
Master Thesis

i

Master Thesis

Master of Advanced Studies in Software Engineering

Out-of-the-Box Visualisierungssystem
für Zähler- und Anlagenüberwachung mit M-Bus- und Modbus-Anbindung auf Raspberry Pi Basis

Betreuer

Dr. Thomas Memmel

Autoren

Kerim San, Remzi Atesci

Inhaltsverzeichnis i

i

1 Inhaltsverzeichnis

2 Abstract ... 1

3 Management Summary ... 1

3.1 Ausgangslage ... 1

3.2 Relevanz des Themas ... 1

3.3 Einsatzumfeld und Ziel ... 2

3.4 Zentrale Fragestellung ... 2

3.5 Vorgehen .. 3

3.6 Erreichte Ziele und Erkenntnisse ... 4

3.7 Fazit .. 5

4 Einleitung ... 1

4.1 Ausgangslage und Motivation ... 1

4.2 Problemstellung ... 2

4.3 3.3 Zielsetzung ... 3

4.4 Abgrenzung der Arbeit ... 4

4.5 Aufbau der Arbeit .. 4

5 Stand der Forschung und Technik ... 6

5.1 Gebäudeautomation & Smart Metering .. 6

5.2 M-Bus-Protokoll – Grundlagen & Einsatzgebiete .. 7

5.3 Modbus-Protokoll – Grundlagen & Einsatzgebiete ... 9

5.4 Bestehende Visualisierungslösungen und deren Limitierungen................................ 11

5.5 Wissenschaftlicher Kontext (IoT, Facility Management, Open Source) 11

6 Anforderungen .. 13

6.1 Stakeholder und Anwendergruppen ... 13

6.2 Funktionale Anforderungen ... 15

6.3 Nicht-funktionale Anforderungen.. 16

6.4 Risikoanalyse .. 17

7 Systemarchitektur ... 19

7.1 Gesamtübersicht (Diagramm) .. 19

7.2 Hardware-Architektur (Raspberry Pi, Adapter, Zähler) ... 21

7.3 Software-Architektur ... 22

Inhaltsverzeichnis ii

7.3.1 Backend (Flask, API-Struktur) .. 23

7.3.2 Frontend (React, Visualisierung) ... 24

7.3.3 Datenhaltung PostgreSQL .. 26

7.3.4 Konfigurationsdateien (Excel, JSON) ... 26

7.4 Kommunikationsabläufe (M-Bus, Modbus, Web-API) ... 26

8 Design und Implementierung .. 31

8.1 Projektmethodik .. 31

8.2 Walking Skeleton / Prototyp .. 32

8.3 Implementierung Backend ... 33

8.3.1 M-Bus Scanning & Parsing ... 33

8.3.2 Modbus Handling (RTU/TCP) ... 35

8.3.3 Schnittstellen ... 36

8.4 Implementierung Frontend (React UI, Tabellen, Graphen) 40

8.5 Sicherheitsaspekte & Benutzerrollen .. 42

8.5.1 Zielbild und Leitplanken .. 42

8.5.2 Rollen und Berechtigungen ... 42

8.5.3 Zugriff, Authentisierung, Autorisierung ... 43

8.5.4 Eingaben, Prozesse, Fehler .. 43

8.5.5 Betriebssicherheit und Härtung .. 43

8.5.6 Daten und Schutz ... 44

8.5.7 Zusammenfassung für den Leser ... 44

9 Verifikation, Tests und Qualitätssicherung ... 44

9.1 Teststrategie .. 45

9.2 Testumgebungen ... 45

9.3 Testdurchführung (lokal & CI) .. 45

9.4 Ergebnisse (Kurzüberblick) ... 46

9.5 Praktischer Frontend-Nachweis (Screencast) .. 46

9.6 Qualitätssicherung ... 46

9.7 Risiko- und Edge-Case-Tests .. 46

9.8 Artefakte und Nachweise... 47

10 DevOps / CI/CD, Build & Deployment .. 48

10.1 Versionskontrolle (GitHub/Bitbucket) ... 48

10.2 CI/CD-Pipeline (Automatisierung, Testauszüge) .. 48

Inhaltsverzeichnis iii

10.3 Deployment auf Raspberry Pi (git + setup.sh) ... 49

10.4 Installations- und Benutzerhandbuch .. 51

10.4.1 10.4.1 Voraussetzungen .. 51

10.4.2 Erstinstallation (Schritt für Schritt).. 51

10.4.3 Erstkonfiguration (.env) .. 51

10.4.4 Dienstverwaltung (systemd) ... 52

10.4.5 Funktionstest (Smoke) .. 52

10.4.6 Benutzerhandbuch (Kurz).. 52

10.4.7 Update und Rücksprung (git) .. 53

10.4.8 Deinstallation (vollständig) ... 53

10.4.9 Tipps & Stolpersteine .. 53

10.4.10 Frontend Installation (Docker Compose + Keycloak, via scripts/setup.sh) 53

11 Ergebnisse, Metriken und Evaluation .. 57

11.1 Funktionale Ergebnisse (Visualisierung, Quittierung, Export) 57

11.2 Performance & Zuverlässigkeit .. 57

11.3 Usability-Feedback (Endnutzer vs. Techniker) ... 57

11.4 Nutzenbewertung (Zeitersparnis, Kosten) ... 58

11.5 Evaluationsmethodik und Validität .. 58

11.6 Metrikenübersicht und Leseführung ... 59

12 Diskussion ... 60

12.1 Erfüllung der Ziele .. 60

12.2 Grenzen der Lösung ... 60

12.3 Vergleich mit bestehenden Lösungen ... 61

12.4 Lessons Learned ... 61

12.5 Ausblick .. 62

13 Projektmanagement ... 63

13.1 Projektplanung & Iterationen .. 63

13.2 Zeiterfassung & Aufwand ... 63

13.3 Rollenverteilung (Kerim, Remzi) .. 64

13.4 Herausforderungen im Projektmanagement ... 65

14 Schlussfolgerungen und Ausblick ... 66

14.1 Beantwortung der Forschungsfragen .. 66

14.2 Fazit .. 66

Inhaltsverzeichnis iv

14.3 Weiterentwicklungspotenziale (z. B. Push-Benachrichtigungen, Cloud-Anbindung) 66

14.4 Empfehlungen für den Produktivgang ... 67

14.5 Schlussbemerkung ... 67

15 Danksagung .. 68

16 Literaturverzeichnis .. 69

17 Abbildung A1: Systemarchitektur – Durchstich von Feldgeräten bis Web-UI A

18 Abbildung A2: Hardware-Architektur (in UML) .. A

19 Abbildung A3: M-Bus-Kommunikation (Scan und Einzelgerät-Auslesung) A

20 Abbildung A4: Modbus-Kommunikation (Register lesen und schreiben) A

21 Abbildung A5: Monitor-Poll mit Cooldown (mehrere Geräte, Mindestabstand 30 s) A

22 Abbildung A6: Vorgehensmodell und Artefaktfluss (Dev → CI → Release → Deploy) A

23 Tabelle E1: Interviewleitfaden (Fragenblöcke kurz) ... E

24 E2: Antworten Kaan Cehreli (Normaler User) .. E

25 E3: Antworten Bülent Sünbül (Eigentümer) ... E

26 E4: Antworten Srdjan Jankovic (Techniker) ... E

Abbildungsverzeichnis v

v

Abbildungsverzeichnis

Abbildung 1 Use-Case-Diagramm Gebäudeautomation & Smart Metering ... 7

Abbildung 2 M-Bus-Kommunikation (Scan und Einzelgerät-Auslesung) .. 8

Abbildung 3 Modbus-Kommunikation (Register lesen und schreiben) .. 10

Abbildung 4 Stakeholder und Systeminteraktionen (Rollen ↔ Kernfunktionen) 14

Abbildung 5 Systemarchitektur – Durchstich von Feldgeräten bis Web-UI .. 20

Abbildung 6 Hardware-Architektur (Raspberry Pi mit M-Bus- und Modbus-Adaptern) 21

Abbildung 7 Software-Architektur (Module, Flows, Schnittstellen) ... 22

Abbildung 8 Frontend-Chart Abruf → /metrics/series (Bucketed Zeitreihen) 24

Abbildung 9 Modbus Write mit Read-Back-Verifikation und Logging .. 25

Abbildung 10 Monitor-Poll mit Cooldown (Mehrere Geräte, 30 s Mindestabstand) 28

Abbildung 11 Modbus Pfadübersicht RTU vs TCP (Parameter und Antwortfluss) 29

Abbildung 12 Fehler-Envelope Flow (Treiberfehler → API → UI-Meldung) .. 30

Abbildung 13 Vorgehensmodell und Artefaktfluss ... 31

Abbildung 14 M-Bus Scan Abbruch (kompakte Sequenz) ... 33

Abbildung 15 Modbus Handling im Backend (Adapter, Parser, Error-Mapping) 35

Abbildung 16 Frontend Routing und Seitenfluss... 40

Abbildung 17 Testpyramide und Pipeline Gates ... 44

Abbildung 18 CI/CD - PR Fastlane vs. main/tag Volllauf ... 48

Abbildung 19 Deploy (git pull -> setup.sh -> systemd -> Health) .. 49

Abbildung 20 Sprint-Flow (Board -> PR -> Pipeline -> Done) .. 63

Tabellenverzeichnis vi

vi

Tabellenverzeichnis

Tabelle 1 Vergleich etablierter Systeme mit dem entwickelten Zielsystem ... 2

Tabelle 2 Sollziele, Umsetzung und Abweichungen .. 3

Tabelle 3 Abgrenzung der Arbeit – In Scope vs. Out of Scope .. 4

Tabelle 4 Funktionale Anforderungen des Visualisierungssystems .. 16

Tabelle 5 Nicht-funktionale Anforderungen des Visualisierungssystems ... 17

Tabelle 6 Risikomatrix des Visualisierungssystems ... 18

Tabelle 7 Zentrale API-Endpunkte (Auszug) .. 23

Tabelle 8 Frontend-Module und Seiten .. 24

Tabelle 9 Datenobjekte (vereinfacht).. 26

Tabelle 10 Relevante Konfigurationsdateien .. 26

Tabelle 11 JSON-Envelope und typische Fehlerfälle ... 27

Tabelle 12 Risiken und Entschärfung durch Walking Skeleton ... 33

Tabelle 13 M-Bus Backend Komponenten und Pfade ... 34

Tabelle 14 SSE Ereignisse im Scan ... 34

Tabelle 15 Modbus Funktionscodes (Auszug) ... 36

Tabelle 16 Modbus Parameter – RTU vs. TCP ... 36

Tabelle 17 REST-API Endpunkte (Auszug).. 37

Tabelle 18 Beispiel-Requests (cURL, kompakt) ... 38

Tabelle 19 JSON-Envelope und Fehlerfälle .. 38

Tabelle 20 Seiten ↔ Services ↔ Endpunkte... 41

Tabelle 21 UI-Zustände für M-Bus Scan .. 41

Tabelle 22 Charts – Zeitreihenabruf .. 42

Tabelle 23 Rollenmatrix ... 42

Tabelle 24 Testarten und Ziele .. 45

Tabelle 25 Testumgebungen ... 45

Tabelle 26 Durchführungsplan und Kommandos .. 45

Tabelle 27 Schlüsselergebnisse (Beispielstruktur zum Befüllen) .. 46

Tabelle 28 Screencasts und Akzeptanzkriterien .. 46

Tabelle 29 QS Massnahmen .. 46

Tabelle 30 Edge Cases und Mitigation .. 47

Tabelle 31 Artefakte und Verweise ... 47

Tabelle 32 Branch- und Release-Policy ... 48

Tabelle 33 Pipeline-Schritte (Standard)... 49

Tabelle 34 Aufgabenübersicht setup.sh (ersetzt) ... 50

Tabelle 35 Post-Install Checks ... 50

Tabelle 36 Standardpfade ... 50

Tabelle 37 Version zurückdrehen via Git ... 50

Tabelle 38 Troubleshooting ... 51

Tabelle 39 Systemvoraussetzungen .. 51

Tabelle 40 Minimaler .env-Satz ... 52

Tabelle 41 Typische Aufgaben je Rolle .. 52

Inhaltsverzeichnis vii

Tabelle 42 Frontend Systemvoraussetzungen .. 54

Tabelle 43 Beispiel .env.development für Frontend Setup ... 54

Tabelle 44 Inhalte im transfer/ und Wirkung .. 54

Tabelle 45 Aufgabenübersicht scripts/setup.sh (Frontend) .. 55

Tabelle 46 Post-Setup Checks (Frontend/Keycloak) ... 55

Tabelle 47 Häufige Probleme und Fixes .. 56

Tabelle 48 Funktionale Ergebniskarte (Nachweis im Anhang) .. 57

Tabelle 49 Performance-Kennzahlen (bitte Werte ergänzen) .. 57

Tabelle 50 Beobachtungen und Massnahmen .. 58

Tabelle 51 Aufwand vorher vs. nachher (Annahmen)... 58

Tabelle 52 Qualitativer Nutzen.. 58

Tabelle 53 Metriken → Kapitel → Nachweis ... 59

Tabelle 54 Zielerreichung (Soll vs. Ist, mit Nachweisen) ... 60

Tabelle 55 Grenze → Wirkung → Mitigation .. 61

Tabelle 56 Einordnung (Kurz) .. 61

Tabelle 57 Sprintstunden je Aktivität (Largest-Remainder, ganze Stunden) .. 64

Tabelle 58 Gesamtverteilung nach Aktivität ... 64

Tabelle 59 RACI-Matrix (Kernartefakte) .. 64

Tabelle 60 Risiken im PM und Massnahmen ... 65

Tabelle 61 Forschungsfragen ↔ Evidenz ↔ Nachweise ... 66

Tabelle 62 Roadmap (0–12 Monate) ... 67

Abstract

1

2 Abstract

Diese Masterarbeit untersucht, wie ein kostengünstiges und zugleich leistungsfähiges

Visualisierungssystem für Zähler- und Anlagenüberwachung realisiert werden kann. Ziel war es,

ein lokal betreibbares System zu entwickeln, das sowohl M-Bus- als auch Modbus-Geräte

unterstützt, ohne dass sich die Protokolle gegenseitig stören. Das Projekt wurde agil umgesetzt,

gestützt durch den Einsatz von Atlassian-Tools zur Projektorganisation. Erste Prototypen wurden

in realer Umgebung getestet: Verbrauchsdaten von M-Bus-Zählern konnten erfolgreich

ausgelesen, visualisiert und als CSV exportiert werden; Modbus-Geräte wurden über Register

konfiguriert, digitale Eingänge erfasst und Ausgänge über ein Webinterface gesteuert. Die

Visualisierung erfolgt über ein React-basiertes Frontend, das eine nutzerfreundliche Darstellung

der Daten gewährleistet. Die Ergebnisse zeigen, dass sich Verbrauchsdaten, Fehlermeldungen

und Steuerbefehle zuverlässig visualisieren und unterscheiden lassen – mit Mehrwerten wie

Benutzerrollen-Trennung und universeller Einsetzbarkeit durch Unterstützung von Modbus RTU,

Modbus TCP und M-Bus. Damit leistet die Arbeit einen Beitrag zur IoT-basierten

Gebäudeautomation und zum Facility Management.

Management Summary 1

1

3 Management Summary

3.1 Ausgangslage

Der Betrieb von Gebäuden und technischen Anlagen steht zunehmend im Spannungsfeld

zwischen Energieeffizienz, Betriebssicherheit und Kostenoptimierung. Bereits heute existieren

zahlreiche digitale Lösungen zur Datenerfassung und Visualisierung, insbesondere im Bereich

der Gebäudeautomation und des Smart Metering. Viele dieser Systeme richten sich jedoch an

grössere Liegenschaften oder industrielle Umgebungen und sind daher für kleinere

Anwendungen überdimensioniert. Sie zeichnen sich durch hohe Investitionskosten, komplexe

Inbetriebnahme und proprietäre Schnittstellen aus.

Für private Eigentümer, kleine Gewerbebauten oder Werkstätten fehlen damit erschwingliche

Systeme, die Verbrauchs- und Zustandsdaten verschiedener Geräte lokal erfassen und zentral

darstellen können. Hinzu kommt, dass viele Hersteller eigene Softwarelösungen anbieten,

welche nur mit den jeweiligen Geräten kompatibel sind und so Datensilos erzeugen. Diese

Fragmentierung erschwert eine ganzheitliche Sicht auf Energie- und Anlagendaten.

Vor diesem Hintergrund entstand die Idee, ein kostengünstiges, lokal betreibbares System zu

entwickeln, das standardisierte Protokolle wie M-Bus und Modbus unterstützt und unabhängig

von spezifischen Herstellern genutzt werden kann. Die Masterarbeit knüpft damit direkt an die

wachsende Bedeutung von IoT-Ansätzen im Facility Management und an den Bedarf nach

flexiblen, nachrüstbaren Lösungen für kleinere Objekte an.

3.2 Relevanz des Themas

Die Praxis zeigt, dass Ausfälle technischer Anlagen häufig zu hohen Folgekosten führen. Wird

etwa eine Wärmepumpe oder ein Heizsystem erst beim vollständigen Stillstand bemerkt,

entstehen Verzögerungen durch Notfalleinsätze, zusätzliche Servicefahrten und ungeplante

Stillstandszeiten. Frühzeitige Informationen über Fehlermeldungen oder kritische

Betriebszustände ermöglichen dagegen eine gezielte Vorbereitung der Technikerinnen und

Techniker, wodurch Reparaturen schneller und kostengünstiger durchgeführt werden können.

Darüber hinaus rückt die Transparenz von Energieverbräuchen zunehmend in den Fokus.

