektur bieten.

Architekturdokumentation Food-Bridge

Einleitung und Ziele

1.2 Stakeholder

Nachfolgend sind unsere vier Hauptinteressensgruppen aufgelistet mit einer

Beschreibung deren Erwartungen.

kurzen

Stakeholder

Erwartung

Schweizer Tafel

Einfache Administration innerhalb der Software. Zudem soll die Lésung
kostengunstig in der Wartung sein.

Produzent

Intuitive LOsung, um uberschiissige Lebensmittel zu inserieren, damit die
Lagerplatze fur andere Produkte genutzt werden kénnen.

Hilfsorganisation

Intuitive LOsung, um Lebensmittel zu bestellen.

Lieferant

Einfache Losung, um Informationen zum Transport einzusehen.

Architekturdokumentation Food-Bridge

Systemkontext-Diagramm

2 Systemkontext-Diagramm

In der folgenden Grafik ist unser Systemkontext-Diagramm ersichtlich.

Q

Produzent

1
/ '\\ Lebensmittel
inzerieren
l—l-

@)

Lebensmitiel
bestellen

/\

Hilfsorganisation

.

Webapp - Food-Bridge
({Systemgrenze)

Frontend E |

Angular

Kommunikation
via REST

Backend E

Draten manipulieren

h 4

Java f Spring Boot

Q

—
EBestellungen abholen
und auslieferm /\

Lieferant

PosgreSCiL E
Datenbank

gehostet auf

—gehostet auf—

l

AWS Cloud

Datenbank managen

Deployment / Hosting managen

URL abfragen

h 4

Domanen pmvid?l

T

Domane managen

/\

Systemadministrator

Architekturdokumentation Food-Bridge

Lésungsstrategie 4

3 LoOsungsstrategie
Nachstehend wird unsere Losungsstrategie genauer erlautert.
3.1 Leitziele

- Nachhaltige Lieferketten fuir Uberbestande effizient vermitteln
- Einfach bedienbar fir Produzenten, Hilfsorganisationen, Lieferanten
- Robust und erweiterbar (modular, testbar, Cloud-ready)

3.2 Architekturgrundsatze

- Trennung von Frontend und Backend
- Hexagonale Architektur im Backend: Domain unabhangig von Frameworks sowie
Integration von Ports und Adapter, um die Kommunikation mit dem Frontend und der
Datenbank zu separieren.
o Damit die Architektur zwingend eingehalten wird, wurde mit Maven-Submodulen
gearbeitet. Somit ist der Zugriff auf ein unerlaubtes Modul klar geregelt.
o Maven-Submodule: bootstrap (App-Starter und Security-Konfigurationen),
adapters (REST-Controller und Datenbank-Adapter), application (Business-
Logik), domain (Business-Objekte)

. . ~ Adapters '
~ Application ‘
|
Domain

Entities |

Architekturdokumentation Food-Bridge

Lésungsstrategie 5

3.3 Technologieentscheidungen

3.4

3.5

Frontend: Angular und TypeScript mit ESLint
Backend: Java mit Spring Boot und Data JPA
Datenbank: PostgreSQL
Mail: Spring Mail (SMTP Provider).
Container: Docker
Infrastruktur: Amazon Web Services
o EC2: Virtuelle Ubuntu Umgebung
o ECR: Repository fiir Docker-Images
o S3: Kleiner Speicher fur Docker-Compose- und Variablen-File (env)
o RDS: Datenbankservice fur PostgreSQL
CI/CD: Azure DevOps Pipelines fur Tests und Deployment
AuthGuard, RoleGuard und TokenGuard: Trennung der Sicherheitslogik direkt im Router
HTTP-Interceptor: Zentrale Stelle fur JWT, Error-Handling und Response-Manipulation
Notification Service: Einheitliche Benutzerkommunikation fur Fehler, Warnungen und
Informationen
NgRx Store mit App State: Zentralisierte State-Verwaltung flir Stammdaten

