Master Thesis OST
Ostschweizer

Fachhochschule

Master Thesis

Master of Advanced Studies in Software Engineering

Out-of-the-Box Visualisierungssystem

fir Zahler- und Anlageniiberwachung mit M-Bus- und Modbus-Anbindung auf Raspberry Pi Basis

Betreuer

Dr. Thomas Memmel

Autoren

Kerim San, Remzi Atesci



Inhaltsverzeichnis i
1 Inhaltsverzeichnis
B X o - Lot AR U O U TO PP PR PPTPPPUPROUPONt 1
3 MaNAZEMENT SUMIMAIY ... ssenes 1
31 J T [ o= - 1= USRS 1
3.2 Relevanz des TREMAS ....c.eiiiiiierieee ettt st sttt e s 1
3.3 Einsatzumfeld UNd Ziel.........cooiiiiiiiiiiee e 2
34 Zentrale FragestellUNG ........oviiiiiie it e s e e s sree e e s 2
35 RV o1 (=] 0 1= o VPRI 3
3.6 Erreichte Ziele und ErkennTNiSSe ......cocueeveeiienieniieie ettt 4
3.7 FAZIT e s 5
N ] 0] 1= 1 AU o= PP UPR 1
4.1 Ausgangslage und Motivation ..o 1
4.2 o] o1 1T 0Ty =] 0T o= USRS 2
4.3 I AT Y=Y w4V oV -SSP 3
4.4 AbErenzuNng der ArDEIt.......c.ueii i 4
4.5 AUFDAU B ATDEIT ...t e 4
5  Stand der Forschung und TEChNIK .......cooiiiiiiiiiecce e e 6
5.1 Gebdudeautomation & SMart Metering........coceeecveeeiecciiee et e 6
5.2 M-Bus-Protokoll — Grundlagen & Einsatzgebiete ........cccoceeeeciieiicciiie e, 7
5.3 Modbus-Protokoll — Grundlagen & Einsatzgebiete .......cccccoevieeiiiiieeicciieeeceee e, 9
5.4 Bestehende Visualisierungslésungen und deren Limitierungen..........cccccevevveeennnneen. 11
5.5 Wissenschaftlicher Kontext (loT, Facility Management, Open Source) .................... 11
6 ANTONAEIUNGEN ..ottt e e et e e e e e ba e e e e e bee e e e e abaeeeeeabaeeeeentaeaeeenseeeeesrenas 13
6.1 Stakeholder und ANWENAErgrupPen ....ccccuuveiecciiie ettt et e e e sarae e 13
6.2 Funktionale ANfOrderUNgEN......cocuiiiiiciiii et e e 15
6.3 Nicht-funktionale Anforderungen...........oooouiii e 16
6.4 YY1 T [0 F= 1 AV SR 17
I V7 =T g ¥ [0l o 11 =1 4 U PR 19
7.1 Gesamtiibersicht (DIagramm).....coccueeeiecieie e e e e eree e e ebre e e e eaees 19
7.2 Hardware-Architektur (Raspberry Pi, Adapter, Zahler) .......cccccoeeveiiiicieeeieiee e, 21
7.3 SOftWAre-ArChiteKtUN ......cooeiieee e 22



Inhaltsverzeichnis

7.3.1  Backend (FIask, API-STrUKLUL) ....cccueeiuiieiiieciee ettt ste e et e st e et eenaeeeree e
7.3.2  Frontend (React, ViSUGISIEIUNE) ....eeeeeiiiee ettt et e e
7.3.3  Datenhaltung POStEreSQL........ccocciieiiiiiiieeeciieee ettt e ecttee e e et e e e ettee e e stteeeesreeeeeereeeeeennes
7.3.4  Konfigurationsdateien (EXCel, JSON) .....cciieciriiiieiiie ettt eee et e e saee e s eaes
7.4 Kommunikationsablaufe (M-Bus, Modbus, Web-API)..........cccceecieeiiieeniie e 26
8  Design UNd IMPIEMENTIEIUNG ... .viiii ittt e e st e e s sbe e e e sbaeeessbaeeessanes
8.1 Projektmethodik ... e e 31
8.2 Walking SKeleton / PrototyD ....c.eeccueeicieeeiee ettt ettt ettt et 32
8.3 Implementierung Backend..........cc.ueiiiiiiiiiiiie e s 33
8.3.1  M-BUS SCANNING & ParSiNG ...ccuiiiiiiiiiiiiiiiiiieiiiiitee et e e e s s sere e e e e s s s s saabeaaeeeessennns
8.3.2  Modbus Handling (RTU/TCP) .....ccuiieeeieeeie ettt et ettt etee et e te e eeteeeeveeeteeeereeesreeenes
8.3.3  SCRNIESTEIIEN .ttt st s et
8.4 Implementierung Frontend (React Ul, Tabellen, Graphen)......cccccceeeevevveeeeceeeeenneen. 40
8.5 Sicherheitsaspekte & BeNULZErrollen ..........eoovciiieiiciiieecciiee e 42
8.5.1  Zielbild und LEitplanken .........ooeieiiie ettt e e e
8.5.2  Rollen und BEreChtigUNZEN ......cccuviii ittt e et e e e ctte e e e e rae e e e e baeeaeeanes
8.5.3  Zugriff, Authentisierung, AULOFISIEIUNG.......cvviiiiiiiee et e e
8.5.4  Eingaben, Prozesse, FENIEN ...ttt e
8.5.5  Betriebssicherheit Und HArtUNE .....cooocuiiiiiiiiiei ettt
8.5.6  DAten UNG SCNULZ...cueiiiiiiiiiie ettt ettt st
8.5.7  Zusammenfassung flr AN LESEI ......coccuuiii ittt et e e e et e e e e are e e e eanes
9  Verifikation, Tests und QUAlitatSSICNEIUNG ...ccccvviiiiiiiiee e
9.1 LR o - LT L= PP PPO PP PPPPPPPPPPPPPRE 45
9.2 I3 (0L ¥ =] o 10T oY == o IR 45
9.3 Testdurchflhrung (10Kal & Cl)......ueeeeeeeeeeee e e e 45
9.4 Ergebnisse (KUrziberblick).....c.uouueeeiiieeeeeeeecee et 46
9.5 Praktischer Frontend-Nachweis (SCre@nCast) ........eeeeeeeiccivreeeieeeeiiiiiieeeeeeeeeeeivreeeeees 46
9.6 QUAlIEALSSICNEIUNG ...t e e e e e e e e e e e s e ree e e e e e e e esnnnnnes 46
9.7 RiSiKO- UNA EAZE-Cas@-TESES .uevriiiiiecciiiiiiee e e e ettt e e e e ettt e e e e e e e canree e e e e e e e e nnraeeeee s 46
9.8 Artefakte UNd NaChWEISE.....cc.eiiiiiiieeeeee e 47
10 DevOps / CI/CD, BUild & DEPIOYMENT ......vieiveeriecieecteecete et ettt et eee e ereeveeeteesaeesaneeaveens
10.1  Versionskontrolle (GitHUb/BitbuCKet) ..........cocviiiiiiiiiiiiiiicee et 48
10.2  CI/CD-Pipeline (Automatisierung, TeStauSZUZE) ......cccvvreeereeireeeerereereeeereeeereeeeveeennes 48



Inhaltsverzeichnis iii

10.3  Deployment auf Raspberry Pi (git + SEtUP.SN) .eccveeeciiiecieee e 49
10.4 Installations- und Benutzerhandbuch........c.ccociiiiiiiiniiniieeee 51
10.4.1 O o RV oY - TV R AU | o T={= o USROS 51
10.4.2 Erstinstallation (Schritt flr SCOritt)......cccvveeiiieeee e 51
10.4.3 S E 1 oY Y T ={0 =Y o Y (=1 11 [ 51
10.4.4 Dienstverwaltung (SYSTEMA) ....ccceiecieeecie et et e e e e e raeeenes 52
10.4.5 FUNKEIONSTEST (SIMOKE) .ttt e 52
10.4.6 Benutzerhandbuch (KUFZ)........oe ittt e 52
10.4.7 Update und RUCKSPIUNG (SIt) «veeeevveerieeeirieeiiieeiiee ettt eeteeesreesteesrreesve e e raeesnreesvaeenneas 53
10.4.8 Deinstallation (VOIISTANDI) .....ceecvveeiiieciie ettt e 53
10.4.9 TIPPS & STOIPEISTRINE ..eeiiitiiee ettt et e e e e e e et a e e e s araeeeensaeeeean 53
10.4.10 Frontend Installation (Docker Compose + Keycloak, via scripts/setup.sh)................. 53
11 Ergebnisse, Metriken und EValuQtion .........ccueeiiiiiiiiiiciiee e 57
11.1  Funktionale Ergebnisse (Visualisierung, Quittierung, EXport) .......c.ccceeevvevveescveeennee. 57
11.2  Performance & ZUVErlESSIKEIT ......cccuiiiiiiiiie ettt e e e e 57
11.3  Usability-Feedback (Endnutzer vs. TeChniker).....cccoueeeiciiiecciieeeeceeeecee e 57
11.4  Nutzenbewertung (Zeitersparnis, KOSTEN)......ccccccveeercieriiiieiiiee e e e 58
11.5  Evaluationsmethodik und Validitat........cccceeviriiniiiiiieeeeee e 58
11.6  Metrikenlibersicht und LESEFUNIUNG ...coevvviiiiiiiieicee e 59
12 DISKUSSION ...ttt ettt ettt sttt et et e s bt e s bt e sat e st e et e e bt e bt e sbeeeb e e saeesabeenteenbeenbeesbeesaeenas 60
12,1 ErfUHUNG eI ZIEIE ....eeeeeeeeeeeeeee ettt et e e et e e e e e e e e raaeeean 60
A R €1 T P2 o e [=Y o 1 U o V- R 60
12.3  Vergleich mit bestehenden LOSUNGEN .........coovciiieiiiiieeeciiiee e 61
12,4 LeSSONS LEAIMNEM . ....iiiiieiiiieeiee ettt ettt sttt e s st e e s e b s ne e e s e e e nnnas 61
12,5  AUSDIICK oo e e s 62
13 oYL R Yo T 1= 0= 0 g1 o PSRNt 63
13.1  Projektplanung & [terationen .........ccuueiiiciiiii e 63
13.2  Zeiterfassung & AUFWaNd............coiiiiiii et 63
13.3  Rollenverteilung (Kerim, REMZi) .....cccueiieeciiiieeeee ettt 64
13.4  Herausforderungen im Projektmanagement.......cccccveeeviiiiieeciiie e e 65
14 Schlussfolgerungen und AUSBIICK .........ooiiiiii i e 66
14.1  Beantwortung der Forschungsfragen .........ccoovciviiicciiei e 66

14.2  Fazit



Inhaltsverzeichnis iv

14.3  Weiterentwicklungspotenziale (z. B. Push-Benachrichtigungen, Cloud-Anbindung) 66

14.4  Empfehlungen flr den ProduktiVBang.........ccccuveeieiiieiicciieee e 67

14.5  SchlUSSDEMEIKUNG .....oeeiieiieeeeee e e et e e e s aaeeeean 67
15 DANKSAGUNE ...vveeiiiiiiee ettt e eeitee e e ettt e e e sttt e e s sttt e e s e baeeeesbeeeessaseaeessaseaeesanseaeesaseeeesaseeeessnseneeesnses 68
16 Lit@ratUrVEIZEICNNIS ... ittt ettt sab e st e s bt e e sab e e bt e e sateesneeesaneean 69
17 Abbildung Al: Systemarchitektur — Durchstich von Feldgeraten bis Web-Ul ...........cccevenneen. A
18 Abbildung A2: Hardware-Architektur (in UML) .......cooiiiiiiiiieee et A
19 Abbildung A3: M-Bus-Kommunikation (Scan und Einzelgerat-Auslesung) ........ccccceeeecvveeeennnenn. A
20 Abbildung A4: Modbus-Kommunikation (Register lesen und schreiben)........ccccccceevveeeveeennee. A
21 Abbildung A5: Monitor-Poll mit Cooldown (mehrere Gerate, Mindestabstand 30 s)................ A
22 Abbildung A6: Vorgehensmodell und Artefaktfluss (Dev = Cl - Release - Deploy).............. A
23 Tabelle E1: Interviewleitfaden (Fragenblocke KUrz)........coccveiiiiiiccciiei e, E
24 E2: Antworten Kaan Cehreli (NOrmaler USEI) .....iocueiiceeeciee ettt svae e s E
25 E3: Antworten Bilent SUNDUI (EIZENTUMET)...ccciiieiieeie et et e e e srae e E

26 E4: Antworten Srdjan Jankovic (TEChNIKEN) .....oooeiii i E



Abbildungsverzeichnis v

Abbildungsverzeichnis

Abbildung 1 Use-Case-Diagramm Gebadudeautomation & Smart Metering........ccccceeeeevciiiveeeeeeeeeccccnnns 7
Abbildung 2 M-Bus-Kommunikation (Scan und Einzelgerat-Auslesung) ........cccccceeeevevveeecieeevieeeceeeee 8
Abbildung 3 Modbus-Kommunikation (Register lesen und schreiben) .........ccccoccveeiiiiiiecccieee e, 10
Abbildung 4 Stakeholder und Systeminteraktionen (Rollen ¢ Kernfunktionen)..........cccoccvveeeinnnennn. 14
Abbildung 5 Systemarchitektur — Durchstich von Feldgeraten bis Web-Ul.........cccccceeovveeeiiieeeeccnnnennn. 20
Abbildung 6 Hardware-Architektur (Raspberry Pi mit M-Bus- und Modbus-Adaptern).........ccccccuveee.. 21
Abbildung 7 Software-Architektur (Module, Flows, Schnittstellen) ........ccccoovveeiiiiiiieciieeeceee e, 22
Abbildung 8 Frontend-Chart Abruf - /metrics/series (Bucketed Zeitreihen)........ccccceouveeveeeiveencnenns 24
Abbildung 9 Modbus Write mit Read-Back-Verifikation und LOEZING .....ccecvvveeriiiieieiieeeecieee e, 25
Abbildung 10 Monitor-Poll mit Cooldown (Mehrere Gerate, 30 s Mindestabstand) ............ccccecuveeee.. 28
Abbildung 11 Modbus Pfadiibersicht RTU vs TCP (Parameter und Antwortfluss)........c.ccccoeeevveenienns 29
Abbildung 12 Fehler-Envelope Flow (Treiberfehler = APl = UI-Meldung)........ccccevvveriierneeneeneeninenns 30
Abbildung 13 Vorgehensmodell und Artefaktfluss ........coeivciiiiiiciiiiicce e 31
Abbildung 14 M-Bus Scan Abbruch (kompakte SEQUENZ) .........cecuvieeiiieiiiecee e 33
Abbildung 15 Modbus Handling im Backend (Adapter, Parser, Error-Mapping) ......cccccceevcveeeiveescvennnns 35
Abbildung 16 Frontend Routing und Seitenfluss.........cuviiiiiiiiiieiiiii e 40
Abbildung 17 Testpyramide und Pipeling Gates ........ccuuiiiiciiiiiiiiiiee et e e e saee e 44
Abbildung 18 CI/CD - PR Fastlane vs. main/tag Volllauf .........cccooveeiiiiecieseeececce et 48
Abbildung 19 Deploy (git pull -> setup.sh -> systemd -> Health) ..........ccceviiiieieiincecee e, 49
Abbildung 20 Sprint-Flow (Board -> PR -> Pipeling -> DONE) .......ceeeecuiiieiciiiee ettt et evvee e 63



Tabellenverzeichnis vi

Tabellenverzeichnis

Tabelle 1 Vergleich etablierter Systeme mit dem entwickelten Zielsystem .........ccccceeeeeciiiiiieeeeieeecccnnns 2
Tabelle 2 Sollziele, Umsetzung und AbWEIChUNGEN ......ceiiiiiiiiiiiee e 3
Tabelle 3 Abgrenzung der Arbeit — In Scope vs. OUt Of SCOPE .....uviiiieciiiiiicciiee e 4
Tabelle 4 Funktionale Anforderungen des Visualisierungssystems ..........ccccvvveeeiiieeeeiiieeesncieeeesvnee s 16
Tabelle 5 Nicht-funktionale Anforderungen des Visualisierungssystems........ccccccveeeeviveeeeiciveeesicnneenn. 17
Tabelle 6 Risikomatrix des VisualiSierungsSYStEMS ........ueiiiiiiiiieiiiie et e e e rre e e raae e e e saaeeeean 18
Tabelle 7 Zentrale API-ENAPUNKEE (AUSZUE) ...eeeeeuiiieieiiiieecctiee ettt ectte e et e e s stre e e e aaae e e sasaeeesnnaaneeens 23
Tabelle 8 Frontend-Module UNd SEITEN .....cueiiiiiiiiiecee ettt sre e ste e saee e sbeeenes 24
Tabelle 9 Datenobjekte (VEreiNfaCht)........cccuviiiiiiiii e aaee e 26
Tabelle 10 Relevante KonfigurationSAateIiEN ..........eeieuiiiiiciiiie et e e aaee e 26
Tabelle 11 JSON-Envelope und typische Fehlerfalle .......oouciiiiiciiiiciiecce e 27
Tabelle 12 Risiken und Entscharfung durch Walking Skeleton .........ccccovvvviiiiiiiiieiciieeeee e, 33
Tabelle 13 M-Bus Backend Komponenten und Pfade.......occuiviieciiiiiiciieeceeccee e 34
Tabelle 14 SSE EreignisSe iM SCAN ...cciiciiiiiiciiieeeciitie e eciiee s st e e e eitr e e e saraee e sabaeeessasaeeesssaeeessssaeeesnnssenesns 34
Tabelle 15 Modbus FUNKtIONSCOAES (AUSZUE) .....eeivvieeieieciieeiteeesiteeecteeesteesteeesteeesteeeseseessaeensseesnseeenns 36
Tabelle 16 Modbus Parameter — RTU VS. TCP .......uiiiiiiiiiiiciiie e ecitee sttt et e s st e s s saae e e ssaaae e s snneaeeaens 36
Tabelle 17 REST-API] ENAPUNKEE (AUSZUE).....veeeiueeeiiieeieeesteeeteeesiteeseteeesiteesseesssseesseeessseesssessnssesssessnes 37
Tabelle 18 Beispiel-Requests (CURL, KOMPAKL) .....c.eeeiiieiiiiciiieeeee et e 38
Tabelle 19 JSON-Envelope und FERIEITAIIE. ..........uiiiieiiee e e 38
Tabelle 20 Seiten € Services € ENAPUNKLE......ccvii ittt s 41
Tabelle 21 UI-Zustande flr M-BUS SCAN ....ccueiiiuieiiieeeieeesieeetesesteesteeeseteesteessveesebeeesseeessseesseessnseennns 41
Tabelle 22 Charts — ZeitreinenabrUf.........oocveieii e see s e s saee e saee e 42
TabEllE 23 ROIENMALIIX.cuteieiuiieiitiieiieeeteeestee et e e ste e et e e s e e s te e e saee e e beeessteessseeebeeesnseeessseesnseesnseeesnseeanes 42
Tabelle 24 TeSTArten UNA ZICIE ....uuiiuieeeee ettt ettt e et s e e et e st e bt e e e bt e esraeessteesaneeesnseeenns 45
Tabelle 25 TESTUMEBEDUNGEN ........eviiieeiee ettt et e e et e e e et e e e e e abaee e e aseeeeessaeeesasaaeeeansaneanan 45
Tabelle 26 Durchfihrungsplan und KOmMmMandos............oeieciiiiieiiiei e e e 45
Tabelle 27 Schliisselergebnisse (Beispielstruktur zum Beflllen) .........cccvevviveeiieiccieccieecee e 46
Tabelle 28 Screencasts Und AKzZeptanzKriterieN......ccccvieiiiciiii i e 46
Tabelle 29 QS MaSSNANMEN ....cciuiiiiiieiie ettt ettt e sttt e sibeesabeesbteesabeessbseessbeesnnseesabeesnns 46
Tabelle 30 Edge Cases UNd MitiatiON .......ccuiiiiiiiiiiiiiiie et e e e et e e s raaae e e e sneaaeeeas 47
Tabelle 31 Artefakte UNd VEIWEISE ....ccoviiiiiie ittt ettt ettt st e e st sbae e sate e sbae e sabaeenes 47
Tabelle 32 Branch- und Rel@aSE-POIICY .......c.uviiiiciiiiiiciiie ettt e et e e e e e s saaaaeeeas 48
Tabelle 33 Pipeline-Schritte (STandard)..........cocve ittt e re e eerae e s bee e 49
Tabelle 34 Aufgabeniibersicht SetUP.Sh (ErSETZL) ...ccccuviiiieiie e e 50
Tabelle 35 POST-INSTAll CHECKS ......vviiiiiiiieecee et e s st e e e s abae e e ssabeeeeeas 50
Tabelle 36 StaNdardpfade ........oocuiiii et e et e e et e e e e bt e e e e ara e e e e ataaeeeanraeaean 50
Tabelle 37 Version zurlckdrehen via Git......ceiivciiiiiiiiieiiciiee st saaee e 50
Tabelle 38 TroUBIESNOOTING.....ccciii it e e e e e e e e er et br e e e e e e e e e nbesaeeeeeeeesannnnes 51
Tabelle 39 SyStEMVOIraUSSETZUNZEN ......ciiiiiieeciiiieeee e e e ecccttree e e e e e e sebre e e e e e e e esbaraeeeeeeeessnsasaeeeeeaeesannssnes 51
Tabelle 40 MiNIMalEer .8NV-SAtZ.......cciiiiiiiiiiiie et e e s ebae e e st e e e e ssaraeeessraeeesnnsseeesan 52
Tabelle 41 Typische AUfgaben J& ROIE ........o. et e e e e e e e e nnenes 52



Inhaltsverzeichnis vii

Tabelle 42 Frontend SystemMVOrauSSEIZUNZEN .......civivciiiiiiiiiie ettt rir e e e s sraeeessaaeeeens 54
Tabelle 43 Beispiel .env.development flr Frontend SEtUP......coocvieiiiciiieieciiec e 54
Tabelle 44 Inhalte im transfer/ UNd WIrkUNg ..ottt 54
Tabelle 45 Aufgabenibersicht scripts/setup.sh (Frontend)...........ccccveeeieeiiii e 55
Tabelle 46 Post-Setup Checks (Frontend/Keycloak) ........cceeecueeeiiieccieieeiie ettt 55
Tabelle 47 Haufige Probleme UNd FIXES ......c.uuiiiiiiiieieciiie ettt ettt e e saa e e e saa e e e s saaae e e senraaeeens 56
Tabelle 48 Funktionale Ergebniskarte (Nachweis im AnNhang)........ccoecovieriiiiiie i 57
Tabelle 49 Performance-Kennzahlen (bitte Werte erganzen) .......ccovcveeeeciieeeeciiee e 57
Tabelle 50 Beobachtungen und MassNahmen ..........occuiiiiiiiiieeciiiee e e et e e e saae e e e eaaeeeean 58
Tabelle 51 Aufwand vorher vs. nachher (ANNANMEN)........uveviiiiiiiiiieeeec e e 58
Tabelle 52 QUAlITAtIVEr NULZEN......oiiiie ettt e e ste e st e e sbee e sbeeesaeessteeenneeesnseeenes 58
Tabelle 53 Metriken = Kapitel = NACNWEIS.......cuiiiieiiiiiiciiie et aee e 59
Tabelle 54 Zielerreichung (Soll vs. Ist, Mit NaChWEISEN) ......cccvieiiiiiiiiieciiecee et 60
Tabelle 55 Grenze = Wirkung = MitiatioN ......cuiivivciiiiiiiiie e saaee e 61
Tabelle 56 EINOrdNUNE (KUFZ) ..eecviieiieeeiieecee ettt ettt e e te e e stae e s te e e saaeesateesbaeesateeesseessseesnsaeesaseeanns 61
Tabelle 57 Sprintstunden je Aktivitat (Largest-Remainder, ganze Stunden) .......cccceeeveveeeeicnvereennneeenn. 64
Tabelle 58 Gesamtverteilung Nach AKEIVILEL .......c.eiiiiiiiiiic e e 64
Tabelle 59 RACI-Matrix (Kernartefakte) ......cccciiiiiieecieecee ettt e rre et e e e sae e 64
Tabelle 60 Risiken im PM und Massnahmen...........coiviiiiiiiiiie ettt e e s e e s seaee e 65
Tabelle 61 Forschungsfragen € Evidenz €3 NaChWEISE......c..cevveieciiiiiiecie et 66

Tabelle 62 RoadmMap (0—12 IMONGLE)......ceiiiciiieeeciiee ettt e et e et e e eeta e e e eeaba e e e s abeee e e ssaeeeensaeeeeanseneanan 67



Abstract

2 Abstract

Diese Masterarbeit untersucht, wie ein kostenglinstiges und zugleich leistungsfahiges
Visualisierungssystem fir Zahler- und Anlageniiberwachung realisiert werden kann. Ziel war es,
ein lokal betreibbares System zu entwickeln, das sowohl M-Bus- als auch Modbus-Gerate
unterstitzt, ohne dass sich die Protokolle gegenseitig storen. Das Projekt wurde agil umgesetzt,
gestltzt durch den Einsatz von Atlassian-Tools zur Projektorganisation. Erste Prototypen wurden
in realer Umgebung getestet: Verbrauchsdaten von M-Bus-Zdhlern konnten erfolgreich
ausgelesen, visualisiert und als CSV exportiert werden; Modbus-Gerdte wurden (iber Register
konfiguriert, digitale Eingdnge erfasst und Ausgdnge Uber ein Webinterface gesteuert. Die
Visualisierung erfolgt iber ein React-basiertes Frontend, das eine nutzerfreundliche Darstellung
der Daten gewahrleistet. Die Ergebnisse zeigen, dass sich Verbrauchsdaten, Fehlermeldungen
und Steuerbefehle zuverlassig visualisieren und unterscheiden lassen — mit Mehrwerten wie
Benutzerrollen-Trennung und universeller Einsetzbarkeit durch Unterstiitzung von Modbus RTU,
Modbus TCP und M-Bus. Damit leistet die Arbeit einen Beitrag zur loT-basierten
Gebdudeautomation und zum Facility Management.