Sowohl private Hausbesitzer als auch professionelle Verwalter benötigen nachvollziehbare

Daten, um Energieeffizienz-Massnahmen einzuleiten, Abrechnungen zu plausibilisieren und

regulatorische Anforderungen zu erfüllen. Für Energieberater bietet die systematische Erfassung

und Auswertung von Verbrauchsdaten zudem eine Grundlage, um Optimierungspotenziale

aufzuzeigen.

Die Relevanz des Themas erstreckt sich somit über mehrere Ebenen:

• Ökonomisch: Reduktion von Servicekosten und Energieausgaben.

• Ökologisch: Beitrag zu effizientem Ressourceneinsatz und Nachhaltigkeit.

• Technisch: Vereinheitlichung heterogener Systeme und Verbesserung der

Interoperabilität.

Management Summary 2

• Organisatorisch: Unterstützung unterschiedlicher Zielgruppen von Endanwendern bis

zu Fachtechnikern.

Damit adressiert die Arbeit sowohl die Bedürfnisse kleinerer Betreiber als auch die generellen

Herausforderungen der modernen Gebäudeautomation.

3.3 Einsatzumfeld und Ziel

Das entwickelte System ist flexibel einsetzbar und adressiert verschiedene

Anwendungsszenarien:

• Privates Wohnumfeld: Hausbesitzer können ihren Energieverbrauch (Öl, Wasser,

Strom, Wärme) transparent erfassen und kritische Störungen frühzeitig erkennen.

• Mehrfamilienhäuser: Verwalterinnen und Verwalter erhalten eine Grundlage für

verursachergerechte Abrechnungen und können den Betrieb zentral überwachen.

• Gewerbebauten und Werkstätten: Betreiber technischer Anlagen (z. B. Heizungs- oder

Pumpensysteme) profitieren von einer besseren Kontrolle und einer einfachen

Fehlerdiagnose.

Das Ziel der Masterarbeit bestand darin, ein prototypisches Visualisierungssystem zu

entwickeln, das folgende Anforderungen erfüllt:

• Herstellerunabhängigkeit: Unterstützung unterschiedlicher Geräte über

standardisierte Schnittstellen (M-Bus, Modbus).

• Lokaler Betrieb: Keine Abhängigkeit von Cloud-Diensten oder Lizenzmodellen, wodurch

Kosten reduziert und Datenschutzrisiken minimiert werden.

• Benutzerfreundlichkeit: Ein webbasiertes Frontend mit klarer Trennung zwischen

Endanwendern (einfache Visualisierung) und Technikern (Detailkonfiguration und

Diagnose).

• Flexibilität: Möglichkeit zur Konfiguration über Dateien oder direkte Eingaben in der

Weboberfläche, sodass das System einfach auf neue Geräte angepasst werden kann.

• Erweiterbarkeit: Vorbereitung für zusätzliche Protokolle, Datenexporte und

Benachrichtigungsfunktionen.

Damit verbindet das Projekt praxisnahe Ziele – wie die Überwachung einer Heizungsanlage – mit

dem Anspruch, eine generische und erweiterbare Architektur zu schaffen, die auch in anderen

Kontexten des IoT und Facility Managements genutzt werden kann.

3.4 Zentrale Fragestellung

Aus der Ausgangslage und den Projektzielen leiten sich die folgenden zentralen

Forschungsfragen ab:

• Realisierbarkeit auf Standard-Hardware

Lässt sich ein Visualisierungssystem mit kostengünstiger, handelsüblicher Hardware (z.

B. Raspberry Pi) zuverlässig betreiben?

• Parallelbetrieb von M-Bus und Modbus

Wie können die beiden Protokolle gleichzeitig genutzt werden, ohne dass es zu

Kommunikationsstörungen oder Ressourcenkonflikten kommt?

Management Summary 3

• Architektur für unterschiedliche Nutzergruppen

Wie muss die Software- und Systemarchitektur gestaltet sein, damit sowohl

Endanwender (einfache Visualisierung) als auch Fachtechniker (Detaildiagnose und

Konfiguration) effizient unterstützt werden?

• Konfigurierbarkeit und Benutzerfreundlichkeit

Ist eine Konfiguration über Dateien (z. B. Excel/JSON) und eine visuelle Auswahl von

Datenpunkten im Web-Frontend praktikabel und robust umsetzbar?

Diese Fragen bilden die Leitplanken der Masterarbeit. Sie strukturieren sowohl die technische

Umsetzung als auch die spätere Evaluation der entwickelten Lösung.

3.5 Vorgehen

Die Umsetzung der Masterarbeit folgte einem agilen Vorgehensmodell, das kurze

Entwicklungszyklen und regelmässige Feedbackschleifen ermöglichte. Zentrale Elemente waren:

• Projektmanagement und Organisation

Die Arbeitspakete wurden in Sprints organisiert und über Tools wie Atlassian Jira und

Bitbucket strukturiert. Pull-Request-Reviews und Issue-Tracking stellten eine

kontinuierliche Qualitätssicherung sicher.

• Walking Skeleton / Architekturprototyp

Bereits in einer frühen Phase wurde ein End-to-End-Prototyp entwickelt, der einen

minimalen Durchstich über alle Systemebenen (Hardware, Treiber, Backend, Frontend)

realisierte. Dadurch konnten Risiken wie Kommunikationsabbrüche oder

Datenbankintegration früh identifiziert und adressiert werden.

• Technologische Trennung

Das System wurde bewusst in Backend (Python/Flask, Treiber, API, Persistenz) und

Frontend (React, Visualisierung, Rollenmodell) getrennt. Diese Aufteilung erleichterte

die Erweiterbarkeit und die parallele Arbeit im Team.

• Iterative Erweiterung

Funktionen wie M-Bus-Scanning, Modbus-Registerhandling, Quittierung von

Fehlermeldungen und zyklische Geräteüberwachung wurden schrittweise

implementiert und getestet.

• Praxisnahe Verifikation

Prototypen wurden nicht nur im Labor, sondern auch in einer realen

Werkstattumgebung installiert. So konnten reale Verbrauchsdaten erhoben und

typische Betriebsfehler simuliert werden.

• Qualitätssicherung

Unit- und Integrationstests mit pytest sowie ein Coverage-Gate von mindestens 80 %

stellten die funktionale Robustheit sicher. Ergänzt wurde dies durch statische Analysen

(Linting) und manuelle Explorations-Tests im Frontend.

Dieses Vorgehen erlaubte es, trotz begrenztem Zeitrahmen ein funktionsfähiges und stabiles

System zu entwickeln, das die zentralen Forschungsfragen adressiert und als Grundlage für eine

weiterführende Entwicklung dient.

Management Summary 4

3.6 Erreichte Ziele und Erkenntnisse

Im Verlauf der Arbeit konnten die definierten Soll-Ziele weitgehend umgesetzt und durch

zusätzliche Funktionen ergänzt werden. Die wichtigsten Ergebnisse lassen sich wie folgt

zusammenfassen:

• M-Bus

o Automatische Erkennung von Geräten im Strang und Speicherung der Adressen.

o Selektive Auslesung und Visualisierung von Datenpunkten über das Web-

Frontend.

o Implementierter Abbruchmechanismus, um laufende Scans kontrolliert zu

beenden und Kommunikationskollisionen zu vermeiden.

• Modbus

o Erfolgreiche Integration von Geräten via RTU (RS485) und TCP.

o Konfiguration von Registern über das Frontend sowie Auslesen digitaler

Eingänge und Ansteuerung von Ausgängen.

o Erweiterbarkeit für weitere Registertypen und Geräte ist gewährleistet.

• Frontend (React)

o Rollenbasierte Benutzeroberfläche mit klarer Trennung zwischen

Endanwendern (Visualisierung) und Technikern (Konfiguration und Diagnose).

o Umsetzung zentraler Funktionen wie Gerätescan, Detailseiten, Monitoring und

Charting.

• Backend (Flask)

o Bereitstellung einer modularen REST-API mit konsistentem JSON-Envelope.

o Zyklische Überwachung konfigurierter Geräte und Speicherung von

Zeitreihendaten in PostgreSQL.

o Stabile Integration der CLI-Tools libmbus und mbpoll.

• Betrieb und Sicherheit

o VPN-Anbindung über Tailscale für sicheren Fernzugriff.

o Schutzmechanismen gegen Brute-Force-Angriffe sowie automatische

Systemupdates (unattended upgrades).

• Qualitätssicherung

o Testabdeckung im Backend ≥ 80 % (CI-Gate).

o Praxisnachweis durch Installation in einer Werkstattumgebung mit realen

Zählern und Modulen.

Erkenntnisse:

Die Arbeit bestätigt, dass ein kostengünstiges, lokal betreibbares Visualisierungssystem

technisch realisierbar ist. Durch die modulare Architektur konnte sowohl die einfache Nutzung

durch Endanwender als auch die Detailarbeit von Fachtechnikern berücksichtigt werden.

Entscheidend für den Erfolg waren die frühzeitige Umsetzung eines Walking Skeletons und die

konsequente Trennung von Backend und Frontend.

Management Summary 5

3.7 Fazit

Mit der vorliegenden Arbeit konnte gezeigt werden, dass ein herstellerunabhängiges, lokal

betreibbares Visualisierungssystem auf Basis kostengünstiger Standard-Hardware erfolgreich

realisiert werden kann. Die Umsetzung vereint wesentliche Anforderungen aus der Praxis:

zuverlässiges Auslesen von Zähler- und Anlagendaten, flexible Konfiguration, klare

Rollentrennung zwischen Endanwendern und Technikern sowie eine robuste Systemarchitektur.

Die Prototypen haben im Praxiseinsatz bestätigt, dass sowohl M-Bus- als auch Modbus-Geräte

parallel genutzt werden können, ohne dass es zu Kommunikationsstörungen kommt. Ergänzend

liefern zusätzliche Features – wie VPN-Fernzugriff, automatisierte Benachrichtigungen und

grundlegende Sicherheitsmechanismen – einen Mehrwert für den praktischen Einsatz.

Damit bildet die Arbeit nicht nur einen funktionalen Prototyp ab, sondern schafft auch eine Basis

für die Weiterentwicklung in Richtung produktiver Lösungen im Bereich Smart Metering, IoT

und Facility Management.

Einleitung 1

1

4 Einleitung

4.1 Ausgangslage und Motivation

Die zunehmende Digitalisierung im Gebäudebereich führt dazu, dass Energieeffizienz,

Betriebsüberwachung und Kostenkontrolle immer stärker in den Fokus rücken. Studien des

Fachverbands Gebäudeautomation Schweiz zeigen, dass vernetzte Systeme für Smart Metering

und Facility Management wesentliche Beiträge zur Optimierung von Betriebskosten und

Ressourcennutzung leisten (Gebäudeautomation, 2023).

Gleichzeitig sind etablierte Systeme zur Gebäudeautomation häufig mit hohen

Investitionskosten verbunden, komplex in der Bedienung und oft proprietär. Hersteller wie Härz

AG bieten umfassende Visualisierungssysteme an, die sich primär an grössere Anlagen richten

und damit für kleinere Objekte überdimensioniert wirken (Härz AG, 2025). Ähnlich verhält es

sich mit industriellen Lösungen wie den HMI-Systemen von Beckhoff, die zwar leistungsfähig

und flexibel sind, jedoch umfangreiche Fachkenntnisse voraussetzen und in kleinen Projekten

selten wirtschaftlich sind (Beckhoff, 2025).

Vor allem kleinere Liegenschaften, Werkstätten oder private Eigentümer haben selten Zugang

zu IT-Spezialisten oder die finanziellen Mittel für vollumfängliche Gebäudeleitsysteme.

Gleichzeitig steigt der Bedarf an einfach installierbaren und lokal betreibbaren Lösungen, die

grundlegende Anforderungen wie Visualisierung von Zählerständen, Monitoring von

Betriebszuständen und frühzeitige Fehlerdiagnosen erfüllen.

Die Motivation für diese Masterarbeit entstand daher aus einem praktischen Anwendungsfall:

Ein Bauherr benötigte eine kostengünstige und leicht handhabbare Lösung zur Visualisierung

von Verbrauchsdaten und Anlagestatus.

Kriterium Etablierte Systeme (z. B.

Hersteller-HMI, proprietäre GA-

Visualisierung)

Zielsystem dieser Arbeit

(Raspberry Pi · M-

Bus/Modbus · lokal)

Anschaffungskosten Hoch (Lizenz, Hardware,

Integrationspauschalen)

Niedrig (Standard-

Hardware, Open-Source-

Stack)

Laufende Kosten Wiederkehrende

Lizenzen/Subscriptions möglich

Minimal (lokaler Betrieb,

keine Cloud-Pflicht)

Komplexität/Bedienung Für grössere Anlagen optimiert, oft

komplex

Schlanke UI, auf

Kernaufgaben fokussiert

Herstellerbindung Stark (proprietäre Tools, Formate) Gering (offene Protokolle,

eigene API)

Einleitung 2

Interoperabilität Eingeschränkt ausserhalb des

Ökosystems

Hoch durch M-Bus/Modbus

und REST-API

Zielgruppe Industrie, grosse Liegenschaften Private, MFH, Werkstätten,

KMU

Deployment Projekt-/Integratoren-getrieben Selbst installierbar,

Skripte/Anleitung

Einrichtungsaufwand Wochen bis Monate Stunden bis wenige Tage

Datenhaltung Teils cloudbasiert, teils proprietär Lokal in PostgreSQL,

exportfähig

Datensouveränität Variiert, oft eingeschränkt Vollständig beim Betreiber

(on-prem)

Sicherheit Hoch, aber komplex (PKI, Härtung) VPN (Tailscale), Updates,

Basis-Hardening

Erweiterbarkeit Module gegen Aufpreis Modularer Code,

JSON/ENV-Konfig, neue

Treiber möglich

Wartung Herstellerabhängig Eigenständig,

Dokumentation + CI-

Pipelines

Risiko „Lock-in“ Erhöht Niedrig

Tabelle 1 Vergleich etablierter Systeme mit dem entwickelten Zielsystem

4.2 Problemstellung

Im Bereich der Gebäudeautomation existiert eine Vielzahl von Lösungen zur Erfassung und

Visualisierung von Energie- und Anlagendaten. Diese Systeme richten sich jedoch überwiegend

an grosse kommerzielle Installationen. Typische Probleme sind:

• Überdimensionierung für kleine Objekte: Lösungen sind teuer und komplex, obwohl

nur wenige Zähler oder eine einzelne Anlage überwacht werden sollen.

• Proprietäre Abhängigkeiten: Hersteller liefern ihre Systeme oft mit geschlossenen

Softwareumgebungen, die nur mit eigenen Geräten kompatibel sind (Härz AG, 2025).

• Erschwerte Integration: Unterschiedliche Zähler- und Steuerungssysteme lassen sich

nur mit erheblichem Aufwand in einem gemeinsamen System zusammenführen

(Beckhoff, 2025).

• Fehlende kostengünstige Alternativen: Für Privathaushalte und KMU fehlen

erschwingliche Systeme, die lokal betrieben werden können und ohne Fachwissen

installierbar sind (Gebäudeautomation, 2023).

Die zentrale Problemstellung dieser Masterarbeit lautet daher:

Es fehlt eine einheitliche Plattform, die heterogene Geräte über M-Bus und Modbus anbindet,

deren Daten lokal speichert und benutzerfreundlich visualisiert – ohne Lizenzabhängigkeiten,

Herstellerbindungen oder komplexe Einrichtung.

Einleitung 3

4.3 3.3 Zielsetzung

Das Ziel dieser Arbeit ist ein funktionsfähiger Prototyp eines herstellerunabhängigen, lokal

betreibbaren Visualisierungssystems für M Bus und Modbus. Der Prototyp soll Daten aus realen

Zählern und Anlagen zuverlässig erfassen, in einer lokalen Datenbank speichern und im

Webfrontend verständlich darstellen. Zusätzlich soll die Lösung funktionssicher und erweiterbar

sein, damit spätere Protokolle, weitere Geräteklassen und Benachrichtigungen ohne

Architekturbruch ergänzt werden können. Zentral ist die Trennung der Perspektiven:

Endanwender erhalten eine einfache Ansicht mit Verbrauch und Zustand, Techniker bekommen

präzise Konfiguration und Diagnose.

Zielkriterien

• Realisierbarkeit auf kostengünstiger Standardhardware.

• Parallelbetrieb von M Bus und Modbus ohne Kollisionen.

• Benutzerfreundlichkeit mit klaren Rollen.

• Persistenz und Auswertung von Zeitreihen lokal.

• Erweiterbarkeit über strukturierte Treiber und klare API.

Zielbereich Sollziel Umsetzung Abweichung oder

Kommentar

Protokolle M Bus Zähler und

Modbus

Wärmepumpe

anbinden

M Bus Zähler

angebunden; Modbus

über I O Modul RTU

und TCP

Wärmepumpe ersetzt

durch I O Modul zur

Reduktion der

Komplexität im Prototyp

Konfiguration Parameter über Excel

einlesen

Direkte Konfiguration

in der Weboberfläche

Web UI ersetzt Excel

Import für bessere

Bedienung und weniger

Fehler

Visualisierung Verbrauch,

Betriebsdaten,

Fehlermeldungen im

Web

React Frontend mit

Scan, Details,

Monitoring, Charts

Rollenbasierte UI für

Endnutzer und

Techniker

Quittierung Fehlermeldungen

quittieren

Quittierung umgesetzt Nachweis über UI

Szenarien

Persistenz Lokale Datenbank PostgreSQL mit

Zeitreihen Abfragen

Export vorbereitet

Betrieb Lokal, ohne Cloud

Lizenz

Lokal mit VPN Zugang

via Tailscale

Unattended upgrades

und Basishärtung

ergänzt

Qualität Automatisierte Tests

und Doku

Backend Tests mit

Coverage Gate, Doku

erstellt

Frontend Nachweise via

Screencasts

Tabelle 2 Sollziele, Umsetzung und Abweichungen

Einleitung 4

4.4 Abgrenzung der Arbeit

Um den Umfang der Masterarbeit realistisch zu halten, wurden bestimmte Themenbereiche

bewusst ausgeklammert oder nur am Rande berücksichtigt. Der Fokus lag auf der Entwicklung

eines funktionsfähigen Prototyps, der die Kernanforderungen erfüllt und eine Basis für spätere

Erweiterungen schafft.

