Standardisierung von Agenten zur
Leistungserfassung in

Klinikinformationssystemen

MAS Software Engineering 2023 - 2025
Projektteam: Jvan Fadda, Guillaume Fricker, Benjamin Thormann
Hauptbetreuung: Tobias Biichel

Betreuung: Manuel Bauer, Tobias Biichel, Martina Lux

Inhaltsverzeichnis

€] (o 13- T PP U PP PP OO PPPPPPPPPPRNt 6
L EINIOIUNG ettt s 7
1.1 Problemstellung ..o, 7
1.1.1 Technische Herausforderungen....... e e 7
1.1.2 Probleme im operativen Betrieb.......cccoo 8
1.1.3 OrganisatorisChe DEfizite ... 8
1.2 ZIEISEIZUNG oo, 9
2 GIUNAIGEEN e 9
2.1 Klinisches INformationSSYSteM.......uuiiiiiiiiiiiiiiiiiiiiiiieerieereereerereeereeeeeeeererarerrrrrreearearrarane 9
D W =T 1] 10 o V- SO O P PP PUTPRR PPN 10
2,21 TARMED ..ottt et e e e s e s e s eenaa 10
2.2.2 TARDOC ..ttt ettt ettt et e s e st e e s nreeeeean 10
2.2.3 Tarife im KIS-KONTEXE ... c.uveeeiiieie et 11
2.3 Agentim Klinischen KONTEXtevviiiiiiiiiiiiiiiiiiiiiiiiieeeeseseeeeessseeeseeresesssssseeeerreserarrarrane 11
2.3.1 Zur Relevanz von Agenten im schweizerischen Gesundheitswesen..................... 11
2.4 Domanenspezifische und SystemabgrenzZuNng............uvvvvvvviiiiiiiiiriiiiiiieieeerereererer———. 12
T |V 1= i o To T [T PO PP P PP OPPPPOOPIP 13
3.1 Projektorganisation UNd VOIrZENENceviiiiiiiiiiiiiiiiiiieeeivieereeeeereereereesseaeeereeeeesareaareee 13
3.1.1 AufwandssChatzUuNg ... 15
3.1.2 EntwicklungSprozesscooooeeieiiiiiii e 15
I A 11 o T Ta T | VT < PP PPPPPPPPPRt 16
3.3 StaKehOldEr-ANAIYSE....coviiiiiiiiiiiiiiiiiiieeeeeeeeteeeeeee et eeeereeeereeeeerseasssesressssssssrsssssssssaresnrnnes 16
3.3.1 RO e e st e s eeeeaa 17
3.3.2 StAKENOIAEY . e 18
3.3.3 Stakeholder-IMatriXoccueeiiiniiiiie e e 18
3.4 ArchitekturentSCheidUNGENuuei e 19
S T =T [T =) (- (=T =4 =S 19
3.6 DevOps-Strategie und QualitatssiCherung.........cooovvviiiiiii e, 20
3.6.1 ENntwicklUNgSphase......ccouuuuiiiiiiiceeee e e 20
3.6.2 CI/CD PIPEIINE ..ttt e e e e e e e e e e eatrarraaaaeeas 21

ST T 1= 4 g =] o TR 21

3.6.4 MIELIIKEN oottt ettt ettt e e e e s et e e e e e s e reeeeaeeeas 21
3.6.5 Systemverteilung und Deployment.......cccciiiiiiii, 21

N o] o1 L= g =T o VAT TP PPPPPPPRS 22
4.1 Ist-Zustand / AUSEANGSIAEE ...ueeeiiuriei ettt e e e 22
4.1.1 Strukturelle Eigenschaftenueeeiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 22
4.1.2 PersistenzsChiCht...cooeiiiiiiie e 22
4.1.3 Deployment, Monitoring und Betrieb............uuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeenn 23
4.1.4 KOMMUNIKATION....ciiiiiiiiiiiiiee ettt 23
4.2 Use-Cases und Anforderungen.......cccoeeeeiiiii 23
4.2.1 Quellen fir Stakeholder- und Anforderungsanalyse...........cccuvvvvvviviviviviiiiiennnnnnnn, 23
422 AKEUIE .ttt e et e e e 23
4.2.3 USE-CaSES...ciiiiiiiiiiiiiiiiiiiiiiiiiiit it b bbb bbb bbb bbb bbb bbb bbb bbb baaae 24
4.3 Anforderungskriteriencccooeeiiiiii i 26
4.4 RaANADEAINGUNZEN ..oovviiiiiiiiiiiiiiieieieeeeeeeeeeeeteeeeesreseeseeseseeesrssssssaessssrssssasrsasssssssasrrrnnes 29
4.5 DOMAIN MOEL.....ciiiiiiiiieiiee et e e e 29
4.6 RiSIkOanalyse....ccooooeieiii i 30
4.6.1 Initial definierte RiSIKeN.........cooiiriiii i 31
4.6.2 Technische RiSIKEN c....eeiiiiieee e 31
4.6.3 OrganisatorisChe RiSIKENuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeererreeerererererrrerereerrarrrraee 32
4.6.4 Finale RiSIKOANAIYSE.......cuiviiiiiiiiiiiiiiiiiieeeieieteteeeeeeereeeeeeseserereesssereserrressesrssrrarrrrnne 34
A7 AFChITEKEUL e et e st e e s e e e 35
4.7.1 Auswertung moglicher Technologiestacksuvvvviviiiiieiiiieiiiiiiiiiiieeieeeeeereenn. 35
4.7.2 WalKing SKEIETON......ceviiiiiiiiiiiiiiiieieeeeeeeteeeeeeeeeeeeeeeeeeeeseseseesrssssssrsssrrsrssrsrrerrarrrrrre 36
4.7.3 Architekturentscheide / Architecture Decision Records (ADR’S)..........ccceeeurrneen. 37
4.8 Systemverteilung und Deployment.........cccoooiiiiiii 38
D ErBEDNISSE i 38
5.1 ProjektorganiSationueeuueuuui s 39
5.1.1 Zusammenarbeit mit der CISTEC AG....cccoiciiiiiiiiiiee ittt 39
5.1.2 Zusammenarbeit im Projektteamooovriiiiiiii i, 39
5.1.3 Arbeitsaufwande und Eigenverantwortungcccccc 39
5.1.4 RISIKOANAIYSE....ccoeeiiiiiie e e e e e e et aearaaaaaa, 40
5.1.5 Doméne und Abnahmekriterien (ADROOO7).........ccceeeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee, 40

5.1.6 Domanenspezifischer vs. generischer Framework-Prototyp..........cccccceveiinnnnnnn. 40
5.1.7 Technischer Grossausfall ...t 41
5.1.8 Auswertung RisikomatriX.......ccccceeiiiiiiiii 41
5.1.9 LeSSONS LEAINEMdciiiiiiiiiiiiiiieeee ettt ettt e e et e e e e e st ee e e e e e as 42
5.2 ARCRITEKEUL et e e e e et e e e e e e e e raees 42
5.2.1 Architekturbeschreibung........ccccciiiiii 42
5.2.2 Microservices als ArchiteKturansatzccccceveieeiiiiiee e 42
5.2.3 KommUuNiKatioNSMUSTETcoiiiiiiiiiiiiiiiee it 43
5.2.4 Evolution der Architekturentscheidungenccccccii 43
5.2.5 Architekturprinzipien und Patterns........cccccciiiiiii, 43
5.2.6 Trade-OffS .eee it 44
5.2.7 SystemuUberblick........ccooiiiiiii 44
5.2.8 TeCN-STACK.ciiiitiieie ittt 47
5.3 Systemverteilung und DeploymMent..........uuuuuuuuicccceee e 47
532 GIHOPS & FlEEL..ccci i 50
5.4 MoNItoring UNA LOZEING.....uuuuuuuuuiiiiiii s 50
5.4.1 Datenfluss und umgesetzte Architektur..............cccccc 50
5.4.2 VerwendUNEG.......cooiiiiiiiiic e, 51
5.4.3 BeKaNNtE GIreNZEN.....ceiiiiiiiieiiiiiee ettt ettt et e s s 51
5.5 QUAltAESSICREIUNG. . ettt an 51
5.5.1 Testinfrastruktur und Hilfsmittelcccoooiiiiiiiiiii e 51
5.5.2 IMELIKEN e e s s 52

B DISKUSSION ..ttt ettt e et e e sttt e s e e e st e e e eabreee s 53
T A 1= [T <ol o 1U T V=P PPPPPPPPPPRt 53
T A 1 =1 1=T oY= Y PP PPPPPPPPPPRt 53
6.2.1 Domanenspezifischer vs. generischer Framework-Prototyp.............ccccceoeeee. 53
6.2.2 Cyberangriff der CISTECAGccooeeiiiiiii e, 54
6.2.3 Enterprise-Infrastrukturccoeeei i 54
6.2.4 Kommunikation und Zusammenarbeit..........occueieiiiiiiiiiiii e 54
B.2.5 FaZI e 55
6.3 WeIterentWiCKIUNG ..ccooviiiee e e e et e e e e e e e e et e e e aaeeees 55
L 0t R |V 1= T - = @ U= U S 55
6.3.2 Transaction LOGEING ..cccuuniiiiiii it e e e e e e e e e e e e e eean 55

6.3.3 NAChGENEIEIUNG..cccie e 55
6.3.4 Monitoring Und Alerting.......cooeveiiiiiiii 56
6.3.5 NATS Queue-Groups Und JETStreamcccceiiiviiiiiiiiiee et eeeeeeaaaan 56
6.3.6 Verteilung, Deployment, DevOps, Security und Skalierungccccceeeeeeeeeennnnnee. 56

7 V4| PP P UPT PP PR PPPPPIR 57
8 Abbildungsverzeichnis. ..., 58
9 TabellenVerzeiChNisiii i e 58
10 LiteraturverzeiChniscii i e 59
11 AN AN e 60
11.1 Deklaration zu genutzten (KI)-TOOISc.uveeiieiiiiiiiiiieeee e 60
11.2 Zeiterfassung und Zeitauswertung........cccccooeeiiiiiii 61
103 DR S ittt e e s e e s e e s e b e e s e e et e e anreeeenans 63
114 USE CASES.ciiiiiiiiiiiiiiiiiiiiii 79
11.5 Produkt-Backlog......ccoooiiiiiiiiii 92
11.6 €O OF CONUUCE...coueiiiiiiiiiei ettt e e e s e s enreeeeeaas 94
11.7 Auszug aus Build-Server Und CI/CDeiiiiiuveeeeeiieee et eeereeeeeeteee e eevreeeeseaveee e 96
11.8 Technische DIiagrammecoooiiiiiiiiiii 97
12 SelbststandigkeitsErkIArUNGee s 101

Glossar

ADR: Abkiirzung fir Architecture Decision Record, also fiir eine dokumentierte
Architekturentscheidung.

Agent: Eine Software-Komponente, welche im Kontext dieser Arbeit aus bestehenden
klinischen Daten mogliche Leistungen ableitet und diese in einem regelmassigen Zeitintervall
aggregiert, verarbeitet und in eine Datenbank schreibt.

Agent-Core: Der Projektname und das Endprodukt unserer Arbeit.

Agenten-Framework: Generische Bezeichnung fiir das Agent-Core Projekt, welches
grundlegende Strukturen und gebiindelte Funktionalitdten fir die Entwicklung von Agenten
anbietet.

Agentenlauf: Gesamter Ablauf eines Agenten, also der Lebenszyklus von Start bis Stopp des
Prozesses eines Agenten.

KISIM: Krankenhausinformationssystem der CISTEC AG.

KIS / Krankenhausinformationssystem: Zentrale Dokumentationssoftware im klinischen
Bereich.

Kurve: Patient:innendaten, welche in einer gesundheitlichen Institution wahrend des
Aufenthalts laufend erfasst und konsultiert werden.

Leistung: Eine erbrachte medizinische Tatigkeit, ein Medikament, oder ein medizinisches
Material.

Leistungserbringer:in: Medizinische Fachperson, die eine Leistung ausfiihrt - z. B. Arzteschaft,
Pflegefachperson, Anéasthesist:in, Psychiater:in.

Leistungserfassung: Allgemeiner Begriff fiir die Dokumentation einer erbrachten
medizinischen Leistung in einem KIS, bezogen auf Patient:in und Fall.
Leistungsgenerierung: Das Gleiche wie die Leistungserfassung, spezifisch auf Agenten
bezogen.

Nachgenerierung: Erneute Erstellung oder Generierung von Leistungen basierend auf die
aktuelle Datenlage (z. B. bei Problemen im ERP oder Bugs im Agenten).

PO: Product Owner.

PVC: Persistent-Volume-Claim (Kubernetes-Ressource).

Shift Left: Arbeitsweise, damit die Verifikation eines Prozesses so friih wie moglich geschieht.
Sofortexport: Im Bereich der Leistungserfassung als “sofortige Rechnungsstellung” zu
verstehen, z. B. wenn Patient:in ein Medikament erhalt und dies gleich vor Ort im Spital
bezahlt, um anschliessend gleich wieder nach Hause zu gehen.

TARDOC: Leistungskatalog im Schweizer Gesundheitswesen ab 2016 (siehe Kapitel 2.2.2).
TARMED: Leistungskatalog im Schweizer Gesundheitswesen seit 2004 (siehe Kapitel 2.2.1).

1 Einleitung

Die CISTEC AG entwickelt und betreibt das Klinikinformationssystem KISIM. KISIM unterstitzt
die tagliche Arbeit von medizinischen Fachkriften (Arzt:innen, Pflegende, weitere
Spezialist:innen) im Schweizer Gesundheitswesen mit einem Fokus auf Akutspitéler und
Psychiatrien.

Die Leistungserfassung in Spitalern dient zur Erfassung und Abrechnung von medizinischen
Leistungen bei Krankenkassen oder Patient:innen und ist ein komplexer Prozess. Entsprechend
wird die Leistungserfassung durch verschiedene Tarifsysteme geregelt —im Schweizer
Gesundheitswesen sind das TARMED oder TARDOC.

Das KISIM bietet fur diesen Anwendungsfall eine integrierte Leistungserfassung an, welche
Fachkrafte dabei unterstiitzt, abrechnungsrelevante Leistungen zu erfassen. Ziel der
Leistungserfassung ist es, abrechnungsrelevante Leistungen (Eingriffe, Konsultationen,
Medikamente, Materialien etc.) moglichst vollstdndig zu dokumentieren, damit die erbrachten
Leistungen eines Spitals oder einer Klinik korrekt in Rechnung gestellt werden kdnnen.

Um die Leistungserfassung teilweise automatisieren zu knnen, fihrte die CISTEC AG im
Rahmen des KISIM sogenannte Agenten ein, welche nach spezifizierter Logik zusatzliche
Leistungsdaten generieren kénnen. Dies spart den Anwender:innen von KISIM viel manuellen
Erfassungsaufwand ein. Diese Agenten des KISIM Moduls Leistungserfassung unterstiitzen den
Prozess der Leistungserfassung, indem sie automatisch vorhandene Leistungen, Berichte und
Termindaten durchsuchen, um daraus beispielsweise Folgeleistungen, ganze Leistungsblocke
oder ergdnzende Leistungen fiir die Abrechnung bereitzustellen. Diese Automatisierung
entlastet die Fachkrdfte im Bereich der Dokumentation und reduziert den manuellen

Erfassungsaufwand erheblich.

1.1 Problemstellung

Die CISTEC AG betreibt im klinischen Alltag ungefahr ein Dutzend produktiver Agenten zur
automatisierten Leistungserfassung auf zahlreichen Kundensystemen. Diese Agenten laufen als
nachtliche Cron-Jobs und generieren Leistungen auf Basis fachlicher Regeln wie Terminstatus,
laufende Massnahmen oder Dokumentationsdaten. Obwohl sie funktional ihren Zweck
erfillen, zeigen sich im Betrieb eine Reihe technischer und organisatorischer Probleme: Der
aktuelle Zustand der Agentenlandschaft bei der CISTEC AG ist von heterogenen
Implementationen, einem hohem Wartungsaufwand und eingeschrankter Transparenz
gepragt. Die technische Architektur fiihrt zu erheblichen Einschrankungen in Skalierbarkeit und
Robustheit. Fiir die Mitarbeitenden bedeutet dies eine erhéhte Komplexitat bei
Nachgenerierungen, unklare Fehleranalysen und einen hohen Abstimmungsaufwand zwischen
Fach- und Entwicklungsteam. Diese Ausgangslage unterstreicht die Notwendigkeit einer
standardisierten, modularen und zukunftsfahigen Framework-Losung, welche die aktuellen

Pain Points adressiert.

1.1.1 Technische Herausforderungen
Die bestehenden Agenten wurden jeweils individuell implementiert, also ohne ein

gemeinsames Framework oder eine wiederverwendbare Bibliothek. Daraus ergeben sich

folgende Probleme:

Hoher Wartungsaufwand: Jeder Agent bringt eigene Abhangigkeiten, Treiber und Bibliotheken
mit. Updates mussen fir jeden einzelnen Agenten durchgefiihrt werden, wodurch redundanter
Aufwand entsteht. Copy-Paste-Code fiihrt zudem zu Inkonsistenz und erhéhter
Fehleranfalligkeit.

Datenbankabfragen: Agenten greifen direkt auf die relationale Datenbank zu und formulieren
eigene SQL-Abfragen. Dadurch lassen sich Performance-Probleme nicht zentral optimieren.
Hinzu kommt, dass Abfragen in der Regel sequenziell ausgefiihrt werden und bei wachsendem
Datenvolumen kaum skalieren.

Deployment-Struktur: Jeder Agent wird als eigenstdandiges Deployment in Kubernetes
betrieben. Dabei missen Deployment-Konfigurationen fiir jeden Agenten erneut erstellt und
gepflegt werden.

Keine Statusupdates der Records: Scheitert ein Agentenlauf (z. B. wegen Datenbankausféllen
Uber Nacht), werden die verpassten Leistungen nicht beim nachsten Lauf automatisch
aufgegriffen. Eine explizite Wiederanlauf- oder Recovery-Logik fehlt. Bei solchen Fallen kann
mindestens ein ganzer Tag an generierten Leistungen komplett verloren gehen. Sollte der
Ausfall Gber mehrere Tage unbemerkt bleiben, kann dies auch zu finanziellen Verlusten bei
den Spitélern fihren.

Kein Monitoring: Es existieren weder ein konsolidiertes Dashboard liber alle Agenten noch ein
Alerting System. Fehlerhafte Laufe oder Stillstdnde bleiben oft unbemerkt, bis

Fachanwender:innen auf fehlende Leistungen hinweisen.

1.1.2 Probleme im operativen Betrieb

Neben den technischen Defiziten ergeben sich im taglichen Betrieb weitere Pain Points:
Aufwandige Nachgenerierungen: Wenn Leistungen nachtraglich exportiert werden miissen
(z. B. bei einem ERP-Fehler), setzen Entwickler:innen manuell Start- und Enddatum im
Deployment-Chart. Aufgrund schwacher Skalierung miissen Zeitrdume in kleine Pakete zerlegt
werden. Eine Nachgenerierung von drei Monaten kann dadurch dutzende manuelle
Iterationen erfordern und mehrere Stunden Arbeit in Anspruch nehmen.

Fehleranalyse und Debugging: Ohne einheitliche Logs und Monitoring ist die Ursachenanalyse
auf Produktion zeitintensiv. Entwickler:innen missen tief in die jeweilige Agentenlogik

einsteigen, was durch fehlende Standards stark erschwert wird.

1.1.3 Organisatorische Defizite

Die fehlende Standardisierung schlagt sich auch in der Organisation nieder:

Keine klaren Guidelines: Es existiert keine Definition, was einen korrekt implementierten und
sich korrekt verhaltenden Agenten ausmacht. Best Practices sind nicht dokumentiert und neue
Entwickler:innen missen sich in jeden Agenten separat einarbeiten. Das verlangert
Einarbeitungszeiten und Projektlaufzeiten erheblich.

Unklare Verantwortlichkeiten: Ohne exaktes Monitoring ist nicht klar, wer die korrekte
Ausfiihrung tiberwachen soll. Entwickler:innen werden regelmassig ad hoc mit manuellen

Nachgenerierungen betraut. Fachanwender:innen haben keine Moéglichkeit, Logs einzusehen

oder Nachgenerierungen selbst anzustossen.

1.2 Zielsetzung

Die CISTEC AG hat sich aus den gerade aufgefiihrten Griinden dazu entschieden, den
Prototypen eines entsprechenden Agenten-Frameworks in Form dieser Masterarbeit in Auftrag
zu geben. Es soll ein standardisiertes technisches Grundgeriist erschaffen werden, welches die
spezifischen Pain-Points der CISTEC AG adressiert, um so die Arbeit mit bestehenden Agenten
massgeblich zu vereinfachen und die Umsetzung zukiinftiger Agenten effizient, wartbar und
skalierbar zu gestalten. Das Framework soll zentrale Funktionen biindeln, die
Wiederverwendbarkeit von Logiken ermdglichen, sowie die Effizienz und Qualitat der
Entwicklung steigern. So soll eine Grundlage fiir Agenten geschaffen werden, welche es
ermoglicht, nur noch die spezifischen Businesslogiken auf Agentenebene zu implementieren.
Andere Basisfunktionen wie zum Beispiel Authentifizierung, Datenbankverbindung sowie

Bausteine flir die Datenverarbeitung werden zentral bereitgestellt.

2 Grundlagen

Um den Kontext dieser Arbeit nachvollziehen zu knnen, werden nun die wesentlichen
Konzepte aus dem Fachbereich der Spitalinformatik erldutert, welche fiir das Verstandnis
essenziell sind. Die folgenden Kapitel legen als Wissensbausteine das bendtigte Fachwissen
dar, um den groben Grundriss der fachlichen Doméane zu erfassen: den klinischen Kontext der

Leistungserfassung im Zusammenhang mit der CISTEC AG.

2.1 Klinisches Informationssystem

Ein Klinikinformationssystem (KIS) bildet die zentrale digitale Infrastruktur eines Spitals.

Es umfasst alle IT-Anwendungen, welche die medizinischen, pflegerischen und administrativen
Prozesse unterstlitzen und miteinander verbinden. Wahrend einzelne Abteilungssysteme (z. B.
Labor, Radiologie) jeweils spezifische Aufgaben abdecken, verfolgt ein KIS den Anspruch, die
Vielzahl dieser Systeme zu integrieren und zentral eine einheitliche, patientenorientierte
Datenbasis bereitzustellen.