Language Service (ngx-translate): Einfache Erweiterung um neue Sprachen

Qualitatsziele und Taktiken

Sicherheit: JWT, Rollen, Input-Validierung, Argon2 fur Passwortverschliisselung
Performance: Caching der Stammdaten im Frontend und Datenbank-Indizes
Wartbarkeit: saubere Ports und Adapter, modulare Services, Code-Style-Checks, Unit-
sowie Integrations-Tests

Skalierbarkeit: horizontale Skalierung aufgrund von stateless Backend moglich

Deployment-Strategie

Auf das Deployment wird im Kapitel 6 vertieft eingegangen. Nachfolgend ein kurzer Uberblick.

Prod-Pipeline: Fur Frontend und Backend Docker-Image erstellen = Die neusten
Images mittels Docker-Compose auf der EC2-Umgebung deployen

Rollback: Aufgrund Repository mit versionierten Docker-Images moglich

Architekturdokumentation Food-Bridge

Bausteinschicht 6

4 Bausteinschicht

Die nachfolgende Grafik widerspiegelt grob die wichtigsten Komponenten des Frontend- und
Backend-Projekts. Zum Frontend-Projekt gehort das Presentation-Package und zum Backend-

Projekt gehéren die Packages Bootstrap, Adapters, Application und Domain.

Food-Bridge
Presentation
. Language- State
Routing Guards Service Management
LI- Motification- Theme- HTTFP
Components Service Service Interceptor
Bootstrap Adapters
Spring- Security- REST- Persistence-
Configs Configs Controllers Adapters
: i Application- Tabellen-
JWT-Handling Starter Entities
Application Domain
APIs flr Business-
Adapters Logik
Data-Objekte fr
Business-Logik

Architekturdokumentation Food-Bridge

Laufzeitschicht 7

5 Laufzeitschicht

In diesem Kapitel wird das Zusammenspiel der Komponenten zur Laufzeit aufgezeigt. Nachfolgend sind die wichtigsten Use Cases als

Sequenzdiagramm dargestellt. Fir jeden Use Case gibt es einmal das Frontend- und einmal das Backend-Diagramm.

Architekturdokumentation Food-Bridge

Laufzeitschicht

CreateProductCmp ArticleDialog Store OfferEff OfferSvc Http Authlnt OfferAPl Notification Router
User
Formular befiillen
[1] >
Klick "Artikel hinzufiigen"
2] >
open()
o
ProductPosition
positions.push()
Klick "Veroffentlichen”
(6] >
dispatch(submitOffer)
[>
action
o »
createQffer(req)
POST /offers
+IWT
>
POST
@ »
201
e @
resp
resp
created
success
—0
success("Erstellt”)
& >
navigate('/offers')
[19] >
CreateProductCmp ArticleDialog Store OfferEff OfferSvc Http Authlnt OfferAPl Notification Router
User

Architekturdokumentation Food-Bridge

Laufzeitschicht

OfferController OfferService OfferPersistenceAdapter ProductPersistenceAdapter OfferPositionPersistenceAdapter
Client
createOffer(data)
offer = data.createOfferForinsertion()
positions = data.positions().map(createPositionForlnsertion)
create(offer, positions)
save(offer)
savedOffer
q
loop [each OfferPosition]
findByNumberAndTitleAndDescription{product)
alt [existing product]
savedProduct
‘. ..
[new product]
save(product)
savedProduct
* ..
save(offerPosition.with(savedOffer, savedProduct))
ok
e
savedOffer
ey
201 Created (Location, body)
‘. ...
OfferController OfferService OfferPersistenceAdapter ProductPersistenceAdapter OfferPositionPersistenceAdapter
Client