Management Summary 1

3 Management Summary

3.1 Ausgangslage

Der Betrieb von Gebauden und technischen Anlagen steht zunehmend im Spannungsfeld
zwischen Energieeffizienz, Betriebssicherheit und Kostenoptimierung. Bereits heute existieren
zahlreiche digitale Losungen zur Datenerfassung und Visualisierung, insbesondere im Bereich
der Gebdudeautomation und des Smart Metering. Viele dieser Systeme richten sich jedoch an
grossere Liegenschaften oder industrielle Umgebungen und sind daher fir kleinere
Anwendungen lberdimensioniert. Sie zeichnen sich durch hohe Investitionskosten, komplexe
Inbetriebnahme und proprietare Schnittstellen aus.

Fir private Eigentiimer, kleine Gewerbebauten oder Werkstatten fehlen damit erschwingliche
Systeme, die Verbrauchs- und Zustandsdaten verschiedener Gerate lokal erfassen und zentral
darstellen kénnen. Hinzu kommt, dass viele Hersteller eigene Softwarelésungen anbieten,
welche nur mit den jeweiligen Geraten kompatibel sind und so Datensilos erzeugen. Diese
Fragmentierung erschwert eine ganzheitliche Sicht auf Energie- und Anlagendaten.

Vor diesem Hintergrund entstand die Idee, ein kostengiinstiges, lokal betreibbares System zu
entwickeln, das standardisierte Protokolle wie M-Bus und Modbus unterstiitzt und unabhangig
von spezifischen Herstellern genutzt werden kann. Die Masterarbeit knlpft damit direkt an die
wachsende Bedeutung von loT-Ansdtzen im Facility Management und an den Bedarf nach

flexiblen, nachristbaren Losungen fiir kleinere Objekte an.

3.2 Relevanz des Themas

Die Praxis zeigt, dass Ausfdlle technischer Anlagen haufig zu hohen Folgekosten fiihren. Wird
etwa eine Warmepumpe oder ein Heizsystem erst beim vollstandigen Stillstand bemerkt,
entstehen Verzogerungen durch Notfalleinsatze, zusatzliche Servicefahrten und ungeplante
Stillstandszeiten.  Frihzeitige Informationen Uber Fehlermeldungen oder kritische
Betriebszustande ermoglichen dagegen eine gezielte Vorbereitung der Technikerinnen und
Techniker, wodurch Reparaturen schneller und kostengtinstiger durchgefiihrt werden kénnen.
Dariber hinaus riickt die Transparenz von Energieverbrauchen zunehmend in den Fokus.
Sowohl private Hausbesitzer als auch professionelle Verwalter benétigen nachvollziehbare
Daten, um Energieeffizienz-Massnahmen einzuleiten, Abrechnungen zu plausibilisieren und
regulatorische Anforderungen zu erfillen. Fiir Energieberater bietet die systematische Erfassung
und Auswertung von Verbrauchsdaten zudem eine Grundlage, um Optimierungspotenziale
aufzuzeigen.
Die Relevanz des Themas erstreckt sich somit Giber mehrere Ebenen:

e Okonomisch: Reduktion von Servicekosten und Energieausgaben.

e Okologisch: Beitrag zu effizientem Ressourceneinsatz und Nachhaltigkeit.

e Technisch: Vereinheitlichung heterogener Systeme und Verbesserung der

Interoperabilitat.



Management Summary 2

e Organisatorisch: Unterstiitzung unterschiedlicher Zielgruppen von Endanwendern bis
zu Fachtechnikern.
Damit adressiert die Arbeit sowohl die Bediirfnisse kleinerer Betreiber als auch die generellen

Herausforderungen der modernen Gebdudeautomation.

3.3 Einsatzumfeld und Ziel

Das entwickelte System ist flexibel einsetzbar und adressiert verschiedene
Anwendungsszenarien:

e Privates Wohnumfeld: Hausbesitzer kénnen ihren Energieverbrauch (Ol, Wasser,
Strom, Warme) transparent erfassen und kritische Stérungen friihzeitig erkennen.

e Mehrfamilienhduser: Verwalterinnen und Verwalter erhalten eine Grundlage fur
verursachergerechte Abrechnungen und kdnnen den Betrieb zentral Gberwachen.

e Gewerbebauten und Werkstatten: Betreiber technischer Anlagen (z. B. Heizungs- oder
Pumpensysteme) profitieren von einer besseren Kontrolle und einer einfachen
Fehlerdiagnose.

Das Ziel der Masterarbeit bestand darin, ein prototypisches Visualisierungssystem zu
entwickeln, das folgende Anforderungen erfiillt:

e Herstellerunabhangigkeit: Unterstiitzung unterschiedlicher Gerate Gber
standardisierte Schnittstellen (M-Bus, Modbus).

e Lokaler Betrieb: Keine Abhangigkeit von Cloud-Diensten oder Lizenzmodellen, wodurch
Kosten reduziert und Datenschutzrisiken minimiert werden.

e Benutzerfreundlichkeit: Ein webbasiertes Frontend mit klarer Trennung zwischen
Endanwendern (einfache Visualisierung) und Technikern (Detailkonfiguration und
Diagnose).

e Flexibilitdt: Moglichkeit zur Konfiguration tGber Dateien oder direkte Eingaben in der
Weboberflache, sodass das System einfach auf neue Geradte angepasst werden kann.

e Erweiterbarkeit: Vorbereitung fir zusatzliche Protokolle, Datenexporte und
Benachrichtigungsfunktionen.

Damit verbindet das Projekt praxisnahe Ziele — wie die Uberwachung einer Heizungsanlage — mit
dem Anspruch, eine generische und erweiterbare Architektur zu schaffen, die auch in anderen

Kontexten des loT und Facility Managements genutzt werden kann.

3.4 Zentrale Fragestellung

Aus der Ausgangslage und den Projektzielen leiten sich die folgenden zentralen
Forschungsfragen ab:
e Realisierbarkeit auf Standard-Hardware
Lasst sich ein Visualisierungssystem mit kostenglinstiger, handelsiiblicher Hardware (z.
B. Raspberry Pi) zuverlassig betreiben?
e Parallelbetrieb von M-Bus und Modbus
Wie konnen die beiden Protokolle gleichzeitig genutzt werden, ohne dass es zu

Kommunikationsstérungen oder Ressourcenkonflikten kommt?



Management Summary 3

Architektur fiir unterschiedliche Nutzergruppen

Wie muss die Software- und Systemarchitektur gestaltet sein, damit sowohl
Endanwender (einfache Visualisierung) als auch Fachtechniker (Detaildiagnose und
Konfiguration) effizient unterstiitzt werden?

Konfigurierbarkeit und Benutzerfreundlichkeit

Ist eine Konfiguration Uiber Dateien (z. B. Excel/JSON) und eine visuelle Auswahl von

Datenpunkten im Web-Frontend praktikabel und robust umsetzbar?

Diese Fragen bilden die Leitplanken der Masterarbeit. Sie strukturieren sowohl die technische

Umsetzung als auch die spatere Evaluation der entwickelten Losung.

3.5 Vorgehen

Die Umsetzung der Masterarbeit folgte einem agilen Vorgehensmodell, das kurze

Entwicklungszyklen und regelmassige Feedbackschleifen ermoglichte. Zentrale Elemente waren:

Projektmanagement und Organisation

Die Arbeitspakete wurden in Sprints organisiert und tGber Tools wie Atlassian Jira und
Bitbucket strukturiert. Pull-Request-Reviews und Issue-Tracking stellten eine
kontinuierliche Qualitatssicherung sicher.

Walking Skeleton / Architekturprototyp

Bereits in einer frihen Phase wurde ein End-to-End-Prototyp entwickelt, der einen
minimalen Durchstich Uber alle Systemebenen (Hardware, Treiber, Backend, Frontend)
realisierte. Dadurch konnten Risiken wie Kommunikationsabbriiche oder
Datenbankintegration friih identifiziert und adressiert werden.

Technologische Trennung

Das System wurde bewusst in Backend (Python/Flask, Treiber, API, Persistenz) und
Frontend (React, Visualisierung, Rollenmodell) getrennt. Diese Aufteilung erleichterte
die Erweiterbarkeit und die parallele Arbeit im Team.

Iterative Erweiterung

Funktionen wie M-Bus-Scanning, Modbus-Registerhandling, Quittierung von
Fehlermeldungen und zyklische Geratellberwachung wurden schrittweise
implementiert und getestet.

Praxisnahe Verifikation

Prototypen wurden nicht nur im Labor, sondern auch in einer realen
Werkstattumgebung installiert. So konnten reale Verbrauchsdaten erhoben und
typische Betriebsfehler simuliert werden.

Qualitatssicherung

Unit- und Integrationstests mit pytest sowie ein Coverage-Gate von mindestens 80 %
stellten die funktionale Robustheit sicher. Ergdnzt wurde dies durch statische Analysen

(Linting) und manuelle Explorations-Tests im Frontend.

Dieses Vorgehen erlaubte es, trotz begrenztem Zeitrahmen ein funktionsfahiges und stabiles

System zu entwickeln, das die zentralen Forschungsfragen adressiert und als Grundlage fir eine

weiterflihrende Entwicklung dient.



Management Summary 4

3.6 Erreichte Ziele und Erkenntnisse

Im Verlauf der Arbeit konnten die definierten Soll-Ziele weitgehend umgesetzt und durch

zusatzliche Funktionen erganzt werden. Die wichtigsten Ergebnisse lassen sich wie folgt

zusammenfassen:

M-Bus
o Automatische Erkennung von Geraten im Strang und Speicherung der Adressen.
o Selektive Auslesung und Visualisierung von Datenpunkten Uber das Web-
Frontend.
o Implementierter Abbruchmechanismus, um laufende Scans kontrolliert zu
beenden und Kommunikationskollisionen zu vermeiden.
Modbus
o Erfolgreiche Integration von Geraten via RTU (RS485) und TCP.
o Konfiguration von Registern Uber das Frontend sowie Auslesen digitaler
Eingdnge und Ansteuerung von Ausgangen.
o Erweiterbarkeit fir weitere Registertypen und Gerate ist gewahrleistet.
Frontend (React)
o Rollenbasierte  Benutzeroberfliche mit klarer Trennung zwischen
Endanwendern (Visualisierung) und Technikern (Konfiguration und Diagnose).
o Umsetzung zentraler Funktionen wie Geratescan, Detailseiten, Monitoring und
Charting.
Backend (Flask)
o Bereitstellung einer modularen REST-API mit konsistentem JSON-Envelope.
o Zyklische Uberwachung konfigurierter Gerdte und Speicherung von
Zeitreihendaten in PostgreSQL.
o Stabile Integration der CLI-Tools libmbus und mbpoll.
Betrieb und Sicherheit
o VPN-Anbindung liber Tailscale fiir sicheren Fernzugriff.
o Schutzmechanismen gegen Brute-Force-Angriffe sowie automatische
Systemupdates (unattended upgrades).
Qualitatssicherung
o Testabdeckung im Backend = 80 % (Cl-Gate).
o Praxisnachweis durch Installation in einer Werkstattumgebung mit realen

Zahlern und Modulen.

Erkenntnisse:

Die Arbeit bestdtigt, dass ein kostenglinstiges, lokal betreibbares Visualisierungssystem

technisch realisierbar ist. Durch die modulare Architektur konnte sowohl die einfache Nutzung

durch Endanwender als auch die Detailarbeit von Fachtechnikern bericksichtigt werden.

Entscheidend fiir den Erfolg waren die frithzeitige Umsetzung eines Walking Skeletons und die

konsequente Trennung von Backend und Frontend.



Management Summary 5

3.7 Fazit

Mit der vorliegenden Arbeit konnte gezeigt werden, dass ein herstellerunabhdngiges, lokal
betreibbares Visualisierungssystem auf Basis kostenglinstiger Standard-Hardware erfolgreich
realisiert werden kann. Die Umsetzung vereint wesentliche Anforderungen aus der Praxis:
zuverlassiges Auslesen von Zahler- und Anlagendaten, flexible Konfiguration, klare

Rollentrennung zwischen Endanwendern und Technikern sowie eine robuste Systemarchitektur.

Die Prototypen haben im Praxiseinsatz bestatigt, dass sowohl M-Bus- als auch Modbus-Gerate
parallel genutzt werden kdnnen, ohne dass es zu Kommunikationsstérungen kommt. Ergdanzend
liefern zusatzliche Features — wie VPN-Fernzugriff, automatisierte Benachrichtigungen und

grundlegende Sicherheitsmechanismen — einen Mehrwert fiir den praktischen Einsatz.

Damit bildet die Arbeit nicht nur einen funktionalen Prototyp ab, sondern schafft auch eine Basis
fiir die Weiterentwicklung in Richtung produktiver Lésungen im Bereich Smart Metering, loT
und Facility Management.



Einleitung 1

4 Einleitung

4.1 Ausgangslage und Motivation

Die zunehmende Digitalisierung im Gebaudebereich fiihrt dazu, dass Energieeffizienz,
Betriebsiiberwachung und Kostenkontrolle immer starker in den Fokus rlicken. Studien des
Fachverbands Gebdudeautomation Schweiz zeigen, dass vernetzte Systeme fir Smart Metering
und Facility Management wesentliche Beitrdge zur Optimierung von Betriebskosten und

Ressourcennutzung leisten (Gebdudeautomation, 2023).

Gleichzeitig sind etablierte Systeme zur Gebaudeautomation haufig mit hohen
Investitionskosten verbunden, komplex in der Bedienung und oft proprietar. Hersteller wie Harz
AG bieten umfassende Visualisierungssysteme an, die sich primar an grossere Anlagen richten
und damit fiir kleinere Objekte {iberdimensioniert wirken (Harz AG, 2025). Ahnlich verhilt es
sich mit industriellen Lésungen wie den HMI-Systemen von Beckhoff, die zwar leistungsfahig
und flexibel sind, jedoch umfangreiche Fachkenntnisse voraussetzen und in kleinen Projekten
selten wirtschaftlich sind (Beckhoff, 2025).

Vor allem kleinere Liegenschaften, Werkstatten oder private Eigentlimer haben selten Zugang
zu IT-Spezialisten oder die finanziellen Mittel fur vollumfangliche Gebaudeleitsysteme.
Gleichzeitig steigt der Bedarf an einfach installierbaren und lokal betreibbaren Lésungen, die
grundlegende Anforderungen wie Visualisierung von Zahlerstanden, Monitoring von

Betriebszustanden und frihzeitige Fehlerdiagnosen erfillen.

Die Motivation fur diese Masterarbeit entstand daher aus einem praktischen Anwendungsfall:
Ein Bauherr bendtigte eine kostengiinstige und leicht handhabbare Losung zur Visualisierung

von Verbrauchsdaten und Anlagestatus.

Anschaffungskosten Hoch (Lizenz, Hardware, Niedrig (Standard-
Integrationspauschalen) Hardware, Open-Source-
Stack)
Laufende Kosten Wiederkehrende Minimal (lokaler Betrieb,
Lizenzen/Subscriptions moglich keine Cloud-Pflicht)

Komplexitdt/Bedienung Fiir gréssere Anlagen optimiert, oft ~Schlanke Ul, auf

komplex Kernaufgaben fokussiert
Herstellerbindung Stark (proprietare Tools, Formate) = Gering (offene Protokolle,
eigene API)



Einleitung 2

Interoperabilitait Eingeschrankt ausserhalb des Hoch durch M-Bus/Modbus
Okosystems und REST-API
Zielgruppe Industrie, grosse Liegenschaften Private, MFH, Werkstatten,
KMU
Deployment Projekt-/Integratoren-getrieben Selbst installierbar,

Skripte/Anleitung

Einrichtungsaufwand Wochen bis Monate Stunden bis wenige Tage

Datenhaltung Teils cloudbasiert, teils proprietdr  Lokal in PostgreSQL,

exportfahig

Datensouveranitat Variiert, oft eingeschrankt Vollstdndig beim Betreiber
(on-prem)
Sicherheit Hoch, aber komplex (PKI, Hartung) VPN (Tailscale), Updates,

Basis-Hardening

Erweiterbarkeit Module gegen Aufpreis Modularer Code,

JSON/ENV-Konfig, neue

Treiber moglich

Wartung Herstellerabhangig Eigenstandig,
Dokumentation + CI-
Pipelines

Risiko ,,Lock-in“ Erhoht Niedrig

Tabelle 1 Vergleich etablierter Systeme mit dem entwickelten Zielsystem

4.2 Problemstellung

Im Bereich der Gebdudeautomation existiert eine Vielzahl von Lésungen zur Erfassung und

Visualisierung von Energie- und Anlagendaten. Diese Systeme richten sich jedoch tUberwiegend

an grosse kommerzielle Installationen. Typische Probleme sind:

Uberdimensionierung fiir kleine Objekte: Lésungen sind teuer und komplex, obwohl
nur wenige Zdhler oder eine einzelne Anlage iberwacht werden sollen.

Proprietare Abhangigkeiten: Hersteller liefern ihre Systeme oft mit geschlossenen
Softwareumgebungen, die nur mit eigenen Gerdten kompatibel sind (Harz AG, 2025).
Erschwerte Integration: Unterschiedliche Zahler- und Steuerungssysteme lassen sich
nur mit erheblichem Aufwand in einem gemeinsamen System zusammenfiihren
(Beckhoff, 2025).

Fehlende kostengiinstige Alternativen: Fir Privathaushalte und KMU fehlen
erschwingliche Systeme, die lokal betrieben werden kdnnen und ohne Fachwissen

installierbar sind (Gebdudeautomation, 2023).

Die zentrale Problemstellung dieser Masterarbeit lautet daher:

Es fehlt eine einheitliche Plattform, die heterogene Geréte liber M-Bus und Modbus anbindet,

deren Daten lokal speichert und benutzerfreundlich visualisiert — ohne Lizenzabhdngigkeiten,

Herstellerbindungen oder komplexe Einrichtung.



Einleitung 3

4.3 3.3 Zielsetzung

Das Ziel dieser Arbeit ist ein funktionsfahiger Prototyp eines herstellerunabhangigen, lokal
betreibbaren Visualisierungssystems fiir M Bus und Modbus. Der Prototyp soll Daten aus realen
Zahlern und Anlagen zuverldssig erfassen, in einer lokalen Datenbank speichern und im
Webfrontend verstandlich darstellen. Zusatzlich soll die Losung funktionssicher und erweiterbar
sein, damit spatere Protokolle, weitere Gerateklassen und Benachrichtigungen ohne
Architekturbruch ergianzt werden konnen. Zentral ist die Trennung der Perspektiven:

Endanwender erhalten eine einfache Ansicht mit Verbrauch und Zustand, Techniker bekommen

prazise Konfiguration und Diagnose.

Zielkriterien

e Realisierbarkeit auf kostengtinstiger Standardhardware.

e Parallelbetrieb von M Bus und Modbus ohne Kollisionen.

e Benutzerfreundlichkeit mit klaren Rollen.

e Persistenz und Auswertung von Zeitreihen lokal.

e Erweiterbarkeit Gber strukturierte Treiber und klare API.

Protokolle

Konfiguration

Visualisierung

Quittierung

Persistenz

Betrieb

Qualitat

M Bus Zahler und
Modbus
Warmepumpe
anbinden

Parameter Uber Excel

einlesen

Verbrauch,
Betriebsdaten,
Fehlermeldungen im
Web
Fehlermeldungen
quittieren

Lokale Datenbank

Lokal, ohne Cloud

Lizenz

Automatisierte Tests
und Doku

M Bus Zahler
angebunden; Modbus
Uber | O Modul RTU
und TCP

Direkte Konfiguration
in der Weboberflache

React Frontend mit
Scan, Details,

Monitoring, Charts

Quittierung umgesetzt

PostgreSQL mit
Zeitreihen Abfragen
Lokal mit VPN Zugang

via Tailscale

Backend Tests mit
Coverage Gate, Doku

erstellt

Tabelle 2 Sollziele, Umsetzung und Abweichungen

Warmepumpe ersetzt
durch I O Modul zur
Reduktion der
Komplexitat im Prototyp
Web Ul ersetzt Excel
Import flr bessere
Bedienung und weniger
Fehler

Rollenbasierte Ul fir
Endnutzer und

Techniker

Nachweis tber Ul
Szenarien

Export vorbereitet

Unattended upgrades
und Basishartung
erganzt

Frontend Nachweise via

Screencasts



Einleitung 4

4.4 Abgrenzung der Arbeit

Um den Umfang der Masterarbeit realistisch zu halten, wurden bestimmte Themenbereiche
bewusst ausgeklammert oder nur am Rande beriicksichtigt. Der Fokus lag auf der Entwicklung
eines funktionsfahigen Prototyps, der die Kernanforderungen erfiillt und eine Basis fiir spatere
Erweiterungen schafft.