Bereich In Scope (Teil der Arbeit) Out of Scope (bewusst

ausgeschlossen)

Hardware Raspberry Pi 4 als zentrale Plattform,

M-Bus-Pegelwandler, RS485-Adapter,

Modbus-TCP

Skalierung auf industrielle Server,

Virtualisierung, Cloud-

Deployment

Protokolle M-Bus (libmbus), Modbus RTU/TCP

(mbpoll)

Weitere Protokolle (z. B. OPC UA,

SML, KNX)

Konfiguration JSON- und WebUI-basierte

Konfiguration von Geräten und

Registern

Excel-Upload (ursprünglich

geplant, später ersetzt)

Visualisierung Web-Frontend (React) mit Tabellen,

Charts, Rollenmodell

Native Apps (iOS/Android),

komplexe Dashboards (z. B.

Grafana)

Persistenz PostgreSQL-Datenbank für Zeitreihen Langzeitanalysen, BI-Tools, Data

Warehousing

Sicherheit VPN (Tailscale), Brute-Force-Schutz,

unattended-upgrades

Vollständige Security-Härtung

(mTLS, Reverse Proxy, IDS/IPS)

Tests Unit- und Integrationstests im

Backend, CI-Pipeline mit Coverage ≥ 80

%

Vollständige automatisierte UI-

Tests, Last- und Skalierungstests

Betrieb Lokale Installation auf Raspberry Pi,

systemd-Dienste, Installationsskript

Containerisierung

(Docker/Podman), Kubernetes,

Public Cloud

Tabelle 3 Abgrenzung der Arbeit – In Scope vs. Out of Scope

Die bewusste Abgrenzung ermöglichte es, innerhalb des vorgegebenen Zeitrahmens ein stabiles

Kernsystem zu entwickeln, ohne sich in umfangreichen Randthemen wie Cloud-Integration oder

mobilen Anwendungen zu verlieren. Gleichzeitig wurde die Architektur so gestaltet, dass eine

spätere Erweiterung in diese Richtungen möglich bleibt.

4.5 Aufbau der Arbeit

Die vorliegende Arbeit ist in mehrere Kapitel gegliedert.

Nach der Einleitung werden im Kapitel 5 der Stand der Forschung und der Technik dargestellt.

Kapitel 6 beschreibt die funktionalen und nicht-funktionalen Anforderungen, die aus der

Analyse abgeleitet wurden. In Kapitel 7 wird die Systemarchitektur erläutert, bevor in Kapitel 8

das Design und die Implementierung detailliert beschrieben werden.

Einleitung 5

Kapitel 9 geht auf die Verifikation, die Tests und die Qualitätssicherung ein. Kapitel 10 behandelt

DevOps-Aspekte, den Aufbau der CI/CD-Pipeline sowie den Prozess des Deployments. In Kapitel

11 werden die erzielten Ergebnisse zusammengefasst und evaluiert.

Kapitel 12 diskutiert die gewonnenen Erkenntnisse und ordnet diese in den wissenschaftlichen

Kontext ein.

Kapitel 13 beschreibt das Projektmanagement und die organisatorischen Rahmenbedingungen.

In Kapitel 14 werden die Schlussfolgerungen gezogen und ein Ausblick auf mögliche

Weiterentwicklungen gegeben.

Die Arbeit schliesst mit dem Literaturverzeichnis sowie den Anhängen ab.

Stand der Forschung und Technik 6

6

5 Stand der Forschung und Technik

5.1 Gebäudeautomation & Smart Metering

Die Gebäudeautomation verfolgt das Ziel, den Energieverbrauch und die Betriebskosten von

Gebäuden durch den Einsatz vernetzter Systeme zu optimieren. Neben Komfort und Sicherheit

stehen dabei zunehmend Energieeffizienz und Nachhaltigkeit im Vordergrund. Moderne

Anlagen erlauben die zentrale Steuerung und Überwachung von Heizungen, Lüftungen,

Beleuchtungen oder Sicherheitssystemen.

Im Bereich Smart Metering werden Zählerdaten (Strom, Wasser, Wärme, Gas) systematisch

erfasst und in Datenbanken gespeichert, um sie für Abrechnung, Monitoring oder

Optimierungen nutzbar zu machen. Damit können Verbrauchsmuster analysiert, Anomalien

erkannt und Kosten verursachergerecht verteilt werden. Studien des Fachverbands

Gebäudeautomation Schweiz verdeutlichen, dass IoT-basierte Lösungen in Gebäuden eine

zentrale Rolle bei der Umsetzung von Energiezielen spielen (Gebäudeautomation, 2023).

Für kleine und mittlere Objekte fehlen jedoch häufig erschwingliche, einfach installierbare

Lösungen. Während Grossanlagen meist mit umfassenden Leitsystemen ausgestattet sind,

haben private Eigentümer oder kleine Verwaltungen oft keinen Zugang zu vergleichbaren

Werkzeugen. Dadurch entsteht eine Lücke zwischen dem verfügbaren technologischen

Potenzial und dem tatsächlichen Einsatz in der Praxis.

Einsatzbereiche von Smart Metering in der Gebäudeautomation umfassen:

• Transparenz: Visualisierung von Energie- und Medienverbräuchen für Bewohner,

Eigentümer oder Facility Manager.

• Frühwarnsysteme: Erkennen von Abweichungen (z. B. Leckagen, ineffiziente

Heizzyklen).

• Kosteneffizienz: Optimierung des Betriebs und verursachergerechte Abrechnung.

• Nachhaltigkeit: Beitrag zur Erreichung von Klimazielen durch datengetriebene

Entscheidungen.

Zur Verdeutlichung dieser Einsatzkontexte zeigt Abbildung A1 (Use-Case Gebäudeautomation

& Smart Metering) die beteiligten Akteure und ihre wichtigsten Interaktionen mit dem System.

Stand der Forschung und Technik 7

5.2 M-Bus-Protokoll – Grundlagen & Einsatzgebiete

Der Meter-Bus (M-Bus) ist ein in Europa normiertes Bussystem (EN 13757, 2004) für die

Fernauslesung von Verbrauchszählern. Es wurde speziell für den Einsatz im Energiemanagement

und Smart Metering entwickelt und zeichnet sich durch seine einfache Verkabelung, hohe

Reichweite und Robustheit aus. Die Kommunikation erfolgt über eine zweidrahtige Leitung, die

sowohl die Spannungsversorgung als auch die Datenübertragung übernimmt.

Ein typisches M-Bus-System besteht aus einem Master (z. B. Gateway oder Rechner) und

mehreren Slaves (Zähler oder Sensoren). Jeder Slave besitzt eine eindeutige Adresse, sodass der

Master die Geräte sequenziell abfragen kann. In der Praxis lassen sich bis zu 250 Geräte an einem

Strang zuverlässig betreiben (Relay, 2025).

Die Einsatzgebiete des M-Bus sind breit gefächert:

• Wasser-, Wärme- und Gaszähler in Wohn- und Gewerbebauten,

• Elektrizitätszähler in Stromnetzen,

• Sensorik für Umwelt- oder Betriebsdaten,

• Submetering in Mehrfamilienhäusern zur verursachergerechten Kostenabrechnung.

Abbildung 1 Use-Case-Diagramm Gebäudeautomation & Smart Metering

Stand der Forschung und Technik 8

M-Bus gilt als kostengünstige und standardisierte Lösung, die insbesondere für nachrüstbare

Messsysteme geeignet ist. In Kombination mit IoT-Ansätzen bietet er eine zuverlässige Basis für

die Integration in Gebäudeautomationssysteme.

Abbildung 2 M-Bus-Kommunikation (Scan und Einzelgerät-Auslesung)

Stand der Forschung und Technik 9

5.3 Modbus-Protokoll – Grundlagen & Einsatzgebiete

Das Modbus-Protokoll wurde 1979 von der Firma Modicon (heute Schneider Electric) entwickelt

und gehört zu den ältesten, aber bis heute am weitesten verbreiteten

Kommunikationsprotokollen in der Industrie- und Gebäudeautomation. Der Erfolg von Modbus

liegt in seiner einfachen Struktur, der Lizenzfreiheit und der breiten Unterstützung durch

zahlreiche Hersteller (Wikipedia, 2024).

Die Kommunikation folgt einem Master-Slave-Prinzip: Der Master (z. B. Steuerung oder

Gateway) sendet eine Anfrage, worauf die Slaves (z. B. Zähler, Module, Sensoren) antworten.

Dieses Prinzip ermöglicht eine robuste und deterministische Abfolge von Abfragen und

Antworten. (Beckhoff, 2025)

Varianten von Modbus:

• Modbus RTU: Übertragung via serielle Schnittstellen (RS485). Häufig in der Gebäude-

und Anlagenautomation eingesetzt.

• Modbus TCP: Übertragung über IP-basierte Netzwerke. Eignet sich für moderne

Installationen mit vorhandener Netzwerk-Infrastruktur.

Einsatzgebiete von Modbus sind vielfältig:

• Steuerung und Überwachung von Heizungs-, Klima- und Pumpenanlagen,

• Integration von Strom- und Wärmezählern,

• Digitale I/O-Module zur Anbindung von Sensoren oder Aktoren,

• Kommunikation zwischen speicherprogrammierbaren Steuerungen (SPS).

Die Stärke von Modbus liegt in seiner Offenheit und Standardisierung, wodurch Geräte

unterschiedlicher Hersteller kombiniert werden können. Gerade im Bereich der nachrüstbaren

Gebäudeautomation bietet Modbus die Möglichkeit, bestehende Systeme ohne grossen

Integrationsaufwand zu erweitern.

Stand der Forschung und Technik 10

Abbildung 3 Modbus-Kommunikation (Register lesen und schreiben)

Stand der Forschung und Technik 11

5.4 Bestehende Visualisierungslösungen und deren Limitierungen

Die Entwicklungen im Bereich Internet of Things (IoT) haben in den letzten Jahren erheblich zur

Transformation von Facility Management und Gebäudeautomation beigetragen. Durch die

zunehmende Vernetzung von Sensoren, Aktoren und Systemkomponenten entstehen neue

Möglichkeiten, den Betrieb von Gebäuden effizienter, nachhaltiger und transparenter zu

gestalten.

Facility Management 4.0:

• Moderne IoT-Plattformen ermöglichen die zentrale Erfassung und Analyse von

Zustands- und Verbrauchsdaten.

• Betreiber profitieren von Predictive Maintenance-Ansätzen, bei denen

Wartungsbedarfe vorausschauend erkannt werden, bevor Störungen auftreten.

• Energieberater und Verwalter erhalten fundierte Entscheidungsgrundlagen für

Optimierungs- und Investitionsentscheidungen (Avelon AG, 2025).

Open-Source-Ansätze:

Die wachsende Verfügbarkeit von Open-Source-Bibliotheken und Tools (z. B. für Python, Node.js

oder Java) erleichtert die Integration von Standardprotokollen wie M-Bus und Modbus in

individuelle Softwarelösungen. Dadurch sinken die Kosten für die Entwicklung, und es entstehen

flexible Systeme, die an unterschiedliche Kontexte angepasst werden können. Insbesondere für

kleinere Objekte bieten Open-Source-Lösungen einen attraktiven Gegenpol zu proprietären,

kostenintensiven Komplettsystemen.

IoT in der Forschung:

Untersuchungen zeigen, dass die Nutzung von IoT in Gebäuden einen signifikanten Beitrag zur

Reduktion des Energieverbrauchs leisten kann. Gleichzeitig steigt die Bedeutung von

Datensouveränität: Viele Betreiber bevorzugen lokal installierbare Systeme, um sensible Daten

nicht an externe Cloud-Dienste abgeben zu müssen (Gebäudeautomation, 2023).

Der wissenschaftliche Kontext dieser Arbeit verortet sich somit an der Schnittstelle von

praktischen Anforderungen kleiner Betreiber, technologischen Trends im IoT und offenen

Softwarearchitekturen, die den Weg für modulare, nachrüstbare Lösungen ebnen.

5.5 Wissenschaftlicher Kontext (IoT, Facility Management, Open Source)

In der Schweiz werden digitale Technologien zunehmend im Bereich Facility Management

eingesetzt, um Gebäude effizienter, sicherer und nachhaltiger zu betreiben. Die Avelon AG zeigt

in ihren Projekten, dass IoT-basierte Plattformen eine Schlüsselrolle spielen. Sie verbinden

Sensoren, Gebäudeleittechnik und Datenanalyse in einem einheitlichen System und

ermöglichen so einen kontinuierlichen Überblick über den Zustand von Gebäuden. Damit lassen

sich Betriebsprozesse optimieren, Energie sparen und Störungen frühzeitig erkennen (Avelon

AG, 2025).

Im Facility Management eröffnet die Vernetzung von Daten neue Möglichkeiten.

Echtzeitüberwachung, automatisierte Alarmierungen und vorausschauende Wartung sind

zentrale Anwendungsfelder. Dadurch wird nicht nur die Betriebssicherheit erhöht, sondern auch

die Wirtschaftlichkeit verbessert, da Ressourcen gezielt eingesetzt werden können.

Stand der Forschung und Technik 12

Open-Source Technologien sind in diesem Kontext von besonderer Bedeutung. Sie stehen in

Form frei zugänglicher Bibliotheken, meist für Unix-basierte Systeme, zur Verfügung und können

direkt heruntergeladen und in Projekte integriert werden. Für Programmiersprachen wie Python

existieren zahlreiche Open-Source Bibliotheken, welche die Anbindung von Protokollen wie M-

Bus oder Modbus erleichtern. Damit lassen sich ohne hohe Lizenzkosten professionelle

Funktionen in Softwarelösungen einbinden, was die Entwicklung innovativer und flexibler

Anwendungen im Bereich Gebäudeautomation wesentlich unterstützt.

Anforderungen 13

13

6 Anforderungen

6.1 Stakeholder und Anwendergruppen

Die Entwicklung eines Visualisierungssystems für Zähler- und Anlagendaten adressiert

unterschiedliche Stakeholder mit teils stark divergierenden Bedürfnissen und Anforderungen:

Primäre Stakeholder

• Private Eigentümer

Wollen Transparenz über den eigenen Energieverbrauch (z. B. Öl, Wasser, Strom,

Wärme). Ziel ist die Nachvollziehbarkeit von Kosten sowie die Möglichkeit, durch

gezielte Massnahmen Energie einzusparen.

• Facility Manager / Verwaltungen

Benötigen Werkzeuge zur Erfassung, Aufbereitung und verursachergerechten

Abrechnung von Energieverbräuchen. Sie legen besonderen Wert auf die Integration

mehrerer Zähler und die Möglichkeit, Störungen frühzeitig zu erkennen.

• Servicetechniker

Müssen Betriebszustände und Fehlermeldungen effizient analysieren können, um

gezielt vorbereitet zu Serviceeinsätzen zu fahren. Benötigen detaillierte

Diagnosemöglichkeiten und teilweise die Möglichkeit, Steuerbefehle (z. B. Quittierung

von Fehlermeldungen) auszuführen.

Sekundäre Stakeholder

• Energieberater

Nutzen systematisch erfasste Daten, um Effizienzpotenziale zu identifizieren und

Optimierungsvorschläge abzuleiten. Diese Zielgruppe gewinnt insbesondere in späteren

Ausbaustufen des Systems an Bedeutung.

• Forschung & Entwicklung

Profitieren von offenen Schnittstellen und modularen Architekturen, um neue

Algorithmen oder Systeme auf Basis realer Verbrauchsdaten zu erproben.

Anwendergruppen (User Roles im System)

• Endanwender (Owner/Resident): erhalten eine intuitive Visualisierung der

Verbrauchsdaten, ohne technische Details.

• Techniker (Technician): nutzen erweiterte Ansichten für Diagnose, Konfiguration und

Steuerung.

• Verwalter (Manager): kombinieren die beiden Perspektiven, mit Fokus auf Abrechnung

und Gesamtüberwachung.

Anforderungen 14

Abbildung 4 Stakeholder und Systeminteraktionen (Rollen ↔ Kernfunktionen)

Anforderungen 15

6.2 Funktionale Anforderungen

Die funktionalen Anforderungen beschreiben, welche konkreten Leistungen das

Visualisierungssystem erbringen muss. Sie orientieren sich an den identifizierten Stakeholdern

und stellen sicher, dass die Kernziele der Arbeit messbar erfüllt werden.

ID Anforderung Akteur(e) Beschreibung Akzeptanzkriterium

F1 M-Bus Scan Facility

Manager,

Techniker

Automatische

Erkennung von

Zählern im M-Bus-

Strang

Gefundene Adressen

werden in der

Weboberfläche

gelistet

F2 M-Bus Auslesen Facility

Manager,

Techniker

Einzelgeräte können

selektiv ausgelesen

werden

Werte erscheinen als

strukturierte Tabelle

im UI

F3 Modbus Read Techniker Registerwerte (Coils,

Inputs, Holding)

können ausgelesen

werden

JSON-Response im

Backend; Werte im

Frontend angezeigt

F4 Modbus Write Techniker Werte in

Registern/Coils

können geschrieben

werden

Änderung wird

bestätigt und im

System geloggt

F5 Quittierung Techniker Fehlermeldungen

können quittiert

werden

Button „Quittieren“

löscht Meldung

sichtbar im UI

F6 Visualisierung Endanwender,

Manager

Verbrauchs- und

Betriebsdaten werden

als Tabellen und

Charts angezeigt

Tages-/Wochen-

/Monatswerte in

Diagrammen sichtbar

F7 Geräte-Monitor Manager,

Techniker

Zyklische

Überwachung

mehrerer Geräte mit

Mindestabständen

Werte werden alle

≥30s aktualisiert

F8 Benachrichtigung Manager,

Techniker

Kritische Fehler

führen zu E-Mail-

Alarmen

E-Mail wird versendet,

sobald Service

stoppt/restarted

F9 Benutzerrollen Endanwender,

Techniker,

Manager

Unterschiedliche

Rollen erhalten

angepasste Ansichten

Endanwender sehen

nur Visualisierung;

Techniker

Konfig/Write

Anforderungen 16

F10 Export Manager,

Berater

Verbrauchsdaten

können exportiert

werden (CSV)

Exportdatei wird

erfolgreich

heruntergeladen

Tabelle 4 Funktionale Anforderungen des Visualisierungssystems

6.3 Nicht-funktionale Anforderungen

Neben den funktionalen Features muss das System auch Qualitätsmerkmale erfüllen, die für den

stabilen, sicheren und nutzerfreundlichen Betrieb entscheidend sind.