In der Medizininformatik existieren zahlreiche Begriffe, welche im Zusammenhang mit
elektronischen Informationssystemen verwendet werden. Prokosch (2001) weist darauf hin,
dass darunter haufig eine gewisse “Begriffsverwirrung” besteht (S. 1-2). So werden neben KIS
auch Bezeichnungen wie Klinisches Arbeitsplatzsystem (KAS), Elektronische Krankenakte (EKA),
Elektronische Patientenakte (EPA) oder Elektronische Gesundheitsakte (EGA) genutzt.
Wahrend KAS typischerweise einzelne klinische Arbeitsplatze adressiert, beschreibt das KIS die
Gesamtheit aller Systeme, die ein Spital in seinen Abldufen unterstitzen (Prokosch, 2001, S. 1-
2). Wichtig ist dabei, dass ein KIS nicht als einzelnes Produkt verstanden werden kann.
Vielmehr handelt es sich um einen konzeptionellen Rahmen, innerhalb dessen sich die
verschiedenen Anwendungen eines Spitals entwickeln und liber Schnittstellen integriert
werden. Ziel ist die Schaffung einer koharenten und durchgangigen Informationslandschaft.

Im Schweizer Kontext wird der Begriff Klinikinformationssystem (KIS) bevorzugt, da er die

Gesamtversorgung innerhalb eines Spitals adressiert und nicht nur die Verwaltung betont.

Ein prominentes Beispiel ist das KISIM, welches von der CISTEC AG entwickelt und unterhalten
wird und als Grundlage fiir diese Arbeit dient. KISIM wird insbesondere in Akutspitdlern und
psychiatrischen Kliniken eingesetzt. Es unterstiitzt die Dokumentation und Steuerung klinischer
Prozesse, die Leistungserfassung sowie administrative Ablaufe. Durch die modulare Architektur
lassen sich medizinische Kernprozesse mit abrechnungsrelevanten Anforderungen im Rahmen
von TARMED oder TARDOC verbinden. Damit entspricht KISIM dem in der Literatur
beschriebenen Verstandnis eines KIS als integrierte Plattform, die verschiedene Anwendungen
bindelt und eine durchgadngige Nutzung von Patientendaten ermdglicht. Dieser monolithische
Datenfluss von Patienten- und Falldaten v KISIM wurde auch als Grundlage fiir das Verstandnis
in der Konzeptphase dieser Arbeit herangezogen. Wir beziehen uns im Verlauf dieser Arbeit
wie im deutschsprachigen Raum gewdhnlich auf die Begrifflichkeit “KIS”.

2.2 Leistung

Die Leistungserfassung ist ein zentraler Bestandteil der Spitalorganisation und der Abrechnung
medizinischer Dienstleistungen. Unter diesem Begriff versteht man die strukturierte Erfassung
und Dokumentation aller von Leistungserbringenden (z. B. Arzt:innen, Pflegefachpersonen,
Therapeut:innen) erbrachten medizinischen Leistungen, um diese gegenlber Kostentragern
(insbesondere Krankenversicherungen) abrechnen zu kénnen.

In der Schweiz erfolgt die Abrechnung ambulanter arztlicher Leistungen im Wesentlichen nach
einheitlichen Tarifsystemen, die von weiteren gesundheitlichen Akteuren (Krankenkassen,
Arzteschaft, Spitdlern und dem Bundesamt fiir Gesundheit) ausgehandelt und vom Bundesrat

genehmigt werden.

2.2.1 TARMED

TARMED ist seit 2004 der schweizweit giltige Einzelleistungstarif flir ambulante Leistungen.
Jede medizinische Handlung (zum Beispiel eine Konsultation, Untersuchung oder Intervention)
ist in Form einer Tarifposition abgebildet und mit einem bestimmten Punktewert versehen.
Dieser Punktewert wird mit einem regional unterschiedlichen Taxpunktwert multipliziert,
woraus sich der Preis der Leistung ergibt. TARMED deckt das gesamte Spektrum ambulanter
arztlicher Leistungen ab und ist fiir Spitaler ebenso verbindlich wie fir niedergelassene
Arzt:innen (FMH Swiss Medical Association, 2025).

2.2.2 TARDOC

TARDOC ist als Nachfolgetarif zu TARMED entwickelt worden. Ziel ist es, den veralteten und
vielfach kritisierten TARMED-Tarif abzul6sen und eine zeitgemasse, medizinisch wie
O0konomisch korrekte Abbildung arztlicher Leistungen zu schaffen. TARDOC beriicksichtigt
unter anderem den tatsachlichen Ressourcenverbrauch (Zeitaufwand, Infrastruktur,
Qualifikation) und soll eine transparentere und differenzierte Abrechnung erméglichen. Die
Einfihrung des neuen Tarifs ist fir den 01.01.2026 geplant (FMH Swiss Medical Association,
2025).

10

2.2.3 Tarife im KIS-Kontext

Fir Spitaler bedeutet die Leistungserfassung nach TARMED / TARDOC einen hohen
organisatorischen und administrativen Aufwand. Leistungen missen vollstandig, korrekt und
zeitnah erfasst werden, um einerseits eine faire Verglitung zu erhalten und andererseits
Transparenz gegeniiber Versicherern zu gewahrleisten. KISIM unterstitzt diesen Prozess durch
die integrierte Leistungserfassung mit der Dokumentation von Leistungen. Zusatzlich (und der
Hauptfokus in dieser Arbeit) findet auch die automatisierte Generierung von Zusatzleistungen
durch hinterlegte Logiken oder sogenannte Agenten statt, welche erbrachte, aber noch nicht
dokumentierte Leistungen identifizieren und diese automatisch erfassen.

2.3 Agent im klinischen Kontext

In der Domanensprache der CISTEC AG ist ein Agent eine Softwarekomponente, die
automatisch und wiederkehrend spezifische Aufgaben zur Datenverarbeitung und
Datengenerierung libernimmt. Ein Agent ist Teil des KISIM-Moduls Leistungserfassung.

In der CISTEC AG werden diese Agenten verwendet, um in diversen Use-Cases abrechenbare
Leistungen fiir die Leistungserfassung zu generieren.

Diese Agenten laufen auf Kubernetes-Clustern als {iblicherweise einmal nachtlich ausgefiihrte
CRON-Jobs, um so die notwendigen Daten zu verarbeiten und zu generieren. Diese Daten
werden anschliessend ausserhalb des KISIM-Moduls Leistungserfassung und / oder ausserhalb
von KISIM weiterverwendet — z. B. durch die Spitéler flr das Controlling und in der
Rechnungserstellung.

Um die notwendigen Informationen fiir die Leistungserfassung zu generieren, fragen Agenten
die bendtigten Daten aus einer klinischen Datenbank ab (z. B. Leistungen, Termine,
Kurvenmassnahmen). Dies geschieht aktuell Gber individuell erstellte und in jedem Agenten
hart-codierte SQL-Statements oder Uber vorhandene GraphQL-Schnittstellen, welche den

Backend-Service aus der Leistungserfassung ansprechen.

2.3.1 Zur Relevanz von Agenten im schweizerischen Gesundheitswesen

Die Agenten verkorpern fir die CISTEC AG ein wichtiges Verkaufsargument, denn viele
Kund:innen zoégern bei der Neueinflihrung eines KIS, ob die Projektkosten fiir die Einfihrung
der KISIM Leistungserfassung als Modul in der jeweiligen gesundheitlichen Institution die
Mehrkosten fir sie berechtigt. Konkurrenzprodukte bieten oftmals auch eine von KISIM
losgel6ste Leistungserfassung an, welche die gesetzlichen Vorgaben des Bundes erfiillt.
Durch das Angebot der Leistungsagenten wird die Leistungserfassung entsprechend erweitert
und kann den Erfassungsaufwand in verschiedenen Fachbereichen mit automatisierten
Erfassungen von Zusatzleistungen signifikant entlasten und den Kostendruck der Abteilungen
dampfen. Die Agenten heben die Leistungserfassung der CISTEC AG von anderen Produkten
ab, wodurch sich die Leistungserfassung mit KISIM mittlerweile als beliebte Alternative im

schweizerischen Gesundheitswesen etabliert hat.

11

2.4 Domadnenspezifische und Systemabgrenzung

Softwareentwicklung im Schweizer Gesundheitswesen erfordert ein tiefgreifendes Verstandnis
liber Gesetzgebungen, Prozesse, kontextbezogene Spezialanforderungen sowie ein fachliches
und medizinisches Verstandnis. Oftmals sind im Gesundheitswesen Legacy-Systeme im Einsatz,
was dazu fihrt, dass viele Losungen nicht optimal umgesetzt sind. Dies kann auch die
Einarbeitung in eine Fachdomane und das Verstandnis fiir die Implementation teils stark
erschweren.

Aus diesen Griinden wurde im Rahmen dieser Arbeit bewusst darauf verzichtet, die aktuellen
Agenten, welche bei der CISTEC AG aktuell produktiv im Einsatz sind, nachzubilden.

Die bestehenden Agenten wurden jedoch tiefgreifend fiir die Problemanalyse und zur
Bestimmung von technischen Anforderungen verwendet. In der Umsetzung wurde versucht,
diese nachzubilden, was sich als zu aufwandig und wenig zielfihrend fiir den Rahmen dieses
Projekts herausstellte. Daher wurden fiir die Implementation eigene Szenarien entwickelt,
welche sich von bestehenden Agenten inspirieren liessen, ohne dabei das Fachwissen
abzubilden. Zudem bearbeiten die tatsachlich eingesetzten Agenten der CISTEC AG unter
anderem personenbezogene und andere sensible Daten. Diese Sicherheitsaspekte wurden im
Rahmen dieser Arbeit abgegrenzt. Darunter fallen die Authentifizierung im
Nachrichtenaustausch zwischen Diensten, das Loggen bestimmter Daten sowie der Zugriff auf

Log-Ausgaben, sichere Passworter sowie deren Verschlisselung.

= - A R

KISIM bedienen, DB % ERP

¥ i KISIM L
eistungen erfassen v
0 beinhaltet Modul erfassung Daten erhalten, Datenzugriff fir
CRUD-Operationen ausfihren | Rechnungsstellung | |

/ \ Agenten entwickeln und anpassen,
Endkund:in Agentenbetrieb steuern und dberwachen

(Systemadministration,

medizinisches
Fachpersonal) % f
Austausch Gber bendtigte Agenten A —>’ \

und Anderungswiinsche /7 N\ Agentenbetrieb einsehen.
Reporter Anden
weitergeben

N 4

Abb. 1: Systemkontextdiagramm

Modul
istt

Unser Augenmerk liegt auf dem Modul Leistungserfassung, welches unser System abbildet
(siehe Abb. 1: Systemkontextdiagramm, rot eingefarbt). Im zugehoérigen Kontext (gelb) steht
links die KISIM-Software, die unter anderem das Leistungserfassungs-Modul als Baustein sowie
bestehende TARMED/TARDOC-Tarifregelwerke beherbergt. Auf der rechten Seite befindet sich
die Datenbank, welche erfasste sowie generierte Leistungen persistiert. Der Reporter ist am
Zustand des Systems interessiert, wahrend der Maintainer treibender Akteur unserer Use-
Cases ist. Der Maintainer nutzt, wartet, pflegt und entwickelt das System weiter.

Folgende Beziehungen sind kontext-agnostisch zu betrachten: Die Beziehungen zwischen dem
System und dem Endkunden sowie die Beziehung zum ERP-System, welches unter anderem
auf Grundlage der Leistungen Rechnungen erstellt. Der Endkunde wiederum erfasst (iber KISIM

Termine, Berichte und Dokumente.

12

3 Methodik

3.1 Projektorganisation und Vorgehen

Das Projektteam setzte sich aus den Studierenden zusammen, weitere Projektbeteiligte waren
die Betreuer der OST und Ansprechpersonen der Auftraggeberin CISTEC AG (vgl. Tab. 1
Ubersicht (iber Projektbeteiligte und Projektrollen).

Projektrolle Organisation | Person Aufgabe
Studierende / OST Jvan Fadda, Konzeption, Implementation und
Projektteam Guillaume Fricker, Dokumentation des Agenten-

Benjamin Thormann | Frameworks

Hauptbetreuer OST Tobias Biichel Methodische Begleitung
Betreuer OST Tobias Biichel, Formale Abnahme der

Manuel Bauer Masterarbeit, Zwischenreview
Auftraggeberin CISTEC AG Martina Lux Bereitstellung von Use Cases und

Feedback zur korrekten

Umsetzung der Anforderungen

Auftraggeberin CISTEC AG David Gaudliz Fachliche Unterstiitzung bei
technischen Fragestellungen zu
Anforderungen im Bereich DevOps

und Developer Experience.

Tab. 1: Ubersicht iiber Projektbeteiligte und Projektrollen

Zur Umsetzung wahlten wir ein hybrides Vorgehensmodell: Auf héchster Ebene definierten wir
Phasen, ein klassisches Element aus der Wasserfall-Planung (vgl. Abb. 2: Projektplan zu

Projektbeginn).

> '\é‘ ‘\h“ w?v Sl A \,\ﬁa o),)"JV ‘.\\-‘ & mv & v"'\(\h o d"¢ &o‘ \.\‘ s
Projektsetup n
Requirements Engineering | e]
Architekturprototyp I
Zwischenreview mit Betreuer [s |
Feature-Freeze & Finalisierung [1|
Abgabe Masterarbei |2
Varbereitung Prisentation | s]

w Arbeitstage

Abb. 2: Projektplan zu Projektbeginn

13

Jede Phase hat ein Start- und Enddatum. Arbeitspakete werden als Tickets bzw. Issues erfasst
und einer Phase zugewiesen. Innerhalb der Phasen wird agil gearbeitet, und zwar mit
wochentlichen Iterationen im Projektteam (Weekly) und in zusatzlichen Feedbackschleifen mit
den weiteren Projektbeteiligten (siehe Tab. 1: Ubersicht tiber Projektbeteiligte und
Projektrollen). Im Weekly bespricht das Projektteam mithilfe eines gemeinsamen Issue Boards
Prioritdt und Status der anstehenden und aktuellen Tasks sowie aktuelle Probleme (vgl. Abb. 3:
Kollaboration und Kommunikationsablauf im Entwicklungsprozess).

Die Feedbackschleifen bestehen aus einem initialen Kick-off und einem mindestens
vierteljahrlichen Austausch mit der Auftraggeberin sowie aus zweiwochentlichen Meetings mit
dem Hauptbetreuer. Mit diesem Vorgehen soll die gebrauchte Flexibilitat und Kommunikation
zwischen allen Projektbeteiligten sichergestellt und realistisch gestaltet werden.

Quarterly
Auftraggeberin
CISTEC
Projektteam Bi-Weekly
Hauptbetreuer
OSsT
Weekly
ADR
Plannini Backlo Tickets
Review & 9 g

Retro

Abb. 3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess

Als Tool zur Projektorganisation wurde GitLab verwendet, sodass wir das Repository, die
genutzten Build Pipelines, unsere Meilensteine sowie Arbeitspakete in Form von Issues direkt
mit einbeziehen und bei Bedarf untereinander verlinken konnten.

Im Rahmen der wochentlichen Iterationen organisierten wir unsere Projektarbeit mittels Issue
Board Spalten (Open, WIP, Hold, Closed) und Labels.

Letztere nutzten wir zur Aufwandschatzung, dem Markieren von besonderen Issue Typen und
zum Erweitern der Issue Board Spalten wie folgt (Tab. 2: Nutzung und Erklarung der genutzten
Labels):

14

Label-Nutzung

Label

Label-Erklarung

Issue Typ

discussion

Issue mit Unklarheiten. Zur Markierung von
Besprechungsbedarf fir das Weekly des
Projektteams.

documentation

Dokumentations-Tasks.

Issue Status

=7

old

Blockiertes Issues, z. B. durch ausstehendes
Review. Grundlage fir Issue Board Spalte.

Work in progress, also aktuell bearbeitetes Issue.

Grundlage fir Issue Board Spalte.

Issue mit Bugs oder zur Behebung von Bugs.

®

Totenkopf: Aktuell tot. Zu gross fir den Projekt-

Scope oder tiefere Abklarungen bendtigt.

Aufwandsschatzung

o B

Erdbeere: Kleines Arbeitspaket (1 Tag).

22

Apfel: Mittleres Arbeitspaket (2 bis 3 Tage).

RNk

Ananas: Grosses Arbeitspaket (4 bis 6 Tage).

Tab. 2: Nutzung und Erkldrung der genutzten Labels

3.1.1 Aufwandsschatzung

Um abschatzen zu kénnen, wie viele Arbeitspakete wir in einer Iteration tatsachlich umsetzen

und damit wir unser Projektmanagement entsprechend verbessern kénnen, bewerteten wir

wahrend unserer Weeklys den Aufwand unserer Arbeitspakete. Den geschatzten und

tatsdchlichen Aufwand hielten wir auf Issue-Ebene mit Labels fest (vgl. Tab. 2: Nutzung und

Erklarung der genutzten Labels). Zur Grosseneinteilung der Arbeitspakete haben wir einen Tag

als die Anzahl Stunden definiert, die wir berufsbegleitend fir das Studium leisten kénnen (ca. 2

bis 6 Stunden). Zur weiteren Unterscheidung fiihrten wir blaue Labels zur Aufwandschatzung

und violette Labels fiir den tatsachlichen Aufwand ein.

3.1.2 Entwicklungsprozess

Der festgelegte Arbeitsablauf |asst sich anhand von Abb. 4: Branching sowie Build- und

Deploymentprozess im Entwicklungsprozess nachvollziehen: Arbeitspakete werden als Tickets

bzw. GitLab Issues im Backlog erfasst. Das Backlog besteht aus allen Issues, welche sich in

keiner Issue Board Spalte befinden. Wahrend der Weeklys werden Issues zugewiesen und auf

einem eigenen Branch implementiert. Vor der Zusammenfiihrung mit dem

Hauptentwicklungszweig missen zuerst ein erfolgreich abgenommenes Code Review und ein

erfolgreicher Gitlab CI/CD Pipeline Durchlauf erfolgt sein. Stellt sich bei einem dieser Schritte

15

https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels

heraus, dass die Implementation angepasst werden muss, wird dies durch die
implementierende Person erledigt und der Prozess wird wieder beim Code Review oder dem
Gitlab CI/CD Pipeline Durchlauf weitergefuhrt. Zuletzt entsteht ein Artefakt, das bezogen und
deployed werden kann.

Backlog
mit Tickets
on Fail on Fail
Ticket
! ’ Review ‘
Branching Implementation Testing Integration .

AN GitLab CI/CD

Request Change

Abb. 4: Branching sowie Build- und Deploymentprozess im Entwicklungsprozess

3.2 Risikoanalyse

Zur systematischen Bewertung moglicher Unsicherheiten im Projekt wurde eine Risikoanalyse
in drei Etappen durchgefiihrt. Dieses Vorgehen erlaubte es, sowohl friihzeitig identifizierte
Risiken aus der Planungsphase als auch neu auftretende Risiken wahrend der Umsetzung zu
bericksichtigen und auf Probleme zu reagieren. Die Risikoeinschatzung erfolgte mit der
folgenden Formel: Risiko = Wahrscheinlichkeit x Einfluss.

Wir beriicksichtigten folgende Messwerte: niedrig (1-2), mittel (3—4), hoch (6-9).

Zur grafischen Darstellung wurden pro Etappe Risikomatrizen erstellt.

3.3 Stakeholder-Analyse

In diesem Abschnitt werden die fiir das Projekt relevanten Stakeholder festgehalten, ihre
Rollen und Interessen beschrieben, sowie ihre Bedeutung fiir den Projekterfolg eingeschatzt.
Die Analyse dient als Grundlage, um potenzielle Konflikte frihzeitig zu erkennen, Prioritdten in
der Zusammenarbeit zu setzen und sicherzustellen, dass die Projektziele im Einklang mit den
Anforderungen der Stakeholder erreicht werden kénnen.

Aufgrund der Cyberattacke auf die CISTEC AG war der Projektstart in der wichtigen Kickoff-
Phase stark beeintrachtigt (Jochum, 2025). Daher wurde die Stakeholder-Analyse bewusst

minimal gehalten, um so auf die initialen Unsicherheiten eingehen und reagieren zu konnen.

16

3.3.1 Rollen

Fiir die Projektumsetzung wurden drei zentrale Rollen definiert:

Rolle Beschreibung Interessen und Ziele
Product Verantwortlich fur die fachliche Interessen der Endkund:innen
Owner Ausrichtung des Projekts. Definiert die abholen und stellvertreten.
erwarteten Features, priorisiert diese und | Bediirfnisse der Endkund:innen
fungiert als zentrale Schnittstelle zwischen | realisieren. Maintenance-
der CISTEC AG und dem Projektteam. Der | Aufwand der Maintainer
Product Owner hat ein grosses Interesse verringern.
an einer erfolgreichen Zusammenarbeit Neu- und Weiterentwicklungen
mit dem Projektteam und an der Erflllung | schnell umgesetzt bekommen.
der gestellten Anforderungen aus dem
Projekt. Definiert und priorisiert
Anforderungen, gibt Feedback zu Use-
Cases und Gbernimmt die Endabnahme.
Reporter Zustandig fir die Analyse des Monitorings | Einzelne Agenten in einem
und die Einsicht der Logs. In einem Monitoring einsehen.
Business-Alltag ware der Reporter auch Endkund:innen die Moglichkeit
die erste Anlaufstelle fur Endkund:innen, bieten, Agenten selbst zu
falls diese Auskunft zu den Agenten haben | bedienen.
mochten.
Der Reporter hat ein hohes Interesse
daran, Uber eine grafische
Benutzeroberflache rasch an die
relevanten Logs zugreifen zu kénnen.
Maintainer | Ubernimmt die technische Verantwortung | Simple, reproduzierbare
fir die langfristige Wartbarkeit und Konfiguration von Agenten.
Stabilitat der Lésung. Sorgt in einem Angenehme und effiziente
Business-Alltag fiir operativen Betrieb und | Developer Experience.
ist interessiert an technisch durchdachten | Maintenance-Aufwand
Losungen und kann bei der Developer verringern und moglichst
Experience mitreden. automatisieren. Abldufe und
Architektur optimieren, um Zeit
einzusparen und einfacher
verstandliche Agenten.

Tab. 3: Rollendefinition

17

3.3.2 Stakeholder
Die folgende Matrix fasst die relevanten Stakeholder mit ihren Rollen, Interessen und

Einflussmoglichkeiten zusammen:

Name

Martina Lux

David Gaudliz

- Aufgrund des erhoéhten
Workloads durch die erfolgte
Cyberattacke eingeschrankt
(substituiert durch Guillaume
Fricker)

Rollen

Product Owner, Reporter

Maintainer

Einfluss

Hoch

Niedrig

Interesse

Hoch

Mittel

Kontaktkanile

Bei Bedarf, direkt per E-Mail oder
vor Ort bei CISTEC AG

Eingeschrankt verfligbar,
Kommunikation tber Guillaume

Fricker oder Gruppentreffen

Verfiigbarkeit Lange Ferien vorausgeplant Keine Kapazitat, fir Engineering-
- Mitte Juni bis Mitte August Inputs nur fir kurze Austausche
kontaktieren.
Fachwissen Hohes fachliches Know-How. Hohes technisches Know-How.