Hardware Raspberry Pi 4 als zentrale Plattform, Skalierung auf industrielle Server,
M-Bus-Pegelwandler, RS485-Adapter, Virtualisierung, Cloud-

Modbus-TCP Deployment

Protokolle M-Bus (libmbus), Modbus RTU/TCP Weitere Protokolle (z. B. OPC UA,
(mbpoll) SML, KNX)

Konfiguration JSON- und WebUI-basierte Excel-Upload (urspriinglich
Konfiguration von Geraten und geplant, spater ersetzt)
Registern

Visualisierung Web-Frontend (React) mit Tabellen, Native Apps (i0OS/Android),
Charts, Rollenmodell komplexe Dashboards (z. B.

Grafana)
Persistenz PostgreSQL-Datenbank fiir Zeitreihen Langzeitanalysen, Bl-Tools, Data

Warehousing

Sicherheit VPN (Tailscale), Brute-Force-Schutz, Vollstdandige Security-Hartung
unattended-upgrades (mTLS, Reverse Proxy, IDS/IPS)
Tests Unit- und Integrationstests im Vollstdandige automatisierte Ul-

Backend, Cl-Pipeline mit Coverage 2 80 Tests, Last- und Skalierungstests
%

Betrieb Lokale Installation auf Raspberry Pi, Containerisierung
systemd-Dienste, Installationsskript (Docker/Podman), Kubernetes,
Public Cloud

Tabelle 3 Abgrenzung der Arbeit — In Scope vs. Out of Scope

Die bewusste Abgrenzung ermoglichte es, innerhalb des vorgegebenen Zeitrahmens ein stabiles
Kernsystem zu entwickeln, ohne sich in umfangreichen Randthemen wie Cloud-Integration oder
mobilen Anwendungen zu verlieren. Gleichzeitig wurde die Architektur so gestaltet, dass eine

spatere Erweiterung in diese Richtungen moglich bleibt.

4.5 Aufbau der Arbeit

Die vorliegende Arbeit ist in mehrere Kapitel gegliedert.

Nach der Einleitung werden im Kapitel 5 der Stand der Forschung und der Technik dargestellt.
Kapitel 6 beschreibt die funktionalen und nicht-funktionalen Anforderungen, die aus der
Analyse abgeleitet wurden. In Kapitel 7 wird die Systemarchitektur erldutert, bevor in Kapitel 8

das Design und die Implementierung detailliert beschrieben werden.



Einleitung 5

Kapitel 9 geht auf die Verifikation, die Tests und die Qualitatssicherung ein. Kapitel 10 behandelt
DevOps-Aspekte, den Aufbau der CI/CD-Pipeline sowie den Prozess des Deployments. In Kapitel
11 werden die erzielten Ergebnisse zusammengefasst und evaluiert.

Kapitel 12 diskutiert die gewonnenen Erkenntnisse und ordnet diese in den wissenschaftlichen
Kontext ein.

Kapitel 13 beschreibt das Projektmanagement und die organisatorischen Rahmenbedingungen.
In Kapitel 14 werden die Schlussfolgerungen gezogen und ein Ausblick auf mogliche
Weiterentwicklungen gegeben.

Die Arbeit schliesst mit dem Literaturverzeichnis sowie den Anhangen ab.



Stand der Forschung und Technik 6

5 Stand der Forschung und Technik

5.1 Gebaudeautomation & Smart Metering

Die Gebdaudeautomation verfolgt das Ziel, den Energieverbrauch und die Betriebskosten von
Gebduden durch den Einsatz vernetzter Systeme zu optimieren. Neben Komfort und Sicherheit
stehen dabei zunehmend Energieeffizienz und Nachhaltigkeit im Vordergrund. Moderne
Anlagen erlauben die zentrale Steuerung und Uberwachung von Heizungen, Liftungen,
Beleuchtungen oder Sicherheitssystemen.
Im Bereich Smart Metering werden Zahlerdaten (Strom, Wasser, Warme, Gas) systematisch
erfasst und in Datenbanken gespeichert, um sie fir Abrechnung, Monitoring oder
Optimierungen nutzbar zu machen. Damit kdnnen Verbrauchsmuster analysiert, Anomalien
erkannt und Kosten verursachergerecht verteilt werden. Studien des Fachverbands
Gebdudeautomation Schweiz verdeutlichen, dass loT-basierte Losungen in Gebduden eine
zentrale Rolle bei der Umsetzung von Energiezielen spielen (Gebdudeautomation, 2023).
Fir kleine und mittlere Objekte fehlen jedoch haufig erschwingliche, einfach installierbare
Losungen. Wahrend Grossanlagen meist mit umfassenden Leitsystemen ausgestattet sind,
haben private Eigentiimer oder kleine Verwaltungen oft keinen Zugang zu vergleichbaren
Werkzeugen. Dadurch entsteht eine Liicke zwischen dem verfiigbaren technologischen
Potenzial und dem tatsachlichen Einsatz in der Praxis.
Einsatzbereiche von Smart Metering in der Gebdudeautomation umfassen:
e Transparenz: Visualisierung von Energie- und Medienverbrduchen fiir Bewohner,
Eigentlimer oder Facility Manager.
e Friihwarnsysteme: Erkennen von Abweichungen (z. B. Leckagen, ineffiziente
Heizzyklen).
e Kosteneffizienz: Optimierung des Betriebs und verursachergerechte Abrechnung.
e Nachhaltigkeit: Beitrag zur Erreichung von Klimazielen durch datengetriebene
Entscheidungen.
Zur Verdeutlichung dieser Einsatzkontexte zeigt Abbildung A1 (Use-Case Gebaudeautomation
& Smart Metering) die beteiligten Akteure und ihre wichtigsten Interaktionen mit dem System.



Stand der Forschung und Technik

Bewohner

Metering / Gebaudeautomation

Verbrauch visualisieren
]

Eigentimer

T =

Facility Manager

e

Techniker

Kosten abrechnen

Zahlerstande erfassen
Anomalien melden

System warten & konfigurieren

Abbildung 1 Use-Case-Diagramm Gebadudeautomation & Smart Metering

5.2 M-Bus-Protokoll — Grundlagen & Einsatzgebiete

Der Meter-Bus (M-Bus) ist ein in Europa normiertes Bussystem (EN 13757, 2004) fur die
Fernauslesung von Verbrauchszéhlern. Es wurde speziell fiir den Einsatz im Energiemanagement
und Smart Metering entwickelt und zeichnet sich durch seine einfache Verkabelung, hohe
Reichweite und Robustheit aus. Die Kommunikation erfolgt Gber eine zweidrahtige Leitung, die
sowohl die Spannungsversorgung als auch die Datenlibertragung ibernimmt.

Ein typisches M-Bus-System besteht aus einem Master (z. B. Gateway oder Rechner) und
mehreren Slaves (Zdhler oder Sensoren). Jeder Slave besitzt eine eindeutige Adresse, sodass der

Master die Gerate sequenziell abfragen kann. In der Praxis lassen sich bis zu 250 Gerate an einem

Strang zuverlassig betreiben (Relay, 2025).

Die Einsatzgebiete des M-Bus sind breit gefachert:

e Wasser-, Warme- und Gaszahler in Wohn- und Gewerbebauten,

e Elektrizitdtszahler in Stromnetzen,

e Sensorik fir Umwelt- oder Betriebsdaten,

e Submetering in Mehrfamilienhdusern zur verursachergerechten Kostenabrechnung.



Stand der Forschung und Technik

M-Bus gilt als kostengiinstige und standardisierte Lésung, die insbesondere fiir nachristbare

Messsysteme geeignet ist. In Kombination mit loT-Ansatzen bietet er eine zuverlassige Basis flr

die Integration in Gebdaudeautomationssysteme.

(1oeay) pusjuol W

@ (sene|s) (3s@nbau / ueos-jeuas-snqu)

(Tosaibjsog) gg | ¥&eO snan 170 snquiqy (1dv xseld) puaxoeg 50
| | | | |
_ _ _ o {885 1316 002 7 _
[ oo s mm.V_ | |
|l | | | | |
| | | aidwes 1H3SNI/ouWBN LYISdN | | |
| | | — | |

(anjep:Aay)) ualaisijeuwoN < uasted X

| | o) | |
| | | X v“ | |
| [N o) ssuedse ) | | |
| < (v essaipy) }senbay | | | |

L )
I I = V B- <9jel> g- }senbal-jeues-snqu | I I
| | | | ] |
| | | _) V=Ssaippe;,eo1nap/sbulpeal/ide;/ | 39 . |

4 uasa| jesablazuig
1 1 T |
| L ioigebae, = smigs 3ee T |
_um%swv:xmv_ _ _
[ | | |
1INIDIS | | |
<

|

Vode/ueos/snquyide/ 1SOd |

| uaydaiqge uesg
1 1

(up essaipy) ueos

<
<

<

«38S» ueos-weaxns/snquy/ide/ 139

USLIE}S UBDS, YOI |

| / ud)Jejs uesg

jowgrmoﬁ_v aa

S

(sene|s)
8jei8n sng-N

(3s@nbal / ueos-jeuas-snqu)
170 snquuiqy

Bunsasny-jesabjazulg pun ueag :uoleyluNwWWo) sng-\

(1dVv Yseld) pusxoeg

|
Jesn

5

(1oe8Y) pusjuol

Abbildung 2 M-Bus-Kommunikation (Scan und Einzelgerat-Auslesung)



Stand der Forschung und Technik 9

5.3 Modbus-Protokoll — Grundlagen & Einsatzgebiete

Das Modbus-Protokoll wurde 1979 von der Firma Modicon (heute Schneider Electric) entwickelt
und gehort zu den dltesten, aber bis heute am weitesten verbreiteten
Kommunikationsprotokollen in der Industrie- und Gebdaudeautomation. Der Erfolg von Modbus
liegt in seiner einfachen Struktur, der Lizenzfreiheit und der breiten Unterstiitzung durch
zahlreiche Hersteller (Wikipedia, 2024).
Die Kommunikation folgt einem Master-Slave-Prinzip: Der Master (z. B. Steuerung oder
Gateway) sendet eine Anfrage, worauf die Slaves (z. B. Zdhler, Module, Sensoren) antworten.
Dieses Prinzip ermoglicht eine robuste und deterministische Abfolge von Abfragen und
Antworten. (Beckhoff, 2025)
Varianten von Modbus:

e Modbus RTU: Ubertragung via serielle Schnittstellen (RS485). Haufig in der Gebaude-

und Anlagenautomation eingesetzt.
e Modbus TCP: Ubertragung liber IP-basierte Netzwerke. Eignet sich fir moderne
Installationen mit vorhandener Netzwerk-Infrastruktur.

Einsatzgebiete von Modbus sind vielfaltig:

e Steuerung und Uberwachung von Heizungs-, Klima- und Pumpenanlagen,

e Integration von Strom- und Warmezahlern,

o Digitale I/0-Module zur Anbindung von Sensoren oder Aktoren,

e Kommunikation zwischen speicherprogrammierbaren Steuerungen (SPS).
Die Starke von Modbus liegt in seiner Offenheit und Standardisierung, wodurch Gerate
unterschiedlicher Hersteller kombiniert werden kénnen. Gerade im Bereich der nachriistbaren
Gebdudeautomation bietet Modbus die Moglichkeit, bestehende Systeme ohne grossen

Integrationsaufwand zu erweitern.



10

Stand der Forschung und Technik

(enels)

(Tosaibisod) gq | '#°9SNaPON

(1dv ¥seld) pusxoeg

(1oe9Y) pusiuoi4 1550

;
f
| {’anu) :sse00ns } 30 002
|

| { =0} ‘se3s1bal ‘e01r0p } peOY/SNgPOW/Ide/ 1SOd

, ,
t t
| |

ple} | |
™~ T T (187 ‘W “Jeisibey) yuen3 ejipm 6o | | |
| | } Sioses | | |
| | >/ | | |
| | bunbugisag ™ | | |
| | (1338162 16UIS B3M) 9 18P0 (110D 8]BUIS BJUAN) G 8pOD UoROUNS Bbeluy | | | |

I I = <@n[eA> 0- <9|G> 0j— <Jesibals J- <pi> e- doyni w- jodqui | | |

I 1

, , , < { 9/G=04 ‘enjen ‘Jeysibal ‘eo1nep } eyIm/sngpow/ide/ 1SOd | !

| | | | | |
-~

| | | | | JUSQIBIYIS PBM, HOIIM

f f + , ) 1935169%/]10) LM

t t t t t T

, , , ! {T"1seniea} S0 00z ! ,

| | | 56 | | |

| | | | | |
< :

| | | (lpdwejsyoz ‘ap) sidwes LHISNI | | |

| | | SHaM pasied ~ | | |

I | (usjpamigisibay i Homuy > I I I

| [ | | | |

| (19ys1Bay BuipjoH peay) ¢ apoD uonoun abesuy | | |
| <)JUN02> 0- <J9)sIBal> J- <pi> - doy/ny w- jodquu | | |
<

| | |

|

4

J9)s16ay BulpjoH peay

A._Omemmon: ad

S

(ones)

18199-SNGPON

170 llodqui

(1dv ¥seld) puaxoeg

uaqIaIyYds pun uass| Ja3siBay :UOIEYIUNWIWIOY-SNGPOIN

(109Y) pusjuciy

[
JEE

Abbildung 3 Modbus-Kommunikation (Register lesen und schreiben)



Stand der Forschung und Technik 11

5.4 Bestehende Visualisierungslosungen und deren Limitierungen

Die Entwicklungen im Bereich Internet of Things (IoT) haben in den letzten Jahren erheblich zur
Transformation von Facility Management und Gebdudeautomation beigetragen. Durch die
zunehmende Vernetzung von Sensoren, Aktoren und Systemkomponenten entstehen neue
Moglichkeiten, den Betrieb von Gebaduden effizienter, nachhaltiger und transparenter zu
gestalten.
Facility Management 4.0:
e Moderne loT-Plattformen ermoglichen die zentrale Erfassung und Analyse von
Zustands- und Verbrauchsdaten.
e Betreiber profitieren von Predictive Maintenance-Ansiatzen, bei denen
Wartungsbedarfe vorausschauend erkannt werden, bevor Stérungen auftreten.
e Energieberater und Verwalter erhalten fundierte Entscheidungsgrundlagen fir
Optimierungs- und Investitionsentscheidungen (Avelon AG, 2025).
Open-Source-Ansatze:
Die wachsende Verfiigbarkeit von Open-Source-Bibliotheken und Tools (z. B. fiir Python, Node.js
oder Java) erleichtert die Integration von Standardprotokollen wie M-Bus und Modbus in
individuelle Softwarel6ésungen. Dadurch sinken die Kosten fiir die Entwicklung, und es entstehen
flexible Systeme, die an unterschiedliche Kontexte angepasst werden konnen. Insbesondere fiir
kleinere Objekte bieten Open-Source-Losungen einen attraktiven Gegenpol zu proprietaren,
kostenintensiven Komplettsystemen.
loT in der Forschung:
Untersuchungen zeigen, dass die Nutzung von IoT in Gebduden einen signifikanten Beitrag zur
Reduktion des Energieverbrauchs leisten kann. Gleichzeitig steigt die Bedeutung von
Datensouveranitat: Viele Betreiber bevorzugen lokal installierbare Systeme, um sensible Daten
nicht an externe Cloud-Dienste abgeben zu miissen (Gebdudeautomation, 2023).
Der wissenschaftliche Kontext dieser Arbeit verortet sich somit an der Schnittstelle von
praktischen Anforderungen kleiner Betreiber, technologischen Trends im loT und offenen

Softwarearchitekturen, die den Weg fiir modulare, nachriistbare Losungen ebnen.

5.5 Wissenschaftlicher Kontext (loT, Facility Management, Open Source)

In der Schweiz werden digitale Technologien zunehmend im Bereich Facility Management
eingesetzt, um Gebaude effizienter, sicherer und nachhaltiger zu betreiben. Die Avelon AG zeigt
in ihren Projekten, dass loT-basierte Plattformen eine Schllsselrolle spielen. Sie verbinden
Sensoren, Gebaudeleittechnik und Datenanalyse in einem einheitlichen System und
ermoglichen so einen kontinuierlichen Uberblick tiber den Zustand von Gebduden. Damit lassen
sich Betriebsprozesse optimieren, Energie sparen und Stérungen friihzeitig erkennen (Avelon
AG, 2025).

Im Facility Management eroffnet die Vernetzung von Daten neue Moglichkeiten.
Echtzeitiiberwachung, automatisierte Alarmierungen und vorausschauende Wartung sind
zentrale Anwendungsfelder. Dadurch wird nicht nur die Betriebssicherheit erh6ht, sondern auch

die Wirtschaftlichkeit verbessert, da Ressourcen gezielt eingesetzt werden kénnen.



Stand der Forschung und Technik 12

Open-Source Technologien sind in diesem Kontext von besonderer Bedeutung. Sie stehen in
Form frei zuganglicher Bibliotheken, meist flir Unix-basierte Systeme, zur Verfligung und kénnen
direkt heruntergeladen und in Projekte integriert werden. Flir Programmiersprachen wie Python
existieren zahlreiche Open-Source Bibliotheken, welche die Anbindung von Protokollen wie M-
Bus oder Modbus erleichtern. Damit lassen sich ohne hohe Lizenzkosten professionelle
Funktionen in Softwarelosungen einbinden, was die Entwicklung innovativer und flexibler

Anwendungen im Bereich Gebdudeautomation wesentlich unterstiitzt.



Anforderungen 13

6 Anforderungen

6.1 Stakeholder und Anwendergruppen

Die Entwicklung eines Visualisierungssystems fir Zahler- und Anlagendaten adressiert

unterschiedliche Stakeholder mit teils stark divergierenden Bedirfnissen und Anforderungen:

Priméare Stakeholder

Private Eigentiimer

Wollen Transparenz iiber den eigenen Energieverbrauch (z. B. Ol, Wasser, Strom,
Warme). Ziel ist die Nachvollziehbarkeit von Kosten sowie die Moglichkeit, durch
gezielte Massnahmen Energie einzusparen.

Facility Manager / Verwaltungen

Benotigen Werkzeuge zur Erfassung, Aufbereitung und verursachergerechten
Abrechnung von Energieverbrdauchen. Sie legen besonderen Wert auf die Integration
mehrerer Zahler und die Moglichkeit, Stérungen frihzeitig zu erkennen.
Servicetechniker

Missen Betriebszustdande und Fehlermeldungen effizient analysieren kénnen, um
gezielt vorbereitet zu Serviceeinsatzen zu fahren. Bendétigen detaillierte
Diagnosemaoglichkeiten und teilweise die Moglichkeit, Steuerbefehle (z. B. Quittierung

von Fehlermeldungen) auszufiihren.

Sekundare Stakeholder

Energieberater

Nutzen systematisch erfasste Daten, um Effizienzpotenziale zu identifizieren und
Optimierungsvorschlage abzuleiten. Diese Zielgruppe gewinnt insbesondere in spateren
Ausbaustufen des Systems an Bedeutung.

Forschung & Entwicklung

Profitieren von offenen Schnittstellen und modularen Architekturen, um neue

Algorithmen oder Systeme auf Basis realer Verbrauchsdaten zu erproben.

Anwendergruppen (User Roles im System)

Endanwender (Owner/Resident): erhalten eine intuitive Visualisierung der
Verbrauchsdaten, ohne technische Details.

Techniker (Technician): nutzen erweiterte Ansichten fiir Diagnose, Konfiguration und
Steuerung.

Verwalter (Manager): kombinieren die beiden Perspektiven, mit Fokus auf Abrechnung

und Gesamtiiberwachung.

13



Anforderungen

je

Bewohner
(Endanwender)

je

Energieberater
(optional)

@Q

Eigentimer
(Endanwender)

/
”;

@Q

Facility Manag
(Verwaltung)

Jol
/|

/

Techniker
(Service)

Visualisierungssystem
/ Modbus / Web-UI)

/Verbrauch visualisieren
Berichte & Abrechnung

/ (Export)
\

Anlagestatus anzeigen

b

Benutzer-/Rollenverwaltung

/\

Alarm/Anomalie melden

&

Register lesen/schreiben
(Modbus)

Zahler/Devices konfigurieren

Abbildung 4 Stakeholder und Systeminteraktionen (Rollen ¢> Kernfunktionen)




Anforderungen

6.2

Die

funktionalen

Anforderungen

Funktionale Anforderungen

beschreiben,

welche

konkreten

15

Leistungen das

Visualisierungssystem erbringen muss. Sie orientieren sich an den identifizierten Stakeholdern

und stellen sicher, dass die Kernziele der Arbeit messbar erfillt werden.

F1

F2

F3

F4

F5

F6

F7

F8

F9

M-Bus Scan

M-Bus Auslesen

Modbus Read

Modbus Write

Quittierung

Visualisierung

Gerate-Monitor

Benachrichtigung

Benutzerrollen

Facility
Manager,

Techniker

Facility
Manager,
Techniker

Techniker

Techniker

Techniker

Endanwender,

Manager

Manager,

Techniker

Manager,

Techniker

Endanwender,
Techniker,

Manager

Automatische
Erkennung von
Zahlern im M-Bus-
Strang

Einzelgerate kdnnen
selektiv ausgelesen
werden
Registerwerte (Coils,
Inputs, Holding)
konnen ausgelesen
werden

Werte in
Registern/Coils
kénnen geschrieben
werden
Fehlermeldungen
kénnen quittiert
werden
Verbrauchs- und
Betriebsdaten werden
als Tabellen und
Charts angezeigt
Zyklische
Uberwachung
mehrerer Gerdte mit
Mindestabstdanden
Kritische Fehler
fihren zu E-Mail-
Alarmen
Unterschiedliche
Rollen erhalten

angepasste Ansichten

Gefundene Adressen
werden in der
Weboberflache
gelistet

Werte erscheinen als
strukturierte Tabelle
im Ul
JSON-Response im
Backend; Werte im

Frontend angezeigt

Anderung wird
bestatigt und im
System geloggt

Button ,Quittieren”
[6scht Meldung
sichtbar im Ul
Tages-/Wochen-
/Monatswerte in

Diagrammen sichtbar

Werte werden alle

>30s aktualisiert

E-Mail wird versendet,
sobald Service
stoppt/restarted
Endanwender sehen
nur Visualisierung;
Techniker
Konfig/Write



Anforderungen 16

F10 Export Manager, Verbrauchsdaten Exportdatei wird

Berater kénnen exportiert erfolgreich

werden (CSV) heruntergeladen

Tabelle 4 Funktionale Anforderungen des Visualisierungssystems

6.3 Nicht-funktionale Anforderungen

Neben den funktionalen Features muss das System auch Qualitdtsmerkmale erfiillen, die flir den
stabilen, sicheren und nutzerfreundlichen Betrieb entscheidend sind.