Architekturdokumentation Food-Bridge

Laufzeitschicht

10

5.2 Warenangebot bestellen

ProductDetailsCmp Store OrderEff OrderSvc Http Authint OrderAPI Notification Router
User
Angebot wahlen + Formular befiillen
[1] >
Klick "Bestellen”
(2] >
dispatch(createOrder)
action
Q- >
createOrder(req)
POST /forders
o—
+IWT
o—————
POST
[Y — >
201
oo (5]
resp
“ '
resp
e RCarr T R @
created
P @
success
«—p
success("Erfasst")
(14 >
navigate('/orders/:id'")
ProductDetailsCmp Store OrderEff OrderSvc Http Authint OrderAPI Motification Router

User

Architekturdokumentation Food-Bridge

Laufzeitschicht

11

OrderController OrderService OrderPersistenceAdapter (OfferPositionPersistenceAdapter ‘OrderPositionPersistence Adapter OfferService OfferBo OfferPositionBo
Client
createOrder(data)
order = data.createOrderForinsertion()
positions = data.positions(). map(createPositionForinsertion)
create(order, pesitions)
save(order)
e
savedOrder
-
findByld{first(positions).offerPosition. id)
alt [not found]
ValidationFailedException
[found]
canOfferbeOrdered{offerid, state)
alt [not orderable]
ValidationFailedException
400
[ok]
loop [each position]
hasEnoughPalletsiofferPosid, pallets)
alt [not enough]
ValidationFailedException
400
S
[enough]
save(pasition.withOrder(savedOrder))
savedPosition
0
isOfferComplete (offerld)
alt [complete]
update(offer.setState(Completed))
ok
S
savedOrder
201 Created (Location, body)
OrderController OrderService OrderPersistenceAdapter (OfferPositionPersistenceAdapter OrderPositienPersistenceAdapter OfferService OfferBo OfferPositionBo
Client

Architekturdokumentation Food-Bridge

Laufzeitschicht

12

5.3 Transportauftrag erstellen

Motification

CreateshippingCmp Store ShippingEff ShippingSvc Http Authint ShippingAP! Dialog ExtForm
User
dispatchiloadCompanies)
action
[= TR TP T T rPr S EEE PP PRI LLEREs >
getCompanies()
GET /companies
IWT
request
' TEE T REPRRR. »
200
o EERCECRETEUREREEER PR (7]
resp
eeeerr e o
companies[]
IoadCompaniesSuccess
Firma wihlen
open(orderFormlink)
®
navigate()
PDF
e [:=]
attachment
©
&
Bestellung wahlen
Klick "Erfasser
dispatchicreateOrder)
action
[BT TP R EL CERLOPLCRPeReY >
createOrder(req)
POST forders
+IWT
resp
resp
e LT 127)
created
o EERELCRITEEREREEER A =]
success
-—
success(“Erstellt™)
D
CreateShippingCmp Store ShippingEff Shippingsve Hitip Authint ShippingAP| Dialog ExtForm
User

Architekturdokumentation Food-Bridge

Laufzeitschicht

13

ShippingOrderPersistenceAdapter

ShippingOrderPersistenceAdapter

ShippingOrderController ShippingOrderService ShippingOrderBo
Client
createShippingOrder(data)

so = data.createShippingQrderForinsertion()

create(so)
canCreateShippingOrderForOrder(so.order)

alt [not allowed]
ValidationFailedException
.‘.
400
1. ...
[ok]
save(so)
savedSO
‘ ...
savedSO
.‘.
201 Created (Location, body)
ShippingOrderController ShippingOrderService ShippingOrderBo
Client

Architekturdokumentation Food-Bridge

Verteilungssicht 14

6 Verteilungssicht
In diesem Kapitel gehen wir ndher auf den Aufbau des Deployments ein.

6.1 Ausfihrungsumgebung

- Cloud: Amazon Web Services (AWS)
- Compute: EC2 (Ubuntu, Docker + Compose)
- Edge/Proxy: Caddy auf EC2 (TLS, Routing - Frontend, /api > Backend)
- Docker-Container:
o Frontend: Angular + Caddy (statische Auslieferung)
o Backend: Java / Spring Boot
- Datenbank: RDS PostgreSQL
- Storage/Assets: S3
- Registry: ECR (Container-Images)
- Konfig/Secrets: .env- und Docker-Compose-Dateien auf S3

6.2 Deployment via Pipelines

Auf Azure DevOps haben wir eine Frontend- und eine Backend-Pipeline. Diese sorgen dafiir,
dass der Code von den Main-Branches in einem Docker-Image bereitgestellt werden, um
anschliessend auf der EC2-Instanz deployt zu werden. Die PostgreSQL-Datenbank wurde tber

einen Relational Database Service (RDS) an die EC2-Instanz angebunden.