Tab. 4: Stakeholder-Liste

3.3.3 Stakeholder-Matrix

Die Stakeholderanalyse zeigt deutlich auf, dass Martina Lux als Hauptansprechperson sehr

wichtig flr den Erfolg des Projekts ist. David Gaudliz sollte beim Projekt moglichst entlastet

werden, aber es kann auf spezifische Bediirfnisse des Maintainers eingegangen werden.

r 3

Meet their needs

Key player

Influence/power of stakeholders

Least important Show consideration

v

Interest of stakeholders

Abb. 5: Stakeholder-Matrix

18

3.4 Architekturentscheidungen

In der Entwicklung entpuppen sich falsche Annahmen und Unwissenheit meist wahrend der
Umsetzung. Dies kann je nach Problem zu einer grésseren oder kleineren Auswirkung fiihren.
Wir mochten mittels ADR’s festhalten, welche Entscheide wir als Team getroffen haben und
deren Auswirkungen aufzeigen, so dass solche Entscheidungen im Nachgang chronologisch
nachverfolgbar und nachvollziehbar sind, auch fir CISTEC AG.

Ein ADR (Architectural Decision Record) ist die Kurzbeschreibung einer einzelnen getroffenen
Architekturentscheidung: Sie beschreibt den Kontext, vor dem die Entscheidung getroffen
wurde, die eigentliche Entscheidung und deren Folgen. Ausserdem fihrt ein ADR den Status
der Entscheidung. Gerade in einem iterativen Vorgehen ist der Status wichtig, da sich eine
Entscheidung andern kann, wenn die Situation es verlangt. Fiir das Vorhaben der
Architekturentscheidungen folgen wir dem Architectural Decision Records Schema nach
Nygard (Nygard, 2011).

Unsere ADR-Schablone ist wie folgt:

Titel: Bestehend aus Laufnummer und einer sehr knappen Zusammenfassung der
Architekturentscheidung.

Status: Status der Entscheidung (vorgeschlagen, angenommen, abgelehnt, veraltet, ersetzt).
Kontext: Welches Problem sehen wir, das uns zu dieser Veranderung oder Entscheidung
motiviert?

Entscheidung: Welche Verdnderung schlagen wir vor und / oder setzen wir um?

Folgen: Was wird aufgrund dieser Verdanderung einfacher? Was wird aufgrund dieser

Veranderung schwieriger?

3.5 Testing Strategie

Unsere Testing Strategie lasst sich wie folgt
zusammenfassen:
1. Alle Tests sind durchgangig nach dem “Arrange-
Act-Assert”-Muster erstellt.
2. Mittels Unit-Tests prifen wir die reine Logik mit
minimalen Abhangigkeiten.
3. Die E2E-Tests haben eine hohe Prioritat, weil
unser System mit verteilten Services und
LS L Messaging arbeitet, wo potenziell viele Fehler
entstehen.
4. Nicht-funktionale Tests (z. B. ein gezielter
Abb. 6: Microservices Testing-Strategie Stresstest) bleiben unterstiitzend, sind aber nicht

(Schaffer, 2018) im Vordergrund.

Integrated

Integration

Damit folgt unsere Teststrategie am ehesten dem Testing-Honeycomb-Prinzip (vgl. Abb. 6:
Microservices Testing-Strategie), welches speziell fiir Microservice-Architekturen sinnvoll ist.
Der Grund ist, dass Microservices eher klein sind und deren Komplexitat nicht in der Business-
Logik liegt, sondern vielmehr in der Interaktion mit anderen Services. Daher sollte gemass dem
Testing-Honeycomb-Prinzip der Fokus auf der Interaktion mit anderen Services liegen.

Ein weiterer Aspekt ist, dass der Schwerpunkt dieser Arbeit nicht darauf lag, die fachliche Logik

der Agenten so weit wie moglich abzudecken — die Agenten dienen lediglich als Beispiele.

19

Unser Augenmerk richtete sich bewusst darauf, schnelle und solide E2E-Tests schreiben zu
kénnen und somit die Entwicklungszeit auch beim Schreiben von Tests zu reduzieren.

Flir E2E-Tests haben wir die erforderlichen Infrastrukturkomponenten wie Datenbank,
Message Broker, Agent-Core und optionales Logging mit Testcontainern bereitgestellt. Diese
konnten wir bequem Uber Factories in die Tests integrieren, wodurch wir mit geringem

Aufwand eine realitatsnahe und isolierte Umgebung mit klarer Struktur schaffen konnten.

3.6 DevOps-Strategie und Qualitatssicherung

Durch die Kombination von automatisierten Prifungen und definierten Prozessen entstand ein
mehrstufiges Qualitatssicherungskonzept. Dieses adressiert sowohl technische als auch
organisatorische Aspekte und stellt sicher, dass die entwickelte Losung robust, wartbar und
nachvollziehbar bleibt. Die Qualitdtssicherung wurde als durchgéngiger Prozess verstanden,
der sich von der lokalen Entwicklung Gber die Integration bis hin zum Betrieb erstreckte.

Dabei wurde das Prinzip von Shift Left verfolgt, um moglichst schnelle Feedback-Zyklen zu
realisieren und deren Kosten gering zu halten. Der gesamte Entwicklungs- und Betriebsprozess

wurde durch geeignete technische und organisatorische Massnahmen abgesichert.

3.6.1 Entwicklungsphase
Bereits in der lokalen Entwicklungsumgebung kamen verschiedene Massnahmen zur
Anwendung, um die Codequalitat sicherzustellen (vgl. Schritte Entwicklung in Abb. 7

Entwicklungsphasen):

Iy
c _t LT = g
2 8% £3 o o 2 b g
s 3 2 53 & 3 &§ 38 & o
E‘ E EE in m'r i :.%m_5 %+ @ 3: %.,,
(= 0] = i L v
§ ¢ 52 28 3 : =334 € 8 §
-
g 35 22 = ol e 4 g
& o~ EBE = = é
“ s
Entwicklung CI/CD Pipeline Betriab

Abb. 7: Entwicklungsphasen

Die Compiler-Priifung dient als erste Instanz, um syntaktische und typisierte Fehler friihzeitig
zu erkennen.

Die Schema-Validierung stellt sicher, dass Datenstrukturen konsistent und robust gegen
fehlerhafte Daten sind.

Der Pre-Commit Hook verhindert mittels Linter, dass fehlerhafter Code eingecheckt wird.
Mit definierten Regeln wird verhindert, dass unerlaubte Code-Segmente wie “console.log” in
das Repository gelangen und spezifizierte Formatierungen mit Prettier eingehalten werden.
Eine definierte Branching-Strategie in Kombination mit Code Reviews sorgt dafiir, dass
Anderungen nachvollziehbar diskutiert und tiberpriift werden kénnen, bevor diese in den

Hauptentwicklungszweig integriert werden.

20

3.6.2 CI/CD Pipeline

Die automatisierte GitLab Pipeline Gbernimmt die kontinuierliche Priifung der Code-Base und
der Bereitstellung der Docker-Images (vgl. Schritte CI/CD Pipeline in Abb. 7:
Entwicklungsphase). Diese besteht aus mehreren, sequenziell durchzulaufenden Stufen.
Dieser Aufbau tragt dazu bei, das Risiko auf fehlerhafte Software und die damit verbundenen
Entwicklungskosten moglichst klein zu halten.

Die Install-Stage installiert alle Abhangigkeiten.

Die Build-Stage stellt sicher, dass sowohl der Applikations-Code als auch die Container
fehlerfrei gebaut werden kdnnen.

Die Lint-Stage stellt sicher, dass definierte Regeln im Code mit ESLint eingehalten werden
(derselbe Lint-Prozess wie beim Pre-Commit Hook)

Die Test-Stage fiihrt Unit- und End-to-End-Tests sowie eine Coverage-Messung aus, um somit
die Funktionalitdt und Testabdeckung zu prifen.

Die Deploy-Stage ist nur auf dem Hauptzweig (main) aktiviert und dient der automatisierten

Bereitstellung der Docker-Images in der GitLab-Container-Registry.

3.6.3 Betrieb

Nach der Bereitstellung (Deployment) wird die Qualitdtssicherung ad hoc durch manuelles
Austesten sichergestellt, beispielsweise die Einsehbarkeit der Agenten-Logs auf Grafana (vgl.
Schritte Betrieb in Abb. 7: Entwicklungsphase).

3.6.4 Metriken

Zur Ergdnzung der automatisierten Qualitatssicherung wurden wahrend der Entwicklung
verschiedene Metriken erhoben. Diese dienten als objektive Indikatoren zur Codequalitat und
Testabdeckung, welche wir mittels Coverage-Reports zur Ermittlung der Testabdeckung, der
Anzahl der implementierten Tests sowie einer SonarQube-Analyse zur Prifung auf potenzielle
Sicherheitsliicken und Verstosse gegen Clean-Code Prinzipien erhoben haben. Die Auswertung

dieser Metriken wird im Kapitel 5.5.2 dargestellt.

3.6.5 Systemverteilung und Deployment

Fir die Umsetzung wurde ein technologiegestiitzter Ansatz gewahlt, der sich an den
Anforderungen der Domane der CISTEC AG orientiert, aber bewusst in Umfang und
Komplexitat reduziert ist. Die Kombination aus GitLab CI/CD, Docker, Kubernetes und Fleet
erlaubt ein kostenglinstiges und gut realisierbares Vorgehen, welches fur den Projektrahmen

(Prototyp und Machbarkeit) angemessen ist.

3.6.5.1 Continuous Integration und Continuous Deployment (CI/CD)
Die Builds und Deployments wurden (ber GitLab realisiert. Die GitLab Community Edition
genulgt als Grundlage, da es die wesentlichen Cl/CD-Funktionalitaten kostenfrei anbietet und

flr die schulische Projektumgebung praktikabel ist.

21

3.6.5.2 Containerisierung (Docker)

Alle Komponenten — Core, Agents sowie Infrastruktur — wurden in Container verpackt.

Dies gewahrleistet eine reproduzierbare Umgebung und entspricht modernen Standards in der
Softwarebereitstellung.

3.6.5.3 Orchestrierung (Kubernetes)
Kubernetes dient als Orchestrierung-Plattform. Damit kdnnen die Services in separaten
Namespaces isoliert betrieben und durch standardisierte Deployment-Artefakte verwaltet

werden.

3.6.5.4 GitOps mit Fleet

Anstelle einer komplexen Deployment-Infrastruktur, wie die CISTEC AG in der Produktion nutzt
(ArgoCD, Kundenclusters, mandantenfihige Rollouts), wurden simpel gehaltene Fleet-Charts
eingesetzt. Fleet ermdoglicht es, Deployments aus Git heraus zu steuern, bendétigt jedoch keine
zusatzliche Infrastruktur ausser des GitLab-Repositories. Damit blieb der methodische Ansatz

einfach und realistisch, ohne den Rahmen eines Prototypen zu sprengen.

4 Problemanalyse

Ziel dieses Abschnitts ist es, die fachlichen und technischen Herausforderungen im aktuellen
Ist-Zustand zu analysieren und daraus eine belastbare Problemdefinition fir die Framework-
Entwicklung abzuleiten. Die Problemanalyse bildet die Grundlage fir die funktionalen

Anforderungen, die Gestaltung der Use-Cases sowie das resultierende Domain Model.

4.1 Ist-Zustand / Ausgangslage

Die bestehenden Agenten wurden (ber die Jahre heterogen entwickelt und folgen keinem

einheitlichen Entwicklungsstandard. Typische Merkmale des Stacks sind:

4.1.1 Strukturelle Eigenschaften
Aktuell ist kein gemeinsames Framework und kein geteilter Code vorhanden. Validierungen
erfolgen ad hoc im Code mit einzeln implementierten Schema-Definitionen. Datenbankzugriffe

werden haufig direkt Gber SQL-Statements im Code abgewickelt.

4.1.2 Persistenzschicht

Alle Agenten greifen direkt auf die relationale Datenbank (Oracle) zu. Es existiert kein
abstrahierter Code, welcher Datenzugriffe kapselt, sondern dieser wird flr jeden Agenten
einzeln implementiert. Queries existierten fiir jeden Agent individuell und sind oft nicht
optimiert. Joins iber grosse Tabellen ohne Primary Key fiihren regelmassig zu

Performanceproblemen.

22

4.1.3 Deployment, Monitoring und Betrieb

Jeder Agent wird als separates Deployment in Kubernetes betrieben. Eine zentrale Middleware
oder ein zentrales Gateway existieren nicht. Die Agenten interagieren direkt mit der
Datenbank. Logs werden primar in das Container-Stdout geschrieben und in Kubernetes
gesammelt. Auswertungen erfolgen reaktiv, meist durch Entwickler:innen im Fehlerfall.
Alerting ist nicht vorhanden. Ein Agentenstillstand bleibt oft unbemerkt, bis fehlende
Leistungen gemeldet werden.

4.1.4 Kommunikation

Externe Anstésse (z. B. manuelle Nachgenerierungen) erfolgen iber Anderungen in den
Deployment-Charts, nicht Gber API’s oder Message Queues. Die Agenten wissen zu keinem
Zeitpunkt, welche Records sie bearbeitet haben. Wenn ein Agent fiir einen Tag nicht

ausgeflihrt werden kann oder einen Absturz erleidet, gehen diese Daten fiir immer verloren.

4.2 Use-Cases und Anforderungen

Nach dem Erfassen des Ist-Zustands erarbeiteten wir die Soll-Szenarien, also die benétigten
Features der konkreten Endbenutzer:innen des Frameworks fiir einen gelungenen Prototypen.
Hierzu haben wir, beginnend im Stakeholder-Austausch, Quellen gesammelt, diese Quellen
und die Stakeholder zum Ableiten von Use-Cases analysiert und schliesslich verfeinernde

Anforderungen erarbeitet.

4.2.1 Quellen fiir Stakeholder- und Anforderungsanalyse

Zur ldentifikation der gebrauchten Prototyp-Features und deren Abbildung in Form von Use-

Cases und Anforderungen, verwendeten wir initial folgende Quellen:

Personen: Austausch mit Stakeholder Martina Lux (Rollen PO und Reporter)

Dokumente: Initiale Anforderungsliste des Stakeholders Martina Lux

Im Laufe des Projekts gewannen wir folgende Quellen hinzu und werteten diese aus, sodass

sich der Fokus weiter auf die technisch wesentlichen Aspekte des Frameworks einengte:

Personen: Austausch mit Stakeholder Guillaume Fricker (Rolle Maintainer).

Dokumente: Produktdokumentationen des Moduls Leistungserfassung und einzelner Agenten:
e Ablauf Ausleitung von Anéasthesieleistungen

Leistungsgenerierung

NoShow Agent

Anéasthesie Agent

OAT Agent

Daten: Leistungserfassungs-Testdaten aus KISIM Datenbank (vgl. Abb. 1:

Systemkontextdiagramm)

4.2.2 Akteure
Die Stakeholder beeinflussen als Interessenseigner die Ziele des Prototyps (Tab. 4:

Stakeholder-Liste), sind jedoch noch nicht die tatsachlichen Akteure, welche die zu

23

entstehenden Features nutzen und vom Framework-Prototypen direkt profitieren werden.
Als zentrale Akteure leiteten wir Maintainer und Reporter ab, welche beide seitens CISTEC AG
operieren und die Features des Frameworks nutzen und direkt profitieren.

Mogliche Akteure ausserhalb unseres Scopes haben wir verworfen (vgl. Abb. 1:
Systemkontextdiagramm: Systemadministration bei Endkundschaft im Spital, welches den
KISIM-Betrieb indirekt Gberwacht sowie medizinisches Fachpersonal, welches das KISIM als
Endanwender:in bedient und Leistungen erfasst).

Ein Maintainer besitzt technische Expertise und entwickelt Agenten, wartet diese und nutzt
das Framework. Aufgrund mangelnder Ressourcen durch einen Ransomware-Angriff bei der
CISTEC AG wurde der Akteur indirekt vertreten: Initial durch den Stakeholder Martina Lux in
der Rolle als Product Owner und im weiteren Projektverlauf durch den Stakeholder-
Stellvertreter Guillaume Fricker in der Rolle als Maintainer.

Ein Reporter besitzt fachliche Expertise und vermittelt zwischen Endkundschaft und
Maintainer: Ein Reporter fordert die Konfiguration und Informationen aus der Uberwachung
von Agenten beim Maintainer an. Dieser Akteur wurde direkt und indirekt durch den

Stakeholder Martina Lux in den Rollen als Reporter und als Product Owner vertreten.

4.2.3 Use-Cases

Durch die Analyse unserer Quellen und Stakeholder konnten wir Use-Cases ableiten. Die
detaillierte Use-Case-Beschreibungen sind in tabellarischer Form mit Normal- und
Alternativabldaufen im Anhang aufgefiihrt (siehe Kapitel 11.5).

Das Schema zur Beschreibung der Use-Cases orientiert sich an RUP (Rational Unified Process)
bzw. an dem von Cockburn beschriebenen RUP Style (Cockburn, 2011, S. 123 {.).

Im Use-Case Diagramm (Abb. 8: Use-Case Diagramm) wird der Zusammenhang zwischen den
Akteuren und ihren Interaktionen mit dem Framework sowie die Beziehungen zwischen den

Use Cases klar.

24

/ uct: \
/Anpassung bei Datenstruktur-

— rungen

/Leistungsgenerierung vemélt\-“ .
s wie ervariel -
T
= ucos
Duplikaicheck -

uc17
Leistungsgenerierung auf
Entitaten beschranken

{ verschiedene Arten und \“
\Leitungen genereren konnen

uciz
Leistungen ohne Stopdatum
generierer

\
|
|
|

/

Agentenframework

Ausioser: Anderung

- | patenstrukturen in der

Datenbank

Ausioser: Leistungen
werden nachgeneriert

l

i \ ucos
ntom .
konfigurieren Konfiguration
% <<includes>>
A — e Beispiel-Agenten

Maintainer uco?
jenteniauf manuell
ausiosen

-

o

/N

(

/

N

A
i <<include>>

‘condition: Start via CLI,

ucot
nicht Kubernetes Gronjob. | BRI

Fehleriogs einsenen

A,

.\/

~_

(Agentenbetrieb iberwachen |
\ Y

i

uct4
Logging einseher

a

‘condition: Agent sefl x Tagen
keine Leistung erzeugt
extension points: Logging

.,,

s (O <<extends>

einsehen
v
—— -
N ucos
———— [Agentenbetrieb sinsenen | ——— | Agent seit X Tagen keine
A A 4 Lelstung mehr erzeugt
,//'/

Reporter

Abb. 8: Use-Case Diagramm

() O TTTTTTTTTTTTTT | extension points: Agent
| Agentenbetrieb steuern] B arton i
\ / i <<extend>> H
) - \ : : A/
| — Marathon Agent
/ et N N veoo <
\ und stoppen ~<includes> Agenteniauf aligemein
— R —-_— q.-\\

¢ <<include>>
v

—

4 uco3
Flughaten Grenzkontrolie |
< Agent

. <<include>>
= NoShow Agent

A
ucos
Fehlerhaite
Leistungsgenerierung
protokollieren
7

<<include>>

Um die Relevanz der Use-Cases aus Akteur-Sicht zu verdeutlichen, wurden zusatzlich die
Gbergeordneten User Goals (Cockburn, 2011, S. 68) dargestellt. Diesem Flow folgend (das

Diagramm von links nach rechts lesend),

werden die Use-Cases immer feingranularer.

Ausserdem lassen sich die Use-Cases in zwei Sichtweisen aufteilen, welche jeweils einen
anderen Fokus setzen (vgl. Tab. 5: Use-Case Unterteilung):

Auf die Doméne fokussierte Use-Cases, welche sich mit fachlich orientierten Features der

Leistungsgenerierung beschaftigen (violett eingefarbt)

Auf das Agenten-Framework fokussierte Use-Cases, welche sich mit technisch orientierten

Features rund um Betrieb, Infrastruktur und Entwicklung beschéaftigen (blau eingefarbt)

Use Cases mit Fokus auf gewiinschte
technische Features

Use Cases mit Fokus auf gewiinschte
fachliche Features

UCO00 Agentenlauf allgemein

UCO1 Business-Agent

UCO5 Konfiguration

UCO02 Marathon-Agent

UCO07 Agentenlauf manuell auslésen

UCO03 Flughafen-Grenzkontrolle-Agent

UCO09 Fehlerhafte Leistungsgenerierung
protokollieren

UC04 NoShow-Agent

25

UC10 Generierungsintervall intern UCO06 Duplikatcheck

konfigurieren

UC14 Logging einsehen UCO08 Agent seit X Tagen keine Leistung mehr
erzeugt
UC15 Fehlerlogs einsehen UC12 Leistung ohne Stopdatum generieren

UC16 Agentenbetrieb starten und stoppen UC13 Anpassung bei Datenstrukturen

UC17 Leistungsgenerierung auf Entitaten
beschranken

Tab. 5: Use-Case Unterteilung

Als die fundamentalsten Use-Cases, welche einen Durchstich ermdéglichen, priorisierten wir
UCO00 und UCOS5. In Verhandlung mit den Stakeholdern wird zum Zwecke der
Prototypenentwicklung versucht, vor allem jene Use-Cases zu priorisieren, welche sich weniger
auf die Businesslogik fokussieren: Erstens ist diese Logik bei jedem Agenten einzigartig, also
schwierig zu automatisieren. Zweitens ist das primare Ziel die Entwicklung eines Framework-
Prototypen fiir Agenten.

In diesem Sinne wurden der Use-Case 11 und die damit zusammenhangenden Akteure
(Endkund:innen kdnnen den Agentenbetrieb mittels eines GUI selbst steuern) bereits sehr
friihzeitig verworfen, sodass wir hierzu keine detaillierten Beschreibungen auffiihren und sich
diese Elemente auch nicht im Use-Case Diagramm wiederfinden.

Die Use-Cases 1 bis 4 sind Trade-Offs zwischen erstens den fachlichen und technischen
Interessen der Stakeholder an der Prototypenentwicklung sowie zweitens den
Rahmenbedingungen dieser Abschlussarbeit und dem benétigten Aufwand, um die CISTEC AG
Infrastruktur in diesem Projektrahmen abzubilden. Diese Beispiel-Agenten sind fiir die
Entwicklung und das Testing notig, wahrend sie gleichzeitig die Umsetzung von

domanenspezifischen Use-Cases und Anforderungen demonstrieren.