NF1  Usability Einfache Die Oberflache ist Endanwender kénnen
Bedienung intuitiv und Verbrauchsdaten ohne

benotigt keine Schulung
technischen interpretieren.
Vorkenntnisse.

NF2  Usability Responsives Ul ist auf Desktop, = Seitenlayout passt sich

Design Tablet und automatisch an

Smartphone Bildschirmgrosse an.
nutzbar.

NF3  Performance Antwortzeiten API-Requests 95 % aller Abfragen
sollenin< 1 unter Last < 1 Sekunde.
Sekunde
beantwortet
werden.

NF4  Zuverldssigkeit = Systemstabilitat Dauerbetrieb ohne  Langzeittest ohne
ungeplante Absturz oder
Neustarts > 30 Datenverlust.
Tage.

NF5  Zuverldssigkeit =~ Monitoring Backend-Service Bei Ausfall
prift regelmassig automatische E-Mail-
seinen Zustand. Benachrichtigung.

NF6  Sicherheit Zugriffsschutz Rollenmodell Nur berechtigte Rollen
regelt Rechte fir kénnen schreiben oder
Endanwender, konfigurieren.
Manager,
Techniker.

NF7  Sicherheit Fernzugriff Zugriff nur Gber Ohne VPN ist keine

VPN (Tailscale).

Verbindung von extern

moglich.



Anforderungen

NF8  Erweiterbarkeit Modularitat

NF9  Erweiterbarkeit Konfigurierbarkeit

NF10 Wartbarkeit Clean Code &

Tests

Neue Treiber (z. B.
weitere Protokolle)
lassen sich
erganzen.

Gerate konnen
Uber JSON oder Ul
konfiguriert
werden.

Code ist modular,
dokumentiert und
> 80 % abgedeckt.

Tabelle 5 Nicht-funktionale Anforderungen des Visualisierungssystems

6.4 Risikoanalyse

17

Neue Module kénnen
ohne Anderung des
Kerns integriert
werden.

Anderungen sind ohne

Neustart moglich.

CI/CD Pipeline schlagt
bei Unterschreitung
fehl.

Die Risikoanalyse bewertet potenzielle Gefahren fiir die erfolgreiche Umsetzung und den

Betrieb des Systems. Sie bericksichtigt sowohl technische als auch organisatorische Risiken.

R1 Komplexitait Daten kdnnen nicht Mittel
der DB- zuverlassig
Anbindung gespeichert/abgerufen
werden
R2 Serielle Kommunikationsabbrii = Hoch
Schnittstellen che bei M-Bus oder
instabil Modbus RTU
R3 Parallele Kommunikationskollisi ~ Mittel
Nutzung von onen, blockierende
M-Bus und Prozesse
Modbus

Einsatz von
PostgreSQL mit
klar definiertem
Schema; friihe
Integrationstests;
Migrationsskripte.
Implementierung
von
Abbruchmechanis
men (SIGINT bei
Scan), Queue-
Handling pro Port,
Timeout-
Parameter in
.env.

Zentrale Queue
im Backend,
Mindestabstande
im Monitor,
saubere

Prozesskontrolle.



Anforderungen

R4

R5

R6

R7

R8

R9

R1

Fehlende
Skalierbarkeit

Sicherheitsrisik
en

Zeitmanageme

nt

Hardware-
Abhangigkeit

Benutzerakzep

tanz

Teamkoordinat

ion

Datenintegritat

System Uberlastet bei

> 50 Geraten

Unbefugter Zugriff

oder Manipulation

Projektumfang
Uiberschreitet
Zeitrahmen

Defekte oder

inkompatible Adapter

blockieren Tests

Endanwender finden

Ul zu komplex

Missverstandnisse

zwischen Entwicklern

Fehlerhafte oder
unvollstdndige Daten
in der DB

Tabelle 6 Risikomatrix des Visualisierungssystems

Niedrig

Mittel

Mittel

Mittel

Niedrig

Niedrig

Mittel

18

Architektur
modular halten,
optionale
Erweiterung mit
TimescaleDB;
Fokus aktuell auf
kleine
Installationen.
VPN-Zugang
(Tailscale), Brute-
Force-Schutz,
unattended-
upgrades,
Rollenmodell.
Priorisierung auf
Soll-Ziele, Kann-
Ziele nur bei
Ressourcenspielra
um.

Einsatz geprufter
Adapter (libmbus,
RS485),
Ersatzhardware
verfligbar halten.
Klare
Rollentrennung
(Endanwender vs.
Techniker); friihe
Nutzerbefragung
(vgl. Interviews im
Anhang).

Agile Sprints, PR-
Reviews, klare
Verantwortlichkei
ten (RACI-Matrix).
Validierung im
Backend, Logging
von API-Fehlern,
Monitoring der
Writes.



Systemarchitektur 19

7 Systemarchitektur

Die Architektur des entwickelten Systems folgt einem mehrschichtigen Modell, das die Trennung
von Hardware, Treibern, Backend, Persistenz und Frontend sicherstellt. Ziel war es, eine
modulare, erweiterbare und robuste Struktur zu schaffen, die sowohl den zuverlassigen Betrieb

im Alltag als auch eine spatere Weiterentwicklung ermoglicht.

7.1 Gesamtiibersicht (Diagramm)

19



20

Systemarchitektur

Josied «— Josied «—
TANXANOPIS San[eAANop)s,
(3senba. (
[ dOL/NLY) (11odqu 1aqn)
ueos-jeuas-snqu
_:.o msams_v_ 170 llodqui dOL snapoi

172/43q131L \/

(262€1 N3) (z0g) dOL , 4
xgSnAw/nep)| (NL1Y) s8ysy ,
7
\
Buniana)g ‘|n -
19|yez sng-N sjeI89) SNGPON
auagapled

ueos-weans/snqu/ 135S

(se|dwes ‘soue|\ ‘salles-awil|
TJosaibisod

NOSI < S1SM SNgpoN
NOST < TAX shg-IN
Jsydepy/iesied

(3ss ‘spsenbauuly)
JOJIUO\ @ BNaND
S9JIAIBS

<

sbuipeas/ide/
Jopuowyide/
soujew/ide/
snqpowide/
snquyide/

- sjuuden|g |dY

(1dV vseld) puayoeg

(NOSI) Ls3d

3Svg Idv 3LIA TTdneseg
(soxy) Jueld d11H
<

~
~

~

JuUbnz Jopayolseb N

(soj0y ‘|euopdo)
(eophay) uiny

(z-sfueyo-joeau) speyo
Jojuo/s|ielaQ/ueds N

(ajeasyieL) NdA

(vds peay) u.axﬁzu_ 4/

ain|iej-uo=pejsay
S90IAISS pWalSAS

sapelbdn papuspeun

Jaytayols @ qaujeg

SualyY
(dpusuw) rewz

(1oBeuepy)
Ja)lemiop

[CRINEIS)
FENTIVGETY

5 3

(uojojoxg Bunjem) Jysistaqm

(Jouyomag/iawniuabig)
Japusmuepug

o - INpyaNYy A

Abbildung 5 Systemarchitektur — Durchstich von Feldgeraten bis Web-UlI



Systemarchitektur

21

7.2 Hardware-Architektur (Raspberry Pi, Adapter, Zdhler)

Die Hardware-Architektur basiert auf einem Raspberry Pi 4 als zentrale Plattform.

USB A auf DB9
‘4 )
RS232
{!l./(/.]}?;‘-.'
Boelt
T ——
RJ45
U72 Kabel
USB zu RS485
%‘.ﬁ—
|
o 2w D
p = =
| X .
_ "

RJ45 Kabel an das
gleiche Netzwerk

U72 Kabel

Raspi

anschliesen wie

die Adressierung muss
separat erfolgen mit dem
entsprechenden software

PadPuls hat immer 2
Kanéle also 2 Adressen
eswurden 2 & 3

konfiguriert
\ die Adressierung kann

direkt am Gerét
vorgenommen werden
sowie die Baudrate

35

Abbildung 6 Hardware-Architektur (Raspberry Pi mit M-Bus- und Modbus-Adaptern)



22

Systemarchitektur

7.3 Software-Architektur

(1senbai ‘ueos-jeuss-snquw)
snquiq

(doL/nLy)
liodqui

huﬁ.y:ﬂo

~N

sByuoo ‘sajdwes ‘soLjour

Tosaibisod

(NOSF « llodqut
‘NOSI < TX snquiql)
Jeydepy/iesied

SIN0BWI| ‘SUMOP|00D
$80IAISS IOHUON/3NMBND)

Q01Aep peay
UBOS-WEa.S/HOqY/UBdS
snquwyide/

181l | ejejep | ones | 1o6
MmoJ-sBuiddew-snqpouwide/

sJa)siBau | saoinep | ajum | peas
sngpouwyide/

~ <Jppe>/Byuoo | joge| | 821Aep | sanjea ‘

liod | jle-peas _

mm:wm_um__
soujew/ide;

(1dv se1d) puayoeg \

S S

Ueos-Weans/snqu/ N
20IN0S)UBAT N

uayo] Joseag :siojdasseju|
3SVe IdV 3LIA = TdN9seq
(somy) ueld dLiIH

a|yoIdiesn

abedsole nmmmn._obmo,\uw:nuos_ mmmMmm:_:mmmSE (sauas/soulaLu/ ‘1S1|/SOU}aLU/) S} SoUjaW - L/Mmor-sBuddew-sngpouwy; *,/snqpowy/ (./sBuipeau)) sysaomaasnqpide -
abe, £l N [E-PE:81/I0}UOW/) S} JO}UOW - sysn ide -  wea. sysngjide -
sabed m:_‘_ou_.zo_\n,__ 9bedsaonagsnapoiy begueossnany (I-peooivoL) o _M.mo_?_mm ' nwowM‘m_me f ) M%_me
R sabed sngpopy sabed sngiy - - = -
- - -
\ 2 -
N S /wﬁ:ﬁcu_ - \\\ \\\\

(MYOTOAIN FLIN
(3eojohay) yiny

(ddepous)
seinoy 3 lleysddy

(Vds 1oeay) pusjuoiy

J8sn

€0 < (4seld) puayoeg — (19Y) PUBIUOL - INPIBNYIIY-2IEMIJOS

Abbildung 7 Software-Architektur (Module, Flows, Schnittstellen)



Systemarchitektur 23

7.3.1 Backend (Flask, API-Struktur)

Das Backend kapselt die Protokollanbindung Gber CLI-Tools (libmbus, mbpoll) und stellt eine
REST-API fir das Frontend bereit. Langere Operationen (z. B. M-Bus-Scan) werden per SSE
gestreamt. Eine Service-Schicht regelt Queue/Cooldown/Timeouts und persistiert Messwerte
sowie Metadaten in PostgreSQL.

M-Bus /api/mbus/stream-scan GET Live-Scan via Server-Sent
(SSE) Events (Logzeilen, gefundene
Adressen)
M-Bus /api/mbus/scan/abort POST Laufenden Scan abbrechen
(sauberer SIGINT)
Readings /api/readings/values GET Bekannte Gerateadressen

und Metadaten

Readings /api/readings/device?address=A  GET Einzelgerat auslesen (XML -
JSON normalisiert)

Readings /api/readings/label POST Geratename setzen/andern

Readings /api/readings/config/<address> = GET Feldauswahl pro Gerat

Modbus /api/modbus/read POST Register lesen (RTU/TCP; FC
1/2/3/4)

Modbus /api/modbus/write POST Coil/Register schreiben (FC
5/6/16)

Modbus */api/modbus-mappings- save delete

Mappings row/get

Monitoring /api/monitor/read-all GET Aggregierte Anzeige der
Uberwachten Gerate

Metrics /api/metrics/list GET Verfligbare Metriken

Metrics /api/metrics/series GET Zeitreihen (Range, Bucket,
Rate)

Tabelle 7 Zentrale API-Endpunkte (Auszug)

Hinweise zur Implementierung

CLI-Aufrufe werden robust gekapselt, Ausgaben geparst und in konsistente JSON-Envelopes
Uberfuhrt.

Queue pro Bus/Port verhindert Kollisionen; Cooldowns im Monitor sichern Mindestabsténde.

Persistenz: metrics (Metadaten), samples (Zeitreihen).



Systemarchitektur

Chart-Abruf: Frontend — /metrics/series — DB (bucketed)

i Frontend (React)

Charts

| GET /api/metrics/series

| ?metric_id=ID&range=7d&bucket=1h&as_rate=true

API /api/metrics/series
[
|
|

200 OK JSON [its, avg}, ...]

( .....................................................

Daten mappen — Chart rendern

N
>

| Parameter priifen

(range, bucket, metric_id)

I SELECT bucketed avg(value)
| WHERE metric_id=ID AND tserange

. GROUP BY bucket
I

24

DB (Post?reSQL)

i[Keine Daten im Zeitfenster]
| 200 OK JSONT]

( .....................................................

| .
Leeren Zustand anzeigen

User

| Seite/Chart 6ffnen |
I >
|

| I
| |
| |
| |
| |
| |
| |
| |
|

|

I alt

|

|

|

| 1

User

Frontend (React)

Charts

l API /api/metrics/series I

Abbildung 8 Frontend-Chart Abruf - /metrics/series (Bucketed Zeitreihen)

7.3.2 Frontend (React, Visualisierung)

DB (Post?reSQL)

Das Frontend ist eine SPA auf Basis von Vite + React + TypeScript. API-Zugriffe laufen Gber eine
zentrale Axios-Instanz mit baseURL = VITE_API_BASE. Optional bindet Keycloak Rollen/Token

ein. Funktionen sind modular als Features umgesetzt.

M-Bus

Modbus

Monitoring

User

MbusScanPage,
MbusReadPage,
MbusSettingsPage
ModbusDevicesPage,
ModbusRegistersPage,
ModbusControlPage
DeviceMonitorPage,
MetricsPage

Profile.tsx

Shared/App AppShell, routes.tsx, ApiCheck

Tabelle 8 Frontend-Module und Seiten

apiMbus.ts (SSE),

apiMbusDevices.ts

apiModbus.ts

monitor.ts, metrics.ts

httpClient.ts

Scannen, Auslesen,

Konfiguration

Gerate, Register,
Read/Write

Zyklische Anzeige,
Zeitreihen
Nutzersicht/Profil
Routing, HTTP,
Layout



25

Systemarchitektur

Datenflisse

SSE fur Live-Scan: EventSource auf /mbus/stream-scan.

Standard-Requests liber Axios-Client; Interceptor fligt bei Bedarf Bearer Token an.

188N

(enes)
(TosSTBsod) g | 18%®9 sndpow 170 llodqu asjum/sngpowide; | dy (1oe3Y) puejuoly
| T T
| | | LI L Ll ST CAICPIEP oAbl RN PORE
L D e (a3 anN]
I I I { <leA>oeqgpeal ‘eniy:ssegons § 30 002 >
_ _ _ ............................................ s e > _
| _................ﬂm?m...«..u,._w@m.V_ | |
| _A Ja)sibey BuipjoH peay | | |
<
I I I | - <Bai> 1- ¢ 0§~ jodqu | I
| | | | [Anxe soeg-peay] | e
l | | |
< (s} ‘enjen ‘Josibal Aoy ao1Aap) _
| | | Bo| “apim 14asNi | |
_ _ _v_OmEEwV_ _
| [ N | |
| | | | |
<
I | 1senbay UM | I I
| | ™= <enfeAs o- <bai> I- <9 [9lG> 9)— - odqu | |
= ]
_ _ ! o {enjeA ‘Jeisibal ‘91 |9|G=0) ‘Aex eoinep } '
| | | | ajumysngpow/ide/ 1SOd |
| | | | <
| |
m._w SO
(los @ d) 8a (onelg) 170 jodqu ayumysngpowide/ |dy (30e®)) pusjuoiy
12109 SNAPO

(1oeg-pesy Nw) 1199 — |jodqu — jum/sngpowide — |n :d3M SNAPON

JUSQIBIYIS LS, HUIM m

198N

Abbildung 9 Modbus Write mit Read-Back-Verifikation und Logging



Systemarchitektur 26

7.3.3 Datenhaltung PostgreSQL

Die DB hélt Metadaten zu Metriken und Zeitreihen der Messwerte.

metrics id, tag, unit, source, type Definition eines Messsignals
samples metric_id, ts, value Zeitstempelwert eines Signals
device_config sddress, fields[] Ausgewaihlte Felder pro M-Bus-Geréat
labels address, name Anzeigename pro Adresse

Tabelle 9 Datenobjekte (vereinfacht)

Optionale Erweiterung: TimescaleDB fiir grossere Datenmengen.

7.3.4 Konfigurationsdateien (Excel, JSON)
Konfiguration erfolgt ohne Excel, direkt tiber Ul und JSON-Dateien.

mbus_settings. json Serielle Parameter, Port/baud fiir M-Bus
known_mbus_devices.Jjson Ppersistente Liste bekannter Adressen und Namen
config <address>.json Feldauswahl pro M-Bus-Gerit
modbus_devices. json Gerate, Protokoll (RTU/TCP), Slave-ID, Ports
modbus_registers.json Registerdefinitionen pro Gerat

.env Ports, Timeouts, CORS, DB-URL, Pfade

Tabelle 10 Relevante Konfigurationsdateien
7.4 Kommunikationsabldufe (M-Bus, Modbus, Web-API)

Die Kommunikationsabladufe sind so gestaltet, dass sie robust, nachvollziehbar und erweiterbar
bleiben. Langere oder serielle Operationen (z. B. M-Bus-Scan) laufen streamend Uber SSE,
Modbus-Reads/Writes sind kurzlebig und werden Gber CLI sauber geparst. Ein zentraler Monitor
bewahrt Mindestabstdnde pro Gerat und verhindert Kollisionen.

M-Bus (Scan und Einzelgerit)
Der Frontend-Scan 6ffnet einen SSE-Stream und empfangt laufend Logzeilen sowie gefundene
Adressen. Ein Abbruch beendet den Scan kontrolliert. Einzelgerdte werden on demand
abgefragt, die XML-Antworten normalisiert und optional persistiert.
- siehe Abbildung ,,M-Bus Kommunikation (Scan und Einzelgerat-Auslesung)”

Modbus (Read/Write)
Register werden synchron gelesen und geschrieben. Auf Wunsch erfolgt ein Read-Back zur
Verifikation und ein Log-Eintrag in der Datenbank.
-> siehe Abbildung ,,Modbus Kommunikation (Register lesen und schreiben)”

Geratemonitor mit Cooldown
Das Frontend pollt aggregierte Zustdande. Das Backend entscheidet pro Gerat, ob Cache genutzt

wird (Cooldown aktiv) oder frisch gelesen wird (Cooldown abgelaufen). Dabei wird pro Bus/Port



Systemarchitektur 27

eine Queue genutzt, damit nichts gleichzeitig ineinanderfahrt.
-> siehe Abbildung ,,Monitor-Poll mit Cooldown (Mehrere Gerate, 30 s Mindestabstand)”
Web-API Envelope und Fehlerbehandlung

Alle Endpunkte liefern einen konsistenten JSON-Envelope. Fehlende oder ungiiltige Parameter
flihren zu 4xx, interne Fehler zu 5xx. Langere Streams (SSE) signalisieren Statuswechsel explizit,

damit die Ul nicht raten muss.

Erfolg 200 { "ok": true, Ergebnis giltig  Anzeigen/plotten
"data": .. }

Ungiiltige 400 { "ok": false, Request Validierung

Parameter terror™: fehlerhaft hervorheben
"bad request",
"message": ".." }

Nicht gefunden 404 { "ok": false, Gerat/Resource  Hinweis anzeigen
"error": fehlt
"not found",
"message": ".." }

Timeout/Abort 408/499 { "ok": false, Gerit antwortet  Retry/Abort in Ul
terror™: nicht anbieten
"timeout",
"message": ".." }

Interner Fehler 500 { "ok": false, Unerwarteter Fehlermeldung +
SHaECie Fehler Log-ID

"internal",

"message" s Mon }

Tabelle 11 JSON-Envelope und typische Fehlerfille



28

Systemarchitektur

ayoeo ‘ssjdwes ‘souPpw

(s3007 ‘sumop|o0D)

abe diojuopeoneq

(ToseiBisod) 80 15 snquiq! _ 110 llodqu _ SNOND/ONUON lle-peaujonuowyide; |dy (1oe0Y) pusjuoly
| T T T T T
| | | | | _“Y_
| | | | | (ussrjory ouyo) UsIBISIENE SIBPIV/BIIBTRL |
_ I I | [ {801n0s “anjen s} “soinspll MO 002 >)
t t t t t |
............. »
| | | | Jinsarysal 7| |
| oo T MO V_ | |

198N

l« } } - | | |
b 94980 31vadn ‘(s)sidwes 1¥3ISNI
| | | | | |
............................. »
| | | S — TWX | | |
I I I <lppe> e-}senbai | | |
| ! | fsng-w = jg100] | |
»
| | sonjen” | | |
L ]
_ _ = (yunoo ‘Bai ‘p/g/z/L=0)) peal ' _ _
I I | [(d9.1/n.1¥) snapoi = gw._wl_ ( e I _
.................... _ | _ | _:ﬁ_‘_m_omnu:\sou_ccou |
............. >
I I I I Jnsai payoed ~ | I
| ] >| | |
| | | {enjea ‘s3} payoeo \_ | |
I | | 8YoEO NONS BnjeA Isel LOITAS | | |
) | | | [(so¢ > g '2) A yoou umopjeo] e |
| | | / (ebuejyosajiem | ||a1zuanbas) jesas sapal ang |
| | | = (abeuqy 81z19| ‘uadA| /usssaipy) | |
| | | | 8ISI-2)e109 SA(0Sal | |
<
| | | | | Ile-peai/iopuowy/ide/ 139 |
L _ _ l | [(1ow1-In) uspunyes X aiiv] |/~ doo] |
| | | | | <
| | | | | |
ayoeo ‘so|dwes ‘soupw .
170 shquiq! _ 170 llodqu _ (%007 ‘sumop|00D) Ile-peauzioyuow/ide/ |dy abediojuopeoineg

(Tosaibisod) aa

8neny/I0JUO|\

(1oeay) pusjuoiy

40 < UMOP|00)/aN3ANY « ||e-peai/iojuowide; «— puadjuold :||od-IOHUO

uswyo ,jele0 sjyoemIad(), BHeS |

JEND

Abbildung 10 Monitor-Poll mit Cooldown (Mehrere Gerate, 30 s Mindestabstand)



29

Systemarchitektur

Jsenbay

(edwng “Jajj0nuU0))
9Ae|S dO L

ssuodsoy 206 Hod / N1

Pejd dousNaPON

~ adojeAus NOSI

~ 3SvE Idy JLIA =THNeseq
> (soxy) el dLIH

{ ¢enjen ‘e)sibai ‘o) Aoy eoInap
Jsenbay sjm/peal

1se0] /lopusy

(10e0Y) pusjuoiy

(jonuo) ‘siesibay ‘saoina() 7

sabed sngpoi :IN 7

sawelq 4oL N

<Juo> 0- <Bal> I- <pi> -

v 205 d- <isoys> do} w- jodqu :do} sjumsngpowyide/ | SOd \ adojaaug NOSI
peay/sngpowyide/ | SOd “I0113 3S[e}e § / { [ T-e1ep oniio seydepyasied
llodqw xasnAn/aep; k- \
l <pneg> pneg- <jud> o- <bal> J-

\
<pI> - Ny w- jodqui :ny (1dv seld) puayoe

170

osied < nopis

EICITY ,

\

\

\

1
saweld N1y _
b sng G8ySY n

1sanbay

SAEIS NLY asuodsay )
1

1

!