Stages der Frontend-Pipeline: Docker-Image anhand von Code erstellen (Im Docker ist
ebenfalls der Reverse-Proxy Caddy integriert) > erstelltes Image auf ECR hochladen >

Deployment des aktuellen Images auf der EC2-Instanz

Stages der Backend-Pipeline: Tests ausfiihren - Docker-Image anhand von Code erstellen
- erstelltes Image auf ECR hochladen - .env-File anhand von Pipeline-Variablen generieren
und auf S3 hochladen - Docker-Compose-File aus Projekt auf S3 hochladen - .env- und
Docker-Compose-Dateien auf EC2-Instanz herunterladen > Deployment des aktuellen Images
auf der EC2-Instanz

6.3 Betrieb und Wartung

- CI/CD: Damit Anderungen deployt werden kénnen, missen die produktiven Pipelines
fur Frontend und Backend gestartet werden.

- Backups: Die Datenbank wird Uber automatisierte Snapshots von RDS gesichert.

Architekturdokumentation Food-Bridge

Verteilungssicht 15

- Rollback: Anhand der versionierten Images auf ECR kann ein Rollback tiber das Docker-

Compose-File veranlasst werden.

6.4 Ubersicht

Azure DevOps — Pipelines

Frontend-Pipeline

Build Docker-lmage
{Angular + Caddy)

A4

Push auf ECR »| Deploy auf EC2

Backend-Pipeline

o| Build Docker-Image

Tests {Java / Spring Boot)

{

Upload docker-
compose auf 53

> Push auf ECR Generate .env » Upload .env auf S3

Download .env und
docker- auf

y

» Deploy aufEC2 | — — + — — ~

EC2

--l--—-+-=-+-=|-t+-F-=-x

\ N AWSCloud 7 - -

f— — — — — — — — — — - - L A4 -4 - =

\ ’— _ -
L | e —— - !
83 ECR)
env + docker-compose (Container-images) RDS PostgreSaL /
!
N i
™~ !
- N !
~ - i
~ !
~. ;
~
A ¥
EC2 (Ubuntu, Docker und Compose)
Caddy (Edge / o| Frontend Container o| Backend Container
Reverse Proxy) Angular Java / Spring Boot
K

Benutzer (Browser)
HTTPS 443

Architekturdokumentation Food-Bridge

uerschnittliche Konzepte 16
Q p

7 Querschnittliche Konzepte

In diesem Kapitel gehen wir auf generelle Prinzipien und Losungsansétze ein, die in vielen
Teilen der Architektur benutzt wurden. Der Inhalt bezieht sich vor allem aufs Frontend, da in den

vorherigen Kapiteln das Backend mit deren Architektur bereits beleuchtet wurde.

7.1 State-Management (NgRx)

- Ziele: Vorhersehbare Zustdnde, Trennung von Ul/Side-Effects, Debugbarkeit, Time-
Travel.
- Store-Struktur: auth, organisation, position, product-offer, order, shipping, user,
dashboard, contact sowie app.
- Selectors: einzige Datenquelle fir Container-Komponenten (async pipe).
- Effects: kapseln Side-Effects (HTTP, Routing, Notifications).
- InitialLoad: InitialService dispatcht AppActions.initialDatalLoad().
o Ladt Benutzer (me), Organisationen, ConditionTypes, Settings.
o Ul wird erst nach initialDataLoaded gerendert.
- Entities: @ngrx/entity fur performante Listen (IDs, Adapter, Memoized Selectors).
- Optimistic Updates: bei idempotenten Mutationen mit Rollback.