4.3 Anforderungskriterien

Die von den Akteuren erwarteten Funktionen an den Prototypen des Agentenframeworks
wurden bereits durch die Use-Cases definiert (vgl. Abb. 8: Use-Case Diagramm). Um das
erwartete Ergebnis oder Verhalten der gewiinschten Features verfeinert zu spezifizieren,
wurden funktionale und Qualitdtsanforderungen aufgestellt (vgl. Tab. 6: Funktionale und
Qualitatsanforderungen). Jede Anforderung wurde priorisiert (muss, soll, oder kann) und
aufgeteilt nach funktionalen und Qualitdtsanforderungen gewichtet (Pro
Anforderungskategorie: Durchnummerierung aller Anforderungen, wobei jede Zahl nur einmal
vorkommen darf und die kleinste Zahl die héchste Prioritdt bedeutet), um eine Priorisierung zu
erzielen. Ahnlich wie der UC11 wurden die Anforderungen FA5, FA9 und NFAS ebenfalls
frihzeitig verworfen.

Im Rahmen der Framework-Entwicklung ist es zu erwarten, dass bereits einige funktionale

Anforderungen aspektorientiert sind, um z. B. Modularitat zu gewahrleisten. Dies ist auch in

26

diesem Projekt bei den funktionalen Anforderungen rund um Logging und Konfiguration

(FA_REQ3, FA_REQ6) sowie bei einem von allen Beispiel-Agenten genutzten Feature

(FA_REQ12) der Fall.

Funktionale Anforderung

Qualitatsanforderung

FA_REQ1 (muss): Der Agent muss eine
vorgangige Datenselektion durchfiihren,
damit er effizient mit grossen Datenmengen
umgehen kann. Grosse Datenmengen sind
1500 - 2000 Entitaten, also ca. 2 MB.

NFA_REQ1 (muss): Die Anforderungen und
Konfigurationen des Agenten-Frameworks
mussen eindeutig, vollstandig und
verstandlich dokumentiert werden.
ANMERKUNG: Es soll auch klar sein, ob und
welche Konfigurationen Agent-Spezifisch
oder Global vorgenommen werden kénnen.

FA_REQ2 (kann): Der Agent muss einen
Duplikats-Check durchfiihren, wenn es sich
um eine Nachgenerierung handelt.

NFA_REQ2 (muss): Das Agenten-Framework
muss in TypeScript entwickelt werden, um
Kompatibilitdt zur bestehenden Web-
Infrastruktur sicherzustellen.

FA_REQ3 (muss): Das System muss ein Log
flhren, in dem nicht erfolgreiche
Leistungsgenerierungen dokumentiert
werden.

NFA_REQ3 (muss): Das System muss in einer
Container-basierten Umgebung (Docker)
betrieben werden kénnen.

FA_REQ4 (kann): Der Agent muss
konfigurierbar sein, um entweder einen
'Sofortexport' oder einen 'Export mit
Verzogerung' zu unterstitzen.

NFA_REQ4 (muss): Es muss ein
automatisiertes Cl/CD-Pipeline-Setup
existieren, um frihzeitiges Feedback durch
Tests sicherzustellen.

FA_REQS6 (soll): Der Maintainer soll das
Generierungsintervall eines Agenten lber
eine Konfigurationsdatei oder interne
Systemeinstellungen konfigurieren kénnen.

NFA_REQ5 (muss): Anderungen und Events
im Agentenbetrieb missen mit einem
Logging- und Monitoring-Tool nachverfolgt
werden kénnen.

FA_REQZ7 (soll): Der Agent soll Leistungen
auch dann erzeugen kdénnen, wenn fiir die
Massnahme, das Rennen o. a. noch kein
Stopdatum gesetzt wurde.

Ein Beispiel aus Doméane zum Verstandnis:
Laufende Kurvenmassnahme beim OAT-
Agenten.

NFA_REQ6 (muss): Das Framework muss
modular und erweiterbar aufgebaut sein,
sodass neue Agenten effizient entwickelt
werden kdnnen.

FA_REQS8 (kann): Das System soll bei
ausbleibender Leistungsgenerierung einen
Alert ausldsen.

NFA_REQ7 (muss): Die entwickelte Losung
muss unter einer Open-Source-Lizenz (MIT,
Apache 2.0 oder BSD) verdéffentlicht werden.

FA_REQ10 (kann): Der Benutzer soll auf
einem Log der nicht erfolgreichen
Leistungsgenerierungen zugreifen kbnnen.

NFA_REQ9 (soll): Das Agenten-Framework
soll die Implementierung eines neuen
Agenten innerhalb von max. zehn
Arbeitstagen ermdglichen.

Bemerkung: Die aktuelle Implementation
dauert ca. zwei - drei Arbeitswochen.

27

FA_REQ11 (kann): Der Benutzer soll NFA_REQ10 (soll): Der Agent muss bei

konfigurieren kdnnen, ob der Agent lauft Anderungen an der zugrundeliegenden
oder gestoppt ist (Aktivierung und Datenstruktur —insbesondere beim
Deaktivierung des Agenten). Hinzufiigen von Feldern, der Anderung von

Feldtypen oder einer Umstellung zwischen
optional und required — durch Anpassung
des zentralen Schema-Files weiterhin korrekt
funktionieren, ohne dass die Agentenlogik
manuell angepasst werden muss.

FA_REQ12 (kann): Das System soll die
Generierung auf bestimmte Entitdten (Gber
ID) einschrankbar machen.

Tab. 6: Funktionale und Qualitétsanforderungen

In Bezug auf die CISTEC AG sollen die Qualitatsanforderungen (NFA’s) eine moderne,
kompatible Infrastruktur (NFA_REQ3, NFA_REQ4) und eine erfolgreiche Ubernahme des
Framework-Prototypen sicherstellen (NFA_REQ1, NFA_REQ2, NFA_REQ7).

Ausserdem sollen sie die Senkung des Implementations- und Betriebsaufwands direkt
(NFA_REQQ9) oder indirekt durch moderne und nachhaltig gestaltete Architektur (NFA_REQS6,
NFA_REQ10) und Logging (NFA_REQS5) unterstiitzen.

Die Relationen zwischen Use-Cases und funktionalen Anforderungen (FA’s) sind in Tab 7:

Traceability Matrix nochmals aufgezeigt.

FIF|F|F|F|F|F|F|[F|F
A|(lA|A|JA|A|A|A]|JA]|A|A
R|R|R|[R[R|R|R[R|R[R
E|E|E|E|E|E]|E|E|E|E
Qafajajajajajafaja
1(2|3|4|6|7|8]1|1(1

0[|1(2

UCO00 Agentenlauf allgemein X X

UCO5 Konfiguration X|[X]X

UCO07 Agentenlauf manuell ausldsen X

UCO09 Fehlerhafte Leistungsgenerierung protokollieren X

UC10 Generierungsintervall intern konfigurieren X

UC14 Logging einsehen X

UC15 Fehlerlogs einsehen X

UC16 Agentenbetrieb starten und stoppen X

UCO1 Business-Agent X

28

UCO02 Marathon-Agent X

UCO03 Flughafen-Grenzkontrolle-Agent X
UCO04 NoShow-Agent X
UCO06 Duplikatcheck X

UCO08 Agent seit X Tagen keine Leistung mehr erzeugt X

UC12 Leistung ohne Stopdatum generieren X

UC13 Anpassung bei Datenstrukturen

UC17 Leistungsgenerierung auf Entitaten beschranken X

Tab. 7: Traceability Matrix

4.4 Randbedingungen
Die wesentlichen Rahmenbedingungen wurden durch die CISTEC AG vorgegeben:
1. TypeScript als bevorzugte Programmiersprache
2. Node.js als bevorzugte Laufzeitumgebung
3. Datenhaltung liber relationale Datenbanken (PostgreSQL und Oracle werden bei
CISTEC AG bereits eingesetzt)
4. Keine Lizenzierungskosten: Der Betrieb und die Ubergabe des Frameworks darf keine
zusatzlichen Kosten fiir die CISTEC AG generieren
5. Permissive Open Source Lizenz, damit die CISTEC AG das Framework bei sich intern frei

nutzen und erweitern darf

4.5 Domain Model

<<enumeration>>
LogLevel

hat Félle <<enumeration>>

ExportBehavior
— <<enumeration>>
besitzt Bericht RiskClass
T Termin
Kurve

umfasst Sitzungen besteht aus

<<enumeration>>
/ \ ExportStatus

| Session | l Operation |
L |
kann Leistingen
enthalt referenzieren
hat erzeugt
festDaten iber wigger
b I)
schreibt referenziert
ke
e

Abb. 9: Domain Model

Aus den Use Cases wurde ein Domanenmodell abgeleitet, welches die wichtigsten
Komponenten fiir die automatisierte Leistungserfassung mittels Agenten veranschaulicht.

Das Domain Model umfasst unter anderem folgende zentrale Entitaten:

29

Agent ist die zentrale Logik-Einheit. Er verarbeitet Falldaten, generiert Leistungen und
exportiert diese in eine Datenbank. Jeder Agent:

o hat seine eigene Konfiguration

e nutzt Datenselektor, um auf Daten (Berichte, Termine etc.) und die Datenbank
zuzugreifen.

o generiert die zu erstellenden Leistungen aufgrund von TARMED und TARDOC
(bestehendes Regelwerk)

e schreibt Logs und kann Alerts auslésen

Konfiguration enthilt spezifische Einstellungen des Agenten:

e Generierungs-Intervalle

e Zeithorizont der Generierung

e Exportverhalten (sofort oder verzogert fiir mogliche Nachbearbeitung)
e Log-Level

e Aktivitats-Status, ob der Agent laufen soll oder nicht

Datenselektor definiert die Kriterien, die bestimmen, welche Daten ein Agent vor der

Leistungsgenerierung verarbeitet.

Leistung ist das von einem Agenten zu erzeugende Ergebnis. Sie wird nach bestimmten Regeln
und gemass Konfiguration exportiert. Eine Leistung kann sensible Daten enthalten, da sie im

Zusammenhang mit Patient:innen- und Falldaten steht.

Logeintrag dokumentiert Fehler oder fehlgeschlagene Generierungen, um die
Nachvollziehbarkeit zu gewahrleisten. Es gibt unterschiedliche Levels wie z. B. DEBUG, INFO,
ERROR.

Alerting |6st eine Warnung aus, wenn ein Agent Gber einen definierten Zeitraum keine
Leistungen generiert. Ein Agent kann auch selbst ein Alerting ausl6sen, z. B. bei kritischen

Fehlern.

Nutzer (CISTEC AG Entwickler:innen, also Maintainer) kann Agenten starten/stoppen,

Konfigurationen einsehen und Logs priifen.

Datenbank ist nicht als Entitat aufgefiihrt: Sie existiert ausserhalb des Systems und ist damit
out of Scope, da sie in diesem Kontext doméanengerecht als Bericht, Termine, Kurve modelliert

wird.

4.6 Risikoanalyse

Aufbauend auf der beschriebenen Methodik werden in diesem Abschnitt die im Projekt
identifizierten Risiken vorgestellt. Im Vordergrund stehen dabei die wahrend der
Implementierung neu erkannten technische (Kapitel 4.6.2) sowie organisatorischen Risiken

(Kapitel 4.6.3). Jedes Risiko wurde hinsichtlich seiner Eintrittswahrscheinlichkeit und

30

Auswirkung bewertet und mit moglichen Gegenmassnahmen versehen. Durch diese
strukturierte Analyse konnten sowohl ein Uberblick (iber den aktuellen Risikostatus gewonnen
werden als auch die Grundlage fiir spatere Vergleiche mit tatsachlich eingetretenen
Ereignissen geschaffen werden.

Die nachfolgenden Tabellen und Matrizen bauen auf die initial definierten Risiken (Kapitel
4.6.1) auf, teilen diese besser auf und erweitern die Gesamteinschatzung, dokumentieren
diese und bilden die Grundlage fiir die spatere Auswertung im Ergebnisteil (Kapitel 5.1.8). Die
nachfolgenden Kapitel dokumentieren diese Einschatzungen:

4.6.1 Initial definierte Risiken
Zum Projektstart wurde eine initiale Risikoanalyse betrieben, welche sich mit den
grundlegenden moglichen Problemen befasst

O Risik oeinschatzung

Hoch - 3 @

Mittel - 2) ®O ©®

Wahrscheinlichkeit

Niedr‘iﬂ -1 @

Niedr‘iej - Mittel - 2 Hoch - 3
Einfluss

Abb. 10: Risikomatrix der initial definierten Risiken

Diese Risikoanalyse war noch stark an die doméanenspezifischen Anforderungen der CISTEC AG
gekoppelt und erwies sich zum Projektstart als hilfreich, musste aber beim Start der
Umsetzung sehr rasch neu evaluiert werden. Dieser Teil wird deshalb nur zur

Nachvollziehbarkeit aufgefiihrt und nicht weiter behandelt.

4.6.2 Technische Risiken

Im Verlauf der Implementierung traten verschiedene potenzielle technische Risiken hervor, die
in der initialen Planungsphase noch nicht vollstdndig absehbar waren. Dazu zdhlen
insbesondere Fragestellungen rund um die Architekturentscheidungen, die Komplexitat der
Fachdomane und der einzelnen Komponenten sowie die Handhabbarkeit der
Entwicklungsumgebung.

Um diese Aspekte systematisch angehen zu kdnnen, wurden die Risiken in einer Risikomatrix
erfasst und mit geeigneten Massnahmen erganzt. Die folgende Analyse zeigt die identifizierten

technischen Risiken, ihre Bewertung sowie die vorgeschlagenen Gegenmassnahmen:

31

Hoch - 3
=
Q
AL
£
3
T Mittel -2
L
[N)
0
L
L
Q
2 Niedriﬂ -1

®©

O Rlslkoeinc;cha%zung

@®

Niedr*iﬂ - Mittel - 2 Hoch - 3
EinFluss
Abb. 11: Risikomatrix der technischen Risiken

Kiirzel | Einschatzung | Beschreibung Massnahme

A 9 Performanceprobleme bei Re- | Architektur skalierbar entwerfen,
Exports oder grossen DB-Queries limitieren, Paging
Datenmengen einbauen

B 6 Komplexitat der Agentenlogik | Use-Cases einzeln verifizieren,
wird unterschatzt generischere Use-Cases

priorisieren

C 6 WebUI-Komponenten zu Keine Ul-Umsetzung, sondern auf
aufwandig (Monitoring, CLI oder Fleet fokussieren (User
Trigger, Nachgenerierung) sind Entwickler:innen, keine

Endkund:innen)

D 4 Kubernetes-Deployment zu Einfache Fleet-Charts und
komplex fir lokale Umgebung | Templates bereitstellen

G 1 Agentenlogik zu stark auf alte | Abstrakte Use Cases verwenden,
Struktur der CISTEC AG Fachtransfer absichern
zugeschnitten

H 1 Uneinheitliche Verwendung Validierungsstrategie in ADR
von Zod und class-validator, dokumentieren und durchsetzen,
keine konsequente Einhaltung | den Einsatz von Shared Types
von DTOs abwagen

Tab. 8: Erwartete technische Risiken

4.6.3

Organisatorische Risiken

Neben den technischen Herausforderungen miissen auch organisatorische Risiken

bericksichtigt werden, die sich insbesondere mit dem Zeitmanagement, Teamkoordination

und die Zusammenarbeit mit den Stakeholdern auseinandersetzen. Diese Faktoren sind fur

den Projekterfolg ebenso entscheidend wie die technische Umsetzung, da sie die Effizienz und

Qualitat der Arbeit massgeblich beeinflussen. Die nachfolgende Analyse fasst die ermittelten

organisatorischen Risiken zusammen, bewertet sie nach Eintrittswahrscheinlichkeit und

Auswirkung und stellt anschliessend die vorgesehenen Gegenmassnahmen dar:

32

Hoch - 3

Wahrscheinlichkeit

Mittel - 2.

Nledl"iﬁ -1

O Risk oeinschatzung

®®O

®0©

Niedriﬂ -1 Mittel - 2 Hoch - 3
Einfluss
Abb. 12: Risikomatrix der organisatorischen Risiken

Kiirzel | Einschatzung | Beschreibung Massnahme

A 9 Zeitrahmen unterschatzt: Umfang friihzeitig abgrenzen,
Parallele Entwicklung, Thesis, | Projektplan mit Puffer
Review-Phasen kollidieren kommunizieren

B 6 Stakeholderwechsel oder Projektentscheidungen und
plotzliche Umdisposition Anforderungen schriftlich in ADR'’s
durch CISTEC AG dokumentieren

C 6 ADR’s nicht einheitlich oder ADR als Teil vom Reviewprozess
widersprichlich dokumentiert | einschleusen

D 6 Unklare Abnahme- oder Kriterien fur erfolgreichen
Erfolgskriterien Prototyp schriftlich fixieren,

Review-Termine einplanen

E 4 Team zieht nicht an einem Klare Verantwortlichkeiten im
Strang (z. B. Rollen unklar, Team festlegen, Weekly Syncs zur
Ownership fehlt) Abstimmung einflihren

F 4 Dokumentation wird zu spat Dokumentationsstruktur frih
oder unstrukturiert erstellt definieren, regelmassig

aktualisieren

G 4 Projektmanagement-Tool Einheitliches Toolset festlegen
wird nicht effektiv genutzt und aktiv nutzen

H 3 Projektfokus verschiebt sich Feature-Umfang definieren,
durch externe Anforderungen | Feature-Freeze ab gewissem
(z. B. Bugs oder Unklarheiten | Zeitpunkt einfiihren und einhalten
bei CISTEC AG)

I 3 Kommunikation mit CISTEC Fragen frihzeitig stellen,
AG unregelmassig (z. B. PO Antworten dokumentieren,
nicht erreichbar, in den technische Feinheiten mit
Ferien) Maintainer und Stv. klaren

Tab. 9: Erwartete organisatorische Risiken

33

4.6.4

Finale Risikoanalyse

In der abschliessenden Etappe der Risikoanalyse wurden teilweise sowohl bestehende Risiken

zusammengefiihrt als auch neue Risiken beriicksichtigt, welche sich wahrend der

Implementation herauskristallisierten. Das Ziel war hier, die Risikoanalyse fir das Projekt

weiter zu festigen und systematisch auszuwerten. Dabei wurden sowohl technische als auch

organisatorische Aspekte beriicksichtigt, um eine vollstindige Ubersicht {iber das Risikoprofil

des Projekts zu erhalten. Diese wird in den Ergebnissen im Kapitel 5.1.8 dann im Detail

®®

O Rl;lkoeiﬂgchéi‘fzumg

©@

ausgewertet.
Hoch - 3
+
(7]
al
=
Y
T Mittel -2
£
[N)
1)
L
L
S
3 Niedr‘iﬂ -1

Niedriﬁ - Mittel - 2 Hoch - 3
EinFluss
Abb. 13: Risikomatrix der finalen Risiken

Kiirzel | Einschatzung | Beschreibung Massnahme

A 6 Bereitstellung der Testdaten durch Frihzeitige Bereitstellung
Stakeholder verzogert sich nach von und Validierung mit
Cyberattacke Stakeholdern

B 6 Testdaten aus bestehendem KISIM Eigene Domane definieren,
sind fur Entwicklungszwecke um so die Bedirfnisse der
qualitativ nicht ausreichend nutzbar | Stakeholder abzudecken

C 4 Eingeschrankter Stakeholderkontakt, | Gezielte Abnahmen nach
Hauptstakeholder langere Zeit Ferienabwesenheit,
abwesend, kein regelmassiger grosserer Fokus auf
Austausch moglich Selbsteinschatzung

D 4 Entwicklungsprozess gerat ins Definierte Prozesse,
Stocken, Prozesse nicht systematisch | zeitnahe Dokumentation
gelebt, Dokumentation und von wichtigen
Abnahmen lassen teils mit Entscheidungen mittels
Verzogerung auf sich warten ADR’s

E 3 Ungleichmassige Rollenverteilung,
Arbeitslastverteilung und temporare | regelmassige
Abwesenheiten im Team, die den Abstimmungen, Code
Fortschritt verzogern kénnten Sessions

F 6 Fachspezifische Domane statt einem | Abstraktion auf Framework-

34

generischen Framework, orientierte Use-Cases und
Stakeholder-Vorgaben zu spezifisch eigene Definitionen von
und / oder nicht auf Framework Agenten, die den
Ubertragbar Funktionsumfang von
CISTEC AG -spezifischen
Agenten abdecken

Tab. 10: Erwartete finale Risiken
4.7 Architektur

Die Architektur- und Technologieauswahl wurde in enger Koppelung mit den Stakeholder-
Interessen, der Risikobetrachtung und den zuvor definierten Qualitatszielen getroffen.

Es galt, eine langfristig wartbare, skalierbare und erweiterbare Lésung zu entwerfen, welche
die Betriebskosten nicht unnétig erhoht. Es ergaben sich drei zentrale Qualitatsziele:
Wartbarkeit: Klare Strukturen, Minimierung von Redundanz, gute Testbarkeit.
Skalierbarkeit: Agenten sollen unabhangig voneinander deploy- und versionierbar sein.
Transparenz: Logs, Monitoring und Fehlermeldungen miissen konsolidiert und einfach
einsehbar sein.

Erweiterbarkeit: Neue Agenten missen sich mit minimalem Aufwand in die bestehende

Infrastruktur einflgen.

4.7.1 Auswertung moglicher Technologiestacks

Es wurden drei Frameworks fir die Auswahl des Technologiestacks untersucht:

Framework | Eigenschaften

AdonislJS e Laravel-ahnliches JavaScript-Framework
o Kleine Community, rein Community-getrieben, wenige
Lernressourcen

e Mogliches Risiko hinsichtlich langfristiger Wartbarkeit

Express e Maximale Kontrolle und Flexibilitat
e Gefahr von chaotischem Code, da wenig Struktur vorgegeben wird
e Wartbarkeit hangt stark von der Disziplin der Entwickler:innen ab
o Keine integrierte Microservice-Unterstutzung

NestJS e Wird bereits in der CISTEC AG verwendet

Wird von einer Firma maintained, breite Community und
Lernressourcen
e OOP-Ansatze, Modularitdt, Dependency Injection, Decorators
® Integrierte Microservice-Schnittstellen, einfache Integration in

Kubernetes

Tab. 11: Auswertung Technologiestack

35

Die Entscheidung fiel aufgrund der vielen genannten Vorteile eindeutig auf NestJS.