/
Peld NLY SNqpPo ,
T /
- /
P! oAgs - /
s1q doys ‘syq elep ‘Aued - /
(00261/0096 ‘9 '2) @)eIpneq - \ /
xgsnAn/aep; - ,
NL1Y Jejeweled ,

Pl aAElS - Phd
(20g unejep) 11od -

dipsoy - [ ~
:d01 Jajewered

(ssnigiomjuy pun Jsjoweied) 4oL SA NLY - JUD1SI2ANPEsd SNAPOIN

sosn

Abbildung 11 Modbus Pfadiibersicht RTU vs TCP (Parameter und Antwortfluss)



Systemarchitektur

Fehler-Envelope Flow - vom Treiberfehler zur Ul

Frontend (React) |API /api/modbus/read | mbpoll I | Parser/Mapper

User
| I I

|_Klick "Register lesen”

>

POST /api/modbus/read { ... }

| mbpoll ...

exit!=0

illegal data"

timeout" / "no route'

map(stderr, exit_code)

|
|
|
|
|
|
>
|
|

[Bf:kannher Fehler (Timeout)]

{ ok:false, error:"internal", message:"Unerwarteter Lehler" }
""""""""""""""""""""""""""""""""" o)

|
>|
|
|
|
|
|
|
|
|
|
|
|
|

LHTTR A C* | | |
| Toast/Alert anzeigen | | |
| | |
| | |

+ optional Retry Button

User Frontend (React) |API /api/modbus/read | mbpoll I | Parser/Mapper

Abbildung 12 Fehler-Envelope Flow (Treiberfehler - API - Ul-Meldung)



31

identifizieren und

technische Risiken friihzeitig zu

Das System wurde nach dem Prinzip eines Walking Skeleton entwickelt: von Beginn an war ein
minimal lauffahiger End-to-End-Prototyp vorhanden, der sukzessive erweitert wurde. Diese

Kernfunktionen iterativ auszubauen.

Design und Implementierung
8 Design und Implementierung

Vorgehensweise ermoglichte es,
8.1 Projektmethodik

(ping ‘% 08 2 9besanod
(901n18g pwa)sAs) (ZA'XN) (z6°Je) 9ses|as ‘A0DJWIY) ‘s}sa] ‘JuI) (4/21n}e8} ‘ulew)

1d Ausqdsey be| asesjoy apfejouy auliadid 1D oday »a

| | | | | |

[ [ _ _ _ —

uni-ay + Xi4
| | | | V_
| | | | | spoday/sbo |
..................................... **.__*:_Esmw:m_ 241
¥oyd-adows + t_%|4m¥_ I I I I I
l<« | | | | |
(uape| Auz + |ejsul) Aoidag
| I | | | |
us||9)slo ases|oy

| | _\ | | |

| | I~ suodey + piing | | |

I I I — I I

| | | (8@ yw) sneT-jo | | |

| | | | ™ ulew yoeu abiopy |
| | | | | Do momoy gxosoeygl e

_ _ _ brossrmmm s b gt meined ¥ s !

| | | H“ | |

| | | abeieno) + sisa] + jur | |

1. |

_ _ _ = usuyo 1senbay |Ind _

| | | | | |

| | | | _) (,/21n3e8)) Usnd + HWWoOD |

uaJapuawsa|dwi ainjea

| | | | | |

(901n18g pwa)sAs) (Z A'XN) (z6°Je) 9ses|as ‘A0DJWIY) (piing ‘9, 08 = abeIBNOD (,/24n}e8} ‘UreWw) req
1d Ausqdsey Be] asesjoy apjejouy ‘'s)sa)] ‘) oday
auiedid 19

ssnipyeeY pun [japowsuayabiop ¢ Bunpliaqy

31

Abbildung 13 Vorgehensmodell und Artefaktfluss



Design und Implementierung 32

Die Umsetzung lief schlank agil mit kurzen lterationen und klaren Qualitatsgittern:

Arbeitsmodus

Feature Branch pro Aufgabe, Pull Request mit Review. Keine Direktcommits auf main.
Qualitatsgitter

Linting und Unit/Integration Tests sind Pflicht. Coverage Gate = 80 % im Backend.
Fehlende Tests blockieren den Merge.

Cl Pipeline

PR: schneller Lauf ohne DB fiir Feedback. main/Tag: Volltest mit Postgres, Artefakte
(Coverage HTML, Release Bundle).

Releases & Deploy

Semantisches Tagging vX.Y.Z, Release-Bundle auf den Raspberry ausrollen, systemd
Restart, Smoke-Test via Health Endpoint.

Dokumentation

Kurz und direkt im Repo gepflegt. Anderungen an API/Flows werden zeitnah
nachgezogen, Screens in den Anhang.

8.2 Walking Skeleton / Prototyp

Der Prototyp liefert einen End to End Durchstich tiber alle Schichten, damit Risiken friih sichtbar

werden und Architekturentscheidungen auf Fakten beruhen. Der Ablauf:

Ul - Health: Start der App, schneller Funktionscheck.

M-Bus: Live-Scan als SSE mit Log und gefundenen Adressen, Abbruch sauber per
Endpoint. Einzelgerdt wird on demand gelesen, XML wird normalisiert und als
Werteobjekte bereitgestellt.

Modbus: Lese und Schreibpfade via mbpoll fiir RTU und TCP; optionaler Read Back
bestatigt Schreibaktionen.

Persistenz: Messwerte landen in PostgreSQL als Zeitreihen, Metriken und
Feldauswahlen werden konsistent verwaltet.

Sicherheit & Betrieb: Fernzugriff via VPN, Deploy als systemd Dienst, Health Endpunkt

fur Smoke Tests.

Verweise: Die Ubersicht siehst du in Abbildung A1, der M-Bus Ablauf in Abbildung A3, Modbus
in Abbildung A4. Fir Kapitel 8.2 kannst du zusatzlich Abbildung 14: Walking Skeleton — End to
End Durchstich direkt unter den Text setzen (die PlantUML hast du von mir schon).

Serielle Kollisionen (M-Bus = SSE-Scan mit Abbruchtest Queue pro Port, sauberer SIGINT,

Scan blockiert) Mindestabstande

Parser Unsicherheiten Einzelgerat Auslesung Normalisierungsschicht, feste
(XML, Register) und Modbus Read JSON Envelopes, Tests
Latenzen/Timeouts End to End Laufzeiten in Timeout-Parameter in .env,

Ul/Logs Retries, Caching im Monitor



Design und Implementierung 33

Schreibzugriffe riskant Modbus Write mit Read Bestatigung im Ul, Logging in DB
Back

Persistenz unstabil Speicherung von Schemata fixiert, DB Tests, Health
Samples/Metriken Check

Betrieb unsicher Deploy als systemd, Restart Policy, Journal-Prifung,
Health VPN nur fiir Fernzugriff

Tabelle 12 Risiken und Entscharfung durch Walking Skeleton

8.3 Implementierung Backend

8.3.1 M-Bus Scanning & Parsing

M-Bus Scan Abbruch (kompakt)

U Frontend API /api/mbus/* libmbus
ser
I I I I
' ' { Scan starten } ' '
I I I
| Scan starten | |
%I
| | GET /mbus/stream-scan «SSE» | |
Vad
| | | mbus-serial-scan ... <
Ve
! ! | stdout (Log, Adressen) !
I I I
| (SSE(og.found) ... | |
[Arrrr |
: : | Abbruch  [— :
I I I I
| Abbrechen | |
| | POST /mbus/scan/abort < |
Vad
: : : SIGINT >:
exit0
| | [ |
| 1 SSE { status: "abgebrochen’} | |
l l l Einzelgerat [ l l
I I I I
| | GET /readings/device?address=A | |
} >l
I I | request-aA-b <baud> |
Vad
| | | xL |
| JSON (normalisiert) . , |
User Frontend API /api/mbus/* libmbus

Abbildung 14 M-Bus Scan Abbruch (kompakte Sequenz)



Design und Implementierung 34

Kurzbeschreibung

Der Scan wird als Server Sent Events an das Frontend gestreamt. Ein Abbruch signalisiert libmbus

einen kontrollierten Stopp (SIGINT) und beendet den Stream mit einem expliziten Status.

Einzelgerdte werden on demand gelesen, die XML Antwort wird zu strukturierten Schlisseln

normalisiert und optional persistiert.

CLI Aufrufe

Endpunkte

Datenablage

Normalisierung

Zeitverhalten

Fehlerbilder

mbus-serial-scan fir Laufzeit Scan, mbus-serial-request -a <addr> fir
Einzelgerat

GET /api/mbus/stream-scan (SSE), POST /api/mbus/scan/abort, GET
/api/readings/device?address=...

bekannte Adressen und optionale Namen in known_mbus_devices.json;
pro Adresse Feldauswahl in config_<address>.json; Messwerte in samples
der Datenbank

XML der libmbus Ausgabe wird zu Paaren Tag - Wert abgebildet (nur
ausgewahlte Felder, wenn konfiguriert)

Scan als Stream, Einzelgerat synchron; Timeout und Baudrate lber
Umgebungsvariablen gesteuert

Timeouts ohne Antwort, gestorte Leitung, doppelte Adressen; sauberer
Abbruch verhindert hangende Prozesse

Tabelle 13 M-Bus Backend Komponenten und Pfade

type Text

log, found, status

payload Text/Objekt Logzeile oder gefundene Adresse

status Text

optional, etwa abgebrochen, fertig

Tabelle 14 SSE Ereignisse im Scan

Zentrale Umgebungsvariablen (Auszug)
MBUS_SERIAL_PORT, MBUS_BAUDRATE, MBUS_SCAN_TIMEOUT, MBUS_CMD_TIMEOUT



35

Design und Implementierung

8.3.2 Modbus Handling (RTU/TCP)

s

(edojaaug NOST)

(doL/NLY Jayoredsiq)

ToSaibisod Joddey/1esied llodqw Jeydepy L/snqpowyide/ | dy (yoeoy) pusjuoi4 50
t t t t t |
| | | | (_ | |
| | | {..-obessow ‘, Jeussjullisenbas peqlinoawn,:ioLie ‘as[e):xo } \_ | |
] I il I 1 1 [191ya4] |
1 t 1 t 1 oot
| | | | | NOSF0 00z ™| |

>
| | | | {{~"}Yerep onno } 71 | |
t o> [ [ [ [ [
| - | | | | | |
| (aym) Bo| a)m / (peal) sajdwes | HYIASNI | | | | | |
Mol e
T 1 1 T T T |
| | | (epo2yixa ‘uspys)dew ‘(nopys)ested | | | |
>
| | | 13p}s / apodyixe / nopis ~ | | | |
| | t t | | |
** <pl> e- 20G d- <3soys> doy w- |jodqu
| | | | | | |
| | 1 I todl | | |
7T <pl> - <djel> pneq  xgSAAIMeprAR Nl w- odqu
_ _ _ indu e | _ _ _
| | T I | | |
«~———

| | | | yoledsip + djepijen | | |
| | | | | { " ‘6a1 ‘o) ‘koy_e0IAap } B)Lm|peal/Sngpow/ 1SOd | |

€y omy e oeen |
: _ _ ! ! (In) uoIBty Sl /PESY
| | | | | |

Josaibisod JERN

S

(edojeruz NOSF)
Jaddeyiasied

[lodqw

(dOL/NLY Jeyojedsiq) «/snqpowyide/ |4y
Jeydepy

(Buidde-10113 ‘a19sued ‘i9ydepy) puayoeg wi BuypueH snqpo

(1oeay) pusjuoiy

Abbildung 15 Modbus Handling im Backend (Adapter, Parser, Error-Mapping)



Design und Implementierung 36

Kurzbeschreibung

Das Backend validiert Request-Parameter und wahlt anhand des Geratetyps den RTU- oder TCP-
Pfad. mbpoll liefert Rohwerte bzw. Exitcodes; ein Parser normalisiert die Ausgabe und mappt
Fehler konsistent in den JSON-Envelope. Erfolgreiche Reads werden als Samples persistiert,

Writes als write_log dokumentiert; optionaler Read-Back bestatigt Schreibvorgange.

1 Read Coils digitale Ausgange lesen DO Status prifen
2  Read Discrete Inputs digitale Eingdnge lesen DI von Sensoren

3  Read Holding Registers  schreibbare Register lesen Sollwerte, Konfig
4  Read Input Registers nur lesbare Register lesen Messwerte, Status
5  Write Single Coil einzelnen Ausgang setzen DO schalten

6  Write Single Register einzelnes Holding-Register schreiben = Setpoint, Modus
16 Write Multiple Registers mehrere Register schreiben Batch-Updates

Tabelle 15 Modbus Funktionscodes (Auszug)

Transport RS485 Halbduplex Ethernet IPv4

Ziel --tty /dev/ttyUSBx <host> -p 502

Adresse -a <slave_id> -a <slave_id>

Timing --baud <rate>, Parity, Daten-/Stopbits = Netzwerklatenz, Port
Lesen -r <reg> -c <count>-m rtu -r <reg> -c <count>-m tcp
Schreiben --fc 5 6

Haufige Fehler Verdrahtung A/B, Terminierung, Parity Host unreachable, Port blockiert

Tabelle 16 Modbus Parameter — RTU vs. TCP

Zentrale Umgebungsvariablen (Auszug)
MODBUS_CMD_TIMEOUT, MODBUS_READ_DELAY_MS, MODBUS_SERIAL_PORT,
MODBUS_BAUDRATE

8.3.3 Schnittstellen

M-Bus GET  /api/mbus/stream — SSE found
-scan Events
‘log
M-Bus POST /api/mbus/scan/a - {ok} Beendet
bort laufenden Scan

(SIGINT)



Design und Implementierung

Readi
ngs

Readi
ngs
Readi
ngs
Readi
ngs

Modb
us
Modb

us

Modb
us
Mappi
ng
Modb
us
Mappi
ng
Monit

oring
Metric

S

Metric

S

GET

GET

POST

GET

POST

POST

GET

POST

GET

GET

GET

/api/readings/valu
es

/api/readings/devi
ce
/api/readings/lab
el
/api/readings/con
fig/{address}

/api/modbus/read

/api/modbus/writ

e
/api/modbus-

mappings-row/get

/api/modbus-
mappings-

row/save

/api/monitor/read
-all

/api/metrics/list

/api/metrics/serie

S

Tabelle 17 REST-API Endpunkte (Auszug)

address

{ address, name }

{ device_key, fc,
register, count }
{ device_key, fc,

register, value }

device_key,row_id

{

device_key,row_id,en

abled,mapping }

metric_id,range,buck

et,as_rate

[{ address,

name? }]

{data: ...}

{ok}

{ fields:
[.]}

{ok,
data:[..] }
{ok,
readback?
}

{ data:{
enabled,
mapping }
}

{ok}

[{ device,
ts, value,
source }]
{ ok,
data:[{id,
tag, unit,
source }] }
{ok,
data:[{ ts,
avg }l }

37

Quelle:
known_mbus_d
evices.json
Einzelgerat (M-
Bus) auslesen
Geratename
setzen
Ausgewdhlte
XML-Tags pro
Gerat
FC1/2/3/4

FC5/6/16,
optional Read-
Back
Zeilenmapping

lesen

Zeilenmapping
speichern

Cooldown/Cach

e beachtet

Metrik-

Metadaten

Aggregierte

Zeitreihe



Design und Implementierung

M-Bus
Scan
(SSE)
M-Bus
Abbruch
M-Bus
Einzelge
rat
Label

setzen

Modbus
Read

Modbus
Write

Monitor
Metrics
Series

curl -N http://localhost:5000/api/mbus/stream-scan

curl -X POST http://localhost:5000/api/mbus/scan/abort

curl "http://localhost:5000/api/readings/device?address=10"

curl -X POST -H "Content-Type: application/json" -d
{"address":10,"name":"Warmezéhler EG"}
http://localhost:5000/api/readings/label

curl -X POST -H "Content-Type: application/json" -d
{"device_key":"io1","fc":3,"register":2001,"count":2}'
http://localhost:5000/api/modbus/read

curl -X POST -H "Content-Type: application/json" -d
{"device_key":"io1","fc":5,"register":1,"value":1}'
http://localhost:5000/api/modbus/write

curl http://localhost:5000/api/monitor/read-all

curl
"http://localhost:5000/api/metrics/series?metric_id=oil_day&range=7d&bucket
=1h&as_rate=true"

Tabelle 18 Beispiel-Requests (cURL, kompakt)

Erfolg 200  {"ok":true, "data": [...] } Daten anzeigen

Ungiiltige 400  {"ok":false, "error": "bad_request", Validierung

Parameter "message": "register missing" } markieren

Nicht gefunden 404  {"ok":false, "error": "not_found", Hinweis anzeigen
"message": "device unknown" }

Timeout 408 "ok": false, "error": "timeout", "message": Retry anbieten
"no response" }

Intern 500 "ok": false, "error": "internal", "message": = Support/Log-ID
"unexpected error" } zeigen

Tabelle 19 JSON-Envelope und Fehlerfille

38



Design und Implementierung 39

SSE-Ereignisse (Scan, kompaktes Schema)

// type: "log" | "found" | "status"

{ "type": "log", "payload": "scanning address 5..." }
i "type": "found", "payload": { "address": 10 } }

{ "type": "status", "payload": "abgebrochen" }

Auth & CORS (optional)

e Optionaler Bearer Token via Keycloak (Axios-Interceptor setzt Authorization: Bearer
<token>).

e CORS per .env konfigurierbar; bei * keine Credentials (iber Browser.



40

Design und Implementierung

Implementierung Frontend (React Ul, Tabellen, Graphen)

8.4

« MVOTOAIN TLIA

Yeojphay

I
uajol Ja.eag |euondo;

i

3SVE IdV JLIA = TdN9seq

J0)devsalu| + SOIXY
BRUCTehlT]

N
m3_>$,w paieys™ N

! N
1

1

sbuiddew ‘()ayum ‘()peas

7 Byu0o/ ey ‘1Aep/ Sanjen/

~ snjejs/enanb ‘()weangueoguado

lle-peadyioyuow;
syouow

* sauas/Isll/sollB W/

ul,

s1'sngpopide sy'seolnegsnanide sy'snqpide s)'soljew 10.d awoH
i A A ¥ K K LY
S821AIG ainjeay xsy|jeysddyjddesois
(AeN “yopeaH ‘nphe) jlaysddy
I [ \ \

,/03U09/SNpPOW/UIWPEY/, sieysibe. Iwpey, ! qPow/uIwpey,, LsBumaes/snquy/uiwipey,, .PeB./SNqUI/uUIWpEY, UBOS/SNQ/UILIPEY, SOUIBW/UIWIPEY, Jojuowy/uiwpey,

abed|onuogsngpoy abedsiaisiBaysngpopy abedsaoinegsngpoiy abedsbumessnan abedpeaysnqy abedqueagsnqiy abedsoupy abedIojuo82IAaQ
AN AN AN AN AN A A a

sesn

\w yolalag-ulwpy

S

ssnyualeg pun Bugnoy pusjuoid 191 Bunplgqy

/ (psenoojoy eiA ualioy)

Abbildung 16 Frontend Routing und Seitenfluss



Design und Implementierung 41
Kurzbeschreibung

Die SPA nutzt AppShell fiir Layout und Routing. Admin-Seiten sind hinter einem RoleGuard. API-
Zugriffe laufen Gber einen zentralen Axios-Client (httpClient.ts) mit baseURL = VITE_API_BASE.

Bei aktivem Keycloak setzt der Interceptor automatisch den Bearer Token. M-Bus Scan

verwendet SSE (iber openScanStream(), Charts holen aggregierte Zeitreihen Uber
/metrics/series.
Home (/) httpClient Healthcheck optional
Profile (/profile) - -
DeviceMonitor monitor.ts GET /api/monitor/read-all
(/admin/monitor)
Metrics (/admin/metrics) metrics.ts GET /api/metrics/list, GET
/api/metrics/series
M-Bus Scan apiMbus.ts GET /api/mbus/stream-scan (SSE),
(/admin/mbus/scan) POST /api/mbus/scan/abort
M-Bus Read apiMbusDevices.ts GET /api/readings/values, GET

(/admin/mbus/read)
M-Bus Settings
(/admin/mbus/settings)
Modbus Devices
(/admin/modbus/devices)
Modbus Registers
(/admin/modbus/registers)
Modbus Control
(/admin/modbus/control)

apiMbusDevices.ts

apiModbus.ts

apiModbus.ts

apiModbus.ts

Tabelle 20 Seiten ¢ Services ¢> Endpunkte

/api/readings/device?address=...
GET /api/readings/config/{address},
POST /api/readings/label
GET/POST /api/modbus-* je nach
Umsetzung

POST /api/modbus/read, POST
/api/modbus/write

POST /api/modbus/write

idle Seite gedffnet Start-Button aktiv, Log leer Scan starten
scanning  Start geklickt Live-Log (SSE), ,,Abbrechen” Abbrechen moglich
aktiv
aborting  Abbrechen geklickt Hinweis , Abbruch lduft...” Warten auf Status
aborted SSE Status Meldung, Liste letzter Funde Erneut scannen
,abgebrochen”
complete Stream endet normal ,Scan beendet”, Liste der Detail 6ffnen,

Adressen benennen

Tabelle 21 Ul-Zustédnde fiir M-Bus Scan



Design und Implementierung 42

metric_id z. B. oil_day Signal-ID

range 24h,7d,30d Zeitraum
bucket 5m, 1h, 1d Aggregationsintervall
as_rate true/false Rate statt Mittelwert

Tabelle 22 Charts — Zeitreihenabruf

Frontend-Implementierungsnotizen

e Charts: react-chartjs-2 + chart.js mit chartjs-adapter-date-fns. Tooltips und Zeitachse
auf ISO-Zeitformate priifen.

e Fehlerhandling: Einheitlicher JSON-Envelope. Ul zeigt freundliche Meldungen bei
bad_request, timeout, internal.

e Responsivitat: Grids fir Tabellen/Charts, keine fixe Breite; Seiten auf 1280px und mobil
testen.

o  Zugriffsschutz: Admin-Routen nur mit RoleGuard. Bei fehlender Rolle auf /unauthorized
leiten.

e Env: VITE_API_BASE, optional VITE_KEYCLOAK_URL|REALM | CLIENT.

8.5 Sicherheitsaspekte & Benutzerrollen

8.5.1 Zielbild und Leitplanken
e Lokalbetrieb mit kontrolliertem Fernzugriff iber VPN (Tailscale).
¢ Rollenbasiertes Arbeiten: Lesen getrennt von Schreiben und Konfigurieren.
¢ Kleine, harte Oberflaeche: nur die benoetigten Ports und Rechte.
¢ Konsistenter Fehler-Envelope statt Rohfehler, damit die Ul gezielt reagieren kann.
e Sichere Defaults: Timeouts, Queues, saubere Prozessbeendigung fuer CLI-Tools.