7.2 Globales Fehler- und Logging-Konzept

- Global Error Handler (ErrorHandler): Fangt ungefangene Fehler, schreibt Log, zeigt
User-Feedback.
- HTTP-Fehler: zentral Uber Interceptor.
o 401: Logout/Redirect - Signin
o 403: AccessDenied
o 5xx: Notification + Logging
- LoggerService:
o Logs: userld, tenantld, severity, message, stack, payload.
o Channels: Console (Dev), Backend (Prod).
o PII-Filter: keine sensiblen Daten in Logs.

7.3 Security (Ul)

- Guards:
o AuthGuard: nur eingeloggte User
o RoleGuard: pruft Berechtigungen
o TokenGuard: pruft Ablauf von JWT

Architekturdokumentation Food-Bridge

uerschnittliche Konzepte 17
Q p

Authinterceptor hangt JWT nur an API-Requests (Whitelist).
Externe Formulare (z. B. Login und Registrierung) = kein Token.

Component DataService HttpClient Authlnterceptor Store (authToken) Backend API LoggerService MotificationService
getData()
GET /resource
intercept(req)
selectToken()
JWT | null
alt [Token vorhanden]
attach JWT
[Kein Token]
passthrough
Request
2] >
200 | 401 | 403 | 5xx
Responze
Result
opt [Fehlerfalle]
alt [401]
error{'401 Unauthorized’)
warmn('Session abgelaufen’)
dispatch(logout())
[403]
error(Zugriff verweigert')
[15] >
[5xx]
error{'Serverfehler’, payload)
16} >
error{Technischer Fehler’)
[17) >
Component DataService HttpClient Authlnterceptor Store (authToken) Backend API LoggerService NaotificationService

7.4 Ul-Architektur & Wiederverwendung

- Container/Presenter (Smart/Dumb).
Shared: Pipes (ID-Format), Utils (Paginator, Error-Utils, JWT), Ul-Controls.

Feature-Module pro Doméne (Product, Order, Shipping).

Architekturdokumentation Food-Bridge

Querschnittliche Konzepte

18

ECreateProductComponent

@(<

Ul Layer

EProductDetailsComponent

CreateShippingComponent ‘
|

Core Layer

EnvironmentService ‘

/ ProductOfferController

Infrastructure Layer

HttpClient

Authlnterceptor

/ OrderController /

L

Backend APIs

/ ShippingController

L]

\\

\

\\

NgRx Store

‘ LoggerService

r

LogController /

MgRx Effects

~—

GlobalErrorHandler ‘

I

‘ NotificationService

Architekturdokumentation Food-Bridge

Entschiedungslog

19

8 Entschiedungslog

In der untenstehenden Tabelle sind unsere Entscheidungen festgehalten, die den Projektablauf

massgebend beeinflusst haben.

Datum -

Entscheidung EEEEE SUE

Begrundung
Anderungsdatum

Die Datenbank wird
mandantenfahig gestaltet,
auch wenn aktuell nur ein
Mandant (Schweizer
Tafel) betrieben wird.

04.05.2025 -
Mandantenfahigkeit

Pro: Zukunftssicherheit, da Erweiterungen (z. B.
Betrieb fur andere Organisationen oder Lander)
ohne tiefgreifende Umstrukturierung maoglich
sind.

Kontra: Initialer Mehraufwand fur
mandantenfahige Datenmodellierung.

Eigene
Benutzerverwaltung statt
Azure Active Directory
(AzureAD).

04.05.2025 -

Eigene
Benutzerverwaltung

Pro: Unabhéangigkeit von Microsoft-Diensten,
besser steuerbar fir Non-Profit-Use-Cases,
flexibler fur zukinftige Erweiterungen (z. B.
externe Partner, OAuth).

Kontra: Mehraufwand fur das Handling der
eigenen Benutzerverwaltung inkl.
Datenspeicherung.