Diese erfolgte dabei stets im Abgleich mit den Stakeholder-Bediirfnissen (z. B. Wartbarkeit und
Transparenz fur Entwickler:innen, Monitoring fiir Projektleiter:innen), den Qualitatszielen
(Skalierbarkeit, Robustheit) und der Risikoanalyse (Minimierung von Bottlenecks und Legacy-
Abhangigkeiten). Zum weiteren Technologiestack hinzu kam die Entscheidungen fur
PostgreSQL als Datenbank, TypeORM als Library fir das Daten-Mapping, Jest zwecks Testing
sowie Grafana zwecks Monitorings.

4.7.2 Walking Skeleton
Im Rahmen der Arbeit wurde ein Walking Skeleton entwickelt, der als technischer Prototyp
diente und den architektonischen Rahmen fiir die Umsetzung der Agenten vorgab. Das Ziel war
es, friihzeitig einen minimal funktionsfahigen Durchstich durch alle relevanten
Systemkomponenten zu realisieren, um technische Risiken zu adressieren und zentrale
Architekturentscheidungen zu validieren.
Zu Beginn wurden zwei alternative Ansatze fiir das Walking Skeleton skizziert:
Version 1: Ein schlankes Monolith-Design, bei dem Core- und Agentenlogik in einem Prozess
zusammengefihrt werden. Vorteil: schnelle Umsetzung; Nachteil: keine saubere Trennung der
Verantwortlichkeiten.
Version 2: Agenten als eigenstiandige Deployments mit direkter Kommunikation zu einem
zentralen Core-Service (iber APl oder Message Queue. Vorteil: zentrale Wartung und klare
Schnittstellen; Nachteil: hoherer initialer Setup-Aufwand.
Bei der Abwagung dieser Varianten fiel die Wahl schliesslich auf einen serviceorientierten
Ansatz. Damit konnte sowohl die Skalierbarkeit als auch die kiinftige Versionierung von
Agenten und Core beriicksichtigt werden. Die umgesetzte Version des Walking Skeletons war
Gegenstand des Zwischenreviews am 26.05.2025 und entspricht dem Commit
bec4b20bcc6967ce359a7685e2ad7f297b927876 im Git-Repository.
Das Walking Skeleton umfasste in der Endausfiihrung folgende Merkmale:

e Eine lauffahige NestJS-Anwendung mit Basisfunktionalitat fiir Core-Module

e Eine erste Agenten-Implementation als Cron-Job, welche den definierten Use Case in

seinen Grundzigen abbildet

e Eine funktionale Anbindung an die Datenbank mittels TypeORM

e |nitiale API-Endpunkte inklusive automatisierter Tests

e Einrudimentares Deployment auf Kubernetes (lokal Gber Minikube)
Damit wurde ein vollstandiger Durchstich Gber alle Layers erreicht: Datenhaltung,
Businesslogik, API-Schnittstelle und Deployment waren im Kern erprobt. Das Walking Skeleton
konnte also sicherstellen, dass die technische Basis stabil und erweiterbar integriert wurde.
Damit konnte das Team die verbleibende Entwicklungszeit gezielt auf die Umsetzung der

Agentenlogik und der Erweiterungen am Framework fokussieren.

36

4.7.3 Architekturentscheide / Architecture Decision Records (ADR’s)

Wahrend des Projektverlaufs sind wir auf einige Herausforderungen gestossen und mussten
beziglich der Architektur Entscheidungen treffen. Alle ADR’s sind im Anhang aufgefiihrt (siehe
Kapitel 11.4). Die wichtigsten ADR’s werden nun erldutert.

4.7.3.1 0003 Architektur-Prototyp Agentenframework

Zu Beginn der Arbeit wurde der Walking Skeleton implementiert, um einen vollstandigen
Durchstich durch alle Layers des Systems zu ermoglichen. Das Walking Skeleton stellte sicher,
dass grundlegende Konzepte wie Schema-Validierung, Persistenz mit TypeORM und Cl-Tests
auf Agentenebene (also fiir jeden einzelnen Agenten) von Beginn an beriicksichtigt wurden.
Fir das Zwischenreview konnte ein konsistenter Minimal-Durchstich bis zur Datenbank
prasentiert werden, welcher die Basis fiir die weitere Arbeit bildete. Allerdings war der
Walking Skeleton nur als Zwischenstand gedacht und wurde durch spezifische Entscheidungen
weiterentwickelt und verfeinert. Damit erfiillte ADRO0O3 seine Rolle als Architekturprototyp,
wurde aber schrittweise durch die nachfolgenden ADR’s erweitert oder abgelost. Es diente als

Fundament, auf dem alle spateren Entscheidungen aufbauen konnten.

4.7.3.2 0007 Fachliche Kriterien

Der Kontext, die Umsysteme und die fachliche Agentenlogik der CISTEC AG liberstiegen die
Ressourcen des Projektrahmens. Die Komplexitat war im Rahmen dieser Arbeit nicht machbar.
Deshalb haben wir uns in Absprache mit Martina Lux (Stakeholder und PO seitens CISTEC AG)
aus dem klinischen, also fachlichen Kontext geldst, ohne den urspriinglichen Funktionsumfang

einzuschranken. Diese Entscheidung erwies sich als sehr gelungen, kam aber leider etwas spat.

4.7.3.3 0009 Microservices

Im Verlauf der Umsetzung stieg die Komplexitat des Projekts stetig an. Um die Kopplung
zwischen den Diensten (Agent-Core und Agenten) zu minimieren, einen modernen Ansatz zu
verfolgen und die Basisfunktionalitdt weiter herauszutrennen, beschlossen wir, ein verteiltes
System mit Microservices umzusetzen. In der Folge konnten wir die Agentenlogik sauber
kapseln sowie den Datenzugriff iber den Agent-Core reduzieren. Die ermdoglichte Skalierung
und unterschiedliche Release-Zyklen sind weitere Vorteile. Zu den Nachteilen gehéren eine

komplexere Architektur, erschwerte Bedingungen bei E2E-Tests sowie die Schnittstellenpflege.

4.7.3.4 0010 Kommunikation via NATS

Anfanglich hatten wir REST als Kommunikationsprotokoll zwischen den Diensten angedacht.

Da das eingesetzte NestJS-Framework eine Microservice-Unterstiitzung anbietet, versuchten
wir, moglichst viel damit zu I6sen. REST gehorte nicht zu den unterstitzten Protokollen.

Damit wir auf einen selbst entwickelten Kommunikationsbus mit Idempotenz verzichten
konnten, hatten wir uns fiir die unterstitzte Transportschicht mit dem Messaging Service NATS
entschieden. Diese bietet mehrere Kommunikationsmuster, zum Beispiel Fire-and-Forget,
Request/Reply sowie Publish/Subscribe. Dariiber hinaus stellt NATS optionale Features wie

Queue Groups zur Lastverteilung und tiber JetStream zusétzlich Persistenz & Replay fiir einen

37

»at least once” Zustellungsmodus bereit. Damit haben wir fiir viele Ausbaumaéglichkeiten
vorgesorgt, nehmen dafiir jedoch einen zusatzlichen Dienst in der Architektur in Kauf.

4.7.3.5 0012 Standardisierung der Agenten-Pipeline

In den bestehenden Agenten waren die fachliche Logik und die Persistenzschicht stark
miteinander vermischt. Anderungen wurden direkt in der process-Methode geschrieben, was
zu einem unklaren Ablauf fiihrte und somit die Testbarkeit und Wartbarkeit erschwerte.

Im Rahmen der Arbeit wurde deshalb ein Standardprozess des Agentenlaufs eingefiihrt,
welcher die Verantwortlichkeiten klar trennt: Die processitem-Methode kiimmert sich
ausschliesslich um die Berechnung und liefert ein Ergebnis-DTO zuriick, wahrend die update-
und create-Methoden fiir die Persistierung verantwortlich sind. Dies flhrte zu konsistenten
Agenten und verbesserte die Trennung von Logik und Datenzugriff. Tests kdnnen gezielt auf
der reinen Processing-Ebene ohne Seiteneffekte ausgefiihrt werden.

4.8 Systemverteilung und Deployment

Die Ausgangslage der CISTEC AG ist eine komplexe Agentenlandschaft, die mit selbst
entwickelten Deployment-Prozessen auf Basis von Argo-CD und internen Tools betrieben wird.
Dies stellt die Maintainer vor Herausforderungen: Es existiert eine Vielzahl von Agenten und
Services mit sehr unterschiedlichen Anforderungen, die Komplexitadt der Build- und
Deployment-Prozesse ist hoch und die Integration in die bestehende Infrastruktur tief und
schwer nachvollziehbar. Daher soll die Agentenlandschaft mithilfe des Agenten-Frameworks
auf mehrere, lose gekoppelte Dienste verteilt werden. Dabei sollen die Deployments
vereinheitlicht und Abhangigkeiten explizit gemacht werden. Auch eine zukliinftige horizontale
Skalierung soll moglich sein.

Im Rahmen der Prototypentwicklung konnte (Zeit- und Budgetbegrenzung) und sollte
(Produktfokus bewahren) diese vollstandige Landschaft nicht nachgebaut werden.
Stattdessen wurde ein vereinfachtes, aber funktionales Setup gewahlt: Core, Agenten und
zentrale Infrastruktur (NATS, PostgreSQL, Monitoring), orchestriert tiber Fleet / GitOps.

Auch auf Features wie Secrets-Management, High Availability, Persistenz fiir Loki oder
ausgereifte Skalierungs-Strategien wurde bewusst verzichtet: Der Fokus des Projekts lag
darauf, die Grundbediirfnisse und Basisanforderungen an eine Agentenarchitektur in einem

Prototypen abzubilden — nicht die gesamte Produktionsumgebung der CISTEC AG.

5 Ergebnisse

In diesem Kapitel zeigen wir auf, was wir erreicht haben und wie wir dorthin gekommen sind.
Wir geben einen Uberblick, wie der Prototyp aufgebaut ist, welche Use-Cases und
Anforderungen abgedeckt wurden und welche nicht. Mit dem methodischen Vorgehen
konnten wir die Ausgangslage grosstenteils gut lenken und konnten teilweise auch Risiken friih
erkennen. Durch unsere Problemanalyse haben wir die fachlichen Anforderungen von den
technischen unterschieden und konnten eine transparente Architektur auf die Beine stellen.
Bei dieser wird schnell klar, was der technische Basis-Funktionsumfang ist und was fachlich

zugeordnet wird.

38

5.1 Projektorganisation

Die Projektarbeit startete mit einem offiziellen Kick-off Meeting mit der CISTEC AG am
09.04.2025. Dabei wurden die Rahmenbedingungen geklart und ein Systemuiberblick
geschaffen. Erste gewlinschte Anforderungen konnten bereits dort benannt werden. Auf
Seiten der CISTEC AG stand Martina Lux (Product Owner, Reporter) als priméare
Ansprechpartnerin zur Verfligung.

5.1.1 Zusammenarbeit mit der CISTEC AG

Der Kontakt zur CISTEC AG war weniger technisch gepragt, sondern erfolgte primar tGber die
fachliche Rolle des Product Owners. Ein direkter Austausch mit Entwickler:innen der CISTEC AG
war zwar vorgesehen, konnte aber aufgrund der hohen Arbeitslast nach dem Cyberangriff
kaum in Anspruch genommen werden. Dariiber hinaus fiihrte die ldangere Abwesenheit des PO
(zwei Monate Ferien) dazu, dass die Kapazitdten fur regelméssige Reviews auf Seiten der
CISTEC AG eingeschrankt waren.

Eine Ubergabe von Artefakten (vgl. Abb. 4: Branching sowie Build- und Deploymentprozess im
Entwicklungsprozess) an den PO erfolgte daher nicht. Dies war insofern unproblematisch, da
es sich um einen Framework-Prototypen handelt, dessen Integration in die produktive CISTEC-
Infrastruktur ohnehin nicht Teil des Projektumfangs war. Der Nachbau der komplexen
Infrastruktur der CISTEC AG wurde bereits zu Beginn der Masterarbeit als out of scope

identifiziert und nicht als Ziel aufgenommen.

5.1.2 Zusammenarbeit im Projektteam

Zur internen Zusammenarbeit wurde von Beginn an ein wdchentliches Projekttreffen etabliert.
Im Verlauf des Projekts zeigte sich jedoch, dass zur gemeinsamen Bearbeitung technischer
Fragestellungen ein zusatzlicher Austausch notwendig war. Ab Projektwoche 13 (03.07.2025)
wurde daher ein zweites wochentliches Zeitfenster eingefiihrt, das gezielt fir Pair
Programming und enge Abstimmungen im Entwicklerteam genutzt wurde. Diese Anpassung
stellte eine Abweichung von der urspriinglich in Kapitel 3.1 beschriebenen Methodik dar (vgl.
Abb. 3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess), erwies sich jedoch
als sinnvoll, um die Effizienz zu steigern und technische Herausforderungen im Team besser zu

bewdltigen.

5.1.3 Arbeitsaufwande und Eigenverantwortung

Die Arbeitsaufwande wurden pro Teammitglied kontinuierlich erfasst:

Name Stunden
Jvan Faddah 452
Guillaume Fricker 416
Benjamin Thormann 483

Tab. 12: Arbeitsaufwdnde (zusammengefasst)

39

Das Team arbeitete oft zusammen und konnte die Arbeitslast gut aufteilen. Aufgrund der
eingeschrankten Moglichkeiten zur fachlichen Abnahme seitens CISTEC AG arbeitete das
Projektteam in hohem Masse eigenverantwortlich. Regelmdssige Abstimmungen und Reviews
fanden vor allem intern statt, wahrend externe Reviews auf das notwendige Minimum
reduziert wurden. Im Laufe des Projekts musste bei den ersten groben Zeitengpassen gezielt
die Zusammenarbeit intensiviert werden. Essenziell war auch der reduzierte Fokus auf eine
externe Abnahme, bedingt durch die organisatorischen und infrastrukturellen
Rahmenbedingungen der CISTEC AG. Dadurch entwickelte sich ein Arbeitsmodus, der stark auf
Eigenverantwortung und Teamkoordination setzte und dennoch eine kontinuierliche

Zielerreichung sicherstellen konnte.

5.1.4 Risikoanalyse

Im Rahmen der Ergebnisse wird aufgezeigt, welche der erwarteten Risiken tatsachlich
eingetreten sind, wie sie sich auf den Projektverlauf ausgewirkt haben und in welchem Mass
die geplanten Gegenmassnahmen wirksam waren. Dabei zeigt sich, dass sowohl technische als
auch organisatorische Risiken in unterschiedlicher Starke realisiert wurden. Dariiber hinaus
traten auch unvorhergesehene Risiken auf, die in der urspriinglichen Planung nicht
bericksichtigt wurden. Die nachfolgenden Kapitel dokumentieren diese Befunde und leiten

daraus zentrale Learnings aus dem Projekt ab.

5.1.5 Domane und Abnahmekriterien (ADR0007)
Ein zentrales Risiko bestand darin, dass der Erfolg des Projekts anfangs stark an klinische
Fachkriterien gekoppelt war. Diese Vorgabe flihrte zu einer Einschrankung der Entwicklung, da
die Agentenlogik zu nah an bestehenden KISIM-Strukturen und klinischen Use-Cases orientiert
war.
Mit der Entscheidung ADRO007 wurde dieses Risiko entsprechend adressiert. Die Vorgabe,
klinische Agenten nachzubauen, wurde aufgehoben und durch abstrahierte, alltagsnahe Use-
Cases ersetzt (z. B. Marathon-Agent anstelle eines OAT-Agenten). Dadurch ergaben sich
mehrere Vorteile:

e Flexibilitat bei der technischen Umsetzung und beim Datenmodell

o Nachvollziehbarkeit fir Entwickler:innen ohne klinischen Hintergrund

e Raum fir Innovation und kreative Lésungsansatze anstelle von Aufrechterhaltung von

Legacy-Strukturen

In Zukunft muss mit einem erhéhten Aufwand bei der spateren Integration auf echte klinische
Systeme gerechnet werden, da diese nicht 1:1 im Prototyp abgebildet wurden. Insgesamt war
dieser Schritt jedoch entscheidend, um das Risiko einer auch lediglich fachliche Aspekte
begrenzte Abnahme zu vermeiden und den Erfolg des Projekts auf technischer Ebene zu

sichern, was wesentlich zum Erfolg des Projekts beitrug.

5.1.6 Domanenspezifischer vs. generischer Framework-Prototyp
Ein weiteres Risiko betraf die Balance zwischen domanenspezifischer und generischer

Ausrichtung des Frameworks. Wahrend ein enger klinischer Fokus zwar eine hohe Relevanz

40

und Attraktivitat fir die CISTEC AG darstellt, fihrte dieser zu hohen Abhédngigkeiten zu
bestehenden Legacy-Datenstrukturen und erschwerte die Ubertragbarkeit von wichtigen
Anforderungen. Die Losung bestand darin, eine eigene Entwicklungsdomane zu definieren, die
als Basis flir generische Agenten diente. So konnten Risiken wie mangelnde Testdatenqualitat
oder zu starke Kopplung an bestehende KISIM-Module umgangen werden. Gleichzeitig blieb
durch die konsequente Einhaltung der technischen Requirements die Moglichkeit erhalten,

spatere klinische Erweiterungen zu integrieren.

5.1.7 Technischer Grossausfall

Ein unerwartetes Risiko entstand durch eine Cyberattacke auf die Systeme der CISTEC AG.
Diese Attacke verzogerte die Bereitstellung von Testdaten und die Flexibilitat des Stakeholders
erheblich. Dieses Risiko konnte nicht durch das Projektteam beeinflusst werden, hatte aber
einen hohen Einfluss auf den Projektplan.

Das Team reagierte, indem es einen eigenen Testrahmen definierte, eigene Use Cases und
deren Entwicklung unabhéangig von Stakeholder-Daten vorantrieb.

Diese Massnahmen ermdoglichten es, trotz des Ausfalls Fortschritte zu erzielen und die

Entwicklungsziele nach bestem Gewissen einzuhalten.

5.1.8 Auswertung Risikomatrix
In diesem Abschnitt wird die Auswertung der Risikoanalyse zusammengefasst. Die Tabelle fasst
die wahrend des Projektverlaufs relevanten Risiken, ihre Bewertung, die geplanten

Gegenmassnahmen sowie die tatsachlichen Auswirkungen kurz zusammen.

Kiirzel | Einschdtzung | Beschreibung und Massnahme Reflexion

A 6 Testdaten verzogert, Cyberattacke Eingetreten, externe Ursache,
-> Friihzeitige Bereitstellung und hoher Einfluss
Validierung

B 6 KIS-Testdaten unbrauchbar Eingetreten, Legacy-System
-> Eigene Doméne definieren unbrauchbar, hoher

Zusatzaufwand

C 4 Stakeholderkontakt eingeschrankt Teilweise eingeschrankt,
-> Gezielte Abnahmen, Fokus auf ausreichend durch gezielten
Selbsteinschatzung Austausch

D 4 Entwicklung gerat ins Stocken Teilweise eingetreten, ADRs
-> Definierte Prozesse und ADR- nachgezogen, Prozess iterativ
Dokumentation erweitert

E 3 Ungleichmassige Arbeitslast Eingetreten, nicht systematisch
- Rollenverteilung, Abstimmungen, adressiert, moderater Einfluss
Code Sessions

F 6 Fachspezifische Doméane Eingetreten, aber erfolgreich
- Abstraktion auf Framework, eigene | entscharft, Massnahme wirksam
Agenten-Definitionen

Tab. 13: Auswertung finaler Risiken (zusammengefasst)

41

5.1.9 Lessons Learned

Die Risikoanalyse hat verdeutlicht, dass die grossten Risiken nicht wie zuerst angenommen
hauptsachlich in der technischen Natur lagen, sondern auch in Organisation, Abhangigkeiten
und Scope-Definition. Die wichtigsten Erkenntnisse sind:

Abstraktion statt Fachlogik: Durch die Scope-Definition in ADRO007 wurde die Entwicklung
von klinisch engstirnigen Abnahmekriterien gel6st, was Innovationsspielraum eréffnete.
Eigene Domane als Basis: Der Aufbau einer unabhangigen Domane erwies sich als effektive
Massnahme, um externe Risiken wie Datenqualitat und die Cyberattacke abzufedern.
Resilienz durch Flexibilitdt: Unerwartete Ausfalle und Stakeholder-Abwesenheiten konnten
durch pragmatische Workarounds (regelmassige Syncs, selbstdefinierte Agenten und deren
Use-Cases, Feature-Freeze) abgefangen werden. Die Auswertung zeigt somit, dass das
Projektergebnis weniger von einer risikofreien Umsetzung abhing, sondern von der Fahigkeit,
auf Unsicherheiten adaptiv zu reagieren und zentrale Entscheidungen transparent zu

dokumentieren.

5.2 Architektur
5.2.1 Architekturbeschreibung

Das entwickelte Framework basiert auf einem modularen Monorepo, in dem alle
Komponenten (Agent-Core, zentrale Library und einzelne Agenten) in einer konsistenten
Projektstruktur zusammengefiihrt werden. Dieses Vorgehen ermoglichte eine einheitliche
Verwaltung des Datenflusses zwischen Core und Agenten sowie eine gemeinsame Nutzung der
zentralen Datenbank. Dariiber hinaus vereinfacht es Refactorings und erlaubt eine flexible
Weiterentwicklung, wie sie im Kontext der CISTEC AG erforderlich ist.

Die Entscheidung fiir ein Monorepo ist zugleich eine strukturierte Zusammenfassung der
gesamten Agentenlandschaft, um so die Developer Experience signifikant zu steigern, da so

alle Anderungen an Agenten an einem zentralen Ort vorgenommen werden kdnnen.

5.2.2 Microservices als Architekturansatz

Die Struktur der Agenten wird als Microservices betrieben. Der Agent-Core stellt eine zentrale
Schnittstelle zur Datenbank bereit, wahrend die Agenten jeweils eigenstandige Workloads
(Microservices als CronJobs) darstellen. Zwischen den Agenten existieren keine direkten
Abhangigkeiten und die gesamte Kommunikation lduft ausschliesslich tiber den Core. Die
Trennung der Agenten in Microservices adressiert mehrere Ziele:

Modularitat und Kohdsion: Jeder Agent kapselt seine eigene Business-Logik, ohne die Logik
oder Kommunikation anderer Agenten zu kennen.

Lose Kopplung: Anderungen im Core, in der zentralen Library, oder in einem Agenten kénnen
unabhangig voneinander erfolgen.

Skalierbarkeit: Core und Agenten kdnnen horizontal skaliert werden, je nach Bedarf und
Ressourcenauslastung.

Resilienz: Ein Ausfall eines Agenten beeintradchtigt nicht die Funktionsfahigkeit der restlichen
Plattform.

Damit ist auch die nichtfunktionale Anforderung NFA_REQ6 nach einer skalierbaren und

42

modularen Architektur erfillt.