Verweise: Hardware und Netzwerkgrundlagen siehe Abbildung A2. QS

8.5.2 Rollen und Berechtigungen

Verbrauch und Status ansehen (Tabellen, Charts) v v
M-Bus Scan starten, abbrechen, Geréte lesen X X v
Modbus Register lesen X X v
Modbus schreiben (Coils, Register) X X v
Gerdte benennen, Feldauswahl setzen X v v
Monitoring ansehen (aggregiert) v v v
Systemkonfiguration, .env, Deploy X X v (Ops)

Tabelle 23 Rollenmatrix

Server prift die Rolle immer. Ul-Ausblendung allein geniigt nicht.



Design und Implementierung 43

8.5.3 Zugriff, Authentisierung, Autorisierung

e VPN als Primarzugang: Zugriff von aussen nur lber Tailscale. ACLs in der Tailnet-Policy
auf definierte Gerate und Benutzer begrenzen.

e Keycloak (optional): Falls aktiviert, erhdlt die Ul ein Barer Token. Der Axios-Interceptor
flgt Autorisation: Barer <Token> hinzu. Backend priift Rollen pro Endpunkt.

e CORS: Feste CORS_ORIGINS in .env. Kein Wildcard bei Credentials. Bei reinem
Lokalbetrieb CORS eng halten oder Frontend vom selben Host liefern.

e SSE: Der Scan-Stream funktioniert ohne Cookies. Nur freigeben, wenn Herkunft gepriift

ist.

8.5.4 Eingaben, Prozesse, Fehler

e Parametervalidierung: Register, Anzahl, Adresse, Baudrate, TTY streng prifen. Nur
bekannte device_key zulassen.

e CLI-Aufrufe sicher: Argumente nie konkatenieren, sondern sauber aufbauen. Keine
Shell-Interpolation.

e Prozesskontrolle: Scan-Abbruch per SIGINT. Keine Zombie-Prozesse. Timeouts fiir alle
CLI-Calls.

e Fehler-Envelope: Einheitlich { ok:false, error:"bad_request|timeout|internal",
message:"..." }. Keine Roh-stderr an die UL.

8.5.5 Betriebssicherheit und Hartung

e systemd: eigener Service-User, automatischer Neustart, Ressourcenlimits.
e Updates: unattended-upgrades aktivieren.

e Netzwerk: nur die benétigten Ports. Bei Bedarf Reverse Proxy mit TLS.

e Logs: journald Rotation. Keine sensiblen Daten loggen.

e Datenbank: eigene DB-Rolle mit minimalen Rechten, regelmassiges Backup.

Beispiel: Auszug harte systemd-Unit (in Anhang G2 vollstdandig ablegen)

VoONOOTUVTDEAWNER

[Service]

User=visual

Group=visual

EnvironmentFile=/etc/visualisation/.env
ExecStart=/usr/bin/python /opt/visualisation/current/run.py
Restart=on-failure

RestartSec=3

# Hartung

NoNewPrivileges=yes

PrivateTmp=yes

. ProtectSystem=full

. ProtectHome=true

. AmbientCapabilities=

. # Ressourcen (Beispielwerte)
. MemoryMax=300M

. TasksMax=150




Design und Implementierung

8.5.6 Daten und Schutz
e .env ausserhalb des Repos, nur fiir den Service-User lesbar.
e Backups der Datenbank regelmassig testen.
e Datenminimierung: nur bendétigte Messpunkte speichern, PIl vermeiden.

8.5.7 Zusammenfassung fiir den Leser
e  Zugriff von aussen ausschliesslich tGiber VPN.
e Schreibaktionen nur fir die Rolle Techniker.
e CORS, Timeouts, Queues, Fehler-Envelope sind aktiv.
e systemd hartet die Ausfiihrung, unattended-upgrades halten das System aktuell.
e Nachweise im Anhang: CI-Checks, Coverage, Deploy-Status, Health.

9 Verifikation, Tests und Qualitatssicherung

Abbildung 17: Testpyramide und Pipeline Gates

44

Testpyramide Pipeline Gates
Unit (Parser, Utils, Adapter) Integration (API Endpunkte) Linting
System (auf Raspberry Pi) Exploration (Ul, SSE) Unit Tests (schnell)

Integration (Backend)

Coverage = 80 %

Build & Artefakte

Deploy & Smoke Test

Abbildung 17 Testpyramide und Pipeline Gates



Design und Implementierung 45

9.1 Teststrategie

Ziel ist ein belastbarer Nachweis der funktionalen Korrektheit, der Robustheit unter realen
Bedingungen und der Wartbarkeit. Die Tests folgen einer klaren Pyramide: viele Unit Tests,
ausgewdhlte Integrationstests, wenige Systemtests auf dem Raspberry, ergdanzt durch
explorative Ul Tests und Screencasts.

Unit Parser, Utils, Korrekte Logik bei XML nach JSON, Modbus
Fehlerpfade kleinstem Umfang Decoder
Integration = API mit Stub fir  Konsistenter JSON /api/mbus/scan,
CLI/DB Envelope, Statuscodes /api/modbus/read
System Reale Hardware  Timeouts, Abbruch, M-Bus Scan, Modbus
Kollisionsfreiheit RTU/TCP
Exploration Ul Flows Nutzererlebnis, Scan starten, Abbruch, Chart
Ladezustdnde laden

Tabelle 24 Testarten und Ziele

9.2 Testumgebungen

Lokal Dev Python venv, pytest, Postgres lokal schneller Zyklus, Unit/Integration
Raspberry Pi = Pi OS, libmbus, mbpoll, Postgres reale Feldbedingungen
Cl Bitbucket Pipelines, Postgres Service Gate fiir Merge, Artefakte erzeugen

Tabelle 25 Testumgebungen

9.3 Testdurchfiihrung (lokal & Cl)

Schnell PYTHONPATH=. pytest -g --maxfail=1l -m rasches Feedback, nur

lokal P db and et slew schnelle Tests

Voll lokal PYTHONPATH=. pytest --cov=backend --cov- ' Coverage >80 %,

report=term --cov-report=html --cov- htmlcov generiert
fail-under=80
CIPR Pipeline Schritt ,lint + unit“ schnelle Checks, Block
bei Fehler
Cl Voller Lauf mit Postgres Artefakte (htmlcov,
main/Tag Release), griines Gate

Tabelle 26 Durchfiihrungsplan und Kommandos



Design und Implementierung 46

9.4 Ergebnisse (Kurziiberblick)

Bereich Kennzahl Ergebnis Nachweis
Coverage gesamt >80% [Wert eintragen] Abbildung B3/B4
API Stabilitat 2xx/4xx/5xx Verhéltnis [Wert eintragen] Logauszug B2

M-Bus Scan 0..n
Write Verifikation Read-Back Quote
Deploy

Screencast V2/V3
Log + Ul Screen B2

Scan Laufzeit [Zeitfenster]

[Wert eintragen]

Active Running Ja

Tabelle 27 Schliisselergebnisse (Beispielstruktur zum Befiillen)

9.5 Praktischer Frontend-Nachweis (Screencast)

ID Inhalt Muss sichtbar sein Kriterium bestanden
V1 Endanwenderfluss Scan starten, Adressenliste, Detail, Ul reagiert ohne Fehler
Chart
V2 Technikerfluss Modbus Read/Write, Monitor Read Back ok, kein Ul
Update Fehler

V3 Fehlerfalle

Tabelle 28 Screencasts und Akzeptanzkriterien

9.6 Qualitatssicherung

Abbruch, Timeout, bad request

Ul zeigt konsistente
Meldungen

Massnahme Tool Gate
Linting Backend ruff/flake8 PR Pflicht
Tests Backend pytest PR und main
Coverage Gate  pytest-cov --cov-fail-under=80
Review Pflicht PR Reviews Merge Blocker
Artefakte htmlcov, Release Bundle main/Tag
Deploy Check systemd Status, Health nach Rollout
Tabelle 29 QS Massnahmen
9.7 Risiko- und Edge-Case-Tests
Risiko Testfall Erwartung Mitigation
Scan Kollision Scan + Abort Stream endet mit Status SIGINT, Queue
»abgebrochen”
RTU Leitungsfehler A/B vertauscht Timeout Fehler-Envelope Verdrahtung
prifen

TCP Host down Read auf offline
Gerat

Ungiiltige fehlendes

Parameter register

,host unreachable” >
408/500
400 bad request

Retry, Logging

APl Validierung



Design und Implementierung

Datenbank nicht Insert Samples Retry/Fail fast, sauberer 500 DB Wait in Cl
bereit

Tabelle 30 Edge Cases und Mitigation

9.8 Artefakte und Nachweise

Artefakt Speicherort (Anhang) Hinweis

PR Statuschecks B5 griner Haken sichtbar
Coverage Terminal B6 TOTAL Zeile, Schwelle erreicht
Coverage HTML Ubersicht B3 index.html mit Gesamtwert
Coverage HTML Detail B4 Modulansicht

Tabelle 31 Artefakte und Verweise

47



DevOps/Cl/CD, Build & Deployment

10 DevOps / CI/CD, Build & Deployment

10.1 Versionskontrolle (GitHub/Bitbucket)

Branching main stabil; Featurearbeit auf feature/*; Hotfix auf hot fix/*
Pull Requests Reviewpflicht, griine CI-Checks vor Merge

Commit Style Kurz, imperativ; Referenz auf Ticket (z. B. JIRA-Key)

Tags Semantisch vX.v. z auf main nach griinem Build

Schutz Kein Direkt-Push auf main; Merge nur via PR

Tabelle 32 Branch- und Release-Policy

Referenzen im Anhang: PR-Checks und Tags siehe B5
10.2 CI/CD-Pipeline (Automatisierung, Testausziige)

Abbildung 18: CI/CD - PR Fastlane vs. main/tag Volllauf

48

X

Artefakte
Dev Bitbucket Repo (htmlcov/, release.tar.gz)
|

| PR erstellen (feature/* — main) >| |

| PR Pipeline (schnell) |
»

|
| | I Lint + Unit (ohne DB)
|
|

[

|

|

|

|

|

]

T

|

, . N |
Lint + Unit + Integration (mit Postgres) |

l Coverage HTML + Release Bundle l

[ 1
ok + Artefaktlinks
e | |

(htmlcov/, release.tar.gz)

I . 1
DT Bitbucket Repo Artefakte

Abbildung 18 CI/CD - PR Fastlane vs. main/tag Volllauf

Lint Stil, schnelle Fehler

<

Unit v Parser, Utils

Integration (mit DB) - API, DAO

AL NN

Coverage Gate 2 80 %

Qualitatsgrenze

48



DevOps/Cl/CD, Build & Deployment

Build/Artefakte -

Tabelle 33 Pipeline-Schritte (Standard)

49

htmlcov/, release.tar.gz

Referenzen im Anhang: Coverage B3—B4, Terminal-Report B6.

10.3 Deployment auf Raspberry Pi (git + setup.sh)

X

Abbildung 19: Deploy (git pull -> setup.sh -> systemd -> Health)

systemd
setup.sh visualisation.service API| Health

Remote Repo Raspberry Pi
Admin (Bitbucket) Arbeitsverzeichnis
| I I
| ssh auf Pi | >
| git fetch |
—

I git checkout <Lranch|commit>
| && git pull —ff-only

|
| neue Commits verfligbar )l

sudo ./setup.sh

|
| GET /api/health/health
I t

|

\I

>

|

I

|

| |
|

1

}

>

daemon-reload + restart

I
|
|
|
|
|
|
|
|
g

................................................... [

|<200 OK { status: "healthy" }

1
Admin

\ 3
I

| Dienst startet (User, Env, Limits)
| E

1l

}

|

1

Remote Repo Raspberry Pi
(Bitbucket) Arbeitsverzeichnis

1
setup.sh systemd APl Health

visualisation.service

Abbildung 19 Deploy (git pull -> setup.sh -> systemd -> Health)

Ablauf in Kiirze

i e W e

per ssh auf den Pi

git fetch && git checkout <branch|commit> && git pull --ff-only

chmod +x setup.sh && sudo ./setup.sh

systemctl status visualisation.service priifen
curl -f http://localhost:5000/api/health/health checken

Systempakete installieren

venv und Python
Abhédngigkeiten
Verzeichnisse anlegen

Konfiguration prifen

systemd Unit bereitstellen
Dienst neu laden und

starten

apt install python3-venv postgresql libmbus mbpoll
msmtp

python3 -m venv ... && pip install -r requirements.txt

/opt/visualisation/{data,logs} falls nicht vorhanden
.env unter /etc/visualisation/.env vorhanden und
lesbar

visualisation.service nach /etc/systemd/system/
systemctl daemon-reload && systemctl restart

visualisation.service



DevOps/Cl/CD, Build & Deployment

G Gruppenrechte seriell

Tabelle 34 Aufgabeniibersi

cht setup.sh (ersetzt)

50

Service-User in dialout und uucp

Dienststatus systemctl status visualisation.service --no- Active: active (running)
pager

Health curl -f http://localhost:5000/api/health/health ~ HTTP 200 JSON

Logs journalctl -u visualisation.service -n 50 --no- keine Fehler, Port
pager gebunden

Serielle Is -1 /dev/ttyUSB* Adapter sichtbar

Gerdte

Gruppen id <service-user> Mitgliedschaft

Tabelle 35 Post-Install Checks

/opt/visualisation

[opt/visualisation/data/logs

/etc/visualisation/.env

dialout,uucp

Arbeitsverzeichnis Repo
Laufzeitlogs

Umgebungsvariablen

[etc/systemd/system/visualisation.service Dienstdefinition

Tabelle 36 Standardpfade

auf frithere Version wechseln

Abhidngigkeiten aktualisieren

Dienst neu starten

Health priifen

Tabelle 37 Version zuriickd

git checkout <commit-oder-tag>

source venv/bin/activate && pip install -r requirements.txt

sudo systemctl restart visualisation.service
curl -f http://localhost:5000/api/health/health

rehen via Git

Das ist euer Rollback: schlicht git checkout auf einen bekannten Commit oder Tag, dann neu

starten. Keine Release Bundles, kein Symlink.

Dienst startet nicht

Health 500
Port belegt
M-Bus Timeout
Modbus TCP
Timeout

.env
fehlt/fehlerhaft

DB nicht erreichbar
Prozess auf 5000
Port/Baud falsch
Host/Port blockiert

.env korrigieren, daemon-reload, Restart

DB_URL, Postgres Service priifen

sudo fuser -n tcp 5000, Prozess beenden
MBUS_* in .env priifen, Verkabelung
IP/Port 502 priifen, Netzwerk



DevOps/Cl/CD, Build & Deployment

SSE reisst ab

Proxy/CORS

testen

Tabelle 38 Troubleshooting

10.4 Installations- und Benutzerhandbuch

10.4.1 10.4.1 Voraussetzungen

0os

Python
Pakete

Rechte

Ports
Serielle
Gerate

Gruppen

Raspberry Pi OS aktuell

3.10 oder neuer
python3-venv, libmbus, mbpoll,
postgresql, msmtp

sudo auf dem Pi

API: 5000 (Standard)
/dev/ttyUSB* sichtbar

dialout, uucp

Tabelle 39 Systemvoraussetzungen

10.4.2 Erstinstallation (Schritt fiir Schritt)

51

CORS korrekt setzen, notfalls ohne Proxy

apt update && apt upgrade vor
Start

python3 --version

werden sonst iber setup.sh
installiert

flir Paketinstallation und
systemd

anpassbar via .env

M-Bus Pegelwandler, RS485
Adapter

Service-User muss Mitglied sein

VoONOOTUVTE WNERE

10.

# 1) Code auf den Pi holen (oder Repo aktualisieren)
cd /opt/visualisation

git fetch

git checkout <branch-oder-commit>
git pull --ff-only

# 2) Setup ausfiihren
chmod +x setup.sh
sudo ./setup.sh

Das Skript installiert Systempakete, erstellt die venv, installiert Python-Dependencies, legt Pfade

an, installiert/aktualisiert die systemd-Unit und startet den Dienst.

10.4.3 Erstkonfiguration (.env)

API|-Port

postgresql://metrics:metrics@localhost:5432/  Datenbank

FLASK_RUN_PORT 5000
DB_URL

metrics
CORS_ORIGINS http://localhost:5173
MBUS_SERIAL_PORT /dev/ttyUSBO
MBUS_BAUDRATE 2400

MODBUS_SERIAL_PORT  /dev/ttyUSB1

Frontend
Zugriff
M-Bus Port
M-Bus Baud
RTU Port




DevOps/Cl/CD, Build & Deployment 52

MODBUS_BAUDRATE 19200 RTU Baud
MODBUS_CMD_TIMEOU 3000 ms Timeout
T far CLI
MODBUS_READ_DELAY_ 250 Mindestabsta
MS nd Reads

Tabelle 40 Minimaler .env-Satz

Ablage: /etc/visualisation/.env (nur fir den Service-User lesbar).

10.4.4 Dienstverwaltung (systemd)

# Start/Status/Logs

sudo systemctl daemon-reload

sudo systemctl enable --now visualisation.service
systemctl status visualisation.service --no-pager
journalctl -u visualisation.service -n 50 --no-pager

# Neu starten nach Anderungen
sudo systemctl restart visualisation.service

VCoONOUTEA WN R

10.4.5 Funktionstest (Smoke)

# Health
curl -f http://localhost:5000/api/health/health

# M-Bus: Port sichtbar?
1s -1 /dev/ttyUSB*

# Modbus TCP: Beispiel Read (anpassen)
# mbpoll -m tcp <ip> -p 502 -a 1 -r 1 -c 1

LWoONOOUVIEA WNPR

10. # Modbus RTU: Beispiel Read (anpassen)
11. # mbpoll -m rtu --tty /dev/ttyUSB1 --baud 19200 -a 1 -r 1 -c 1

10.4.6 Benutzerhandbuch (Kurz)

Endanwender Verbrauch und Status ansehen Home, Metrics
(Tabellen/Charts)

Verwalter Gerate benennen, Felder auswéhlen M-Bus Settings

Techniker Scan starten/abbrechen, Einzelgerat auslesen M-Bus Scan/Read

Techniker Modbus Register lesen/schreiben Modbus

Registers/Control

Techniker Monitoring priifen Device Monitor

Tabelle 41 Typische Aufgaben je Rolle




DevOps/Cl/CD, Build & Deployment 53

10.4.7 Update und Riicksprung (git)

Kein Release-Bundle, nur Git.

1. # Update

2. cd /opt/visualisation

3. git fetch

4. git checkout <branch-oder-commit>

5. git pull --ff-only

6. sudo ./setup.sh

7. sudo systemctl restart visualisation.service
8

9. # Ricksprung (Rollback via Git)

10. git checkout <bekannter-commit>

11. sudo ./setup.sh

12. sudo systemctl restart visualisation.service

10.4.8 Deinstallation (vollstandig)

sudo systemctl disable --now visualisation.service

sudo rm -f /etc/systemd/system/visualisation.service

sudo systemctl daemon-reload

sudo rm -rf /opt/visualisation

sudo rm -rf /etc/visualisation

# Optional: Postgres Daten/Benutzer entfernen (nur wenn sicher!)

NoOuphwNR

10.4.9 Tipps & Stolpersteine

e Serielle Rechte: Service-User in dialout und uucp. Danach neu anmelden oder Dienst
neu starten.

e TTY Fix: Udev-Regel fir stabile Geratenamen optional, sonst prifen, ob Adapter die
Ports tauschen.

e Port belegt: sudo fuser -n tcp 5000 zeigt den Blocker.

e CORS: Wildcard * funktioniert nicht mit Credentials. Konkrete Origins setzen, wenn
Keycloak aktiv ist.

e Timeouts: MBUS * und MODBUS _* in .env feinjustieren, besonders bei langen
Leitungen/Adaptern.

e Logs: journalctl -u visualisation.service ist deine erste Anlaufstelle. Keine sensiblen
Daten loggen.

e VPN: Zugriff von aussen nur via Tailscale zulassen. ACLs eng halten.

10.4.10 Frontend Installation (Docker Compose + Keycloak, via

scripts/setup.sh)

10.4.10.1 Voraussetzungen

Docker Engine 24+ docker --version

Docker Compose v2 docker compose version
Plugin




DevOps/Cl/CD, Build & Deployment

Node (nur fiir Dev) 20 LTS

pnpm (nur fiir Dev) 9.x

Ports 3000 (FE), 8080
(Keycloak)

Rechte sudo

Tabelle 42 Frontend Systemvoraussetzungen

10.4.10.2 .env Datei vorbereiten

54

optional, falls START DEV=true

optional, Script startet sonst dev
nicht

anpassbar via .env.development

Script ruft sudo docker compose auf

Das Script erwartet apps/web/.env.development. Beispiel minimal:

PUBLIC_URL http://localhost:3000
VITE_API_BASE http://localhost:5000
VITE_KEYCLOAK_URL http://localhost:8080
VITE_KEYCLOAK_REALM masterarbeit

VITE_KEYCLOAK_CLIENT frontend

KC_DB_USERNAME keycloak
KC_DB_NAME keycloak
KC_DB_PASSWORD supersecret

URL des Frontend Containers
Backend API Basis URL
Keycloak Basis URL

Realm Name

Client ID

DB User fiir keycloak-db

DB Name fur keycloak-db

DB Passwort (lokal)

Tabelle 43 Beispiel .env.development fiir Frontend Setup

Werte missen zu deinem docker-compose.yml passen. Wenn Compose andere Variablen

verlangt, hier anpassen.

10.4.10.3 Artefakte optional bereitstellen (Ordner transfer/)

Lege optionale Inhalte in apps/web/transfer/ ab. Das Script importiert sie automatisch:

themes/ wird nach keycloak/themes/ kopiert (Custom Theme)

realm-export.json wird nach keycloak/realm-export.json kopiert (Realm Import)

keycloak.dump wird in Container keycloak-db eingespielt (voller DB Dump)

Tabelle 44 Inhalte im transfer/ und Wirkung



DevOps/Cl/CD, Build & Deployment 55

10.4.10.4 Setup ausfiihren
Aus apps/web/scripts/ starten:

cd apps/web/scripts
chmod +x setup.sh
sudo ./setup.sh

A WN R

Was passiert:

Schritt Funktion Details
Env priifen require_env bricht ab, wenn .env.development fehlt
Geriiste scaffold_minimum legt keycloak/, transfer/, scripts/ an, baut

.dockerignore

Import import_from_transfer kopiert themes/, realm-export.json; optional: spielt
keycloak.dump in keycloak-db ein

Compose compose_up docker compose pull/build/up -d mit
.env.development

Optional maybe_start_dev startet pnpm dev im Hintergrund, wenn
Dev START_DEV=true gesetzt
Hinweise post_info gibt Keycloak-URL, Frontend-URL, Health-Check aus

Tabelle 45 Aufgabeniibersicht scripts/setup.sh (Frontend)

10.4.10.5 Nach dem Setup priifen

Check Kommando Erwartung

Container sudo docker compose ps frontend, keycloak, keycloak-
laufen db ,Up“

Keycloak sudo curl -s "status":"UP"

Ready http://localhost:8080/health/ready

Frontend Browser http://localhost:3000 Startseite |adt

erreichbar

API Browser 200 JSON

erreichbar http://localhost:5000/api/health/health

Theme aktiv  Keycloak Login Custom Theme sichtbar (falls
transfer/themes vorhanden)

Tabelle 46 Post-Setup Checks (Frontend/Keycloak)




DevOps/Cl/CD, Build & Deployment

56

10.4.10.6 Dev-Modus optional (ohne Container)

Wenn du lokal entwickeln willst, kannst du den Dev-Server automatisch starten lassen:

Oder manuell:

pnpm install

VWoONOOTUTE WN R

pnpm --filter web dev
# offnet http://localhost:5173

# aus apps/web/scripts/
START_DEV=true sudo ./setup.sh
# Logs: apps/web/dev.log

# Monorepo root oder apps/web

Im Dev nutzt Vite typischerweise VITE_API_BASE=/api und proxyt zu
VITE_API_PROXY_TARGET=http://localhost:5000 (falls im vite.config.ts so konfiguriert). In
deinem .env.development kannst du stattdessen direkt VITE_API_BASE=http://localhost:5000

setzen.