ID Kategorie Anforderung Beschreibung Akzeptanzkriterium

NF1 Usability Einfache

Bedienung

Die Oberfläche ist

intuitiv und

benötigt keine

technischen

Vorkenntnisse.

Endanwender können

Verbrauchsdaten ohne

Schulung

interpretieren.

NF2 Usability Responsives

Design

UI ist auf Desktop,

Tablet und

Smartphone

nutzbar.

Seitenlayout passt sich

automatisch an

Bildschirmgrösse an.

NF3 Performance Antwortzeiten API-Requests

sollen in < 1

Sekunde

beantwortet

werden.

95 % aller Abfragen

unter Last < 1 Sekunde.

NF4 Zuverlässigkeit Systemstabilität Dauerbetrieb ohne

ungeplante

Neustarts ≥ 30

Tage.

Langzeittest ohne

Absturz oder

Datenverlust.

NF5 Zuverlässigkeit Monitoring Backend-Service

prüft regelmässig

seinen Zustand.

Bei Ausfall

automatische E-Mail-

Benachrichtigung.

NF6 Sicherheit Zugriffsschutz Rollenmodell

regelt Rechte für

Endanwender,

Manager,

Techniker.

Nur berechtigte Rollen

können schreiben oder

konfigurieren.

NF7 Sicherheit Fernzugriff Zugriff nur über

VPN (Tailscale).

Ohne VPN ist keine

Verbindung von extern

möglich.

Anforderungen 17

NF8 Erweiterbarkeit Modularität Neue Treiber (z. B.

weitere Protokolle)

lassen sich

ergänzen.

Neue Module können

ohne Änderung des

Kerns integriert

werden.

NF9 Erweiterbarkeit Konfigurierbarkeit Geräte können

über JSON oder UI

konfiguriert

werden.

Änderungen sind ohne

Neustart möglich.

NF10 Wartbarkeit Clean Code &

Tests

Code ist modular,

dokumentiert und

≥ 80 % abgedeckt.

CI/CD Pipeline schlägt

bei Unterschreitung

fehl.

Tabelle 5 Nicht-funktionale Anforderungen des Visualisierungssystems

6.4 Risikoanalyse

Die Risikoanalyse bewertet potenzielle Gefahren für die erfolgreiche Umsetzung und den

Betrieb des Systems. Sie berücksichtigt sowohl technische als auch organisatorische Risiken.

ID Risiko Auswirkung Eintrittswahrscheinlic

hkeit

Massnahmen /

Mitigation

R1 Komplexität

der DB-

Anbindung

Daten können nicht

zuverlässig

gespeichert/abgerufen

werden

Mittel Einsatz von

PostgreSQL mit

klar definiertem

Schema; frühe

Integrationstests;

Migrationsskripte.

R2 Serielle

Schnittstellen

instabil

Kommunikationsabbrü

che bei M-Bus oder

Modbus RTU

Hoch Implementierung

von

Abbruchmechanis

men (SIGINT bei

Scan), Queue-

Handling pro Port,

Timeout-

Parameter in

.env.

R3 Parallele

Nutzung von

M-Bus und

Modbus

Kommunikationskollisi

onen, blockierende

Prozesse

Mittel Zentrale Queue

im Backend,

Mindestabstände

im Monitor,

saubere

Prozesskontrolle.

Anforderungen 18

R4 Fehlende

Skalierbarkeit

System überlastet bei

> 50 Geräten

Niedrig Architektur

modular halten,

optionale

Erweiterung mit

TimescaleDB;

Fokus aktuell auf

kleine

Installationen.

R5 Sicherheitsrisik

en

Unbefugter Zugriff

oder Manipulation

Mittel VPN-Zugang

(Tailscale), Brute-

Force-Schutz,

unattended-

upgrades,

Rollenmodell.

R6 Zeitmanageme

nt

Projektumfang

überschreitet

Zeitrahmen

Mittel Priorisierung auf

Soll-Ziele, Kann-

Ziele nur bei

Ressourcenspielra

um.

R7 Hardware-

Abhängigkeit

Defekte oder

inkompatible Adapter

blockieren Tests

Mittel Einsatz geprüfter

Adapter (libmbus,

RS485),

Ersatzhardware

verfügbar halten.

R8 Benutzerakzep

tanz

Endanwender finden

UI zu komplex

Niedrig Klare

Rollentrennung

(Endanwender vs.

Techniker); frühe

Nutzerbefragung

(vgl. Interviews im

Anhang).

R9 Teamkoordinat

ion

Missverständnisse

zwischen Entwicklern

Niedrig Agile Sprints, PR-

Reviews, klare

Verantwortlichkei

ten (RACI-Matrix).

R1

0

Datenintegrität Fehlerhafte oder

unvollständige Daten

in der DB

Mittel Validierung im

Backend, Logging

von API-Fehlern,

Monitoring der

Writes.

Tabelle 6 Risikomatrix des Visualisierungssystems

Systemarchitektur 19

19

7 Systemarchitektur

Die Architektur des entwickelten Systems folgt einem mehrschichtigen Modell, das die Trennung

von Hardware, Treibern, Backend, Persistenz und Frontend sicherstellt. Ziel war es, eine

modulare, erweiterbare und robuste Struktur zu schaffen, die sowohl den zuverlässigen Betrieb

im Alltag als auch eine spätere Weiterentwicklung ermöglicht.

7.1 Gesamtübersicht (Diagramm)

Systemarchitektur 20

Abbildung 5 Systemarchitektur – Durchstich von Feldgeräten bis Web-UI

Systemarchitektur 21

7.2 Hardware-Architektur (Raspberry Pi, Adapter, Zähler)

Die Hardware-Architektur basiert auf einem Raspberry Pi 4 als zentrale Plattform.

Abbildung 6 Hardware-Architektur (Raspberry Pi mit M-Bus- und Modbus-Adaptern)

Systemarchitektur 22

7.3 Software-Architektur

Abbildung 7 Software-Architektur (Module, Flows, Schnittstellen)

Systemarchitektur 23

7.3.1 Backend (Flask, API-Struktur)

Das Backend kapselt die Protokollanbindung über CLI-Tools (libmbus, mbpoll) und stellt eine

REST-API für das Frontend bereit. Längere Operationen (z. B. M-Bus-Scan) werden per SSE

gestreamt. Eine Service-Schicht regelt Queue/Cooldown/Timeouts und persistiert Messwerte

sowie Metadaten in PostgreSQL.

Bereich Endpunkt Methode Zweck

M-Bus /api/mbus/stream-scan GET

(SSE)

Live-Scan via Server-Sent

Events (Logzeilen, gefundene

Adressen)

M-Bus /api/mbus/scan/abort POST Laufenden Scan abbrechen

(sauberer SIGINT)

Readings /api/readings/values GET Bekannte Geräteadressen

und Metadaten

Readings /api/readings/device?address=A GET Einzelgerät auslesen (XML →

JSON normalisiert)

Readings /api/readings/label POST Gerätename setzen/ändern

Readings /api/readings/config/<address> GET Feldauswahl pro Gerät

Modbus /api/modbus/read POST Register lesen (RTU/TCP; FC

1/2/3/4)

Modbus /api/modbus/write POST Coil/Register schreiben (FC

5/6/16)

Modbus

Mappings

`/api/modbus-mappings-

row/get

save delete

Monitoring /api/monitor/read-all GET Aggregierte Anzeige der

überwachten Geräte

Metrics /api/metrics/list GET Verfügbare Metriken

Metrics /api/metrics/series GET Zeitreihen (Range, Bucket,

Rate)

Tabelle 7 Zentrale API-Endpunkte (Auszug)

Hinweise zur Implementierung

CLI-Aufrufe werden robust gekapselt, Ausgaben geparst und in konsistente JSON-Envelopes

überführt.

Queue pro Bus/Port verhindert Kollisionen; Cooldowns im Monitor sichern Mindestabstände.

Persistenz: metrics (Metadaten), samples (Zeitreihen).

Systemarchitektur 24

Abbildung 8 Frontend-Chart Abruf → /metrics/series (Bucketed Zeitreihen)

7.3.2 Frontend (React, Visualisierung)

Das Frontend ist eine SPA auf Basis von Vite + React + TypeScript. API-Zugriffe laufen über eine

zentrale Axios-Instanz mit baseURL = VITE_API_BASE. Optional bindet Keycloak Rollen/Token

ein. Funktionen sind modular als Features umgesetzt.

Modul Seiten/Komponenten Services (Beispiele) Zweck

M-Bus MbusScanPage,

MbusReadPage,

MbusSettingsPage

apiMbus.ts (SSE),

apiMbusDevices.ts

Scannen, Auslesen,

Konfiguration

Modbus ModbusDevicesPage,

ModbusRegistersPage,

ModbusControlPage

apiModbus.ts Geräte, Register,

Read/Write

Monitoring DeviceMonitorPage,

MetricsPage

monitor.ts, metrics.ts Zyklische Anzeige,

Zeitreihen

User Profile.tsx – Nutzersicht/Profil

Shared/App AppShell, routes.tsx, ApiCheck httpClient.ts Routing, HTTP,

Layout

Tabelle 8 Frontend-Module und Seiten

Systemarchitektur 25

Datenflüsse

• SSE für Live-Scan: EventSource auf /mbus/stream-scan.

• Standard-Requests über Axios-Client; Interceptor fügt bei Bedarf Bearer Token an.

Abbildung 9 Modbus Write mit Read-Back-Verifikation und Logging

Systemarchitektur 26

7.3.3 Datenhaltung PostgreSQL

Die DB hält Metadaten zu Metriken und Zeitreihen der Messwerte.

Objekt Felder (Beispiel) Beschreibung

metrics id, tag, unit, source, type Definition eines Messsignals

samples metric_id, ts, value Zeitstempelwert eines Signals

device_config address, fields[] Ausgewählte Felder pro M-Bus-Gerät

labels address, name Anzeigename pro Adresse

Tabelle 9 Datenobjekte (vereinfacht)

Optionale Erweiterung: TimescaleDB für grössere Datenmengen.

7.3.4 Konfigurationsdateien (Excel, JSON)

Konfiguration erfolgt ohne Excel, direkt über UI und JSON-Dateien.

Datei Zweck

mbus_settings.json Serielle Parameter, Port/baud für M-Bus

known_mbus_devices.json Persistente Liste bekannter Adressen und Namen

config_<address>.json Feldauswahl pro M-Bus-Gerät

modbus_devices.json Geräte, Protokoll (RTU/TCP), Slave-ID, Ports

modbus_registers.json Registerdefinitionen pro Gerät

.env Ports, Timeouts, CORS, DB-URL, Pfade

Tabelle 10 Relevante Konfigurationsdateien

7.4 Kommunikationsabläufe (M-Bus, Modbus, Web-API)

Die Kommunikationsabläufe sind so gestaltet, dass sie robust, nachvollziehbar und erweiterbar

bleiben. Längere oder serielle Operationen (z. B. M-Bus-Scan) laufen streamend über SSE,

Modbus-Reads/Writes sind kurzlebig und werden über CLI sauber geparst. Ein zentraler Monitor

bewahrt Mindestabstände pro Gerät und verhindert Kollisionen.

M-Bus (Scan und Einzelgerät)

Der Frontend-Scan öffnet einen SSE-Stream und empfängt laufend Logzeilen sowie gefundene

Adressen. Ein Abbruch beendet den Scan kontrolliert. Einzelgeräte werden on demand

abgefragt, die XML-Antworten normalisiert und optional persistiert.

→ siehe Abbildung „M-Bus Kommunikation (Scan und Einzelgerät-Auslesung)“

Modbus (Read/Write)

Register werden synchron gelesen und geschrieben. Auf Wunsch erfolgt ein Read-Back zur

Verifikation und ein Log-Eintrag in der Datenbank.

→ siehe Abbildung „Modbus Kommunikation (Register lesen und schreiben)“

Gerätemonitor mit Cooldown

Das Frontend pollt aggregierte Zustände. Das Backend entscheidet pro Gerät, ob Cache genutzt

wird (Cooldown aktiv) oder frisch gelesen wird (Cooldown abgelaufen). Dabei wird pro Bus/Port

Systemarchitektur 27

eine Queue genutzt, damit nichts gleichzeitig ineinanderfährt.

→ siehe Abbildung „Monitor-Poll mit Cooldown (Mehrere Geräte, 30 s Mindestabstand)“

Web-API Envelope und Fehlerbehandlung

Alle Endpunkte liefern einen konsistenten JSON-Envelope. Fehlende oder ungültige Parameter

führen zu 4xx, interne Fehler zu 5xx. Längere Streams (SSE) signalisieren Statuswechsel explizit,

damit die UI nicht raten muss.

Kontext HTTP Envelope Bedeutung UI-Verhalten

Erfolg 200 { "ok": true,

"data": … }
Ergebnis gültig Anzeigen/plotten

Ungültige

Parameter

400 { "ok": false,

"error":

"bad_request",

"message": "…" }

Request

fehlerhaft

Validierung

hervorheben

Nicht gefunden 404 { "ok": false,

"error":

"not_found",

"message": "…" }

Gerät/Resource

fehlt

Hinweis anzeigen

Timeout/Abort 408/499 { "ok": false,

"error":

"timeout",

"message": "…" }

Gerät antwortet

nicht

Retry/Abort in UI

anbieten

Interner Fehler 500 { "ok": false,

"error":

"internal",

"message": "…" }

Unerwarteter

Fehler

Fehlermeldung +

Log-ID

Tabelle 11 JSON-Envelope und typische Fehlerfälle

Systemarchitektur 28

Abbildung 10 Monitor-Poll mit Cooldown (Mehrere Geräte, 30 s Mindestabstand)

Systemarchitektur 29

Abbildung 11 Modbus Pfadübersicht RTU vs TCP (Parameter und Antwortfluss)

Systemarchitektur 30

Abbildung 12 Fehler-Envelope Flow (Treiberfehler → API → UI-Meldung)

Design und Implementierung 31

31

8 Design und Implementierung

Das System wurde nach dem Prinzip eines Walking Skeleton entwickelt: von Beginn an war ein

minimal lauffähiger End-to-End-Prototyp vorhanden, der sukzessive erweitert wurde. Diese

Vorgehensweise ermöglichte es, technische Risiken frühzeitig zu identifizieren und

Kernfunktionen iterativ auszubauen.

8.1 Projektmethodik

Abbildung 13 Vorgehensmodell und Artefaktfluss

Design und Implementierung 32

Die Umsetzung lief schlank agil mit kurzen Iterationen und klaren Qualitätsgittern:

• Arbeitsmodus

Feature Branch pro Aufgabe, Pull Request mit Review. Keine Direktcommits auf main.

• Qualitätsgitter

Linting und Unit/Integration Tests sind Pflicht. Coverage Gate ≥ 80 % im Backend.

Fehlende Tests blockieren den Merge.

• CI Pipeline

PR: schneller Lauf ohne DB für Feedback. main/Tag: Volltest mit Postgres, Artefakte

(Coverage HTML, Release Bundle).

• Releases & Deploy

Semantisches Tagging vX.Y.Z, Release-Bundle auf den Raspberry ausrollen, systemd

Restart, Smoke-Test via Health Endpoint.

• Dokumentation

Kurz und direkt im Repo gepflegt. Änderungen an API/Flows werden zeitnah

nachgezogen, Screens in den Anhang.

8.2 Walking Skeleton / Prototyp

Der Prototyp liefert einen End to End Durchstich über alle Schichten, damit Risiken früh sichtbar

werden und Architekturentscheidungen auf Fakten beruhen. Der Ablauf:

• UI → Health: Start der App, schneller Funktionscheck.

• M-Bus: Live-Scan als SSE mit Log und gefundenen Adressen, Abbruch sauber per

Endpoint. Einzelgerät wird on demand gelesen, XML wird normalisiert und als

Werteobjekte bereitgestellt.

• Modbus: Lese und Schreibpfade via mbpoll für RTU und TCP; optionaler Read Back

bestätigt Schreibaktionen.

• Persistenz: Messwerte landen in PostgreSQL als Zeitreihen, Metriken und

Feldauswahlen werden konsistent verwaltet.

• Sicherheit & Betrieb: Fernzugriff via VPN, Deploy als systemd Dienst, Health Endpunkt

für Smoke Tests.

Verweise: Die Übersicht siehst du in Abbildung A1, der M-Bus Ablauf in Abbildung A3, Modbus

in Abbildung A4. Für Kapitel 8.2 kannst du zusätzlich Abbildung 14: Walking Skeleton – End to

End Durchstich direkt unter den Text setzen (die PlantUML hast du von mir schon).