5.2.3 Kommunikationsmuster

Die Kommunikation zwischen Core und Agenten folgt einem RPC-Pattern auf Basis von NATS,
welches (iber ein publish-subscribe Modell kommuniziert (NATS.io, 2025). Agenten senden ihre
Anfragen an den Core, der diese beantwortet. Der Core selbst initiiert keine Kommunikation
mit Agenten. Weitere Kommunikationspfade sind wie folgt definiert:

Core und Datenbank (PostgreSQL): Klassischer Read/Write-Zugriff iber TypeORM.

Logging: Promtail sammelt Container-Logs und pusht sie an Loki. Grafana greift auf Loki als
Datasource zu (siehe Kapitel 5.4).

Obwohl eine Event-Driven-Architektur naheliegt, wurde bewusst auf eine vollstdandige
Message Queue verzichtet. Die aktuelle Lésung deckt die bendtigten Muster ab und reduziert
Komplexitat. Sollte sich beim Stakeholder spater der Wunsch nach einer Kommunikation
mittels Message Queue dussern, kann dies nahtlos in NestJS und NATS integriert werden, da
NATS Message Queues unterstiitzt. Gleichzeitig ermoglicht die Wahl von NATS eine spatere

Erweiterung, beispielsweise durch JetStream fiir Persistenz oder Replay (NATS.io, 2025).

5.2.4 Evolution der Architekturentscheidungen

Die Architektur entwickelte sich iterativ weiter. Urspriinglich war ein REST-basiertes
Kommunikationsmodell vorgesehen, das durch Versionierung abgesichert werden sollte. Diese
Variante erwies sich allerdings als unzureichend, da das NestJS-Framework keine native
Unterstltzung fir REST im Microservice-Modul bietet.

Im Zuge der Evaluation wurde daher der Wechsel zu NATS vollzogen. Dieser Entscheid
Uberholte einige der urspriinglichen Annahmen, insbesondere in Bezug auf Idempotenz und
API|-Versionierung. Dennoch blieben die grundlegenden Vorteile der Microservice-Architektur,
etwa klare Verantwortlichkeitstrennung und unabhéangige Skalierbarkeit, bestehen.

Im Zwischenreview wurde mit dem Walking Skeleton (ADR0003) ein erster lauffahiger Prototyp
prasentiert. Die spateren Architekturentscheidungen (ADR0O009 Microservices, ADR0O010
Kommunikation via NATS, ADR0O011 Monitoring & Logging, ADR0O012 Standardisierung der

Generierungsprozesses) bauten darauf auf und erweiterten das Konzept kontinuierlich weiter.

5.2.5 Architekturprinzipien und Patterns

Die Architektur folgt etablierten Prinzipien und Patterns:

Trennung der Verantwortlichkeiten: Der Core Gbernimmt Datenzugriffe, Validierung und
Metriken und dient als zentraler Pool flir Abfragen. Agenten implementieren ausschliesslich
fachliche Logik und sind somit kleine, isolierte Tasks, die unabhangig voneinander skalierbar
und austauschbar sind.

Wiederverwendbarkeit: Gemeinsame Bausteine (DTOs, Message-Pattern, NATS-Client,
Logging) werden als Bausteine bereitgestellt. Dadurch wird vermieden, dass der Core zum
untbersichtlichen Monolithen anwachst. Kommunikation tGiber NATS entkoppelt Agents und
Core zeitlich und organisatorisch.

Erweiterbarkeit: Neue Agenten kdnnen integriert werden, ohne bestehende Komponenten

43

anzupassen.
Resilienz: Fallt ein Agent aus, bleiben die anderen lauffahig. Der Core bleibt weiterhin stabil.
Bei einem Absturz des Cores warten die Agenten auf ihre nachste Ausfiihrung.

Ein zentrales Pattern ist das Repository Pattern, das durch NestJS und TypeORM vorgegeben
wird. Es trennt Datenzugriffe von der Geschaftslogik und stellt iber DTOs und Zod-Schemas
sicher, dass nur giiltige Daten verarbeitet werden.

5.2.6 Trade-Offs
Die gewahlte Architektur bringt klare Vorteile, erfordert aber auch bewusste Kompromisse:

Vorteile o Hohe Skalierbarkeit und Flexibilitat.

e Saubere Trennung von Logik, Messaging und Persistenz.

® Verbesserte Wartbarkeit durch modulare Services.

e Vereinfachtes projektweites Refactoring (z.B. Umstrukturierung oder

Dependency-Updates)

Nachteile ® Zusatzliche Komplexitdt im Betrieb (was jedoch durch die hohe
Skalierbarkeit ausgehebelt wird)

e Strikte Regeln fur Entwickler:innen und (z.B. Modulgrenzen, Schema-
Validierung, fixer Prozess in der Datenverarbeitung) erhoht die
Lernkurve marginal.

e® Die Codebasis hat sehr klare Vorstellungen dariiber, wie Dinge gemacht
werden sollten. Dies kann bei neuen Anforderungen zu Refactorings

fuhren.

Tab. 14: Architektur Vor- und Nachteile

Trotz der Nachteile ist die Architektur ein nachhaltiger Entscheid, der sowohl die kurzfristigen
Projektziele als auch die langfristige Erweiterbarkeit sicherstellt.

Das Framework ermdglicht durch die Modulare Struktur auch Integrationen mit anderen
Systemen, wie zum Beispiel der KISIM-Datenbank, die ins TypeORM integriert werden kann.
Dadurch holt Framework Ist-Zustand CISTEC AG ab und setzt keine Schranken, damit CISTEC
AG auch andere Systeme ausprobieren, migrieren sowie andere KIS-Anbieterinnen das

Framework nutzen kénnen.

5.2.7 Systemiiberblick

Das entwickelte System besteht aus einem zentralen Agent-Core und mehreren Agenten, die
jeweils eine abgegrenzte fachliche Aufgabe erfiillen (z. B. NoShow, Marathon, Grenzkontrolle).
Der Agent-Core abstrahiert die Datenbank und fungiert als zentraler Service, welcher von allen
Agenten bendtigt wird. Die Kommunikation erfolgt Glber NATS, wodurch die Agenten

entkoppelt und unabhangig voneinander betrieben werden kénnen.

44

|Agemen Spezische Konfgurationen. Komnen
nierschiedliche Parametet haben

Logging & Monitoring

HATS Container : r

NATS-Senver

uuuuuuuu

readarin

B agent-Gore.DB Gontainer
] Hinweise

35 wenumgesca

Postes Draase 25 Messace-Oueue Ostonst mogtch
Abb. 14: Systemiiberblick

Um den Systemiberblick im Detail nachzuvollziehen, wird nun auf die nummerierten Stationen
des Ablaufs im System Agent-Framework sowie dem darin enthaltenen Subsystem Logging &
Monitoring (Schritte 10 bis 13) eingegangen (siehe Abb. 14: Systemiberblick):

1. Der Agent Container fiihrt die Businesslogik aus. Dementsprechend gibt es fir jede
Fachdomane (Noshow, Marathon, Grenzkontrolle) einen eigenstandigen Service. Damit sind
die Agenten fachlich sauber voneinander getrennt. Da die Anderungen an einem Agenten nur
diesen und keine weiteren Agenten betreffen, kdnnen Agent unabhangig voneinander skaliert
werden. Die Anfragen an den Core stellt der Agent im Request-Reply-Muster tiber NATS.

2. Die Environment-Variablen jedes einzelnen Agenten beinhalten die Konfigurationswerte
zur Parametrisierung des Laufzeitverhaltens des jeweiligen Agenten. Dadurch werden
Umkonfigurationen pro Umgebungen vereinfacht und ein einheitliches, reproduzierbares
Deployment ermdglicht.

3. Der Agent-Core Container ist der zentrale Backend-Service, welcher als Single Source of
Truth die Datenhaltung und die Datenbank abstrahiert: Er antwortet auf Anfragen der Agenten
und flihrt die Datenzugriffe aus. Durch diese saubere Entkopplung bleiben die eigentlichen
Agenten schlank und miissen keine Datenbank-Details kennen.

4. Die Environment-Variablen des Agent-Core beinhalten die Konfigurationswerte des Agent-
Core (Datenbank-Zugriff, NATS-Einstellungen). Dadurch werden Umkonfigurationen pro
Umgebungen vereinfacht und ein einheitliches, reproduzierbares Deployment ermdoglicht.

5. Die Libraries sind wiederverwendbare, gemeinsame Code-Bausteine fiir Core und Agenten
und dienen zur Vereinheitlichung von Typen und DTOs, Messaging-Patterns, Infrastruktur
Zugriffen und des Loggings. Dadurch wird die benétigte Boilerplate erheblich gesenkt, eine
konsistente Struktur in allen Agenten erreicht und potentielle Fehlerquellen reduziert.

6. Der NATS Container ist ein leichtgewichtiges, schnelles Messaging-System und fungiert als
Transportschicht zwischen Agenten und Core: NATS unterstitzt Subjects/Topics, Request-
Reply und optionale Queue-Groups, hat eine sehr geringe Latenz, ist einfach zu skalieren und

ist lose gekoppelt. NATS ist also fiir die Kommunikation zwischen Microservices und damit fur

45

damit fir den Agenten-Framework sehr gut geeignet

7. Die NATS Queue-Groups ermoglichen die Nachrichtenverteilung als Lastverteilung in
Pub/Sub-Szenarien: hierbei héren mehrere Worker auf das gleiche Subject, jedoch verarbeitet
nur ein Worker aus der Gruppe die Nachricht. Das System ist auf die Nutzung der optionalen
Erweiterung JetStream vorbereitet, sodass in Zukunft eine horizontale Skalierung und
erweiterte Anforderungen an die Persistenz und die garantierte Zustellung leicht umgesetzt
werden kdnnen. JetStream ermoglicht die Nutzung folgender Features: Persistente
Nachrichten, eine garantierte Zustellung (at-least-once oder exactly-once), eine historische
Wiedergabe (replay) sowie ein verteilter Schlissel/Wertspeicher (z. B. zur Konfiguration oder
flr Zustande).

8. Der Datenbank Container (Postgres) ist die relationale Persistenzschicht, auf welche
ausschliesslich der Agenten-Core via TypeORM zugreift. Es ist also eine klare Zugriffskontrolle
vorhanden. Die Datenbank selbst bildet die zentrale, konsistente Datenhaltung fiir fachliche
Daten bzw. Leistungen.

9. Die Applikations-Logdateien sind die Grundlage fir die Fehlersuche und Datenanalyse. Sie
existieren fiir den Core und jeden einzelnen Agenten. Es werden Betriebszustande, Fehler
sowie fachliche Ereignisse protokolliert.

10. Beginn Subsystem Logging & Monitoring: Der Promtail Container liest und sammelt die
Logs aus den Log-Dateien, versieht sie mit Labels und sendet diese an den Loki-Container. Das
Ergebnis ist eine einheitliche Log-Pipeline mit minimalem Konfigurationsaufwand pro Service.
11. Der Loki Container speichert und indexiert die Logs Uber Labels, um so eine Log-
Aufbewahrung mit schneller Suche und Filterung zu realisieren.

12. Der Prometheus Container (inkl. Alert Manager) kann Metriken vom Core-Service ziehen,
Regeln auswerten und Alerts versenden (E-Mail, Slack etc.). Dies wurde nicht umgesetzt,
wirde jedoch die Sichtbarkeit von und Benachrichtigung bei Fehlern und Ereignissen
verbessern.

13. Ende Subsystem Logging & Monitoring: Der Grafana Container wird als zentrale
Visualisierungs- und Dashboard-Plattform fir das Binden von Prometheus (Metriken) und Loki
(Logs) genutzt. Die konfigurierbare, einheitliche Monitoring-Oberflache (Metriken / Logs)

vereinfacht die Datenanalyse sowie den Datenexport.

5.2.7.1 Bausteinsicht

Im Paketdiagramm ist die modulare Architektur des Framework-Prototypen gut (Abb. 15
Paketdiagramm) zu erkennen: Die Agenten (agent) und der Agent-Core (core) sind
voneinander getrennt und es besteht keine direkte Abhangigkeit. Beide greifen auf eine
gemeinsame Bibliothek (libs) zu: Durch diese Wiederverwendung von Code-Bausteinen wird
die Entwicklung und Anpassung von Agenten nochmals stark vereinfacht. Zum Beispiel wird ein
abstrakter Basis-Agent bereitgestellt (libs/agent in Abb. 15 Paketdiagramm), welcher als

Grundlage flir neue Agenten dient.

46

core

src/app

dio

pattern ‘

N

<<import>>

enum

logger ‘

pipes

—‘ : <<import>>
*‘ domain
agent | ‘
country entry-log entry-requirement
Grenzkontrolle
race race-position runner
Marathon
harge-it medical-case patient
NoShow
T T
: <<import>> : <<import>>
¥ W
libs
agent nestimeta ‘ common

Abb. 15: Paketdiagramm

5.2.8 Tech-Stack

Der Tech-Stack wurde wie in Kapitel 4.7.1 umgesetzt und hat sich als zufriedenstellend und
zielfiihrend herausgestellt. Durch die Wahl von TypeScript ist NFA_REQ2 umgesetzt.
Ausserdem wurde durch den Einsatz von pnpm workspaces ein kohasives monorepo mit
unabhangigen Modulen, wie in ADR0013 beschrieben, erreicht. Dies hat die Struktur des

Frameworks weiter gefestigt und aufgewertet. Desweiteren ist der Tech-Stack

zusammengestellt aus:

konsistent, einfach, flexibel)

5.3 Systemverteilung und Deployment

Die entwickelte Losung basiert auf einer GitOps-gesteuerten, verteilten Architektur und
addressiert die Use-Cases UCO5 (Kofiguration), UC07 (Agentenlauf manuell auslésen), UC10
(Generierungsintervall konfigurieren) und somit die Anforderungen FA_REQ3, FA_REQ4 und

NFA_REQS.

TypeScript: primare Programmiersprache (moderner CISTEC-Standard)
NestJS: Basis-Framework (modular, strukturiert, skalierbar, enterprise-ready)
TypeORM: Entity-Mapping (Datenbankabstraktion, gut lesbar)

Zod: Schema-Validierung (Typensicherheit zur Laufzeit, sicher und deklarativ).
Winston: Logging (Konfigurierbarer Logger, super fiir ClI/CD)
Grafana + Promtail: Monitoring (Standard in der Webentwicklung)

pnpm: Package-Manager mit Monorepo Workspaces (schnell, platzsparend,

47

Alle relevanten Komponenten (Core, Agents, Infrastruktur wie NATS/Postgres sowie
Monitoring) werden zentral im Git-Repository versioniert und iber Fleet automatisch in das
Kubernetes-Cluster ausgerollt. Die Aufteilung im Cluster durch die Namespaces sorgt dafiir,
dass man schnell erkennt, was lauft und was nicht.

Im Prototyp wurde die Verteilung der Systemkomponenten vereinheitlicht und auf zwei
zentralen Helm-Charts gebaut: eines fiir den Agent-Core, eines fiir alle Agenten. Der Agent-
Core wird Uiber sein Chart als Deployment ausgerollt, wahrend das Agenten-Chart CronJobs
erzeugt, bei dem der Intervall angegeben werden kann pro Job. Ein neuer Agent wird lediglich
Uber einen zuséatzlichen Block der Datei “gitops/agent/chart/values.yaml|” eingebunden — das
Chart selbst bleibt unverandert.

Die Infrastrukturkomponenten sind als eigene Fleet-Pakete implementiert. PostgreSQL, NATS
sowie die Monitoring-Dienste laufen in separaten Namespaces und werden Uiber ‘dependsOn’-
Beziehungen in Fleet orchestriert, um die Reihenfolge der Inbetriebnahme zu steuern.

Fir die Installation ist ein Installationsscript im Anhang angefiigt sowie fiir das manuelle
Starten der Cronjobs ausserhalb des konfigurierten Intervalls.

Fir die lokale Entwicklung steht ein Docker-Compose-Setup bereit, das das Cluster-Setup in
vereinfachter Form spiegelt. Entwickler:innen kénnen so End-to-End-Tests mit Core, Agents,

Datenbank und Logging-Pipeline auch ohne Kubernetes durchfiihren.

48

5.3.1 Verteilungssicht

Legend:
Network communication
______ Provisioning / Dependency /
"is generated/managed by"
Reading flow:

Flest (flect-local)

pulls/installs” — W=l

/

<<bundies> -
intraimanitoring/grafana
/

Repository (Helm-Charts): GitHub Pages
htips://gratana. github io/elm-charts

ro

’
, <<bundie=> _
; Infra/monitaringfioki

<<artiiact=>
loki

- <artiact=>
grafan;

.
P <<bundle=:> -
P intra/monitoring/promtail
, ;

L A A

<cartiact>>
promitail

P
<egit-reposs
agent-core

vl

<<bundies>

agent I’ -
» N
\ W N
v W >
\

depends on

Repository (Contalnerimages): GitLab

collects logs

_ <cimagess
noshow-agent

Namespace: agents

L

raales exposes >
Namespace: monitoring
<<depioyment> | <<servicamnade-port=>
grafana grafana:30080
" datasource
J <<stalefuisets> LT
okl - -
- =<servicess
- 10ki:3100
,,,,, <<dasmonsets> — — pushlogs ~
promail

<<bundies>
core

ages> _
~ marathon-agent

<<cronjobs
noshow-agent

depends on
\

- ,% o

grenzkonirolie-agent

L

<cimagess B
‘agent-core

<<cronjob==
grenzkontrolie-agent

<<cronjobi=>
marathon-agent

Namespace: core

‘Repository (Helm-Charts, OCI): Docker Hub
oci:registry-1.docker.ia/bitnamichans.
v echundless K - <<arlifact=> _

\ \ infrainats H nats.
' \ ;

\ \ s
! <<bundles> o <eartifacts:

‘\ infra/postgres posigres N

'

\

v

\

\

v

Namespace: cattle-fleet-system

<<deployments=
cora
'
0:308

<<services>
core:3088

float-contraller

<<deployments>
aitiob

ot

—

Abb. 16: Verteilungsdiagramm

= helmops

“desired
L
—, <caepioyments> | _
staus— et agent

_ _pu{ 8PPy manitest o all
namespaces

s |
replies road/write
Namespace s |
N <<siateluiset>> o <csenvicess
nats nals:4222/6222/8222
Namespaco: pastgros
y
"~ ~ <<services>
== postgres:5432
<<statefuisets> .
posigres [
- p——
__ postgres-data

Abbildung 16: Verteilungsdiagramm stellt die Verteilung dar: Von links nach rechts ist der

Ablauf zu erkennen: ausgehend von den Git-Repo-Definitionen (z. B. fleet-yaml) enstehen

Dienste als Deployment, Cronjob, Service etc.

Bundles, welche die Charts aus den Repositories installieren oder Container-Images von der

Namespaces:

Core: beherbergt den zentralen Core-Service. Als Deployment dauerhaft verfligbar; persistiert
in Postgres und kommuniziert (iber NATS.

Nats: stellt den Message Broker bereit.

Im unteren linken Bereich ist die Fleet-Control-Plane (Manager) u. a. fiir Aufgaben wie

Uberwachung des Git-Repos und automatisches Ausrollen. Es gibt folgende Runtime-

Agents: enthilt die spezialisierten Agents (z. B. ‘noshow’, ‘marathon’, ‘grenzkontrolle’), die
periodisch als CronJobs laufen und nach dem Job wieder terminieren.

Postgres: verwaltet den Datenbank-State; persistent tiber PVC.

Monitoring: stellt Observability tiber Loki, Promtail und Grafana bereit.

49

GitLab-Registry gezogen werden. Daraus resultieren in den Ziel-Namespaces die ausgerollten

5.3.2 GitOps & Fleet

GitOps gibt uns die Méglichkeit, Anderungen an Verteilung, Konfiguration und Charts, bequem
und direkt im Git-Repo des Quellcodes zu handhaben. Dies ermdglicht es, jeden ausgerollten
Zustand zu reproduzieren. Abhangigkeiten zwischen Workloads lassen sich bequem steuern,
etwa um den Agent-Core erst zu starten, wenn Postgres und NATS verfligbar sind. Das
automatische Ausrollen bei neuen Commits erhoht die Developer Experience und hilft, stabile
und nachvollziehbare Deployments liber verschiedenen Systemen auszurollen.

Bei Fleet unterscheiden wir zwei technische Aspekte: Fleet-Control-Plane (Manager) und
Runtime. Die Runtime-Services laufen in eigenen Namespace gemass der Definition wie core,
agents, nats, postgres und monitoring. Diese sind von uns erstellte Namespaces sowie die
darin laufenden Dienste. Die Control-Plane wird installiert und libernimmt die Git-
Uberwachung sowie das automatische Ausrollen. Fleet setzt dafiir mehrere Dienste ein, die in
der Control-Plane laufen: Der gitjob-Controller Gberwacht das Git-Repo und reagiert auf neue
Commits. Der fleet-/ & helmops-Controller rendert die Manifeste zu Bundles und
bericksichtigt Abhangigkeiten. Der fleet-Agent Glbernimmt die Aufgabe, Manifeste auf Ziel-
Namespaces anzuwenden. Uber Pfadangaben wird gesteuert, welche Artefakte gebaut und

ausgerollt werden (vgl. Abb. 16: Verteilungsdiagramm).

5.4 Monitoring und Logging

Um Fehler schnell zu finden und Abldufe nachzuverfolgen, bendtigt man einen zentralen Blick
auf alle Logs der Dienste — vom Agent-Core bis zu den einzelnen Agenten. Unsere Lésung ist
bewusst leichtgewichtig gehalten und funktioniert auch dann zuverlassig, wenn ein Agent nur
kurz als Cronjob lauft. Das Ergebnis: Alle relevanten Ereignisse landen an einem Ort, sind
einfach durchsuchbar und lassen sich einem konkreten Lauf zuordnen.

Unsere Monitoring- und Logging-Losung adressiert die technischen Use-Cases UC09
(fehlerhafte Leistungsgenerierung protokollieren), UC14 (Logging einsehen) und UC15
(Fehlerlogs einsehen) und stiitzt damit die Anforderungen FA_REQ3, FA_REQ10 sowie
NFA_REQ5. Weiter wird der fachlich Use-Case UC08 (Agent seit X Tagen keine Leistung mehr
erzeugt) mit FA_REQS8 behandelt.