Benutzer haben Rollen
(z. B. Admin, User,

Pro: Klare Trennung von Rechten und
Verantwortlichkeiten (z. B. wer darf
Organisationen erfassen oder Benutzer

Services betrieben.

28'34'2022_” Superuser), die ihre bearbeiten?). Einfach erweiterbar fir neue
Rollenmode Zugriffsrechte auf Nutzergruppen.
Ressourcen steuern. Kontra: Erfordert sorgfaltiges Rechtekonzept
und Testaufwand.
Pro: Einheitliches Setup fur Frontend, Backend
und Datenbank. Nutzung von AWS-Diensten fir
05.08.2025 Die gesamte Plattform eine virtuelle Umgebung und Datenbank. Dieses
Ho.sti.ng) wird Uber Amazon Web Setup garantiert Skalierbarkeit, Stabilitat und

geringen Wartungsaufwand.

Kontra: Einarbeitungszeit flir das Kennenlernen
von AWS.

Architekturdokumentation Food-Bridge

Risikoanalyse

20

9 Risikoanalyse

Die folgende Tabelle veranschaulicht die Risiken beurteilt nach Eintrittswahrscheinlichkeit und

Auswirkung.

Wahrscheinlichkeit —
Auswirkung |

1 - unwahrscheinlich

2 - neutral

3 - wahrscheinlich

1.1.1 Kosten von Azure

1-gering sind nicht mehr tragbar
2.3.1 Fehlende
Ressourcen/Zeit um
den gesamten
Projektumfang
2.1.1 Fehlende Tools abzudecken
2 - mittel o 2.2.1 Ausfall von 2.3.2 Datenverlust
= (e 2.1.2 Repos werden Teammitgliedern durch
geloscht Programmierfehler
2.3.3 Inkonsistenz der
Ul-Elemente und
Darstellungsprobleme
auf Endgeréaten
3.2.1 Datenverlust
durch Einsatz von
3.1.1 Unklare unbekannten . e
Apforderungen oder Technologien (bspw 3.3.1 Sicherheitsliicken
3-hoch Ziele Springboot) ' beim Passwort-
Handlin
2[11'32 ;u;gﬁg;‘gﬁdback 3.2.2 Fehlerhaftes g
P Statemanagement
(NGRX)

9.1 Massnahmen

Die nachfolgenden Massnahmen sollen dafiir sorgen, dass die Risiken mit hoher Auswirkung

und wahrscheinlichem Eintritt verhindert werden konnen:

- 3.3.1: Bestehendes Passwort-Framework benutzen
- 3.2.1, 3.2.2, 2.3.2, 2.3.3: Testabdeckung hochhalten und zeitnah die Testumgebung

hochziehen fir End-to-End Testing / Testumgebung auch friihzeitig dem Kunden

bereitstellen

- 2.3.1: Zu Beginn des Projektes bereits viel Zeit investieren, damit gentigend Puffer fir

herausfordernde/unerwartete Probleme vorhanden ist

- 2.2.1: Regelmassige Auszeiten planen

Architekturdokumentation Food-Bridge

Selbststandigkeitserklarung

Hiermit erklaren wir, dass wir die vorliegende Masterarbeit im MAS Software Engineering mit
dem Titel «Food-Bridge: Synergistische Vernetzung zur Fdérderung nachhaltiger
Lebensmittelallokation» selbststdndig und ohne unerlaubte fremde Hilfe angefertigt, keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet und die den verwendeten
Quellen und Hilfsmitteln wortlich oder inhaltlich enthommenen Stellen als solche kenntlich
gemacht haben. Weiterhin erklaren wir, dass wir keine durch Copyright geschitzten Materialien
(z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet haben und in dieser Arbeit keine
Adressen, Telefonnummern und andere personliche Daten von Personen, die nicht zum

Kernteam gehoren, publizieren.

9000 St.Gallen, 11.09.2025:

D. Debt/

Dominic Sieber

Tl —

Philip Tobler