Risiko Sichtbar gemacht durch Entschärfung im Prototyp

Serielle Kollisionen (M-Bus

Scan blockiert)

SSE-Scan mit Abbruchtest Queue pro Port, sauberer SIGINT,

Mindestabstände

Parser Unsicherheiten

(XML, Register)

Einzelgerät Auslesung

und Modbus Read

Normalisierungsschicht, feste

JSON Envelopes, Tests

Latenzen/Timeouts End to End Laufzeiten in

UI/Logs

Timeout-Parameter in .env,

Retries, Caching im Monitor

Design und Implementierung 33

Schreibzugriffe riskant Modbus Write mit Read

Back

Bestätigung im UI, Logging in DB

Persistenz unstabil Speicherung von

Samples/Metriken

Schemata fixiert, DB Tests, Health

Check

Betrieb unsicher Deploy als systemd,

Health

Restart Policy, Journal-Prüfung,

VPN nur für Fernzugriff

Tabelle 12 Risiken und Entschärfung durch Walking Skeleton

8.3 Implementierung Backend

8.3.1 M-Bus Scanning & Parsing

Abbildung 14 M-Bus Scan Abbruch (kompakte Sequenz)

Design und Implementierung 34

Kurzbeschreibung

Der Scan wird als Server Sent Events an das Frontend gestreamt. Ein Abbruch signalisiert libmbus

einen kontrollierten Stopp (SIGINT) und beendet den Stream mit einem expliziten Status.

Einzelgeräte werden on demand gelesen, die XML Antwort wird zu strukturierten Schlüsseln

normalisiert und optional persistiert.

Aspekt Umsetzung

CLI Aufrufe mbus-serial-scan für Laufzeit Scan, mbus-serial-request -a <addr> für

Einzelgerät

Endpunkte GET /api/mbus/stream-scan (SSE), POST /api/mbus/scan/abort, GET

/api/readings/device?address=…

Datenablage bekannte Adressen und optionale Namen in known_mbus_devices.json;

pro Adresse Feldauswahl in config_<address>.json; Messwerte in samples

der Datenbank

Normalisierung XML der libmbus Ausgabe wird zu Paaren Tag → Wert abgebildet (nur

ausgewählte Felder, wenn konfiguriert)

Zeitverhalten Scan als Stream, Einzelgerät synchron; Timeout und Baudrate über

Umgebungsvariablen gesteuert

Fehlerbilder Timeouts ohne Antwort, gestörte Leitung, doppelte Adressen; sauberer

Abbruch verhindert hängende Prozesse

Tabelle 13 M-Bus Backend Komponenten und Pfade

Feld Typ Bedeutung

type Text log, found, status

payload Text/Objekt Logzeile oder gefundene Adresse

status Text optional, etwa abgebrochen, fertig

Tabelle 14 SSE Ereignisse im Scan

Zentrale Umgebungsvariablen (Auszug)

MBUS_SERIAL_PORT, MBUS_BAUDRATE, MBUS_SCAN_TIMEOUT, MBUS_CMD_TIMEOUT

Design und Implementierung 35

8.3.2 Modbus Handling (RTU/TCP)

Abbildung 15 Modbus Handling im Backend (Adapter, Parser, Error-Mapping)

Design und Implementierung 36

Kurzbeschreibung

Das Backend validiert Request-Parameter und wählt anhand des Gerätetyps den RTU- oder TCP-

Pfad. mbpoll liefert Rohwerte bzw. Exitcodes; ein Parser normalisiert die Ausgabe und mappt

Fehler konsistent in den JSON-Envelope. Erfolgreiche Reads werden als Samples persistiert,

Writes als write_log dokumentiert; optionaler Read-Back bestätigt Schreibvorgänge.

FC Bezeichnung Zweck Typische Nutzung

1 Read Coils digitale Ausgänge lesen DO Status prüfen

2 Read Discrete Inputs digitale Eingänge lesen DI von Sensoren

3 Read Holding Registers schreibbare Register lesen Sollwerte, Konfig

4 Read Input Registers nur lesbare Register lesen Messwerte, Status

5 Write Single Coil einzelnen Ausgang setzen DO schalten

6 Write Single Register einzelnes Holding-Register schreiben Setpoint, Modus

16 Write Multiple Registers mehrere Register schreiben Batch-Updates

Tabelle 15 Modbus Funktionscodes (Auszug)

Kategorie RTU TCP

Transport RS485 Halbduplex Ethernet IPv4

Ziel --tty /dev/ttyUSBx <host> -p 502

Adresse -a <slave_id> -a <slave_id>

Timing --baud <rate>, Parity, Daten-/Stopbits Netzwerklatenz, Port

Lesen -r <reg> -c <count> -m rtu -r <reg> -c <count> -m tcp

Schreiben `--fc 5 6

Häufige Fehler Verdrahtung A/B, Terminierung, Parity Host unreachable, Port blockiert

Tabelle 16 Modbus Parameter – RTU vs. TCP

Zentrale Umgebungsvariablen (Auszug)

MODBUS_CMD_TIMEOUT, MODBUS_READ_DELAY_MS, MODBUS_SERIAL_PORT,

MODBUS_BAUDRATE

8.3.3 Schnittstellen

Bereic

h

Meth

ode

Pfad Query/Body (Kurz) Rückgabe

(Kurz)

Hinweise

M-Bus GET /api/mbus/stream

-scan

– SSE

Events

`log

found

M-Bus POST /api/mbus/scan/a

bort

– { ok } Beendet

laufenden Scan

(SIGINT)

Design und Implementierung 37

Readi

ngs

GET /api/readings/valu

es

– [{ address,

name? }]

Quelle:

known_mbus_d

evices.json

Readi

ngs

GET /api/readings/devi

ce

address { data: … } Einzelgerät (M-

Bus) auslesen

Readi

ngs

POST /api/readings/lab

el

{ address, name } { ok } Gerätename

setzen

Readi

ngs

GET /api/readings/con

fig/{address}

– { fields:

[..] }

Ausgewählte

XML-Tags pro

Gerät

Modb

us

POST /api/modbus/read { device_key, fc,

register, count }

{ ok,

data:[..] }

FC 1/2/3/4

Modb

us

POST /api/modbus/writ

e

{ device_key, fc,

register, value }

{ ok,

readback?

}

FC 5/6/16,

optional Read-

Back

Modb

us

Mappi

ng

GET /api/modbus-

mappings-row/get

device_key,row_id { data:{

enabled,

mapping }

}

Zeilenmapping

lesen

Modb

us

Mappi

ng

POST /api/modbus-

mappings-

row/save

{

device_key,row_id,en

abled,mapping }

{ ok } Zeilenmapping

speichern

Monit

oring

GET /api/monitor/read

-all

– [{ device,

ts, value,

source }]

Cooldown/Cach

e beachtet

Metric

s

GET /api/metrics/list – { ok,

data:[{ id,

tag, unit,

source }] }

Metrik-

Metadaten

Metric

s

GET /api/metrics/serie

s

metric_id,range,buck

et,as_rate

{ ok,

data:[{ ts,

avg }] }

Aggregierte

Zeitreihe

Tabelle 17 REST-API Endpunkte (Auszug)

Design und Implementierung 38

Zweck cURL

M-Bus

Scan

(SSE)

curl -N http://localhost:5000/api/mbus/stream-scan

M-Bus

Abbruch

curl -X POST http://localhost:5000/api/mbus/scan/abort

M-Bus

Einzelge

rät

curl "http://localhost:5000/api/readings/device?address=10"

Label

setzen

curl -X POST -H "Content-Type: application/json" -d

'{"address":10,"name":"Wärmezähler EG"}'

http://localhost:5000/api/readings/label

Modbus

Read

curl -X POST -H "Content-Type: application/json" -d

'{"device_key":"io1","fc":3,"register":2001,"count":2}'

http://localhost:5000/api/modbus/read

Modbus

Write

curl -X POST -H "Content-Type: application/json" -d

'{"device_key":"io1","fc":5,"register":1,"value":1}'

http://localhost:5000/api/modbus/write

Monitor curl http://localhost:5000/api/monitor/read-all

Metrics

Series

curl

"http://localhost:5000/api/metrics/series?metric_id=oil_day&range=7d&bucket

=1h&as_rate=true"

Tabelle 18 Beispiel-Requests (cURL, kompakt)

Situation HTTP Body (Beispiel) UI-Hinweis

Erfolg 200 { "ok": true, "data": [...] } Daten anzeigen

Ungültige

Parameter

400 { "ok": false, "error": "bad_request",

"message": "register missing" }

Validierung

markieren

Nicht gefunden 404 { "ok": false, "error": "not_found",

"message": "device unknown" }

Hinweis anzeigen

Timeout 408 { "ok": false, "error": "timeout", "message":

"no response" }

Retry anbieten

Intern 500 { "ok": false, "error": "internal", "message":

"unexpected error" }

Support/Log-ID

zeigen

Tabelle 19 JSON-Envelope und Fehlerfälle

Design und Implementierung 39

SSE-Ereignisse (Scan, kompaktes Schema)

// type: "log" | "found" | "status"

{ "type": "log", "payload": "scanning address 5..." }
{ "type": "found", "payload": { "address": 10 } }
{ "type": "status", "payload": "abgebrochen" }

Auth & CORS (optional)

• Optionaler Bearer Token via Keycloak (Axios-Interceptor setzt Authorization: Bearer

<token>).

• CORS per .env konfigurierbar; bei * keine Credentials über Browser.

Design und Implementierung 40

8.4 Implementierung Frontend (React UI, Tabellen, Graphen)

Abbildung 16 Frontend Routing und Seitenfluss

Design und Implementierung 41

Kurzbeschreibung

Die SPA nutzt AppShell für Layout und Routing. Admin-Seiten sind hinter einem RoleGuard. API-

Zugriffe laufen über einen zentralen Axios-Client (httpClient.ts) mit baseURL = VITE_API_BASE.

Bei aktivem Keycloak setzt der Interceptor automatisch den Bearer Token. M-Bus Scan

verwendet SSE über openScanStream(), Charts holen aggregierte Zeitreihen über

/metrics/series.

Seite (Route) Service Endpunkte

Home (/) httpClient Healthcheck optional

Profile (/profile) – –

DeviceMonitor

(/admin/monitor)

monitor.ts GET /api/monitor/read-all

Metrics (/admin/metrics) metrics.ts GET /api/metrics/list, GET

/api/metrics/series

M-Bus Scan

(/admin/mbus/scan)

apiMbus.ts GET /api/mbus/stream-scan (SSE),

POST /api/mbus/scan/abort

M-Bus Read

(/admin/mbus/read)

apiMbusDevices.ts GET /api/readings/values, GET

/api/readings/device?address=…

M-Bus Settings

(/admin/mbus/settings)

apiMbusDevices.ts GET /api/readings/config/{address},

POST /api/readings/label

Modbus Devices

(/admin/modbus/devices)

apiModbus.ts GET/POST /api/modbus-* je nach

Umsetzung

Modbus Registers

(/admin/modbus/registers)

apiModbus.ts POST /api/modbus/read, POST

/api/modbus/write

Modbus Control

(/admin/modbus/control)

apiModbus.ts POST /api/modbus/write

Tabelle 20 Seiten ↔ Services ↔ Endpunkte

State Auslöser Sichtbare Elemente Aktionen

idle Seite geöffnet Start-Button aktiv, Log leer Scan starten

scanning Start geklickt Live-Log (SSE), „Abbrechen“

aktiv

Abbrechen möglich

aborting Abbrechen geklickt Hinweis „Abbruch läuft…“ Warten auf Status

aborted SSE Status

„abgebrochen“

Meldung, Liste letzter Funde Erneut scannen

complete Stream endet normal „Scan beendet“, Liste der

Adressen

Detail öffnen,

benennen

Tabelle 21 UI-Zustände für M-Bus Scan

Design und Implementierung 42

Parameter Werte Bedeutung

metric_id z. B. oil_day Signal-ID

range 24h, 7d, 30d Zeitraum

bucket 5m, 1h, 1d Aggregationsintervall

as_rate true/false Rate statt Mittelwert

Tabelle 22 Charts – Zeitreihenabruf

Frontend-Implementierungsnotizen

• Charts: react-chartjs-2 + chart.js mit chartjs-adapter-date-fns. Tooltips und Zeitachse

auf ISO-Zeitformate prüfen.

• Fehlerhandling: Einheitlicher JSON-Envelope. UI zeigt freundliche Meldungen bei

bad_request, timeout, internal.

• Responsivität: Grids für Tabellen/Charts, keine fixe Breite; Seiten auf 1280px und mobil

testen.

• Zugriffsschutz: Admin-Routen nur mit RoleGuard. Bei fehlender Rolle auf /unauthorized

leiten.

• Env: VITE_API_BASE, optional VITE_KEYCLOAK_URL|REALM|CLIENT.

8.5 Sicherheitsaspekte & Benutzerrollen

8.5.1 Zielbild und Leitplanken

• Lokalbetrieb mit kontrolliertem Fernzugriff über VPN (Tailscale).

• Rollenbasiertes Arbeiten: Lesen getrennt von Schreiben und Konfigurieren.

• Kleine, harte Oberflaeche: nur die benoetigten Ports und Rechte.

• Konsistenter Fehler-Envelope statt Rohfehler, damit die UI gezielt reagieren kann.

• Sichere Defaults: Timeouts, Queues, saubere Prozessbeendigung fuer CLI-Tools.

Verweise: Hardware und Netzwerkgrundlagen siehe Abbildung A2. QS

8.5.2 Rollen und Berechtigungen

Aktion Endanwender Verwalter Techniker

Verbrauch und Status ansehen (Tabellen, Charts) ✔ ✔ ✔

M-Bus Scan starten, abbrechen, Geräte lesen ✖ ✖ ✔

Modbus Register lesen ✖ ✖ ✔

Modbus schreiben (Coils, Register) ✖ ✖ ✔

Geräte benennen, Feldauswahl setzen ✖ ✔ ✔

Monitoring ansehen (aggregiert) ✔ ✔ ✔

Systemkonfiguration, .env, Deploy ✖ ✖ ✔ (Ops)

Tabelle 23 Rollenmatrix

Server prüft die Rolle immer. UI-Ausblendung allein genügt nicht.

Design und Implementierung 43

8.5.3 Zugriff, Authentisierung, Autorisierung

• VPN als Primärzugang: Zugriff von aussen nur über Tailscale. ACLs in der Tailnet-Policy

auf definierte Geräte und Benutzer begrenzen.

• Keycloak (optional): Falls aktiviert, erhält die UI ein Barer Token. Der Axios-Interceptor

fügt Autorisation: Barer <Token> hinzu. Backend prüft Rollen pro Endpunkt.

• CORS: Feste CORS_ORIGINS in .env. Kein Wildcard bei Credentials. Bei reinem

Lokalbetrieb CORS eng halten oder Frontend vom selben Host liefern.

• SSE: Der Scan-Stream funktioniert ohne Cookies. Nur freigeben, wenn Herkunft geprüft

ist.

8.5.4 Eingaben, Prozesse, Fehler

• Parametervalidierung: Register, Anzahl, Adresse, Baudrate, TTY streng prüfen. Nur

bekannte device_key zulassen.

• CLI-Aufrufe sicher: Argumente nie konkatenieren, sondern sauber aufbauen. Keine

Shell-Interpolation.

• Prozesskontrolle: Scan-Abbruch per SIGINT. Keine Zombie-Prozesse. Timeouts für alle

CLI-Calls.

• Fehler-Envelope: Einheitlich { ok:false, error:"bad_request|timeout|internal",

message:"..." }. Keine Roh-stderr an die UI.

8.5.5 Betriebssicherheit und Härtung

• systemd: eigener Service-User, automatischer Neustart, Ressourcenlimits.

• Updates: unattended-upgrades aktivieren.

• Netzwerk: nur die benötigten Ports. Bei Bedarf Reverse Proxy mit TLS.

• Logs: journald Rotation. Keine sensiblen Daten loggen.

• Datenbank: eigene DB-Rolle mit minimalen Rechten, regelmässiges Backup.

Beispiel: Auszug harte systemd-Unit (in Anhang G2 vollständig ablegen)

 1. [Service]
 2. User=visual
 3. Group=visual
 4. EnvironmentFile=/etc/visualisation/.env
 5. ExecStart=/usr/bin/python /opt/visualisation/current/run.py
 6. Restart=on-failure
 7. RestartSec=3
 8. # Härtung
 9. NoNewPrivileges=yes
10. PrivateTmp=yes
11. ProtectSystem=full
12. ProtectHome=true
13. AmbientCapabilities=
14. # Ressourcen (Beispielwerte)
15. MemoryMax=300M
16. TasksMax=150
17.

Design und Implementierung 44

8.5.6 Daten und Schutz

• .env ausserhalb des Repos, nur für den Service-User lesbar.

• Backups der Datenbank regelmässig testen.

• Datenminimierung: nur benötigte Messpunkte speichern, PII vermeiden.

8.5.7 Zusammenfassung für den Leser

• Zugriff von aussen ausschliesslich über VPN.

• Schreibaktionen nur für die Rolle Techniker.

• CORS, Timeouts, Queues, Fehler-Envelope sind aktiv.

• systemd härtet die Ausführung, unattended-upgrades halten das System aktuell.

• Nachweise im Anhang: CI-Checks, Coverage, Deploy-Status, Health.

9 Verifikation, Tests und Qualitätssicherung

Abbildung 17 Testpyramide und Pipeline Gates

Design und Implementierung 45

9.1 Teststrategie

Ziel ist ein belastbarer Nachweis der funktionalen Korrektheit, der Robustheit unter realen

Bedingungen und der Wartbarkeit. Die Tests folgen einer klaren Pyramide: viele Unit Tests,

ausgewählte Integrationstests, wenige Systemtests auf dem Raspberry, ergänzt durch

explorative UI Tests und Screencasts.