5.4.1 Datenfluss und umgesetzte Architektur

Jeder Dienst schreibt Meldungen mit dem Logger in eine eigene Datei (z. B. agent-core.log
oder noshow-agent.log). Diese Eintrage sind als JSON strukturiert und werden mit einem
Hilfsprogramm namens Promtail fortlaufend mit Zusatzangaben versehen. Unter anderem der
Service-Name und das Log-Level. Anschliessend werden die Daten an Loki geschickt. Loki ist ein
Dienst fir die zentrale Ablage der Logs. Dort werden sie gespeichert und so indexiert, dass
man sie spater wiederfinden kann. Die Auswertung erfolgt mithilfe von Grafana, das eine
bequeme und schnelle Durchsuchung der Logs ermoglicht (,,Zeige mir alle Fehler des Agent-
Core der letzten zwei Stunden.”) (UC09, UC15). Dariiber hinaus kénnen einfache
Auswertungen direkt aus den Logdaten gebildet werden (z. B. ,Wie viele Warnungen gab es
pro Stunde?“) —siehe Abb. 14: Systemiberblick.

50

5.4.2 Verwendung

Sowohl im Agent-Core als auch in den Agenten wird das Logger-Modul importiert und per
Dependency Injection in den Konstruktor tibergeben. Danach kann direkt geloggt werden,
beispielsweise mit logger.info(...), logger.warn(...) oder logger.error(...). In Grafana erscheinen
die Logs der Dienste unmittelbar und kénnen direkt durchsucht werden, ohne manuelle
Konfiguration — alles ist bereits bereitgestellt (UC14).

5.4.3 Bekannte Grenzen

Aus Zeitgriinden wurde eine automatische Uberwachung iiber Metriken und eingerichtete
Alarmmeldungen nicht umgesetzt. Falls etwas aus dem Ruder lauft, wird dies nur Gber eine
Auswertung der Logs erkennbar — nicht Gber Metrik-Dashboards oder Benachrichtigungen
(ucos).

5.5 Qualitatssicherung

Das Shift Left Prinzip wurde im Projektverlauf tiber eine durchgehende, automatische CI/CD
Pipeline umgesetzt. Um die E2E Test sowie eine sinnvolle Verteilung sicherzustellen, wurde
Docker eingesetzt. Die Test-Stage sichert die Qualitat noch weiter Giber einen Pre-Commit-
Hook und Unit-Tests. Zur Laufzeit wird Gber Zod sichergestellt, dass die Daten typsicher sind.
Die Qualitatsanforderungen NFA_REQ3, NFA_REQ4 wurden somit erfolgreich umgesetzt. Die

Schema Validierung tragt zudem zur Realisierung von NFA_REQQ9 bei.

5.5.1 Testinfrastruktur und Hilfsmittel

Fir die Testinfrastruktur wurden verschiedene Hilfsmittel als Bausteine realisiert:
Infra-Builder fiir E2E-Tests: Startet Postgres, NATS und den Agent-Core in einem isolierten
Netzwerk als Testcontainer. Per Builder-Pattern kann man frei wahlen, welche Dienste
benétigt werden, und kann leicht erweitert werden. Bei Bedarf lassen sich zusatzlich die
Container-Logs aktivieren — das hilft, die Ursache bei fehlgeschlagenen Tests schnell zu finden.
DataSource-Factory fiir E2E-Tests: Initialisiert eine TypeORM-Datenquelle mit den
libergebenen Domanenentitaten und stellt eine Reset-Funktion bereit, um die Datenbank in
Test-Hooks (Setup/Teardown) sauber zuriickzusetzen. Damit lassen sich Arrange- und Assert-
Phasen realistisch und flexibel aufsetzen, und die Tests bleiben sauber isoliert.
AgentTest-Factory flr E2E-Tests: Erstellt einen Agenten als Nest-App und vereint den Infra-
Builder und DataSource-Factory in einem. Damit ldsst sich mit sehr wenig Zeilen Code ein
gesamter E2E-Test aufziehen.

TestLogger-Factory fir Unit- und E2E-Tests: Stellt einen Winston-Logger bereit, mit dem sich
Logs der Ablauflogik gezielt “ausspionieren” oder fiir die Konsole aktivieren bzw. deaktivieren
lassen. Dies erleichtert die Verfolgung von Prozessen beim Schreiben von Tests sowie bei der
Fehlersuche erheblich — insbesondere, weil mehrere Dienste gleichzeitig ausgefiihrt werden.
Diese Bausteine senken den Setup-Aufwand, vereinheitlichen den Testaufbau ohne Flexibilitat

zu verlieren — so werden auch komplexere E2E-Tests gut handhabbar.

51

5.5.2 Metriken
Wir haben folgende Metriken protokolliert:
e Anzahl Tests: 43
e Testabdeckung (Coverage): 85.86% (Stmts), 68.9% (Branch)
e SonarQube Quality-Gate: 18 Open issues, 6 Accepted issues, 12 Security Hotspots
(dies liegt daran, dass wir die Docker-Images nicht Infra-spezifisch abgesichert haben)
e Umsetzungszeit Template Agent: 2 Stunden (Bei CISTEC AG normalerweise 2 Tage fir
komplettes Setup)
e Lines of Code fiir einen simplen Agenten: 48 Zeilen flir den Service, 283 Zeilen fiir den
gesamten Agenten inkl. Domain, DTOs und Entities.
Die Interpretation von Metriken ist keine exakte Wissenschaft, jedoch ist hier klar sichtbar,
dass das Framework eine hohe Testabdeckung erzielt hat und den Arbeitsaufwand sowie die
Umsetzungszeit fiir einen simplen Agenten massiv verringert hat. Das SonarQube Quality-Gate
schlagt 24 bestétigte Issues vor (grosstenteils TODO oder FIXME Kommentare) und fand 12
Sicherheits-Vulnerabilitdten. Diese liegen ausschliesslich an den Docker-Images, welche die
Dependencies direkt in das Image kopieren, sowie nicht ausreichend gegen Role Based Access
Control (RBAC) geschiitzt sind. Dies ist in unserem definierten Scope und in einem nicht
produktiven Setting vertretbar und kann bei der Integration in eine richtige
Firmeninfrastruktur gepatcht werden.

Quality Gate © Last analysis 4 minutes ago

Y Passed

The last analysis has warnings. See details

New Code Overall Code

Security Reliability Maintainability

0 openissues A 0 openissues A 18 openissues A
Accepted issues Coverage Duplications

6 5 0.0% O oo0% .
Valid Issues that were not fixed On 978 lines to cover. On 5.8k lines.

Security Hotspots

12 E

Abb. 17: SonarQube Quality Gate

52

6 Diskussion

6.1 Zielerreichung

Ausgehend von der formulierten Problemstellung im Kapitel 1.1 und 4.1 — einer
fragmentierten, schwer wartbaren und kaum skalierbaren Agentenlandschaft — konnte im
Rahmen dieser Arbeit ein standardisiertes, modulares Framework entwickelt werden. Der rote
Faden von der Analyse des Ist-Zustands Uber die Definition von Anforderungen bis hin zu
Architekturentscheidungen und Prototyping wurde nach bestem Wissen und Gewissen
verfolgt.

Die wesentlichen Pain Points aus Kapitel 1.1 wurden adressiert:

Standardisierung und Wiederverwendbarkeit: Klare Guidelines, konsistente
Implementationsmuster (Prozess mit processltem, update, create), und ADR-Dokumentation
schaffen eine belastbare Grundlage fiir kiinftige Agenten. Erweiterbare Codebausteine (libs)
bieten eine Basis, welche von allen Agenten verwendet und erweitert werden kdnnen.
Wartbarkeit: Durch die Trennung von Core und Agenten, Zod-Schemata und Monitoring-
Infrastruktur (Prometheus, Grafana, Loki) ist der Betrieb nachvollziehbarer und Fehler lassen
sich schneller eingrenzen. Reporter konnen auf ein vorkonfiguriertes Dashboard zugreifen.
Skalierbarkeit: Die Microservice-Architektur mit Kubernetes-Deployments erlaubt horizontale
Skalierung und Deployments pro Agent, welche enterprise-ready sind.

Flexibilitat: Mit NATS als Kommunikationsschicht ist das Framework offen fiir neue Use Cases
und zukiinftige Erweiterungen.

Fir die CISTEC AG entsteht ein klarer Mehrwert durch reduzierten Wartungsaufwand, héhere
Wiederverwendbarkeit, gesteigerte Flexibilitdt und konsequente Standardisierung. Besonders
deutlich wird dies an der Entwicklungsgeschwindigkeit neuer Agenten: Wahrend bislang
mehrere Tage flr die Umsetzung bendtigt wurden, reduziert das Framework diesen Aufwand
auf wenige Stunden, da zentrale Infrastruktur und Basiskomponenten bereits vorhanden sind.
Die gewahlte Architektur stellt zugleich sicher, dass das System sowohl Batch-Verarbeitungen
als auch eventgetriebene Szenarien unterstltzt und damit nachhaltig auf unterschiedliche
Einsatzkontexte vorbereitet ist. Damit erfillt das Framework nicht nur die inhaltlichen Ziele der
Masterarbeit, sondern liefert der CISTEC AG eine tragfdahige Grundlage, um ihre

Agentenlandschaft langfristig resilienter, effizienter und zukunftssicher zu gestalten.

6.2 Challenges

Die Projektergebnisse zeigen, dass der Erfolg dieser Arbeit weniger von einer idealisierten
Planung als vielmehr von der Fahigkeit abhing, auf Unsicherheiten adaptiv zu reagieren und
zentrale Entscheidungen transparent zu dokumentieren. Die im Kapitel der Risikoanalyse
dargestellten Entwicklungen verdeutlichen, dass sowohl fachliche als auch technische und

organisatorische Faktoren den Projektverlauf massgeblich beeinflussten.

6.2.1 Domanenspezifischer vs. generischer Framework-Prototyp
Ein zentrales Spannungsfeld lag in der Abgrenzung zwischen einem domanenspezifischem und

generischen Framework-Ansatz. Urspriinglich bestand die Erwartung, klinische Agenten aus

53

KISIM nachzubilden. Diese Ausrichtung erwies sich jedoch als zu komplex und zu eng mit
spezifischen Strukturen der CISTEC AG verknipft. Mit der Entscheidung ADRO007 wurde dieser
Pfad bewusst verlassen und durch abstrahierte, alltagsnahe Use-Cases ersetzt. Diese Abkehr
von fachlicher Detailtreue ermdglichte eine generische Losung, die auch flir Entwickler:innen
ohne klinischen Hintergrund nachvollziehbar blieb. Gleichzeitig wurden gute Grundlagen fir
Innovation und langfristige Erweiterbarkeit bereitet. Allerdings flihrte die spate Abgrenzung zu
Verzégerungen, was die Bedeutung eines friihzeitigen Scope-Managements unterstreicht.

6.2.2 Cyberangriff der CISTEC AG

Neben der fachlichen Dimension pragten externe Ereignisse den Projektverlauf erheblich. Der
Ransomware-Angriff auf die CISTEC AG verzogerte die Bereitstellung von Testdaten und
reduzierte die Moglichkeiten der Auftraggeberin und des Maintainers, aktivam Projekt
mitzuwirken. Als die Daten verfligbar wurden, erwiesen sie sich zudem als ungeeignet fiir
Entwicklungszwecke. Die Konsequenz war die Definition einer eigenen Domane, die es
erlaubte, unabhangigen Fortschritt zu erzielen. Dieses Vorgehen erwies sich als entscheidend
fir den Projekterfolg, zeigte jedoch auch, dass externe Abhangigkeiten friihzeitig durch

eigenstandige Initiativen abgefedert werden mussen.

6.2.3 Enterprise-Infrastruktur

Technisch stellte die Intransparenz der bestehenden Build- und Deployment-Pipelines eine
weitere Herausforderung dar. Da die internen Prozesse der CISTEC AG aufgrund ihrer
Komplexitat und Sicherheitsvorgaben nicht zuganglich waren, musste das Projektteam eine
eigenstandige, schlanke CI/CD-Pipeline aufbauen. Mit Fleet und GitOps konnte eine
funktionale Losung geschaffen werden, die die Kernanforderungen abdeckte, sich jedoch nicht
nahtlos in die Verteilung der CISTEC AG mit ArgoCD integrieren ldsst. Abstriche bei Persistenz,
Skalierung und Security waren dabei unvermeidlich, etwa durch fehlende Log-Historien oder
fehlendes Secret-Management. Dennoch zeigte sich, dass der Fokus auf Deployment, Logging

und Modularitat ausreichend war, um einen praxistauglichen Prototyp zu liefern.

6.2.4 Kommunikation und Zusammenarbeit

Organisatorisch erwiesen sich eingeschrankte Stakeholder-Prasenz und fehlende technische
Rollen auf Seiten der CISTEC AG als Hemmfaktoren. Der Product Owner war Uber ldngere Zeit
abwesend, wodurch regelmassige Abnahmen nicht stattfinden konnten. Entscheidungen
mussten daher eigenverantwortlich getroffen und in Architecture Decision Records (ADR’s)
dokumentiert werden. Auch innerhalb des Projektteams fiihrten ungleichmassige Arbeitslast
und temporare Abwesenheiten zu zusatzlichem Koordinationsaufwand. Diese
Herausforderungen konnten durch zusatzliche Syncs, Pair Programming und eine konsequente

Dokumentation abgemildert, jedoch nicht vollstdandig gelost werden.

54

6.2.5 Fazit

Zusammenfassend lasst sich feststellen, dass die grossten Herausforderungen weniger in der
technischen Umsetzung als vielmehr in der Domdnenabgrenzung, der Abhangigkeit von
externen Faktoren und der organisatorischen Koordination lagen. Die Entscheidung fiir ein
generisches Framework, die Einfihrung einer eigenen Testdomane und der Aufbau einer
unabhangigen Deployment-Pipeline erwiesen sich als zentrale Weichenstellungen, um das
Projekt erfolgreich abzuschliessen. Gleichzeitig verdeutlicht der Projektverlauf, dass Resilienz
in der Softwareentwicklung nicht durch Risikofreiheit entsteht, sondern durch die Fahigkeit,
auf Unsicherheiten flexibel, offen und transparent zu reagieren.

6.3 Weiterentwicklung

Der im Rahmen dieser Arbeit entwickelte Prototyp bildet eine robuste Grundlage fiir den
Betrieb von Agenten im klinischen Kontext. Gleichwohl konnten nicht alle potenziellen
Funktionen im Prototypen umgesetzt werden. Fiir eine zukiinftige Weiterentwicklung sind

insbesondere folgende funktionale Erweiterungen denkbar:

6.3.1 Message Queue

Die aktuelle Kommunikation zwischen Core und Agenten basiert auf einem Request-Response-
Muster via NATS. Fir den produktiven Einsatz konnte dieser Mechanismus um eine Message
Queue erganzt werden. Eine solche Warteschlange erlaubt es, Agenten nach dem Pull-Prinzip
Auftrage abarbeiten zu lassen. Jeder Agent kann so eigenstandig neue Jobs aus der Queue
entnehmen und abarbeiten. Dieses Verfahren erhoht die Robustheit, da Auftrage im Falle
eines Absturzes nicht verloren gehen. Zusatzlich sind Retries durch den Broker unmittelbar
umsetzbar. NestJS bietet hierflr bereits integrierte Adapter (z. B. fir NATS JetStream oder

Redis Streams), sodass die Architektur flexibel erweiterbar bleibt.

6.3.2 Transaction Logging

Fir Nachvollziehbarkeit und Revisionssicherheit soll kiinftig ein zentrales Transaction Logging
etabliert werden. Jede erzeugte oder aktualisierte Leistung wird dabei in einer separaten
Entitdt der Datenbank persistiert. Durch dieses Vorgehen entsteht ein detailliertes Journal aller
durchgefiihrten Operationen, das sowohl fiir Audits als auch firr technische Analysen genutzt
werden kann. Dariiber hinaus bildet es die Basis fiir Nachgenerierungen, da Transaktionen fir

eine bestimmte Zeitspanne erneut ausgerollt werden kdénnen.

6.3.3 Nachgenerierung

Im aktuellen Prototyp existiert noch kein Mechanismus zur Nachgenerierung von Leistungen.
Dieser ist jedoch essenziell, wenn Daten nachtraglich korrigiert werden missen

(z. B. bei ERP-Stérungen oder fehlerhaften Abrechnungsdaten). Eine mogliche Erweiterung
besteht darin, dass Agenten auf Basis des Transaction Logs oder Message Queues mithilfe
eines Von- und Bis-Datums erneut ausgefiihrt werden kénnen. Auf diese Weise lassen sich

vergangene Leistungen vollstindig oder partiell neu berechnen, ohne die Integritat der

55

bestehenden Daten zu gefdhrden.

Eine praxisnahe Ergdanzung ware ebenfalls die Einflihrung eines Betriebsmodus-Flags, mit dem
Agenten zwischen Normalbetrieb und Nachgenerierung umgeschaltet werden kénnen. Im
Normalbetrieb arbeiten die Agenten wie gewohnt im kontinuierlichen Modus und verarbeiten
aktuelle Daten. Im Nachgenerierungsmodus hingegen wird eine spezifische Zeitspanne
bericksichtigt, die Agenten arbeiten alle relevanten Datensatze innerhalb dieses Bereichs
erneut ab. Dieses Vorgehen trennt die beiden Anwendungsfalle klar und erleichtert die
Nachvollziehbarkeit bei Bugs.

6.3.4 Monitoring und Alerting

Im Bereich Monitoring ist bislang nur Logging umgesetzt, das Systemereignisse in Grafana
sichtbar und bequem zuganglich macht. Fiir die nachste Ausbaustufe bietet es sich an, das
Setup um Prometheus und den Alertmanager zu erweitern (siehe Abb. 14: Systemiberblick).
Prometheus sammelt Metriken wie CPU- und RAM-Auslastung, Durchsatz und Fehlerraten und
macht Trends sichtbar. Der Alert Manager |6st bei definierten Schwellwerten automatisch
Benachrichtigungen (z. B. per Mail oder Slack) aus. So ldsst sich gezielt und friihzeitig
eingreifen und wiirde den UC08 “Agent seit X Tagen keine Leistung mehr erzeugt” abdecken.
Die Erweiterung von Prometheus fiir das Monitoring gilt es auch in der Verteilung
nachzuziehen und zu integrieren. Metriken sollten im Agent-Core aggregiert werden, bis sie
von Prometheus abgerufen werden. Ausserdem lauft Loki derzeit ohne Persistenz. Flr eine
produktive Umgebung sollten Persistent-Volume-Claims mit ausreichender Retention

eingeplant werden.

6.3.5 NATS Queue-Groups und Jetstream

NATS bietet verschiedene Kommunikationsmuster an — unter anderem Queues-Groups. Wir
empfehlen, das System um Queues-Groups zu erweitern, um eine robustere und skalierbare
Losung zu erreichen. Diese Erweiterung ermoglicht die Nachrichtenverteilung als
Lastverteilung in Pub/Sub-Szenarien: hierbei héren mehrere Worker auf das gleiche Subject,
jedoch verarbeitet nur ein Worker aus der Gruppe die Nachricht.

Fir persistente Nachrichten und grantierte Zustellung, ldsst sich NATS optional mit Jetstream
erweitern, sodass Nachrichten Ausfille tiberdauern und spater automatisch nachgeholt
werden kdnnen. Lastspitzen werden gepuffert und Verbraucher entkoppelt und stellen einen
schlanken Key/Value-Store fur Zustdnde oder Konfigurationen bereit. In Kombination mit NATS

und Queue-Groups ergibt sich eine robuste Basis, die sich leicht horizontal skalieren lasst.

6.3.6 Verteilung, Deployment, DevOps, Security und Skalierung

Die heutige Fleet/GitOps-Struktur funktioniert gut, ist aber von automatischen Tests
ausgeschlossen. Fir den produktiven Betrieb sollte die automatische Verteilung um
automatisierte Tests erganzt werden. Beim Thema Sicherheit haben wir im Prototyp bewusst
Abstriche gemacht. In einem produktiven Betrieb gehdren Passworter und Zugangsdaten nicht
ins Repo, sondern in ein Secret-Management. Ebenso ist die Kommunikation zwischen den

Diensten lGber NATS zu verschliisseln.

56

7 Fazit

Ziel dieser Arbeit war es, ein Framework zu entwickeln, welches die Agenten-basierte
Leistungserfassung in Klinikinformationssystemen standardisiert, modularisiert und langfristig
wartbar macht. Ausgangspunkt bildete die Analyse der bestehenden, Agentenlandschaft bei
der CISTEC AG, die durch individuelle Implementierungen, hohen Wartungsaufwand und
eingeschrankte Skalierbarkeit gepragt war.

Die Entscheidung, die bestehenden Agenten nicht 1:1 nachzubilden, sondern eine eigene
Domane aus nicht-medizinischen Szenarien zu verwenden, reduzierte die fachliche
Komplexitat erheblich und flhrte zu einer klareren, robusteren Architektur. Auf dieser Basis
wurden exemplarische Use Cases umgesetzt (Agent-NoShow, Agent-Marathon, Agent-
Grenzkontrolle), welche die Modularisierung und Wiederverwendbarkeit von Komponenten
demonstrieren.

Die Arbeit zeigt, dass mit einer serviceorientierten Architektur auf Basis von NestJS, NATS,
TypeORM, Schema-Validierung in zod, und Kubernetes ein tragfdahiges Fundament fiir Agenten
geschaffen werden kann.

Ergdnzt durch einen einheitlichen Prozess, welcher als Grundlage fir alle Agenten gliltig ist,
werden Doppelspurigkeiten in der Business-Logik signifikant verringert. Mittels geblindelten
Logging-Ressourcen konnen die Agenten mihelos in Grafana eingesehen werden, um bei
allfalligen Problemen im klinischen Bereich schneller auf Schlussfolgerungen kommen zu
kénnen. Damit wurde ein System entworfen, das sowohl robust als auch flexibel ist und bei
fachlichen Anforderungen im klinischen Bereich einfach erweitert werden kann. Durch die
zentrale Rolle von ADR’s konnte die Transparenz im Entwicklungsprozess sichergestellt und
zukilinftige Weiterentwicklungen methodisch abgesichert werden.

Die Evaluierung anhand von Muss- und Kann-Kriterien sowie einer Risikomatrix verdeutlicht,
dass das Framework die identifizierten Pain Points adressiert: Wiederverwendbarkeit,
Standardisierung und Wartbarkeit wurden deutlich verbessert. Gleichzeitig wurde durch die
modulare Struktur die Grundlage fiir Erweiterbarkeit geschaffen.

Fir die Zukunft eréffnen sich Weiterentwicklungsmoglichkeiten wie Message Queues,
erweitertes Transaction-Logging, Mechanismen fir Nachgenerierungen, oder die Erweiterung
um kundenindividuelle Konfigurationen. Diese Arbeit bildet somit die Basis flir einen
nachhaltigen Transformationsprozess in der Leistungserfassung von einer fragmentierten,
schwer wartbaren Landschaft hin zu einem standardisierten, transparenten und

zukunftsfahigen System.