10.4.10.7 Troubleshooting Frontend

Fehlt:
.env.development

Frontend 404/leer

Keycloak Login

schlagt fehl

Theme greift nicht

API CORS Fehler

Dev startet nicht

.env nicht
erstellt

Container nicht
up

Realm/Client
falsch

Theme Pfad
falsch

falsche API
Basis

pnpm/Node
fehlit

Tabelle 47 Haufige Probleme und Fixes

Datei in apps/web/.env.development anlegen

sudo docker compose ps, Logs checken

transfer/realm-export.json priifen,
VITE_KEYCLOAK_* priifen

transfer/themes Struktur priifen, Script erneut
laufen lassen

VITE_API_BASE korrigieren, Backend CORS setzen

corepack enable && corepack prepare
pnpm@latest --activate, Node 20 installieren

10.4.10.8 Kurzer Benutzerhinweis (Frontend)

e Endanwender: Charts und Tabellen, keine Schreibaktionen.

e Techniker: Admin-Bereich flir M-Bus Scan, Modbus Read/Write, Monitor.

e Verwalter: Gerdte benennen und Felder auswahlen unter M-Bus Settings.

e Auth: Wenn Keycloak aktiv, Token wird im Axios-Interceptor gesetzt.




Ergebnisse, Metriken und Evaluation

11 Ergebnisse, Metriken und Evaluation

57

11.1 Funktionale Ergebnisse (Visualisierung, Quittierung, Export)

Der Prototyp erfiillt die definierten Soll-Ziele:

e M-Bus: Live-Scan via SSE mit sauberem Abbruch, Einzelgerate-Auslesung, XML-Parsing

und Normalisierung.
e Modbus: Read/Write fur RTU und TCP, optionaler Read-Back und Logging.
¢ Visualisierung/Monitoring: Tabellen, Charts mit Aggregation (Range/Bucket), Monitor

mit Mindestabstanden (Cooldown).

e Rollenmodell: Lesen vs. Konfigurieren/Schreiben sauber getrennt.
e Betrieb: systemd-Dienst lauft stabil; Health-Endpoint liefert 200.

M-Bus Scan &
Abbruch

Einzelgerat (M-Bus)
Modbus Read/Write
Charts & Metrics

Monitoring

Stream mit Log/Adressen, kontrollierter A3, B2
Abbruch

Normalisierte Werte (Tag > Wert) A3, B2
Read-Back bestatigt Setzen A4, B2
Zeitreihen (Range/Bucket/Rate) B2, B3
Cooldown eingehalten, keine Kollisionen A5

Tabelle 48 Funktionale Ergebniskarte (Nachweis im Anhang)

11.2 Performance & Zuverlassigkeit

Messungen wurden lokal (Pi) und praxisnah durchgefiihrt. Ziel: nachvollziehbare Latenzen,

stabile Reads/Writes, konsistenter Monitor.

API Latenz Median
API Latenz P95

M-Bus Einzelgerat
Modbus Read RTU
Modbus Read TCP
Monitor Cooldown

Dienstverfiigbarkeit

<300 ms
<800 ms
<20s
<400 ms
<150 ms
>230s

> 99 % Testzeitraum

[eintragen]
[eintragen]
[eintragen]
[eintragen]
[eintragen]
[eintragen]

[eintragen]

Tabelle 49 Performance-Kennzahlen (bitte Werte ergdnzen)

11.3 Usability-Feedback (Endnutzer vs. Techniker)

Kurzfazit aus den explorativen Interviews (Details in E2—E4):

50 Requests lokal

dito

10 Reads am selben Zahler
RS485 19200 Baud

LAN

Log/Monitor-Antwort

systemd/journal

57



Ergebnisse, Metriken und Evaluation 58

¢ Endanwender wiinschen klare Achsen/Einheiten in Charts und dezente Tooltips.
e Verwalter wollen Geratebenennungen und Feldauswahl direkt im Flow.
e Techniker mochten sichtbaren Read-Back beim Schreiben und konsistente

Fehlermeldungen.

Endanwender Achsenlabel zu technisch  Verwirrung Klartext/Einheiten, Tooltips
Verwalter Benennen nicht Mehraufwand ,Benennen” direkt in
prominent Listenzeile
Techniker Write ohne Read-Back Unsicherheit  Read-Back-Wertim
Toast/Panel

Tabelle 50 Beobachtungen und Massnahmen
11.4 Nutzenbewertung (Zeitersparnis, Kosten)

Die Losung reduziert Diagnose- und Vor-Ort-Aufwande und erh6ht Transparenz.

Erstdiagnose vor Ort 60 min 10 min remote -50 min
Zweitanfahrt (Ersatzteil) 1x pro 3 Fille 1xpro10Fille -70%
Zahlerablesung MFH 90 min 5 min -85 min

Tabelle 51 Aufwand vorher vs. nachher (Annahmen)

Tabelle:
Transparenz Verbrauchsdaten jederzeit einsehbar
Sicherheit VPN-Zugriff, Rollen, kein Cloudzwang

Erweiterbarkeit Gerate/Tags ohne Neuaufbau

Vendor-Lock-in = gering dank offener Protokolle

Tabelle 52 Qualitativer Nutzen
11.5 Evaluationsmethodik und Validitét

e Methodik: Laborldufe auf dem Pi, Praxislaufe an einer realen Installation; Cl-Volltests
mit echter DB.

e Replizierbarkeit: definierte .env-Parameter und JSON-Configs; dokumentierte
Messschritte.

e Grenzen: Ergebnisse gelten fiir die getestete Topologie/HW; keine Hochlast mit
Hunderten Geraten.

e Bias-Kontrolle: Screencasts und Logs belegen die Flows; Coverage/Cl belegt Backend-
Robustheit.



Ergebnisse, Metriken und Evaluation

11.6 Metrikeniibersicht und Lesefiihrung

Tabelle:
Metrik Kapitel  Nachweis (Anhang)
Coverage gesamt 9.4 B3, B4, B6
Latenzen 11.2 B2 (Screens), Logs
Monitor Cooldown 7.4,11.2 A5
Usability-Feedback 11.3 E2—-E4

Tabelle 53 Metriken -> Kapitel - Nachweis

59



Diskussion 60

12 Diskussion

12.1 Erfiillung der Ziele

Die Kernziele wurden erreicht, die Abweichungen sind fachlich begriindet und verbessern die
Bedienbarkeit.

Protokolle M-Bus und Modbus Ja, mit Queue, Cooldown, A3, A4, A5,
parallel nutzbar sauberem Abbruch beim Scan Kap. 7.4

Visualisierung Tabellen und Ja, Zeitreihen mit Range und Kap. 7.3, 8.4,
Diagramme, Bucket, Monitor mit 11.1
Monitoring Mindestabstdanden

Konfiguration Excel Import Ersetzt durch Web Ul und JSON pro Kap.7.3.4

Gerat (robuster, weniger Fehler)

Betrieb Lokal, kein Cloud Ja, systemd Dienst, Health A2,
Zwang Endpunkt, VPN flr Fernzugriff

Qualitat Automatisierte Tests, Ja, Coverage Gate erreicht, Cl B3-B6,
Coverage Pipeline belegt

Tabelle 54 Zielerreichung (Soll vs. Ist, mit Nachweisen)

Abweichungen

Excel wurde durch Web Ul Konfiguration ersetzt (direktes Feedback, weniger
Medienbriche).

Modbus Gegenstelle im Prototyp: I/O Modul statt Warmepumpe (gleiche technischen
Pfade, geringere Komplexitat).

12.2 Grenzen der Losung

Technisch

Skalierung: Ausgelegt auf kleine bis mittlere Installationen. Keine Messungen mit
Hunderten Geraten.

Langzeit-Analytics: Historik und Dashboards sind vorbereitet, aber nicht vollumfanglich
umgesetzt.

Sicherheit: Grundhartung vorhanden (VPN, Updates, Rollen), jedoch kein mTLS oder
Reverse Proxy mit strengem Header Set.

Frontendldufe: Keine automatisierten Ul-Tests, Nachweis via Screencasts.
Containerbetrieb: Backend nicht standardisiert containerisiert; Betrieb derzeit klassisch

per systemd.

Organisatorisch

Geratevielfalt: Verifiziert mit reprasentativen, nicht mit samtlichen Zahlertypen und

Steuerungen.

60



Diskussion 61

e Abhangigkeit von Feldbedingungen: Serielle Qualitdt, Terminierung und Erdung

beeinflussen Stabilitat.

Keine Hochlast- Unsichere Aussage fiir 100+ Messreihen nachziehen,
Validierung Gerate TimescaleDB aktivieren
Grundhartung, kein Transport unsigniert im LAN  Reverse Proxy mit TLS und HSTS
TLS Proxy erganzen

Keine Ul- Ul-Regression nicht Kleine Jest-Smoke-Tests fir
Automatisierung maschinell gepruift kritische Flows
Device-Abdeckung Integrationsrisiko bei Mapping und Decoder modular
begrenzt exotischen Geraten halten, Piloten je Gerat

Tabelle 55 Grenze - Wirkung - Mitigation
12.3 Vergleich mit bestehenden Losungen

Positionierung
e Kosten/Nutzen: Lokaler Betrieb, offene Protokolle, geringe Einstiegskosten.
e Bedienung: Fokus auf essentielle Flows (Scan, Read, Monitor, Charts) statt komplexe
HMI-Suiten.
e Unabhangigkeit: Herstellerunabhangig durch M-Bus und Modbus, keine Lizenzpflicht.
Trade-offs
e Weniger Out-of-the-box Komfortfunktionen grosser Leitsysteme (3D-Grundrisse,
umfangreiche Alarmierung, Wartungsplanung).

e Hohere Eigenverantwortung beim Betrieb (VPN, Updates, Backups).

Anschaffung Hoch Niedrig

Laufende Kosten Lizenzen moglich Minimal

Interoperabilitit Okosystemgebunden Offen durch M-Bus/Modbus
Bedienung Umfassend, komplex = Schmal, fokussiert

Betrieb Herstellergefiihrt Eigenbetrieb, dokumentiert

Tabelle 56 Einordnung (Kurz)

(Detailvergleich siehe Tabelle 1 und Kap. 5.4.)

12.4 Lessons Learned

e Walking Skeleton zahlt sich aus: Risiken bei Scan, Parser und Persistenz friih sichtbar, spatere
Arbeit stabiler.

e SSE mit sauberem Abbruch ist ein Muss: Verhindert hangende Prozesse und vermittelt der Ul
verlassliche Zustande.

e Queue und Cooldown entscharfen Kollisionen zwischen M-Bus-Scan, Modbus-Reads und

Monitor.



Diskussion 62

o Konfiguration in der Ul statt Excel reduziert Fehler, beschleunigt Iteration.

o Cl-Gate mit Coverage hilt die Codequalitdt hoch und verhindert Regressionen im Backend.

e Dokumentierte Artefakte (Screens, Logs, Pipelines) beschleunigen Abnahme und Diskussion
mit Stakeholdern.

12.5 Ausblick

Kurzfristig
e CSV/Parquet Export und einfache Regel-Benachrichtigungen (Schwellen, Zeitfenster).
e Kleine UI-Smoke-Tests (Jest) fiir Scan, Read, Write, Monitor.
e Reverse Proxy mit TLS und sauberen CORS-Regeln, optional mTLS.
Mittelfristig
e TimescaleDB aktivieren und grossere Messreihen evaluieren.
e Mapping-Editor fiir Fehlercodes und Geratetemplates.
e Containerisierte Bereitstellung mit Compose (Backend) und statischer Auslieferung des
Frontends hinter demselben Host.
Langfristig
e Rollen und Policies feiner auflosen, Keycloak standardisieren.
e Bl-Anbindung oder Dashboard-Integration, falls Bedarf wachst.



Projektmanagement 63

13 Projektmanagement

13.1 Projektplanung & Iterationen

Die Umsetzung erfolgte in kurzen Sprints mit klarer Aufgabenzerlegung und PR-basiertem
Merge-Prozess. Planung, Abarbeitung und Kontrolle wurden tber Board, Backlog und Reports

gesteuert.

Abbildung 20: Sprint-Flow (Board -> PR -> Pipeline -> Done)

b

(Backlog Pflege (Priorisierung) )

v

(Aktiver Sprint planen (Stories / SP) )

Pull Request 6ffnen

Code Review (1+)

(Board: To Do -> In Progress )

v

(Implementierung auf feature/* )

Commit + Push

(CI: Lint + Tests (PR-Fastlane) )

Merge nach main

(CI main: Voll-Lauf (mit DB, Coverage >= 80%) )

Fixes, erneut PR

Optional Tag setzen

(Deploy (Backend/Frontend) ]

Smoke/Health OK

Ny, <<
IY\

(Review Sprint (Burndown, Scope And.) )

®

Abbildung 20 Sprint-Flow (Board -> PR -> Pipeline -> Done)

13.2 Zeiterfassung & Aufwand

Gesamtaufwand: 774 h. Pro Sprint 77-78 h.

63



Sprint  Stunden Analyse Implementierung Test Dokumentation

S1 77 54 15 4 4
S2 77 23 38 8 8
S3 77 12 50 11 4
sS4 77 8 50 15 4
S5 77 8 46 15 8
S6 77 4 35 31 7
S7 78 4 19 47 8
S8 78 8 43 19 8
S9 78 8 15 8 47
S10 78 4 8 8 58
Summe 774 133 319 166 156

Tabelle 57 Sprintstunden je Aktivitat (Largest-Remainder, ganze Stunden)

Aktivitat Stunden Anteil

Analyse 133 17.2%
Implementierung 319 413 %
Test 166 21.5%
Dokumentation 156 20.2 %
Total 774 100 %

Tabelle 58 Gesamtverteilung nach Aktivitat

13.3 Rollenverteilung (Kerim, Remazi)

64

Rollen und Verantwortlichkeiten wurden klar zugeordnet. Die Matrix zeigt, wer federfiihrend ist

und wer beratend unterstitzt.

Informed (l)

Stakeholder

Stakeholder
Stakeholder
Stakeholder
Stakeholder
Stakeholder
Stakeholder

Artefakt / Meilenstein Responsible Accountable Consulted
(R) (A) (9)
Backend Architektur & Kerim Kerim Remzi
Treiber
Frontend Flows & Ul Remzi Remzi Kerim
DB Schema & Persistenz Kerim Kerim Remzi
Tests & Cl-Gates Kerim Kerim Remzi
Deployment (Pi, systemd) Kerim Kerim Remzi
Doku Kapitel 5-10 Kerim Kerim Remzi
Screencasts & Ul- Remzi Remzi Kerim
Nachweise

Tabelle 59 RACI-Matrix (Kernartefakte)



13.4 Herausforderungen im Projektmanagement

Die wichtigsten Hiirden und wie sie adressiert wurden.

Umfang Scope Creep

Abhangigkeiten Feldgerate nicht

verfligbar
Serielle Scan vs. Reads
Kollisionen
Qualitat fehlende

Regressionstests

Kommunikation PR ohne Kontext

Betrieb manuelle Schritte

Tabelle 60 Risiken im PM und Massnahmen

Verzdgerungen,
Qualitatsverlust

Blockierte Tests

Hanger, instabile
Demos
,Green” lokal, rot
spater

Review-Loops langer

Fehleranfallig

65

harte Sprintziele, Kann-
Ziele nur bei Puffer
Labor-Setups, Mocks,
friihzeitige Beschaffung
Queue + Cooldown,
eigener Abort-Flow
Cl-Gate 2 80 %, PR-
Pflicht

Ticket-Referenz im
Commit, PR-Template
setup.sh, Checklisten
(Kap. 10.4)



Schlussfolgerungen und Ausblick

14 Schlussfolgerungen und Ausblick

14.1 Beantwortung der Forschungsfragen

66

Fl: Realisierbarkeit auf Ja. Stabiles End-to-End mit M- 7, 8,10,11 A1, A2,
Standard-Hardware Bus/Modbus, Persistenz, Ul

(Raspberry Pi)

F2: Parallelbetrieb von M- Ja, unter Leitplanken. 7.3, 7.4, A3-A5
Bus und Modbus ohne Queue/Cooldown, sauberer 8.3

Kollisionen Scan-Abort

F3: Architektur fir Ja. Rollentrennung, dedizierte 7.3.2, 8.4, A1l,B2
Endanwender und Techniker Admin-Seiten 8.5

F4: Praktikable Ja, via Web-UI + JSON. Excel 7.3.4,8.3 G4

Konfiguration (Datei/Ul)

abgel6st, weniger Fehler

Tabelle 61 Forschungsfragen ¢ Evidenz € Nachweise
14.2 Fazit

Die Arbeit zeigt, dass ein lokal betreibbares, herstellerunabhédngiges Visualisierungssystem auf
Raspberry-Pi-Basis technisch tragfahig ist. M-Bus und Modbus kénnen parallel betrieben
werden, sofern Cooldowns, Queueing und ein kontrollierter Scan-Abort eingehalten werden.
Die Ul-Konfiguration anstelle eines Excel-Imports reduziert Medienbriiche und erhoht die
Robustheit. Qualitdtssicherung liber Cl-Gate (Coverage = 80 %), reproduzierbare Tests und

dokumentierte Nachweise (Screens, Logs, Pipeline-Runs) stltzen die Ergebnisse.

14.3 Weiterentwicklungspotenziale (z. B. Push-Benachrichtigungen, Cloud-
Anbindung)

Funktional
e Export & Analytics: CSV/Parquet Export, tagliche/wochentliche Aggregationen,
einfache Berichte.
e Benachrichtigungen: Schwellwerte, Zeitfenster, Eskalation (E-Mail/Push/Webhook).
e Gerate-Abdeckung: Templates, Mapping-Editor flir Fehlercodes, zusatzliche Protokolle
(z. B. SML, OPC UA).
Technik & Betrieb
e TimescaleDB aktivieren und Langzeit-Metriken evaluieren.
e Reverse Proxy + TLS (optional mTLS), restriktive CORS.
e Containerisierung (Compose) fiir das Backend; statische Auslieferung des Frontends mit
gemeinsamem Host (/api).
Qualitat
e Kleine Ul-Smoke-Tests (Jest/RTL) fur kritische Flows (Scan, Read, Write, Monitor).

66



67

Monitoring der Betriebsmetriken (CPU/RAM/Lat) auf dem Pi, Alarmierung bei

Grenzwerten.

0-3 Export, einfache Benachrichtigungen, CSV/Parquet, Rule-Engine v1, HTTPS-
Monate TLS/Proxy Betrieb

3-6 TimescaleDB, Containerisierung, Ul- bessere Historik, Compose-Stack,
Monate Smoke-Tests Basistests FE

6-12 Protokollerweiterungen, Templates, zusatzliche Gerate/Protokolle,
Monate Bl-Anbindung Dashboard-Optionen

Tabelle 62 Roadmap (0-12 Monate)

14.4 Empfehlungen fiir den Produktivgang

Netz & Zugriff: Zugriff von aussen ausschliesslich via VPN; TLS/Reverse-Proxy fur
gemeinsamen Host (Frontend + /api) einrichten.

Berechtigungen: Schreib- und Konfigurationsaktionen nur fiir Rolle ,Techniker”; Admin-
Routen mit Guard.

Konfiguration: .env zentral, dokumentierte Defaults; serielle Parameter (Port/Baud)
validieren.

Betrieb: systemd-Service mit Restart-Policy, Log-Rotation; unattended-upgrades aktiv.
Backups: Regelmassige DB-Sicherungen priifen (Restore-Test).

Nachweise pflegen: CI-Gate (Coverage), Pipeline-Runs, Deploy-Screenshots; erleichtert
Audits und Abnahmen.

14.5 Schlussbemerkung

Die Kombination aus Walking Skeleton, klaren Kommunikationsabldufen (SSE, Queue,

Cooldown) und disziplinierter QS hat die technischen Risiken friih reduziert und eine belastbare

Grundlage geschaffen. Die Losung ist schlank, erweiterbar und praxisnah. Sie adressiert gezielt

den Bedarf kleiner bis mittlerer Installationen nach Transparenz und Stérungsdiagnostik — ohne

Vendor-Lock-in und ohne Cloudzwang.



Danksagung 68

15 Danksagung

Wir danken Dr. Thomas Memmel herzlich fir die engagierte Betreuung unserer Arbeit. Seine
prazisen Rlickmeldungen, sein Fokus auf methodische Stringenz sowie seine praxisnahen
Impulse zu Architektur, Testbarkeit und Dokumentation haben die Qualitdt dieser Arbeit
wesentlich erhoht.

Ebenso danken wir unseren Interviewpartnern fir ihre Zeit und ihre wertvollen Perspektiven:

e Kaan Cehreli (Sicht eines normalen Nutzers)
e Biilent Siinbil (Eigentimer)

e Srdjan Jankovic (Techniker)

lhre Einschatzungen haben die Anforderungen gescharft, die Benutzerfiihrung verbessert und
die Praxistauglichkeit der Losung bestatigt.

Unser Dank gilt auch allen Personen, die beim Testen geholfen, Feedback gegeben oder
Infrastruktur zur Verfligung gestellt haben, sowie dem MAS SE Team der OST fir die
konstruktiven Rahmenbedingungen. Ein besonderer Dank gilt unseren Familien und unserem

Umfeld fir Geduld, Motivation und Unterstiitzung wahrend intensiver Phasen dieser Arbeit.

68



Literaturverzeichnis 69

16 Literaturverzeichnis

Avelon AG. (2025). Avelon. Von Avelon - the art of steering real estate: https://avelon.com/
abgerufen

Beckhoff. (2025). Steuerungskomponenten fiir die Gebdudeautomation. Von Beckhoff New
Automation Technology: https://www.beckhoff.com/de-ch/branchen/av-und-
medientechnik/gebaeudeautomation-gewerke/ abgerufen

EN 13757, C. (2004). Communication systems for meters and remote reading of meters.
European Committee for Standardization.