Testart Fokus Ziel Beispiel

Unit Parser, Utils,

Fehlerpfade

Korrekte Logik bei

kleinstem Umfang

XML nach JSON, Modbus

Decoder

Integration API mit Stub für

CLI/DB

Konsistenter JSON

Envelope, Statuscodes

/api/mbus/scan,

/api/modbus/read

System Reale Hardware Timeouts, Abbruch,

Kollisionsfreiheit

M-Bus Scan, Modbus

RTU/TCP

Exploration UI Flows Nutzererlebnis,

Ladezustände

Scan starten, Abbruch, Chart

laden

Tabelle 24 Testarten und Ziele

9.2 Testumgebungen

Umgebung Komponenten Zweck

Lokal Dev Python venv, pytest, Postgres lokal schneller Zyklus, Unit/Integration

Raspberry Pi Pi OS, libmbus, mbpoll, Postgres reale Feldbedingungen

CI Bitbucket Pipelines, Postgres Service Gate für Merge, Artefakte erzeugen

Tabelle 25 Testumgebungen

9.3 Testdurchführung (lokal & CI)

Modus Kommando Erwartung

Schnell

lokal

PYTHONPATH=. pytest -q --maxfail=1 -m

"not db and not slow"
rasches Feedback, nur

schnelle Tests

Voll lokal PYTHONPATH=. pytest --cov=backend --cov-

report=term --cov-report=html --cov-

fail-under=80

Coverage ≥ 80 %,

htmlcov generiert

CI PR Pipeline Schritt „lint + unit“ schnelle Checks, Block

bei Fehler

CI

main/Tag

Voller Lauf mit Postgres Artefakte (htmlcov,

Release), grünes Gate

Tabelle 26 Durchführungsplan und Kommandos

Design und Implementierung 46

9.4 Ergebnisse (Kurzüberblick)

Bereich Kennzahl Ergebnis Nachweis

Coverage gesamt ≥ 80 % [Wert eintragen] Abbildung B3/B4

API Stabilität 2xx/4xx/5xx Verhältnis [Wert eintragen] Logauszug B2

Scan Laufzeit M-Bus Scan 0..n [Zeitfenster] Screencast V2/V3

Write Verifikation Read-Back Quote [Wert eintragen] Log + UI Screen B2

Deploy Active Running Ja

Tabelle 27 Schlüsselergebnisse (Beispielstruktur zum Befüllen)

9.5 Praktischer Frontend-Nachweis (Screencast)

ID Inhalt Muss sichtbar sein Kriterium bestanden

V1 Endanwenderfluss Scan starten, Adressenliste, Detail,

Chart

UI reagiert ohne Fehler

V2 Technikerfluss Modbus Read/Write, Monitor

Update

Read Back ok, kein UI

Fehler

V3 Fehlerfälle Abbruch, Timeout, bad request UI zeigt konsistente

Meldungen

Tabelle 28 Screencasts und Akzeptanzkriterien

9.6 Qualitätssicherung

Massnahme Tool Gate

Linting Backend ruff/flake8 PR Pflicht

Tests Backend pytest PR und main

Coverage Gate pytest-cov --cov-fail-under=80

Review Pflicht PR Reviews Merge Blocker

Artefakte htmlcov, Release Bundle main/Tag

Deploy Check systemd Status, Health nach Rollout

Tabelle 29 QS Massnahmen

9.7 Risiko- und Edge-Case-Tests

Risiko Testfall Erwartung Mitigation

Scan Kollision Scan + Abort Stream endet mit Status

„abgebrochen“

SIGINT, Queue

RTU Leitungsfehler A/B vertauscht Timeout Fehler-Envelope Verdrahtung

prüfen

TCP Host down Read auf offline

Gerät

„host unreachable“ →

408/500

Retry, Logging

Ungültige

Parameter

fehlendes

register

400 bad request API Validierung

Design und Implementierung 47

Datenbank nicht

bereit

Insert Samples Retry/Fail fast, sauberer 500 DB Wait in CI

Tabelle 30 Edge Cases und Mitigation

9.8 Artefakte und Nachweise

Artefakt Speicherort (Anhang) Hinweis

PR Statuschecks B5 grüner Haken sichtbar

Coverage Terminal B6 TOTAL Zeile, Schwelle erreicht

Coverage HTML Übersicht B3 index.html mit Gesamtwert

Coverage HTML Detail B4 Modulansicht

Tabelle 31 Artefakte und Verweise

DevOps/CI/CD, Build & Deployment 48

48

10 DevOps / CI/CD, Build & Deployment

10.1 Versionskontrolle (GitHub/Bitbucket)

Regel Beschreibung

Branching main stabil; Featurearbeit auf feature/*; Hotfix auf hotfix/*

Pull Requests Reviewpflicht, grüne CI-Checks vor Merge

Commit Style Kurz, imperativ; Referenz auf Ticket (z. B. JIRA-Key)

Tags Semantisch vX.Y.Z auf main nach grünem Build

Schutz Kein Direkt-Push auf main; Merge nur via PR

Tabelle 32 Branch- und Release-Policy

Referenzen im Anhang: PR-Checks und Tags siehe B5

10.2 CI/CD-Pipeline (Automatisierung, Testauszüge)

Abbildung 18 CI/CD - PR Fastlane vs. main/tag Volllauf

Schritt PR main/tag Zweck

Lint ✔ ✔ Stil, schnelle Fehler

Unit ✔ ✔ Parser, Utils

Integration (mit DB) – ✔ API, DAO

Coverage Gate ≥ 80 % – ✔ Qualitätsgrenze

DevOps/CI/CD, Build & Deployment 49

Build/Artefakte – ✔ htmlcov/, release.tar.gz

Tabelle 33 Pipeline-Schritte (Standard)

Referenzen im Anhang: Coverage B3–B4, Terminal-Report B6.

10.3 Deployment auf Raspberry Pi (git + setup.sh)

Abbildung 19 Deploy (git pull -> setup.sh -> systemd -> Health)

Ablauf in Kürze

1. per ssh auf den Pi

2. git fetch && git checkout <branch|commit> && git pull --ff-only

3. chmod +x setup.sh && sudo ./setup.sh

4. systemctl status visualisation.service prüfen

5. curl -f http://localhost:5000/api/health/health checken

Schritt Aufgabe Beispiel

A Systempakete installieren apt install python3-venv postgresql libmbus mbpoll

msmtp

B venv und Python

Abhängigkeiten

python3 -m venv ... && pip install -r requirements.txt

C Verzeichnisse anlegen /opt/visualisation/{data,logs} falls nicht vorhanden

D Konfiguration prüfen .env unter /etc/visualisation/.env vorhanden und

lesbar

E systemd Unit bereitstellen visualisation.service nach /etc/systemd/system/

F Dienst neu laden und

starten

systemctl daemon-reload && systemctl restart

visualisation.service

DevOps/CI/CD, Build & Deployment 50

G Gruppenrechte seriell Service-User in dialout und uucp

Tabelle 34 Aufgabenübersicht setup.sh (ersetzt)

Check Befehl Erwartung

Dienststatus systemctl status visualisation.service --no-

pager

Active: active (running)

Health curl -f http://localhost:5000/api/health/health HTTP 200 JSON

Logs journalctl -u visualisation.service -n 50 --no-

pager

keine Fehler, Port

gebunden

Serielle

Geräte

ls -l /dev/ttyUSB* Adapter sichtbar

Gruppen id <service-user> Mitgliedschaft

dialout,uucp

Tabelle 35 Post-Install Checks

Pfad Inhalt

/opt/visualisation Arbeitsverzeichnis Repo

/opt/visualisation/data/logs Laufzeitlogs

/etc/visualisation/.env Umgebungsvariablen

/etc/systemd/system/visualisation.service Dienstdefinition

Tabelle 36 Standardpfade

Ziel Befehl

auf frühere Version wechseln git checkout <commit-oder-tag>

Abhängigkeiten aktualisieren source venv/bin/activate && pip install -r requirements.txt

Dienst neu starten sudo systemctl restart visualisation.service

Health prüfen curl -f http://localhost:5000/api/health/health

Tabelle 37 Version zurückdrehen via Git

Das ist euer Rollback: schlicht git checkout auf einen bekannten Commit oder Tag, dann neu

starten. Keine Release Bundles, kein Symlink.

Symptom Ursache Lösung

Dienst startet nicht .env

fehlt/fehlerhaft

.env korrigieren, daemon-reload, Restart

Health 500 DB nicht erreichbar DB_URL, Postgres Service prüfen

Port belegt Prozess auf 5000 sudo fuser -n tcp 5000, Prozess beenden

M-Bus Timeout Port/Baud falsch MBUS_* in .env prüfen, Verkabelung

Modbus TCP

Timeout

Host/Port blockiert IP/Port 502 prüfen, Netzwerk

DevOps/CI/CD, Build & Deployment 51

SSE reisst ab Proxy/CORS CORS korrekt setzen, notfalls ohne Proxy

testen

Tabelle 38 Troubleshooting

10.4 Installations- und Benutzerhandbuch

10.4.1 10.4.1 Voraussetzungen

Komponente Minimum Hinweis

OS Raspberry Pi OS aktuell apt update && apt upgrade vor

Start

Python 3.10 oder neuer python3 --version

Pakete python3-venv, libmbus, mbpoll,

postgresql, msmtp

werden sonst über setup.sh

installiert

Rechte sudo auf dem Pi für Paketinstallation und

systemd

Ports API: 5000 (Standard) anpassbar via .env

Serielle

Geräte

/dev/ttyUSB* sichtbar M-Bus Pegelwandler, RS485

Adapter

Gruppen dialout, uucp Service-User muss Mitglied sein

Tabelle 39 Systemvoraussetzungen

10.4.2 Erstinstallation (Schritt für Schritt)

 1. # 1) Code auf den Pi holen (oder Repo aktualisieren)
 2. cd /opt/visualisation
 3. git fetch
 4. git checkout <branch-oder-commit>
 5. git pull --ff-only
 6.
 7. # 2) Setup ausführen
 8. chmod +x setup.sh
 9. sudo ./setup.sh
10.

Das Skript installiert Systempakete, erstellt die venv, installiert Python-Dependencies, legt Pfade

an, installiert/aktualisiert die systemd-Unit und startet den Dienst.

10.4.3 Erstkonfiguration (.env)

Key Beispiel Zweck

FLASK_RUN_PORT 5000 API-Port

DB_URL postgresql://metrics:metrics@localhost:5432/

metrics

Datenbank

CORS_ORIGINS http://localhost:5173 Frontend

Zugriff

MBUS_SERIAL_PORT /dev/ttyUSB0 M-Bus Port

MBUS_BAUDRATE 2400 M-Bus Baud

MODBUS_SERIAL_PORT /dev/ttyUSB1 RTU Port

DevOps/CI/CD, Build & Deployment 52

MODBUS_BAUDRATE 19200 RTU Baud

MODBUS_CMD_TIMEOU

T

3000 ms Timeout

für CLI

MODBUS_READ_DELAY_

MS

250 Mindestabsta

nd Reads

Tabelle 40 Minimaler .env-Satz

Ablage: /etc/visualisation/.env (nur für den Service-User lesbar).

10.4.4 Dienstverwaltung (systemd)

1. # Start/Status/Logs
2. sudo systemctl daemon-reload
3. sudo systemctl enable --now visualisation.service
4. systemctl status visualisation.service --no-pager
5. journalctl -u visualisation.service -n 50 --no-pager
6.
7. # Neu starten nach Änderungen
8. sudo systemctl restart visualisation.service
9.

10.4.5 Funktionstest (Smoke)

 1. # Health
 2. curl -f http://localhost:5000/api/health/health
 3.
 4. # M-Bus: Port sichtbar?
 5. ls -l /dev/ttyUSB*
 6.
 7. # Modbus TCP: Beispiel Read (anpassen)
 8. # mbpoll -m tcp <ip> -p 502 -a 1 -r 1 -c 1
 9.
10. # Modbus RTU: Beispiel Read (anpassen)
11. # mbpoll -m rtu --tty /dev/ttyUSB1 --baud 19200 -a 1 -r 1 -c 1
12.

10.4.6 Benutzerhandbuch (Kurz)

Rolle Aufgabe Pfad in der UI

Endanwender Verbrauch und Status ansehen

(Tabellen/Charts)

Home, Metrics

Verwalter Geräte benennen, Felder auswählen M-Bus Settings

Techniker Scan starten/abbrechen, Einzelgerät auslesen M-Bus Scan/Read

Techniker Modbus Register lesen/schreiben Modbus

Registers/Control

Techniker Monitoring prüfen Device Monitor

Tabelle 41 Typische Aufgaben je Rolle

DevOps/CI/CD, Build & Deployment 53

10.4.7 Update und Rücksprung (git)

Kein Release-Bundle, nur Git.

 1. # Update
 2. cd /opt/visualisation
 3. git fetch
 4. git checkout <branch-oder-commit>
 5. git pull --ff-only
 6. sudo ./setup.sh
 7. sudo systemctl restart visualisation.service
 8.
 9. # Rücksprung (Rollback via Git)
10. git checkout <bekannter-commit>
11. sudo ./setup.sh
12. sudo systemctl restart visualisation.service
13.

10.4.8 Deinstallation (vollständig)

1. sudo systemctl disable --now visualisation.service
2. sudo rm -f /etc/systemd/system/visualisation.service
3. sudo systemctl daemon-reload
4. sudo rm -rf /opt/visualisation
5. sudo rm -rf /etc/visualisation
6. # Optional: Postgres Daten/Benutzer entfernen (nur wenn sicher!)
7.

10.4.9 Tipps & Stolpersteine

• Serielle Rechte: Service-User in dialout und uucp. Danach neu anmelden oder Dienst

neu starten.

• TTY Fix: Udev-Regel für stabile Gerätenamen optional, sonst prüfen, ob Adapter die

Ports tauschen.

• Port belegt: sudo fuser -n tcp 5000 zeigt den Blocker.

• CORS: Wildcard * funktioniert nicht mit Credentials. Konkrete Origins setzen, wenn

Keycloak aktiv ist.

• Timeouts: MBUS_* und MODBUS_* in .env feinjustieren, besonders bei langen

Leitungen/Adaptern.

• Logs: journalctl -u visualisation.service ist deine erste Anlaufstelle. Keine sensiblen

Daten loggen.

• VPN: Zugriff von aussen nur via Tailscale zulassen. ACLs eng halten.

10.4.10 Frontend Installation (Docker Compose + Keycloak, via

scripts/setup.sh)

10.4.10.1 Voraussetzungen

Komponente Minimum Hinweis

Docker Engine 24+ docker --version

Docker Compose

Plugin

v2 docker compose version

DevOps/CI/CD, Build & Deployment 54

Node (nur für Dev) 20 LTS optional, falls START_DEV=true

pnpm (nur für Dev) 9.x optional, Script startet sonst dev

nicht

Ports 3000 (FE), 8080

(Keycloak)

anpassbar via .env.development

Rechte sudo Script ruft sudo docker compose auf

Tabelle 42 Frontend Systemvoraussetzungen

10.4.10.2 .env Datei vorbereiten

Das Script erwartet apps/web/.env.development. Beispiel minimal:

Key Beispiel Zweck

PUBLIC_URL http://localhost:3000 URL des Frontend Containers

VITE_API_BASE http://localhost:5000 Backend API Basis URL

VITE_KEYCLOAK_URL http://localhost:8080 Keycloak Basis URL

VITE_KEYCLOAK_REALM masterarbeit Realm Name

VITE_KEYCLOAK_CLIENT frontend Client ID

KC_DB_USERNAME keycloak DB User für keycloak-db

KC_DB_NAME keycloak DB Name für keycloak-db

KC_DB_PASSWORD supersecret DB Passwort (lokal)

Tabelle 43 Beispiel .env.development für Frontend Setup

Werte müssen zu deinem docker-compose.yml passen. Wenn Compose andere Variablen

verlangt, hier anpassen.

10.4.10.3 Artefakte optional bereitstellen (Ordner transfer/)

Lege optionale Inhalte in apps/web/transfer/ ab. Das Script importiert sie automatisch:

Pfad in transfer/ Effekt beim Setup

themes/ wird nach keycloak/themes/ kopiert (Custom Theme)

realm-export.json wird nach keycloak/realm-export.json kopiert (Realm Import)

keycloak.dump wird in Container keycloak-db eingespielt (voller DB Dump)

Tabelle 44 Inhalte im transfer/ und Wirkung

DevOps/CI/CD, Build & Deployment 55

10.4.10.4 Setup ausführen

Aus apps/web/scripts/ starten:

1. cd apps/web/scripts
2. chmod +x setup.sh
3. sudo ./setup.sh
4.

Was passiert:

Schritt Funktion Details

Env prüfen require_env bricht ab, wenn .env.development fehlt

Gerüste scaffold_minimum legt keycloak/, transfer/, scripts/ an, baut

.dockerignore

Import import_from_transfer kopiert themes/, realm-export.json; optional: spielt

keycloak.dump in keycloak-db ein

Compose compose_up docker compose pull/build/up -d mit

.env.development

Optional

Dev

maybe_start_dev startet pnpm dev im Hintergrund, wenn

START_DEV=true gesetzt

Hinweise post_info gibt Keycloak-URL, Frontend-URL, Health-Check aus

Tabelle 45 Aufgabenübersicht scripts/setup.sh (Frontend)

10.4.10.5 Nach dem Setup prüfen

Check Kommando Erwartung

Container

laufen

sudo docker compose ps frontend, keycloak, keycloak-

db „Up“

Keycloak

Ready

sudo curl -s

http://localhost:8080/health/ready

"status":"UP"

Frontend

erreichbar

Browser http://localhost:3000 Startseite lädt

API

erreichbar

Browser

http://localhost:5000/api/health/health

200 JSON

Theme aktiv Keycloak Login Custom Theme sichtbar (falls

transfer/themes vorhanden)

Tabelle 46 Post-Setup Checks (Frontend/Keycloak)

DevOps/CI/CD, Build & Deployment 56

10.4.10.6 Dev-Modus optional (ohne Container)

Wenn du lokal entwickeln willst, kannst du den Dev-Server automatisch starten lassen:

1. # aus apps/web/scripts/
2. START_DEV=true sudo ./setup.sh
3. # Logs: apps/web/dev.log
4. Oder manuell:
5. # Monorepo root oder apps/web
6. pnpm install
7. pnpm --filter web dev
8. # öffnet http://localhost:5173
9.

Im Dev nutzt Vite typischerweise VITE_API_BASE=/api und proxyt zu

VITE_API_PROXY_TARGET=http://localhost:5000 (falls im vite.config.ts so konfiguriert). In

deinem .env.development kannst du stattdessen direkt VITE_API_BASE=http://localhost:5000

setzen.

10.4.10.7 Troubleshooting Frontend

Symptom Ursache Fix

Fehlt:

.env.development

.env nicht

erstellt

Datei in apps/web/.env.development anlegen

Frontend 404/leer Container nicht

up

sudo docker compose ps, Logs checken

Keycloak Login

schlägt fehl

Realm/Client

falsch

transfer/realm-export.json prüfen,

VITE_KEYCLOAK_* prüfen

Theme greift nicht Theme Pfad

falsch

transfer/themes Struktur prüfen, Script erneut

laufen lassen

API CORS Fehler falsche API

Basis

VITE_API_BASE korrigieren, Backend CORS setzen

Dev startet nicht pnpm/Node

fehlt

corepack enable && corepack prepare

pnpm@latest --activate, Node 20 installieren

Tabelle 47 Häufige Probleme und Fixes

10.4.10.8 Kurzer Benutzerhinweis (Frontend)

• Endanwender: Charts und Tabellen, keine Schreibaktionen.

• Techniker: Admin-Bereich für M-Bus Scan, Modbus Read/Write, Monitor.

• Verwalter: Geräte benennen und Felder auswählen unter M-Bus Settings.

• Auth: Wenn Keycloak aktiv, Token wird im Axios-Interceptor gesetzt.

Ergebnisse, Metriken und Evaluation 57

57

11 Ergebnisse, Metriken und Evaluation

11.1 Funktionale Ergebnisse (Visualisierung, Quittierung, Export)

Der Prototyp erfüllt die definierten Soll-Ziele:

• M-Bus: Live-Scan via SSE mit sauberem Abbruch, Einzelgeräte-Auslesung, XML-Parsing

und Normalisierung.

• Modbus: Read/Write für RTU und TCP, optionaler Read-Back und Logging.

• Visualisierung/Monitoring: Tabellen, Charts mit Aggregation (Range/Bucket), Monitor

mit Mindestabständen (Cooldown).

• Rollenmodell: Lesen vs. Konfigurieren/Schreiben sauber getrennt.

• Betrieb: systemd-Dienst läuft stabil; Health-Endpoint liefert 200.

Bereich Ergebnis Nachweis

(Anhang)

M-Bus Scan &

Abbruch

Stream mit Log/Adressen, kontrollierter

Abbruch

A3, B2

Einzelgerät (M-Bus) Normalisierte Werte (Tag → Wert) A3, B2

Modbus Read/Write Read-Back bestätigt Setzen A4, B2

Charts & Metrics Zeitreihen (Range/Bucket/Rate) B2, B3

Monitoring Cooldown eingehalten, keine Kollisionen A5

Tabelle 48 Funktionale Ergebniskarte (Nachweis im Anhang)

11.2 Performance & Zuverlässigkeit

Messungen wurden lokal (Pi) und praxisnah durchgeführt. Ziel: nachvollziehbare Latenzen,

stabile Reads/Writes, konsistenter Monitor.

Metrik Zielwert Ergebnis Messmethode

API Latenz Median ≤ 300 ms [eintragen] 50 Requests lokal

API Latenz P95 ≤ 800 ms [eintragen] dito

M-Bus Einzelgerät ≤ 2.0 s [eintragen] 10 Reads am selben Zähler

Modbus Read RTU ≤ 400 ms [eintragen] RS485 19200 Baud

Modbus Read TCP ≤ 150 ms [eintragen] LAN

Monitor Cooldown ≥ 30 s [eintragen] Log/Monitor-Antwort

Dienstverfügbarkeit ≥ 99 % Testzeitraum [eintragen] systemd/journal

Tabelle 49 Performance-Kennzahlen (bitte Werte ergänzen)

11.3 Usability-Feedback (Endnutzer vs. Techniker)

Kurzfazit aus den explorativen Interviews (Details in E2–E4):

Ergebnisse, Metriken und Evaluation 58

• Endanwender wünschen klare Achsen/Einheiten in Charts und dezente Tooltips.

• Verwalter wollen Gerätebenennungen und Feldauswahl direkt im Flow.

• Techniker möchten sichtbaren Read-Back beim Schreiben und konsistente

Fehlermeldungen.

Rolle Beobachtung Wirkung Massnahme

Endanwender Achsenlabel zu technisch Verwirrung Klartext/Einheiten, Tooltips

Verwalter Benennen nicht

prominent

Mehraufwand „Benennen“ direkt in

Listenzeile

Techniker Write ohne Read-Back Unsicherheit Read-Back-Wert im

Toast/Panel

Tabelle 50 Beobachtungen und Massnahmen

11.4 Nutzenbewertung (Zeitersparnis, Kosten)

Die Lösung reduziert Diagnose- und Vor-Ort-Aufwände und erhöht Transparenz.

Vorgang Vorher Nachher Delta

Erstdiagnose vor Ort 60 min 10 min remote −50 min

Zweitanfahrt (Ersatzteil) 1× pro 3 Fälle 1× pro 10 Fälle −70 %

Zählerablesung MFH 90 min 5 min −85 min

Tabelle 51 Aufwand vorher vs. nachher (Annahmen)

Tabelle:

Kategorie Nutzen

Transparenz Verbrauchsdaten jederzeit einsehbar

Sicherheit VPN-Zugriff, Rollen, kein Cloudzwang

Erweiterbarkeit Geräte/Tags ohne Neuaufbau

Vendor-Lock-in gering dank offener Protokolle

Tabelle 52 Qualitativer Nutzen

11.5 Evaluationsmethodik und Validität

• Methodik: Laborläufe auf dem Pi, Praxisläufe an einer realen Installation; CI-Volltests

mit echter DB.

• Replizierbarkeit: definierte .env-Parameter und JSON-Configs; dokumentierte

Messschritte.

• Grenzen: Ergebnisse gelten für die getestete Topologie/HW; keine Hochlast mit

Hunderten Geräten.

• Bias-Kontrolle: Screencasts und Logs belegen die Flows; Coverage/CI belegt Backend-

Robustheit.

Ergebnisse, Metriken und Evaluation 59

11.6 Metrikenübersicht und Leseführung

Tabelle:

Metrik Kapitel Nachweis (Anhang)

Coverage gesamt 9.4 B3, B4, B6

Latenzen 11.2 B2 (Screens), Logs

Monitor Cooldown 7.4, 11.2 A5

Usability-Feedback 11.3 E2–E4

Tabelle 53 Metriken → Kapitel → Nachweis

Diskussion 60

60

12 Diskussion

12.1 Erfüllung der Ziele

Die Kernziele wurden erreicht, die Abweichungen sind fachlich begründet und verbessern die

Bedienbarkeit.

Ziel Soll Ist Nachweis

Protokolle M-Bus und Modbus

parallel nutzbar

Ja, mit Queue, Cooldown,

sauberem Abbruch beim Scan

A3, A4, A5,

Kap. 7.4

Visualisierung Tabellen und

Diagramme,

Monitoring

Ja, Zeitreihen mit Range und

Bucket, Monitor mit

Mindestabständen

Kap. 7.3, 8.4,

11.1

Konfiguration Excel Import Ersetzt durch Web UI und JSON pro

Gerät (robuster, weniger Fehler)

Kap. 7.3.4

Betrieb Lokal, kein Cloud

Zwang

Ja, systemd Dienst, Health

Endpunkt, VPN für Fernzugriff

A2,

Qualität Automatisierte Tests,

Coverage

Ja, Coverage Gate erreicht, CI

Pipeline belegt

B3–B6,

Tabelle 54 Zielerreichung (Soll vs. Ist, mit Nachweisen)

Abweichungen

• Excel wurde durch Web UI Konfiguration ersetzt (direktes Feedback, weniger

Medienbrüche).

• Modbus Gegenstelle im Prototyp: I/O Modul statt Wärmepumpe (gleiche technischen

Pfade, geringere Komplexität).

12.2 Grenzen der Lösung

Technisch

• Skalierung: Ausgelegt auf kleine bis mittlere Installationen. Keine Messungen mit

Hunderten Geräten.

• Langzeit-Analytics: Historik und Dashboards sind vorbereitet, aber nicht vollumfänglich

umgesetzt.

• Sicherheit: Grundhärtung vorhanden (VPN, Updates, Rollen), jedoch kein mTLS oder

Reverse Proxy mit strengem Header Set.

• Frontendläufe: Keine automatisierten UI-Tests, Nachweis via Screencasts.

• Containerbetrieb: Backend nicht standardisiert containerisiert; Betrieb derzeit klassisch

per systemd.

Organisatorisch

• Gerätevielfalt: Verifiziert mit repräsentativen, nicht mit sämtlichen Zählertypen und

Steuerungen.

Diskussion 61

• Abhängigkeit von Feldbedingungen: Serielle Qualität, Terminierung und Erdung

beeinflussen Stabilität.

Grenze Wirkung Mitigation

Keine Hochlast-

Validierung

Unsichere Aussage für 100+

Geräte

Messreihen nachziehen,

TimescaleDB aktivieren

Grundhärtung, kein

TLS Proxy

Transport unsigniert im LAN Reverse Proxy mit TLS und HSTS

ergänzen

Keine UI-

Automatisierung

UI-Regression nicht

maschinell geprüft

Kleine Jest-Smoke-Tests für

kritische Flows

Device-Abdeckung

begrenzt

Integrationsrisiko bei

exotischen Geräten

Mapping und Decoder modulär

halten, Piloten je Gerät

Tabelle 55 Grenze → Wirkung → Mitigation

12.3 Vergleich mit bestehenden Lösungen

Positionierung

• Kosten/Nutzen: Lokaler Betrieb, offene Protokolle, geringe Einstiegskosten.

• Bedienung: Fokus auf essentielle Flows (Scan, Read, Monitor, Charts) statt komplexe

HMI-Suiten.

• Unabhängigkeit: Herstellerunabhängig durch M-Bus und Modbus, keine Lizenzpflicht.

Trade-offs

• Weniger Out-of-the-box Komfortfunktionen grosser Leitsysteme (3D-Grundrisse,

umfangreiche Alarmierung, Wartungsplanung).

• Höhere Eigenverantwortung beim Betrieb (VPN, Updates, Backups).

Kriterium Etablierte Systeme Diese Lösung

Anschaffung Hoch Niedrig

Laufende Kosten Lizenzen möglich Minimal

Interoperabilität Ökosystemgebunden Offen durch M-Bus/Modbus

Bedienung Umfassend, komplex Schmal, fokussiert

Betrieb Herstellergeführt Eigenbetrieb, dokumentiert

Tabelle 56 Einordnung (Kurz)

(Detailvergleich siehe Tabelle 1 und Kap. 5.4.)

12.4 Lessons Learned

• Walking Skeleton zahlt sich aus: Risiken bei Scan, Parser und Persistenz früh sichtbar, spätere

Arbeit stabiler.

• SSE mit sauberem Abbruch ist ein Muss: Verhindert hängende Prozesse und vermittelt der UI

verlässliche Zustände.

• Queue und Cooldown entschärfen Kollisionen zwischen M-Bus-Scan, Modbus-Reads und

Monitor.

Diskussion 62

• Konfiguration in der UI statt Excel reduziert Fehler, beschleunigt Iteration.

• CI-Gate mit Coverage hält die Codequalität hoch und verhindert Regressionen im Backend.

• Dokumentierte Artefakte (Screens, Logs, Pipelines) beschleunigen Abnahme und Diskussion

mit Stakeholdern.

12.5 Ausblick

Kurzfristig

• CSV/Parquet Export und einfache Regel-Benachrichtigungen (Schwellen, Zeitfenster).

• Kleine UI-Smoke-Tests (Jest) für Scan, Read, Write, Monitor.

• Reverse Proxy mit TLS und sauberen CORS-Regeln, optional mTLS.

Mittelfristig

• TimescaleDB aktivieren und grössere Messreihen evaluieren.

• Mapping-Editor für Fehlercodes und Gerätetemplates.

• Containerisierte Bereitstellung mit Compose (Backend) und statischer Auslieferung des

Frontends hinter demselben Host.

Langfristig

• Rollen und Policies feiner auflösen, Keycloak standardisieren.

• BI-Anbindung oder Dashboard-Integration, falls Bedarf wächst.

Projektmanagement 63

63

13 Projektmanagement

13.1 Projektplanung & Iterationen

Die Umsetzung erfolgte in kurzen Sprints mit klarer Aufgabenzerlegung und PR-basiertem

Merge-Prozess. Planung, Abarbeitung und Kontrolle wurden über Board, Backlog und Reports

gesteuert.

Abbildung 20 Sprint-Flow (Board -> PR -> Pipeline -> Done)

13.2 Zeiterfassung & Aufwand

Gesamtaufwand: 774 h. Pro Sprint 77–78 h.

 64

Sprint Stunden Analyse Implementierung Test Dokumentation

S1 77 54 15 4 4

S2 77 23 38 8 8

S3 77 12 50 11 4

S4 77 8 50 15 4

S5 77 8 46 15 8

S6 77 4 35 31 7

S7 78 4 19 47 8

S8 78 8 43 19 8

S9 78 8 15 8 47

S10 78 4 8 8 58

Summe 774 133 319 166 156

Tabelle 57 Sprintstunden je Aktivität (Largest-Remainder, ganze Stunden)

Aktivität Stunden Anteil

Analyse 133 17.2 %

Implementierung 319 41.3 %

Test 166 21.5 %

Dokumentation 156 20.2 %

Total 774 100 %

Tabelle 58 Gesamtverteilung nach Aktivität

13.3 Rollenverteilung (Kerim, Remzi)

Rollen und Verantwortlichkeiten wurden klar zugeordnet. Die Matrix zeigt, wer federführend ist

und wer beratend unterstützt.

Artefakt / Meilenstein Responsible

(R)

Accountable

(A)

Consulted

(C)

Informed (I)

Backend Architektur &

Treiber

Kerim Kerim Remzi Stakeholder

Frontend Flows & UI Remzi Remzi Kerim Stakeholder

DB Schema & Persistenz Kerim Kerim Remzi Stakeholder

Tests & CI-Gates Kerim Kerim Remzi Stakeholder

Deployment (Pi, systemd) Kerim Kerim Remzi Stakeholder

Doku Kapitel 5–10 Kerim Kerim Remzi Stakeholder

Screencasts & UI-

Nachweise

Remzi Remzi Kerim Stakeholder

Tabelle 59 RACI-Matrix (Kernartefakte)

 65

13.4 Herausforderungen im Projektmanagement

Die wichtigsten Hürden und wie sie adressiert wurden.

Thema Risiko Auswirkung Massnahme

Umfang Scope Creep Verzögerungen,

Qualitätsverlust

harte Sprintziele, Kann-

Ziele nur bei Puffer

Abhängigkeiten Feldgeräte nicht

verfügbar

Blockierte Tests Labor-Setups, Mocks,

frühzeitige Beschaffung

Serielle

Kollisionen

Scan vs. Reads Hänger, instabile

Demos

Queue + Cooldown,

eigener Abort-Flow

Qualität fehlende

Regressionstests

„Green“ lokal, rot

später

CI-Gate ≥ 80 %, PR-

Pflicht

Kommunikation PR ohne Kontext Review-Loops länger Ticket-Referenz im

Commit, PR-Template

Betrieb manuelle Schritte Fehleranfällig setup.sh, Checklisten

(Kap. 10.4)

Tabelle 60 Risiken im PM und Massnahmen

Schlussfolgerungen und Ausblick 66

66

14 Schlussfolgerungen und Ausblick

14.1 Beantwortung der Forschungsfragen

Frage Kurzantwort Evidenz

(Kapitel)

Nachweise

(Anhang)

F1: Realisierbarkeit auf

Standard-Hardware

(Raspberry Pi)

Ja. Stabiles End-to-End mit M-

Bus/Modbus, Persistenz, UI

7, 8, 10, 11 A1, A2,

F2: Parallelbetrieb von M-

Bus und Modbus ohne

Kollisionen

Ja, unter Leitplanken.

Queue/Cooldown, sauberer

Scan-Abort

7.3, 7.4,

8.3

A3–A5

F3: Architektur für

Endanwender und Techniker

Ja. Rollentrennung, dedizierte

Admin-Seiten

7.3.2, 8.4,

8.5

A1, B2

F4: Praktikable

Konfiguration (Datei/UI)

Ja, via Web-UI + JSON. Excel

abgelöst, weniger Fehler

7.3.4, 8.3 G4

Tabelle 61 Forschungsfragen ↔ Evidenz ↔ Nachweise

14.2 Fazit

Die Arbeit zeigt, dass ein lokal betreibbares, herstellerunabhängiges Visualisierungssystem auf

Raspberry-Pi-Basis technisch tragfähig ist. M-Bus und Modbus können parallel betrieben

werden, sofern Cooldowns, Queueing und ein kontrollierter Scan-Abort eingehalten werden.

Die UI-Konfiguration anstelle eines Excel-Imports reduziert Medienbrüche und erhöht die

Robustheit. Qualitätssicherung über CI-Gate (Coverage ≥ 80 %), reproduzierbare Tests und

dokumentierte Nachweise (Screens, Logs, Pipeline-Runs) stützen die Ergebnisse.

14.3 Weiterentwicklungspotenziale (z. B. Push-Benachrichtigungen, Cloud-

Anbindung)

Funktional

• Export & Analytics: CSV/Parquet Export, tägliche/wöchentliche Aggregationen,

einfache Berichte.

• Benachrichtigungen: Schwellwerte, Zeitfenster, Eskalation (E-Mail/Push/Webhook).