Gebdudeautomation, M. —F. (2023). loT im Gebdude — Marktstudie 2022. Von MeGA -
Fachverband Gebaudeautomation Schweiz: https://www.mega-
planer.ch/fadaladdondlz/files/.addonpublikationeintragfile/publikationen/98.pdf/MeG
A%20Marktstudie%2010T%202022i.pdf abgerufen

Harz AG. (2025). WMit der passenden Visualisierung alles im  Blick. Von
https://gebaeudeinformatik-schweiz.ch/de/dienstleistungen/visualisierung/ abgerufen

Relay. (2025). Das Bussystem fiir die Fernauslesung von Zdhlern. Von https://www.relay.de/
abgerufen

Schweiz, E. Z. (2021). Energie Zukunft Schweiz. Von Swissolar:
https://www.swissolar.ch/03_angebot/veranstaltungen/vortraege-und-
studien/2021/20210504_ezs_swissolar_iot.pdf abgerufen

Wikipedia. (2024). Feldbus, Modbus . Von Wikipedia: https://de.wikipedia.org/wiki/Modbus
abgerufen

Flask-CORS contributors. (n. d.). flask-cors [Computer software].
https://flask-cors.readthedocs.io/

Flask-RESTX developers. (n. d.). Flask-RESTX [Computer software].
https://flask-restx.readthedocs.io/

Pallets. (n. d.). Flask [Computer software].

https://flask.palletsprojects.com/

Pallets. (n. d.). ItsDangerous [Computer software].

https://itsdangerous.palletsprojects.com/

Pallets. (n. d.). Jinja2 [Computer software].

https://jinja.palletsprojects.com/

Ronacher, A., & Pallets. (n. d.). Werkzeug [Computer software].

https://werkzeug.palletsprojects.com/

The Psycopg Project. (n. d.). psycopg2-binary [Computer software].
https://www.psycopg.org/

python-dotenv contributors. (n. d.). python-dotenv [Computer software].

https://github.com/theskumar/python-dotenv

69


https://flask-cors.readthedocs.io/
https://flask-restx.readthedocs.io/
https://flask.palletsprojects.com/
https://itsdangerous.palletsprojects.com/
https://jinja.palletsprojects.com/
https://werkzeug.palletsprojects.com/
https://www.psycopg.org/
https://github.com/theskumar/python-dotenv

70

Requests contributors. (n. d.). requests [Computer software].

https://requests.readthedocs.io/

Axios contributors. (n. d.). Axios [Computer software].

https://axios-http.com

Chart.js contributors. (n. d.). Chart.js [Computer software].

https://www.chartjs.org/

date-fns contributors. (n. d.). date-fns [Computer software].
https://date-fns.org/
Flowbite React contributors. (n. d.). Flowbite React [Computer software].

https://flowbite.com/docs/getting-started/react/

Keycloak project. (n. d.). keycloak-js [Computer software].
https://www.keycloak.org/

Meta Open Source. (n. d.). React [Computer software].
https://react.dev/
Remix Software, Inc. (n. d.). React Router [Computer software].

https://reactrouter.com/

TanStack. (n. d.). @tanstack/react-query [Computer software].
https://tanstack.com/query/latest

Vite contributors. (n. d.). Vite [Computer software].
https://vitejs.dev/

Tailwind Labs. (n. d.). Tailwind CSS [Computer software].

https://tailwindcss.com/

reactchartjs/react-chartjs-2 contributors. (n. d.). react-chartjs-2 [Computer software].
https://github.com/reactchartjs/react-chartjs-2

Chart.js team. (n. d.). chartjs-adapter-date-fns [Computer software].
https://www.chartjs.org/docs/latest/axes/cartesian/time.html#date-adapters

JEAN, P. (n. d.). mbpoll [Computer software].
https://github.com/epsilonrt/mbpoll

libmbus project. (n. d.). libmbus [Computer software].
https://github.com/rscada/libmbus
PostgreSQL Global Development Group. (n. d.). PostgreSQL [Computer software].

https://www.postgresql.org/

msmtp project. (n. d.). msmtp [Computer software].

https://marlam.de/msmtp/

Tailscale Inc. (n. d.). Tailscale [Computer software].

https://tailscale.com/

Red Hat. (n. d.). Keycloak (Server) [Computer software].
https://www.keycloak.org/



https://requests.readthedocs.io/
https://axios-http.com/
https://www.chartjs.org/
https://date-fns.org/
https://flowbite.com/docs/getting-started/react/
https://www.keycloak.org/
https://react.dev/
https://vitejs.dev/
https://tailwindcss.com/
https://github.com/reactchartjs/react-chartjs-2
https://www.chartjs.org/docs/latest/axes/cartesian/time.html#date-adapters
https://github.com/epsilonrt/mbpoll
https://github.com/rscada/libmbus
https://www.postgresql.org/
https://marlam.de/msmtp/
https://tailscale.com/
https://www.keycloak.org/

71

Docker, Inc. (n. d.). Docker [Computer software].

https://www.docker.com/

Atlassian. (n. d.). Bitbucket Pipelines [Computer software].

https://bitbucket.org/product/features/pipelines

pytest dev team. (n. d.). pytest [Computer software].
https://docs.pytest.org/

pytest-cov contributors. (n. d.). pytest-cov [Computer software].

https://pytest-cov.readthedocs.io/

Astral. (n. d.). ruff [Computer software].
https://docs.astral.sh/ruff/

PyCQA. (n. d.). flake8 [Computer software].
https://flake8.pycqa.org/

PlantUML team. (n. d.). PlantUML [Computer software].
https://plantuml.com/

OpenAl. (n. d.). ChatGPT (large language model) [Computer software].
https://chat.openai.com/



https://www.docker.com/
https://bitbucket.org/product/features/pipelines
https://docs.pytest.org/
https://pytest-cov.readthedocs.io/
https://docs.astral.sh/ruff/
https://flake8.pycqa.org/
https://plantuml.com/
https://chat.openai.com/

Al

Anhang A — Architektur und Kommunikationsabldufe

Systemarchitektur — Durchstich von Feldgeraten bis

17 Abbildung Al

Web-UI

(se|dwes ‘souja|\ ‘selag-aWiI] ]
Toseibisod

NOSF < 818\ SNGPON
NOSI < TNX sng-W
Jeydepy/iesied

(35S ‘spsenbowil)
Jojiuopy B anend
S90INIBS

sBuipeasde/

sngpow/ide;
snquiide;
spuudanig |dv

~

ueos-weans/snquwy/ :3sg|

(1dv vserd) puaxoeg

(Nosr) 134

3Sve IdY 3LIA ‘Tdnaseg
(soxy) Juaid dLLH

~
~

~

N
Jubnz sopayoisab N

(sej0y ‘|euondo)
(eoAhey) yiny

(z-sfueyo-joeau) sueyn
JOHUOIN/SIIEISQ/UBdS ‘N

(s1easjieL) NdA

Josied «— Josied —
TNXANOP}S San[eANop}s,
(3senbau (
L doL/nLy) (jlodqui Jaqn)
UBDS-[Uas-snqui)
odqu snqpoj
110 snquiqi 179 llodq dOL snapop
170/48q1a1) \%
4
(262€1 N3) (208) dOL !
xasnA/nep/ (NLY) g8ysy ,
e
\
Buruanajg ‘|n| -
el Hw?__o_owﬂm_\w
Js|yez sng-W o
susgapjed

(vds Peay) pus,

VSN

ain|iej-uo=pejsay
$90IAIBS PWaISAS

sapeibdn papuapeun

H3YI9YIS B gauzeg

Su9lyY
(dyusw) jlew3

(1oBeuepy
JRIEIIVEYY

(901n18S)
JENTIVEETH

(Jouyomag/iawniuabig)
Japuemuepuy

5

(uoyaiag Buniiem) JydISIsqMWEsaD - IpjaYYdIeWRISAS




A2

Anhang A — Architektur und Kommunikationsabldufe

Hardware-Architektur (in UML)

18 Abbildung A2

(edwnd ‘Us||0nu0d/SdS) (Burusna)g ‘InpoN-0O/1) (JosseAN/IQ/8WIBAN)
18189 401 sSngpolA 18189 N1Y sngpo la|yez sng-\

N\
(1asnAn/aep/ ‘NLY sngpoN) (ogsnAn/nepy)

19IN0Y / Yo)IMS

Joydepy G8HSY Jojpuemebayg sng-\

Jowey3 (tasnf) asn| (ogsnf) asn

(SO Id Auieqdsey)
¥ 1d Aiueqdsey

-~ s

I
-~ - 7/ | N
suelY [leN-3 , ~ yubnzuie sjepeyoiseb , 7 |
7 7 _
s s
I
Aejoy-jey diwsw 7 ; NdA o|eas|iel ; Bunpi3 / 34 7 ; z)nyossBunuuedsiaqn) (jeuondo) 1¥H SdN

V€ < [191238N NG

(zyinyog YaamziaN ‘Bunbiosiop ‘1sydepy ‘Idy) INPdBYYoIy-alempieH gy bunpjiqqy



A3

Anhang A — Architektur und Kommunikationsabldufe

M-Bus-Kommunikation (Scan und Einzelgerat-

19 Abbildung A3

Auslesung)

(sone|g) (ysenbau / uess-euas-snqu)

(Tos3iBisog) gq | &*e0 sna-i 170 snquiq| (1dv dseld) pussioeg (10e9Y) pusuoiy 1350
| | | |
| | | |
[ oo P | |
le | | | | |
| | | oidwes [Y3SNI/ 2UIBIN 1¥3SdN | | |
| | | _ > | |

(enfep:Aay)) usiaisiieulioN « uas.ted JNX
| | | >l | |
| | Y_ | | |
| | (TNX + Yyoy) ssuodsay | | | |
| ™~ (v essaipy) 1senbay | | | |
I I < V/ e- <djel> g- }senbai-lepas-snqui 1 I I
| | | | | |
| | | _\ v=ssalppe;,a01rap/sbuipeas/ide; | 39 ) |
\ uasa| Jesablazuigy

f f 1 1 T |
| | | [ s oigeBae, = smiers 1358 T |
_ _ 1% 5 B _ _
| | ¢ | | |
| | | INIOIS | | |
| | | _) Hoge/ueos/snquy/ide/ 1SOd | |
I I I I =" usyoeiqqe ueos, 3oy |

| | | | | usyoeiqqe uesg
| } } 1 } }
| | | _ .............. Usssalpy auspunab / Boj mwa_ |
I I [ (Usiiazbor 7 Usssaipy) mopis 7 I I
I I ([Uarepuoy) sesu sasey > I I I
| l« | | | |
| | (u"Q @ssalpy) uedg | | | |
| | _) <8jel> pneg-- XgSNAJl/ASp/ ueas-leuas-snqu | | |
| | | = «38S» ueos-weans/snquy/ide/ 139 | |
| | | | < |

JUSUE]S UBDS, XIIIH

| | | | | I usjie}s ueog
| | |

A._mewomv aa (sane|s) (ysenbau / ueos-euas-snqu) (1dV Mse|d) puayoeg (1oeay) pusjuoig 88N

8jeI99 sng-N 170 snquiqy

Bunsajsny-jeiabjozuig pun ueag :uonejiuNWWoy sng-\




A4

Anhang A — Architektur und Kommunikationsabldufe

ikation (Register lesen und

(oners) Il

(Tosalbisod) g |_#°9SnaPoN 170 llodqu (1dv seld) puaxoeg (10e9Y) pusjuoly 1380
t f ” | ” ”
, , , | { anu} :ssa00ns } 30 002 | |
| | i MO ! !
I T T (07 Vom JeisiBay) uah3 S Bo | , ,

| >
” ” , 3O snieig ), ” ”
, , bunbnejseg | | ! !
| | (191160 816UIS B1UM) 9 48P0 (110D B1BUIS BIUAN) G 9POD UoHUNS BbeluY | ! | ,
[ [ , <eNfen> 0- <glg> 0j~ <Io1sIBaI> I+ <PI> - doymi W- fodqui | , ,
, |

” ” ” h {9/5=04 ‘enjen ‘JeisiBal ‘ao1nap } eyumysnapowyide/ 1SOd _, ”
B TP

| I , ,

| WUSQIBIYDS LB, 4N

19151BoU/10D SIIM
f T

"] :senjea } MO 002

Modbus-Kommun

(lodwejsyaz Hom) siduwes 1MISNI |

|
|
| | | SpeM pasied |
.o
4 | | (us)pamissibay Jw pomyuy = | |
I |
A : (4918169 BuipjoH peay) € apo) uonoun4 abesuy !
— | | | |
g n | | | <JUN02> 9- <JdsIBal> J- <pi> e- doy/ny w- [jodquu |
m Q | I | I { £=04 ‘JoysiBal “e01nap } peay/sngpowyide/ 1SOd
2 € ose; soBor. oy |
T = : : ! , Uasa| 15169, I
— ()] | | | | Jojsiboy BUIp|oy peay
= d w :
2 216)50 JES
o) c (Tosaibisod) aa (oneig) 170 llodquu (1dv Yseld) pussoeg (1oeay) pusjuoiy n
O 12199-SNGPON
< »
01 1 uaqIe.Y9s pun uesal 193siB nex -SNApo




A5

Anhang A — Architektur und Kommunikationsabldufe

ayoed ‘sajdwes ‘soujew

(34007 ‘sumop|o0D)

abedlojuopeoIreg

I <ippe> e-}senbay |

[sng-n = jese0]

| senjeA

(yunoa ‘Bai ‘p/g/z/1.=04) peel

[(ddL/n L) snapon = 1es09] (e I
|

I
!
|
|
|
|
|
|

......... >

{anjen ‘s)} palped |

8Yoed NO¥4 anjeA ise| LOI T3S |

JINsa1 pat

[(sog > g "2) Apje yoou umopipod] e

4

(abuejyosayiem / [[91zuanbas) jesas sapal ang

Monitor-Poll mit Cooldown (mehrere Gerite,

(abeyqy 931z19| ‘uadA] /uassalpy)
Q)sI-2}BIaD) SA|0Sal

(Toseibisod) aa 170 snquiqy| _ _ 170 llodqu _ ananyp/Io)UO lle-peaujioyuow/ide/ | dy (1oeay) pusjuoiy
| T T T T T
[ [ [ [ [ —>
| | | | | (utexoey auyo) uasaisiienpie s}BbpIAN/B|[BTeL |
| | | | [ [**"{a0In0s “anjeA ‘s) “8oiAep}] xOOONV_
t t t t t
| | | | ::mmb.:.w:w._w.v
| I— 1 1 - xOV_

1 1 ]
b _ _mﬁmo 31vadn (s)aidwes 143 SNI _
i i S X

Ile-peai/opuowde; 139 |

[(4own1-1n) uspunyes x aiv] | dooj

ayoen ‘sa|dwes ‘solew
(Tosabisod) ga

S

Mindestabstand 30 s)

21 Abbildung A5

170 snqwiqi _ _ 170 llodqu

(s)007 ‘sumop|ooD)
8NaNYD/IOHUO\

I[e-pesJ/iopuow/ide/ |y

1980

1€
|

abe duojuopao1neg
(yoeay) pusjuoi

aQ < umop|oo)/enany « ||e-pealjiojuowy/ide/ < pudjuol :||od-10}uUo

UBWQ 318199 BIUOBMISA(), BNBS |

JER



A6

Anhang A — Architektur und Kommunikationsabldufe

Vorgehensmodell und Artefaktfluss (Dev - Cl =

Release - Deploy)

22 Abbildung A6

(pIing ‘% 08 < 8besoA0D
(e91n188 pwa)sAs) (Z A'XN) (z64ey aseajpu ‘A0OJWIY) ‘sjsa] ‘i) (,/24nyE8} ‘Ulew)
1d Alusqdsey Be) asesjoy aplejauy auladid 1D oday "a
| | | | | |
_ _ | | | —>
uni-ay + Xi4
| | | T v_
I I I | I syoday/sbo |
........................... *+.__._:__£33:m_ 54l

3oayD-axows + Hejsey _ _ _ _ _

l<« | | | | |

_/ (uspe| Aug + |elsul) Aojdeg | | | | |

| _A | us|jalsI® 9seTY | | |

<

I I I spodey + piing | I I

| | | _“V | |

| | | (8@ nw) yne-jiop | | |

<

| | | | [ urew yoeu abiapy |

| | | | | Dio mainay g yo syoayg] e

_ _ _ L — F S ey + Sag

| | | H“ | |

| | | abeIan0) + S1S8) + JUI | |

| | | f< Gou | |

140 1s9nbay |Ind
| | | | _A |
| | | | | (/o1n3e8)) USNd + HWWoY |
uaJanuawsaldwi ainjeay
| | | | | |
(901n188 pwasAs) (ZA'XN) (zb1e) osesjal ‘A0OJWIY) (pling ‘% 08 = @besanon (4/21n}e8} ‘ulew) red
1d Alusqdsey Be) asesjoy aplejauy ‘sjsa] ‘uI) oday

auliedid D

ssnppjeely pun [[apowsuayabiop ¢} Bunpliqqy




Anhang E — Nutzerbefragung (Interviews) El

23 Tabelle E1: Interviewleitfaden (Fragenblocke kurz)

Die folgenden Interviews sind explorativ und dienen der Abstimmung von Bedienkonzept,
Visualisierung und Betriebsanforderungen. Es wurden drei Perspektiven betrachtet: normaler
User (Kaan Cehreli), Eigentlimer/Betreiber (Bilent Siunbil) und Techniker/Service (Srdjan

Jankovic). Format: 20-30 Minuten, remote; Notizen wurden durch die Autoren erstellt. Die

Aussagen sind nicht reprasentativ, liefern aber wertvolle Hinweise flir die Produktgestaltung.

Einstieg & Kontext

Visualisierung &

Informationen

Bedienbarkeit

Fehlermeldungen &
Quittierung

Konfiguration &
Rollen

Monitoring &
Benachrichtigung

Sicherheit &
Datenschutz

Gesamturteil

Nutzungskontext

verstehen

Relevante Daten,

Darstellung

Usability, Navigation

Stérungen

erkennen/handhaben

Trennung User/Technik

Regelbetrieb

Vertrauen schaffen

Nutzen & Hirden

In welchem Umfeld wiirden Sie das
System nutzen? Welche Aufgabe ist fir
Sie am wichtigsten?

Welche Werte wollen Sie zuerst sehen?
Tabelle oder Diagramm? Welche
Zeitraume sind wichtig
(Tag/Woche/Monat)?

Wo erwarten Sie den Gerdtescan? Wie
finden Sie Einstellungen wieder? Was
muss jederzeit erreichbar sein?

Was soll bei einer Stérung passieren?
Reicht ein Hinweis oder brauchen Sie
Anleitungen?

Welche Einstellungen mochten Sie selbst
andern? Was gehort nur in den
Technikerbereich?

Welche Intervalle geniigen fiir
Aktualisierungen? Wann brauchen Sie
eine E-Mail/Push?

Lokalbetrieb okay? VPN bekannt? Welche
Daten dirfen gespeichert werden?
Was Ulberzeugt Sie am meisten? Was

wiirde Sie vom Einsatz abhalten?



Anhang E — Nutzerbefragung (Interviews)

E2

24 E2: Antworten Kaan Cehreli (Normaler User)

Rahmendaten

Rolle: normaler Endanwender (Haushalt)
Dauer/Format: ~25 Min., remote

Ziel: Erstkontakt, Visualisierung und Verstandlichkeit

Kernaussagen (Kurzfassung)

Startseite soll sofort den Verbrauch zeigen (heute, Woche, Monat), Diagramm + Zahl.
Technikbegriffe vermeiden; klare Einheiten und Legenden.
Stérungen: klare Meldung in Klartext mit einfachem Hinweis ,Was tun?“.

Keine Lust auf Konfiguration: Voreinstellungen und selbsterklarende Labels.

Was sehen Sie ,Aktueller Verbrauch und ob alles ok ist.” Home: KPI-Karten +
zuerst? Ampelstatus
Tabelle oder ,Beides. Balken pro Tag helfen mir.” Chart + Tabelle
Diagramm? umschaltbar
Storung/Fehler? »MBus Scan gibt manchmal Fehler.” Fehlermeldung +

,Nachste Schritte”

Einstellungen? »Nur Namen vergeben. Rest egal.” Labels leicht

zuganglich; Technik

verstecken

Benachrichtigung? ,E-Mail reicht, nicht zu oft. Und nur Schwellen + Ruhezeiten

Alarmierung System und nicht Schwellwert

Alarmierung”

Ableitungen fiir das System

Home mit KPI/Kachel, Wochenchart, Ampelstatus.
Tooltips/Legenden, sprachlich einfach.

Fehlermeldungen mit Kurzhandlung (z. B. , Kontakt Technik®).



Anhang E — Nutzerbefragung (Interviews) E3

25 E3: Antworten Biilent Siinbiil (Eigentiimer)

Rahmendaten
e Rolle: Eigentimer/Betreiber einer Liegenschaft
e Dauer/Format: ~30 Min., remote
e Ziel: Betriebssicht, Abrechnung, Verfligbarkeit
Kernaussagen (Kurzfassung)
e  Will Monats- und Quartalswerte fiir Abrechnung und Vergleich.
e Gerdtenamen und Orte sauber pflegbar; Export fur Excel/Abrechnung wiinschenswert.
e Benachrichtigungen nur bei relevanten Ereignissen; keine Flut.
e Lokalbetrieb ist gut, Fernzugriff via VPN geniigt.

Wichtige Zeitrdaume? ,24h, 7Tage und 30Tage zu wenig!l.”“ Aggregationen bereitstellen

Datenexport? ,,CSV/Excel fiir Abrechnung.” Export aus Ul (spater)
Benachrichtigungen? ,Nur bei echten Problemen.” Schwellen + Eskalation
Verwaltung? ,Gerdte benennen, Orte zuordnen.” Labels/Metadaten prominent
Zugriff? VPN ist ok.” Dokumentation VPN-Zugriff

Ableitungen fiir das System
e Aggregierte Zeitrdume und Export-Option vorsehen.
e Label-/Metadatenpflege zentral erreichbar.



Anhang E — Nutzerbefragung (Interviews) E4

26 E4: Antworten Srdjan Jankovic (Techniker)

Rahmendaten

e Rolle: Techniker/Service

e Dauer/Format: ~30 Min., remote

e Ziel: Diagnose, Scan/Read/Write, Monitoring
Kernaussagen (Kurzfassung)

e Scan/Abort muss stabil sein; Logs sichtbar.

e Read/Write mit Read-Back-Bestitigung; Protokoll im Log.

e Monitoring mit Mindestabstanden; keine Bus-Kollisionen.

e Bei Fehlern: klare Codes plus Klartext; Parameter (Port/Baud) schnell prifbar.

Wichtigste ,Stabiler Scan, MBus hat manchmal SSE-Log, Abort-
Technikfunktion? Fehler Endpoint
Write-Bestatigung? ,Ohne Read-Back unsicher. Read-Back + Write-Log
Aktualisierung der Werte dauert etwas
zu lange”
Monitoring? »Monitoring lauft gut aber zu wenig Zeit  Queue +
anzeigen.” Mindestabstdnde
Fehlerbild? »Timeout, Fehlermeldungen zeigen gut.”  Fehlermeldungen +
Param-Check
Sicht auf Daten? ,Tabellen und Rohwerte ok.” Detailansicht mit Roh-

/Normalwert
Ableitungen fiir das System
e SSE-Log, Abort-Flow, Read-Back verpflichtend.
e Tech-Seite mit Parametern/Logs sichtbar, jedoch geschutzt.