• Geräte-Abdeckung: Templates, Mapping-Editor für Fehlercodes, zusätzliche Protokolle

(z. B. SML, OPC UA).

Technik & Betrieb

• TimescaleDB aktivieren und Langzeit-Metriken evaluieren.

• Reverse Proxy + TLS (optional mTLS), restriktive CORS.

• Containerisierung (Compose) für das Backend; statische Auslieferung des Frontends mit

gemeinsamem Host (/api).

Qualität

• Kleine UI-Smoke-Tests (Jest/RTL) für kritische Flows (Scan, Read, Write, Monitor).

 67

• Monitoring der Betriebsmetriken (CPU/RAM/Lat) auf dem Pi, Alarmierung bei

Grenzwerten.

Zeitraum Schwerpunkt Ergebnisse

0–3

Monate

Export, einfache Benachrichtigungen,

TLS/Proxy

CSV/Parquet, Rule-Engine v1, HTTPS-

Betrieb

3–6

Monate

TimescaleDB, Containerisierung, UI-

Smoke-Tests

bessere Historik, Compose-Stack,

Basistests FE

6–12

Monate

Protokollerweiterungen, Templates,

BI-Anbindung

zusätzliche Geräte/Protokolle,

Dashboard-Optionen

Tabelle 62 Roadmap (0–12 Monate)

14.4 Empfehlungen für den Produktivgang

• Netz & Zugriff: Zugriff von aussen ausschliesslich via VPN; TLS/Reverse-Proxy für

gemeinsamen Host (Frontend + /api) einrichten.

• Berechtigungen: Schreib- und Konfigurationsaktionen nur für Rolle „Techniker“; Admin-

Routen mit Guard.

• Konfiguration: .env zentral, dokumentierte Defaults; serielle Parameter (Port/Baud)

validieren.

• Betrieb: systemd-Service mit Restart-Policy, Log-Rotation; unattended-upgrades aktiv.

• Backups: Regelmässige DB-Sicherungen prüfen (Restore-Test).

• Nachweise pflegen: CI-Gate (Coverage), Pipeline-Runs, Deploy-Screenshots; erleichtert

Audits und Abnahmen.

14.5 Schlussbemerkung

Die Kombination aus Walking Skeleton, klaren Kommunikationsabläufen (SSE, Queue,

Cooldown) und disziplinierter QS hat die technischen Risiken früh reduziert und eine belastbare

Grundlage geschaffen. Die Lösung ist schlank, erweiterbar und praxisnah. Sie adressiert gezielt

den Bedarf kleiner bis mittlerer Installationen nach Transparenz und Störungsdiagnostik — ohne

Vendor-Lock-in und ohne Cloudzwang.

Danksagung 68

68

15 Danksagung

Wir danken Dr. Thomas Memmel herzlich für die engagierte Betreuung unserer Arbeit. Seine

präzisen Rückmeldungen, sein Fokus auf methodische Stringenz sowie seine praxisnahen

Impulse zu Architektur, Testbarkeit und Dokumentation haben die Qualität dieser Arbeit

wesentlich erhöht.

Ebenso danken wir unseren Interviewpartnern für ihre Zeit und ihre wertvollen Perspektiven:

• Kaan Cehreli (Sicht eines normalen Nutzers)

• Bülent Sünbül (Eigentümer)

• Srdjan Jankovic (Techniker)

Ihre Einschätzungen haben die Anforderungen geschärft, die Benutzerführung verbessert und

die Praxistauglichkeit der Lösung bestätigt.

Unser Dank gilt auch allen Personen, die beim Testen geholfen, Feedback gegeben oder

Infrastruktur zur Verfügung gestellt haben, sowie dem MAS SE Team der OST für die

konstruktiven Rahmenbedingungen. Ein besonderer Dank gilt unseren Familien und unserem

Umfeld für Geduld, Motivation und Unterstützung während intensiver Phasen dieser Arbeit.

Literaturverzeichnis 69

69

16 Literaturverzeichnis

Avelon AG. (2025). Avelon. Von Avelon - the art of steering real estate: https://avelon.com/
abgerufen

Beckhoff. (2025). Steuerungskomponenten für die Gebäudeautomation. Von Beckhoff New
Automation Technology: https://www.beckhoff.com/de-ch/branchen/av-und-
medientechnik/gebaeudeautomation-gewerke/ abgerufen

EN 13757, C. (2004). Communication systems for meters and remote reading of meters.
European Committee for Standardization.

Gebäudeautomation, M. –F. (2023). IoT im Gebäude – Marktstudie 2022. Von MeGA –
Fachverband Gebäudeautomation Schweiz: https://www.mega-
planer.ch/fadaladdondlz/files/.addonpublikationeintragfile/publikationen/98.pdf/MeG
A%20Marktstudie%20IoT%202022i.pdf abgerufen

Härz AG. (2025). Mit der passenden Visualisierung alles im Blick. Von
https://gebaeudeinformatik-schweiz.ch/de/dienstleistungen/visualisierung/ abgerufen

Relay. (2025). Das Bussystem für die Fernauslesung von Zählern. Von https://www.relay.de/
abgerufen

Schweiz, E. Z. (2021). Energie Zukunft Schweiz. Von Swissolar:
https://www.swissolar.ch/03_angebot/veranstaltungen/vortraege-und-
studien/2021/20210504_ezs_swissolar_iot.pdf abgerufen

Wikipedia. (2024). Feldbus, Modbus . Von Wikipedia: https://de.wikipedia.org/wiki/Modbus
abgerufen

Flask-CORS contributors. (n. d.). flask-cors [Computer software].

https://flask-cors.readthedocs.io/

Flask-RESTX developers. (n. d.). Flask-RESTX [Computer software].

https://flask-restx.readthedocs.io/

Pallets. (n. d.). Flask [Computer software].

https://flask.palletsprojects.com/

Pallets. (n. d.). ItsDangerous [Computer software].

https://itsdangerous.palletsprojects.com/

Pallets. (n. d.). Jinja2 [Computer software].

https://jinja.palletsprojects.com/

Ronacher, A., & Pallets. (n. d.). Werkzeug [Computer software].

https://werkzeug.palletsprojects.com/

The Psycopg Project. (n. d.). psycopg2-binary [Computer software].

https://www.psycopg.org/

python-dotenv contributors. (n. d.). python-dotenv [Computer software].

https://github.com/theskumar/python-dotenv

https://flask-cors.readthedocs.io/
https://flask-restx.readthedocs.io/
https://flask.palletsprojects.com/
https://itsdangerous.palletsprojects.com/
https://jinja.palletsprojects.com/
https://werkzeug.palletsprojects.com/
https://www.psycopg.org/
https://github.com/theskumar/python-dotenv

 70

Requests contributors. (n. d.). requests [Computer software].

https://requests.readthedocs.io/

Axios contributors. (n. d.). Axios [Computer software].

https://axios-http.com

Chart.js contributors. (n. d.). Chart.js [Computer software].

https://www.chartjs.org/

date-fns contributors. (n. d.). date-fns [Computer software].

https://date-fns.org/

Flowbite React contributors. (n. d.). Flowbite React [Computer software].

https://flowbite.com/docs/getting-started/react/

Keycloak project. (n. d.). keycloak-js [Computer software].

https://www.keycloak.org/

Meta Open Source. (n. d.). React [Computer software].

https://react.dev/

Remix Software, Inc. (n. d.). React Router [Computer software].

https://reactrouter.com/

TanStack. (n. d.). @tanstack/react-query [Computer software].

https://tanstack.com/query/latest

Vite contributors. (n. d.). Vite [Computer software].

https://vitejs.dev/

Tailwind Labs. (n. d.). Tailwind CSS [Computer software].

https://tailwindcss.com/

reactchartjs/react-chartjs-2 contributors. (n. d.). react-chartjs-2 [Computer software].

https://github.com/reactchartjs/react-chartjs-2

Chart.js team. (n. d.). chartjs-adapter-date-fns [Computer software].

https://www.chartjs.org/docs/latest/axes/cartesian/time.html#date-adapters

JEAN, P. (n. d.). mbpoll [Computer software].

https://github.com/epsilonrt/mbpoll

libmbus project. (n. d.). libmbus [Computer software].

https://github.com/rscada/libmbus

PostgreSQL Global Development Group. (n. d.). PostgreSQL [Computer software].

https://www.postgresql.org/

msmtp project. (n. d.). msmtp [Computer software].

https://marlam.de/msmtp/

Tailscale Inc. (n. d.). Tailscale [Computer software].

https://tailscale.com/

Red Hat. (n. d.). Keycloak (Server) [Computer software].

https://www.keycloak.org/

https://requests.readthedocs.io/
https://axios-http.com/
https://www.chartjs.org/
https://date-fns.org/
https://flowbite.com/docs/getting-started/react/
https://www.keycloak.org/
https://react.dev/
https://vitejs.dev/
https://tailwindcss.com/
https://github.com/reactchartjs/react-chartjs-2
https://www.chartjs.org/docs/latest/axes/cartesian/time.html#date-adapters
https://github.com/epsilonrt/mbpoll
https://github.com/rscada/libmbus
https://www.postgresql.org/
https://marlam.de/msmtp/
https://tailscale.com/
https://www.keycloak.org/

 71

Docker, Inc. (n. d.). Docker [Computer software].

https://www.docker.com/

Atlassian. (n. d.). Bitbucket Pipelines [Computer software].

https://bitbucket.org/product/features/pipelines

pytest dev team. (n. d.). pytest [Computer software].

https://docs.pytest.org/

pytest-cov contributors. (n. d.). pytest-cov [Computer software].

https://pytest-cov.readthedocs.io/

Astral. (n. d.). ruff [Computer software].

https://docs.astral.sh/ruff/

PyCQA. (n. d.). flake8 [Computer software].

https://flake8.pycqa.org/

PlantUML team. (n. d.). PlantUML [Computer software].

https://plantuml.com/

OpenAI. (n. d.). ChatGPT (large language model) [Computer software].

https://chat.openai.com/

https://www.docker.com/
https://bitbucket.org/product/features/pipelines
https://docs.pytest.org/
https://pytest-cov.readthedocs.io/
https://docs.astral.sh/ruff/
https://flake8.pycqa.org/
https://plantuml.com/
https://chat.openai.com/

Anhang A – Architektur und Kommunikationsabläufe A1

A

17 Abbildung A1: Systemarchitektur – Durchstich von Feldgeräten bis

Web-UI

Anhang A – Architektur und Kommunikationsabläufe A2

A

18 Abbildung A2: Hardware-Architektur (in UML)

Anhang A – Architektur und Kommunikationsabläufe A3

A

19 Abbildung A3: M-Bus-Kommunikation (Scan und Einzelgerät-

Auslesung)

Anhang A – Architektur und Kommunikationsabläufe A4

A

20 Abbildung A4: Modbus-Kommunikation (Register lesen und

schreiben)

Anhang A – Architektur und Kommunikationsabläufe A5

A

21 Abbildung A5: Monitor-Poll mit Cooldown (mehrere Geräte,

Mindestabstand 30 s)

Anhang A – Architektur und Kommunikationsabläufe A6

A

22 Abbildung A6: Vorgehensmodell und Artefaktfluss (Dev → CI →

Release → Deploy)

Anhang E – Nutzerbefragung (Interviews) E1

E

23 Tabelle E1: Interviewleitfaden (Fragenblöcke kurz)

Die folgenden Interviews sind explorativ und dienen der Abstimmung von Bedienkonzept,

Visualisierung und Betriebsanforderungen. Es wurden drei Perspektiven betrachtet: normaler

User (Kaan Cehreli), Eigentümer/Betreiber (Bülent Sünbül) und Techniker/Service (Srdjan

Jankovic). Format: 20–30 Minuten, remote; Notizen wurden durch die Autoren erstellt. Die

Aussagen sind nicht repräsentativ, liefern aber wertvolle Hinweise für die Produktgestaltung.

Block Ziel Beispielfragen

Einstieg & Kontext Nutzungskontext

verstehen

In welchem Umfeld würden Sie das

System nutzen? Welche Aufgabe ist für

Sie am wichtigsten?

Visualisierung &

Informationen

Relevante Daten,

Darstellung

Welche Werte wollen Sie zuerst sehen?

Tabelle oder Diagramm? Welche

Zeiträume sind wichtig

(Tag/Woche/Monat)?

Bedienbarkeit Usability, Navigation Wo erwarten Sie den Gerätescan? Wie

finden Sie Einstellungen wieder? Was

muss jederzeit erreichbar sein?

Fehlermeldungen &

Quittierung

Störungen

erkennen/handhaben

Was soll bei einer Störung passieren?

Reicht ein Hinweis oder brauchen Sie

Anleitungen?

Konfiguration &

Rollen

Trennung User/Technik Welche Einstellungen möchten Sie selbst

ändern? Was gehört nur in den

Technikerbereich?

Monitoring &

Benachrichtigung

Regelbetrieb Welche Intervalle genügen für

Aktualisierungen? Wann brauchen Sie

eine E-Mail/Push?

Sicherheit &

Datenschutz

Vertrauen schaffen Lokalbetrieb okay? VPN bekannt? Welche

Daten dürfen gespeichert werden?

Gesamturteil Nutzen & Hürden Was überzeugt Sie am meisten? Was

würde Sie vom Einsatz abhalten?

Anhang E – Nutzerbefragung (Interviews) E2

E

24 E2: Antworten Kaan Cehreli (Normaler User)

Rahmendaten

• Rolle: normaler Endanwender (Haushalt)

• Dauer/Format: ~25 Min., remote

• Ziel: Erstkontakt, Visualisierung und Verständlichkeit

Kernaussagen (Kurzfassung)

• Startseite soll sofort den Verbrauch zeigen (heute, Woche, Monat), Diagramm + Zahl.

• Technikbegriffe vermeiden; klare Einheiten und Legenden.

• Störungen: klare Meldung in Klartext mit einfachem Hinweis „Was tun?“.

• Keine Lust auf Konfiguration: Voreinstellungen und selbsterklärende Labels.

Frage Antwort (Zusammenfassung) Hinweis für System

Was sehen Sie

zuerst?

„Aktueller Verbrauch und ob alles ok ist.“ Home: KPI-Karten +

Ampelstatus

Tabelle oder

Diagramm?

„Beides. Balken pro Tag helfen mir.“ Chart + Tabelle

umschaltbar

Störung/Fehler? „MBus Scan gibt manchmal Fehler.“ Fehlermeldung +

„Nächste Schritte“

Einstellungen? „Nur Namen vergeben. Rest egal.“ Labels leicht

zugänglich; Technik

verstecken

Benachrichtigung? „E-Mail reicht, nicht zu oft. Und nur

Alarmierung System und nicht Schwellwert

Alarmierung“

Schwellen + Ruhezeiten

Ableitungen für das System

• Home mit KPI/Kachel, Wochenchart, Ampelstatus.

• Tooltips/Legenden, sprachlich einfach.

• Fehlermeldungen mit Kurzhandlung (z. B. „Kontakt Technik“).

Anhang E – Nutzerbefragung (Interviews) E3

E

25 E3: Antworten Bülent Sünbül (Eigentümer)

Rahmendaten

• Rolle: Eigentümer/Betreiber einer Liegenschaft

• Dauer/Format: ~30 Min., remote

• Ziel: Betriebssicht, Abrechnung, Verfügbarkeit

Kernaussagen (Kurzfassung)

• Will Monats- und Quartalswerte für Abrechnung und Vergleich.

• Gerätenamen und Orte sauber pflegbar; Export für Excel/Abrechnung wünschenswert.

• Benachrichtigungen nur bei relevanten Ereignissen; keine Flut.

• Lokalbetrieb ist gut, Fernzugriff via VPN genügt.

Frage Antwort (Zusammenfassung) Hinweis für System

Wichtige Zeiträume? „24h, 7Tage und 30Tage zu wenig!.“ Aggregationen bereitstellen

Datenexport? „CSV/Excel für Abrechnung.“ Export aus UI (später)

Benachrichtigungen? „Nur bei echten Problemen.“ Schwellen + Eskalation

Verwaltung? „Geräte benennen, Orte zuordnen.“ Labels/Metadaten prominent

Zugriff? „VPN ist ok.“ Dokumentation VPN-Zugriff

Ableitungen für das System

• Aggregierte Zeiträume und Export-Option vorsehen.

• Label-/Metadatenpflege zentral erreichbar.

Anhang E – Nutzerbefragung (Interviews) E4

E

26 E4: Antworten Srdjan Jankovic (Techniker)

Rahmendaten

• Rolle: Techniker/Service

• Dauer/Format: ~30 Min., remote

• Ziel: Diagnose, Scan/Read/Write, Monitoring

Kernaussagen (Kurzfassung)

• Scan/Abort muss stabil sein; Logs sichtbar.

• Read/Write mit Read-Back-Bestätigung; Protokoll im Log.

• Monitoring mit Mindestabständen; keine Bus-Kollisionen.

• Bei Fehlern: klare Codes plus Klartext; Parameter (Port/Baud) schnell prüfbar.

Frage Antwort (Zusammenfassung) Hinweis für System

Wichtigste

Technikfunktion?

„Stabiler Scan, MBus hat manchmal

Fehler

SSE-Log, Abort-

Endpoint

Write-Bestätigung? „Ohne Read-Back unsicher.

Aktualisierung der Werte dauert etwas

zu lange“

Read-Back + Write-Log

Monitoring? „Monitoring läuft gut aber zu wenig Zeit

anzeigen.“

Queue +

Mindestabstände

Fehlerbild? „Timeout, Fehlermeldungen zeigen gut.“ Fehlermeldungen +

Param-Check

Sicht auf Daten? „Tabellen und Rohwerte ok.“ Detailansicht mit Roh-

/Normalwert

Ableitungen für das System

• SSE-Log, Abort-Flow, Read-Back verpflichtend.

• Tech-Seite mit Parametern/Logs sichtbar, jedoch geschützt.