57

8

Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.

Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.

Abbildungsverzeichnis

1: SystemKkontextdiagrammuiiiiiiiieiiiiiiiieieee ettt et re e rraraarearane 12
2: Projektplan zu Projektheginm e 13
3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess........................... 14
4: Branching sowie Build- und Deploymentprozess im Entwicklungsprozess.................... 16
5: Stakeholder-MatriXooooeeeeeiiiii 18
6: Microservices Testing-Strategie (Schaffer, 2018)coeviiiiiiciiiiiiiie e, 19
7: Entwicklungsphasen ... 20
81 USE-Case DIaramIM cecuuuuueeiiiiiiiiiiiieeeeeeteeiiies e e e e eeeetttiisseeeeeeeatsassseeeseeensnnsnnssseeseensnnnn 25
9: DOMAIN IMOTE] .ttt e e e e s st e e e e e e s s e sbbrbaeeeaeeeas 29
10: Risikomatrix der initial definierten Risiken..........cccceeiiiiiiiiii e, 31
11: Risikomatrix der technischen RiSiKEN..........oovvuuiiiiiiiiiiiiiree e 32
12: Risikomatrix der organisatorischen RiSiken.............uuiviiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeveenenns 33
13: Risikomatrix der finalen RiSIKENuuiiiiiiiiiii e 34
IV W= 0 [¥] o114 o] L PP PPPPPPPPRt 45
T Y = Lo LY <{ =1 0] .o PP PPPPPPPRRt 47
16: VerteiluNgsdiagramMiiiiiiiiiiiiiiiieeeeeeieeeeeeeeereeeeeeseareeeeresserareeeasrearrrraaarrrrerrerrrrane 49
17: SonarQube QUAlitY GAt........eeeiiiiiiiiiiiiiiiiiiieiiieieriieeerrerereeeereerererreerrrearrrrrrrrrrrrrrrrarrane 52
18: Projektplan Soll-ISt-VergleiCh........uuuuiiiiiiiiiiiiiiiiiieiieeeieeeeeeeeeees e eeeee e eeaeeerereereaaane 61
19: Aufwandsverlauf (KUMUIIEIT)oovvviiiiiiieii e e 61
20: Aufwandsintensitat (exponentiell geglattet).....ccoooviviiiiiiiiiiiiiiiiecc 62

Tabellenverzeichnis

1: Ubersicht tiber Projektbeteiligte und Projektrollencccveeuveveeeeeeeceececeeee e 13
2: Nutzung und Erklarung der genutzten Labelsouvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeveeeans 15
o117 o T =1 a1 T o U UUPPRP 17
Y =1 =] 0o (o LT ot I U URPPRP 18
5: USE-Case UNTEIEIUNGuuueeeiee s 26
6: Funktionale und Qualitatsanforderungeneeeiiiiiiiiiiiieiiiieiiieieieeereeeereererereereer———. 28
7: Traceability IMATriX .. .uuueeeeeneeeii s 29
8: Erwartete technische RiSIKENooiiiii i 32
9: Erwartete organisatorisChe RiSIKENuuc s 33
10: Erwartete finale RiSIKENccoviieiiiiieee ettt e e e e e e e eeeaaaeeas 35
11: Auswertung Technologiestackcccoooeiiii 35
12: Arbeitsaufwande (zusammengefasst) ... 39
13: Auswertung finaler Risiken (zusammengefasst)...........cccccciiiii 41
14: Architektur Vor- und Nachteile ... 44
15: Deklaration genutzter (KI)-TOOISccooiiiiiiii 60

58

10 Literaturverzeichnis

Cockburn, A. (2011). Writing effective use cases (23rd printing). Addison-Wesley.

FMH Swiss Medical Association: TARMED: Online-Tarifbrowser. Publikationsdatum unbekannt.
Zuletzt abgerufen am 14.09.2025 von https://www.fmh.ch/themen/ambulante-tarife/tarmed-
tarifbrowser-datenbank.cfm

FMH Swiss Medical Association: Wichtige Tarif-Info | TARDOC. Publiziert am 04.09.2025.
Zuletzt abgerufen am 14.09.2025 von https://tarifeambulant.fmh.ch/wichtige-tarif-info.cfm
Jochum, K. Ransomware-Angriff auf KIS-Anbieter Cistec. Publiziert am 28.02.2025. Zuletzt
abgerufen am 13.09.2025 von https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-
cistec-20250228

NATS.io. The official NATS documentation. Publiziert am 01.08.2025. Zuletzt abgerufen am
15.09.2025 von https://docs.nats.io/

NATS.io. Queue Groups. Publiziert am 06.12.2024. Zuletzt abgerufen am 15.09.2025 von
https://docs.nats.io/nats-concepts/core-nats/queue

Nygard, M. Documenting Architecture Decisions. Publiziert am 15.11.2011. Zuletzt abgerufen
am 13.09.2025 von https://www.cognitect.com/blog/2011/11/15/documenting-architecture-
decisions

Prokosch, H.-U. (2001) KAS KIS EKA EPA EGA E-Health: Ein Pladoyer gegen die babylonische
Begriffsverwirrung in der Medizinischen Informatik. Minster: Westfalische-Wilhelms-
Universitat Munster.

Schaffer, A. Testing of Microservices. Publiziert am 11.01.2018. Zuletzt abgerufen am
12.09.2025 von https://engineering.atspotify.com/2018/01/testing-of-microservices

59

https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-cistec-20250228
https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-cistec-20250228
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions

11 Anhang

11.1 Deklaration zu genutzten (KI)-Tools

Tool-Kategorie Tools Verwendungszwecke im Projekt
Plattform zur e GitLab (self-hosted e Code Reviews
Versionsverwaltung durch OST) e Issue Board
e Technische Dokumentation
e \Versionsverwaltung
Kommunikation e Discord e Teamkommunikation,
® Microsoft Teams ® Abstimmungen intern und
e WhatsApp extern
® Zoom ® Pair-Programming Sessions
IDE e Visual Studio Code e Lokale Entwicklungsumgebung
e WebStorm ® Pair-Programming Sessions
Ergdnzungen zur e Docker e Lokale Entwicklungsumgebung
Lokalen e Helm
Entwicklungsumgebung ® kubectl
Al e ChatGPT e Hilfsmittel fiir das Generieren
e Codepilot von Code-Bausteinen,
Dokumentation, sowie
Fehlerbehandlung.
Darstellungen e Draw.io e Erstellung von Diagrammen und
o Excalidraw Visualisierungen
Zeiterfassung ® Excel e Nachvollziehbarkeit der
e Timecamp aufgewendeten Arbeit
Dokumentenablage e Google Drive e Datenablage
e Kollaborativer Zugriff auf

Protokolle und Abschlussarbeit

Tab. 15: Deklaration genutzter (Kl)-Tools

60

11.2 Zeiterfassung und Zeitauswertung

Soll-Ist-Vergleich:

& 4) - e A4 P o P L il o &
G é'e?g";”f §opow I R . N B B
= & ¥ ¥ & S5 ¥ & i & . 3 & E ¥ v F PR of
A ~F oy o A o o FA N " 3 Lol w 5
Projektsetup [IERE
T
Reguirements Engineering & |
I
Architekturprototyp 2 |
T
Zwischenreview mit Betreuer .
[5 |
miple mentation I
|
Feature-Freee & Finalisierung T
2z |
Abgabe Masterarbeit 2 |
15 |

micheitstage SOLL WArbeitstage-IST

Abb. 18: Projektplan Soll-Ist-Vergleich

Die Abb. 18 zeigt Soll (grau) und Ist (blau). Das Setup dauerte etwas langer, das Requirements
Engineering zog sich bis in den Mai. Beim Architekturprototyp konnten wir leicht aufholen. Die
Implementierung startete teils vorzeitig, erwies sich jedoch als komplexer als erwartet. Zur
gleichen Zeit entschieden wir Mitte Juni, von den fachlichen Kriterien Abstand zu nehmen, was
weitere Anpassungen notig machte. Dadurch verschob sich der Feature-Freeze leicht, und die
Abgabephase fiel entsprechend kompakter aus.

Aufwandsverlauf (kumuliert):

1200

800

600

Stunden

400

— fufwand s Verlauf (kurmuliert)

Abb. 19: Aufwandsverlauf (kumuliert)

Der kumulierte Aufwand steigt tiber die gesamte Laufzeit stetig an und erreicht zum Schluss
gut Giber tausend Stunden. Ab Ende Mai zieht die Kurve sichtbar an — die steilste Phase liegt
zwischen Mitte Juni und Ende Juli.

Hinweis: Darstellung endet am 3. September, da der Export aufwdndig war.

61

Aufwandsintensitat (exponentiell geglattet):

1400
1200
¥ 1000
[
T am
2 em
-
£
2 am
2m
am
L i 4 i 4 & A i
s & & W & T & 3 o 4o
& R _\’-\-Q o ’;;n r_\,\‘ R ¥ o oF e ¥ o
B F o i - ¥ - =

—Arbeitsintensitit (exporetiel | geglitet)
Abb. 20: Aufwandsintensitdt (exponentiell gegldttet)
Die tagliche Intensitat startet moderat, erreicht Mitte April erste Spitzen, fallt kurz ab und

steigt ab Juni erneut deutlich an. Im Juli/August halten ldngere Hochphasen an. In den letzten

Wochen nimmt die Intensitat spirbar ab.
Hinweis: Darstellung endet am 3. September, da der Export aufwéndig war.

62

11.3 ADR’s

0001 TypeScript Framework NestJS

Entschieden am: 12.04.2025

Status

vorgeschlagen

~ angenommen
abgelehnt
veraltet
ersetzt

Kontext

= Unser grobes Ziel ist die Entwicklung eines Frameworks zur Generierung von "Agenten” Modulen in der Sprache TypeScript, um die Flexibilitat

dieser Module zu erhéhen und deren Wartungs- und Entwicklungsaufwand zu verringern

= Um ein mdglichst nachhaltiges und einfaches Framewaork zu erstellen, bietet es sich an, ein Framewokr zu nutzen und das Rad nicht neu zu

erfinden

Entscheidung

» Auswahlkriterien fir das Framework:

o TypeScript benutzbar

o Fir Cistec Entwickler:innen gut benutzbar

o ein bestindiges und sicheres Framework
= Untersuchte Frameworks:

o ExpressJs

o MestJs

o Adonisds

Framework Pro

ExpressJs Absolute Kontrolle

Adonis)s Lelcht zu erlernen

Ahnlichkeit zu PHP Framework Laravel vereinfacht Arbeit fir entsprechend

erfahrene Devs

MestJ)s Unternehmen hinter dem Framework
Grosse Community
Gibt durch Modularitat Struktur vor
decorator-orientiert
microservice-affin

Cistec nutzt bereits NestJs

Folgen
Das wird aufgrund dieser Veranderung einfacher:
» siehe NestJs pros
Das wird aufgrund dieser Verdnderung schwieriger:

s siehe Mest)S cons

Contra
Gefahr fur Spaghetti Code, Wildwuchs

Wartbarkeit hdngt sehr fest von der Disziplin
der Devs ab

Loose Kopplung ist schwieriger erreichbar
Community getriebenes Framework

Kleine Community

Cister kann vom Laravel-Vorteil nicht
profitieren

hohe Lernkurve

braucht mehr boilerplate

63

0002 Library Zod

Status

Wie ist der Status der Entscheidung?

vorgeschlagen
+ angenommen

abgelshnt

veraltet

ersetzt

Kontext

Das Agentenframework basiert auf TypeScript, das zur Kompilierzeit bereits sehr gute Typsicherheit bietet. Allerdings bietet TypeScript keine

Laufzeit-Typenvalidierung. Sobald z.B. Daten von einer externen Quelle (Datenbank, HTTF, Message Queue) eingehen, existiert kein Schutz mehr zur

Laufzeit.
Um die Agenten robust, fehlertolerant und erweiterbar zu gestalten, bendtigen wir:

+ Schema-Validierung zur Laufzeit
s Typ-Inferenz zur Entwicklungszeit
» Erkennbarkeit und Dokumentation der erwarteten Datenstruktur als Code

Entscheidung

Wir setzen die Library zod ein, um:

+ Laufzeit-Validierung von Daten und Konfigurationsobjekten vorzunehmen
» Zentrale Datenstrukturen (z.B, OP-Bericht, Patientan, Agent-Konfigurationen) als Schemas zu definieren
» Gleichzeitig Typen fir TypaScript direkt abzuleiten (z.infer)

Zod ersetzt in unserem Projekt die sonst im NestJS-Okosystem lbliche Kombination aus:

« class-validator
« class-transformer

Wir haben uns aus folgenden Griinden bewusst gegen class-validator und class-transformer entschieden;

« Stark auf Klassen und Decorators ausgelegt
+ Keine Schema-zentrierte Entwicklung wie bei zod

Folgen
Das wird aufgrund dieser Veranderung einfacher:

» Einheitliche und typensichere Datenvalidierung im gesamten System

+ Einfache Generierung von DTO-Types, Konfigurationen, Agenten-Datenstrukturen

» Reduzierte Fehler durch explizite Schema-Definitionen

» Bessere Developer-Experience durch Autocompletion und Fail-Fast Approach bel Inkompatibilitat

Das wird aufgrund dieser Veranderung schwieriger:

= Integration in MestJS bendtigt zusétzliche Pipe {z.B. zod-validation-pipe) fir Validierung
« Entwickler miissen mit funktionaler Validierung statt OOP/Decoratars arbeiten, Geschmackssache
« Keina Fehlertoleranz bei sich rasch verandernder Datenstruktur

64

0003 Architektur-Prototyp Agentenframework

Status

Wie ist der Status der Entscheidung?

~ vorgeschlagen
angenommen
abgelehnt
veraltet
ersetzt

Kontext

Fiir das Agentenframawork wurde ein Prototyp mit NestJS, zod und TypeORM erstallt, Dieser soll die Basis fur eine skalierbare, wartbare und
kanfigurierbare Plattform bieten, um automatisiert medizinische Leistungen durch verschiedenen Informatisnen aus einer Datenbank eines KIS
{Krankenhausinformationssystem) zu generieran.

Ziel ist ein mandantenfahiges Framework, das sowohl geplante Agentenprozesse via CROM-Jobs als auch manuell getriggerte Prozesse (z.B.

manuelle Ausflihrung eines regularen Agentenjobs oder Nachgenerierung) ermiglicht, Dabei soll der agent-core als zentrale technische
Steuerungseinheit fungieren, wahrend Agenten als eigenstandige Worker die entsprechende Businesslogik implementieren.

Entscheidung

Wir haben den Agenten-Prototypen auf Basis folgender Technologien und Konzepte erstellt:

« MestJs fir Grundstruktur fir Backend-Framework (siehe [J 0001 TypeScript Framework NestJS)

+ zod fUr Laufzeitvalidierung und Typen-Synchronisation [siehe [0002 Library Zod)
+ TypeQRM fiir Relationale Datenbankanbindung (PostgreSaL)

Folgende Grunzprinzipien wurden fir den Prototypen eingehalten

» agent-core als Package-Dependency pro Agent, um Inkompatibilitaten zwischen verschiedenen Agenten zu vermeiden
*-agent als CRON-Job
Zentrale API zur Stewerung mit Beispielabfragen in Bruna

» Zod-Schemas zur DTO-Validierung in allen Komponenten (agent & core)
PostgreSQL als zentrale relationale Datenbank

-

Alternativen

Monolithisches Design

+ Agent und Core im selben Prozess
= MNachteile: entspricht stark der problematischen IST-Losung schwer skalierbar, kein unabhangiges Error-Handling, nicht Kubernetes-cptimiert

Serviceorientierte Architektur

» Core als Singletan-Service, Agenten koemmunizieren via APl oder Queue
+ Vorteile: zentrale Wartung, einheitliche Logging & Alerting-Logik, Hotfix-fahig
+ MNachteile: Netzwerkabhangigkeit, APl-Versionierung notwendig, komplexeres Setup

Package-Dependency (Core mehrfach in Agenten gebiindelt)

» Vorteile; Agenten enthalten automatisch kampatible Core-Version, keine zusatzliche Core-Infrastruktur erforderlich (2.8, Point-of-Entry), gute
Wartharkeit bel hoher Testabdeckung, API-Versionierung kein MUSS (aber dennoch sehr niitzlich)

« Machteile: Update-Aufwand bel gréberen Core-Anderung, Redundanz, Versionsinkonsistenz bel Deployments

« Randnatiz: Diese Variante wurde zur Umsetzung gew&hlt siehe [3 0005 Version Fallback sicherstellen

Folgen

Das wird aufgrund dieser Veranderung einfacher:

Skalierbares Agentenframework [pro Mandant, pro Agent)

+ Jeder Agent enthdlt die richtige agent-core-Version automatisch < keine zentrale Abhangigkeit

+ Cl-Tests pro Agent stellen sicher, dass die integrierte agent-core-Version funktioniert {AP|-spezifische Tests méglich)
» Einfache lokale Entwicklung & Tests (kein externer Service natig)

+ Dynamische Erweiterbarkeit um neue Agenten

» Wiederverwendbare zentrale Logik in agent-core (Expaort, Validierung, Konfiguration)

65

+ Kein zusatzliches Deplayment fir agent-care notwendig
Das wird aufgrund dieser Veranderung schwieriger:

« Anderungen an agent-core erfordern situative Abwiagung von Abwériskompatibilitat veralteter Funkiionalitat bei allen Agenten
» Konsistenz muss Uber Cl-Tests und Versionsmanagement der API gewahrlaistet sain
» Hoherer Speicherverbrauch in Artefakten (agent-core mehrfach enthalten)

Fazit

Der Prototyp mit MestJS bietet eine tragfahige und moderne Grundlage fur das Agentenframework. Durch die klare Trennung zwischen Core und
Agenten, moderne Schemavalidierung mit zod und erste geklarte strukturelle Fragestellungen fiir zukiinftige Deployments ist das System langfristig
wartbar, mandantenfahig und performant.

Diese Architektur wird schrittweise weiterentwickelt und modularisiert, um zusdtzliche Anforderungen schnell und kontinuierlich integrieren zu
kdnnen. Damit ist die Grundlage fur den Prototypen gelegt.

66

0004 Package Struktur

Status

Wie ist der Status der Entscheidung?

wvorgeschlagen

~ angenommen
abgelehnt
vieraltet
ersetzt

Kontext

Welches Problem sehen wir, das uns zu dieser Veranderung oder Entscheldung motiviert?

Der Agent Core code ist aktuell wie folgt in packages arganisiert: das package users/dto enthalt dto und entity code

die aktuelle Struktur entspricht also dem Ansatz package by feature; sie entspricht also damit nicht der Onion Architektur

Wollen wir uns jetzt flir eine Strategie, wie Code in Paketen strukturieren, entscheiden? Wenn ja, zu welcher und worauf missen wir hierbel
besoners Ricksicht nehmen?

Entscheidung

Worschlage:

1. Cnion Architektur

2. Layered Architektur

3, Entscheidung abwarten und Learning by Doing: Was geben unsera bisherigen Architekturentscheidungen vor? Und was brauchen wir, um unsere
Anforderungen gut umsetzen zu kinnen?

Entscheidung: 3.
Begrindung:

+ MestdS ist modular aufgebaut
» das heisst, bereits mit dem Anwenden des CLI-Commands zum Generieren von Dateien ist ein rtliches Auftrennen nach einer anderen Logik
nicht maglich

Folgen
Das wird aufgrund dieser Verdanderung einfacher:

« Entscheidungsfindung: Flexibilitdt und Erfahrung nutzen, um informiert und lsungsgerecht eine bewusste Entscheidung treffen zu kinnen,
Das wird aufgrund dieser Verdnderung schwieriger:

» Einschrankung durch Entscheid fir NestJS und folglich durch die Architektur von NestJs.

67

0005 Version Fallback sicherstellen

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

~ angenommen
abgelehnt
vieraltet
ersetzt

Kontext

+ Annahme: Es wird im Laufe der Zeit konseguenterwelse laufend weitere Versionen des Frameworks geban
« Prablem: Wie stellen wir sicher, dass Agenten stats mit einer jeweils kompatiblen Version des Frameworks [Agent Core arbeiten kdnnen?

Entscheidung

Strategie

« Mmittels Git Tags und Release Branches tragen wir daflr Sorge, dass die Framewarkversionen referenzierbar und sichtbar werden
» Im main repository befindet sich immer der neuaste Stand
» die Agenten verbinden sich via REST call auf die jeweils von ihnen bendtigte Version des Agent Core

Folgen
Das wird aufgrund dieser Veranderung einfacher:
» Mersionierung und Version Fallback sind so sichergestallt

Das wird aufgrund dieser Veranderung schwieriger:

68

0006 Domainsprache Deutsch

Status

Wie ist der Status der Entscheidung?

~ worgeschlagen
angenommen
abgelehnt
veraltet
ersetzt

Kontext

Das Agentenframework bewegt sich im Kontaxt des schweizer Gesundheitswesens, welches stark durch die Fachsprache gepragt ist. Fachbegriffe
wie "Patient”, "Fall" oder "Leistung” sind nicht nur lokal etabliert, sondern auch fester Bestandteil regulatorischer und betrieblicher Prozesse.

Im bisherigen Code und im Proof of Concept des NoShow-Agents wurden einige domanenspezifische Begriffe ins Englische Ubersetzt {z.B.
medicalCaseld, costCenter, ...). Dies erschwert die fachliche Lesbarkeit und die Kommunikation zwischen technischen und fachlichen Stakeholdern.
Weiter wurde hier gin Unterbruch zwischen Code und Domane festgestallt,

Entscheidung

Wir entscheiden uns, domanenspezifische Beariffe konsequent in deutscher Fachsprache abzubilden. Dies bildet fachliche Konzepte wie Fall,
Kostenstelle, Leistung, Diagnosen, sowie Entities wie Patient, Termin, Leistungserbringer ab. Strukturelemente mit Domainbezug wie fallld,
kastenstelle, behandlungsart werden ebenfalls ausgedeutscht,

Die Englische Sprache soll wie gewohnt beibehalten werden fir technisch generische Konzepte wie id, date, isProcessed, status, createdAt, dto,
service, controller etc.

Folgen
Das wird aufgrund dieser Veranderung einfachar:

» Klarere Trennung zwischen fachlichen und technischen Begriffen

« Verbesserte Verstandlichkeit fir nicht-technische Stakeholder

» Weniger Missverstdndnisse bei Reviews, Testfallen und Business Rules
« MNaher am [3 Domain Model

Das wird aufgrund dieser Veranderung schwieriger:

» Bisherigen Code flr den NoShow-Agenten auf Deutschea Fachsprache umminzen

69

0007 Keine klinische Fachkriterien fiir eine erfolgreiche Abnahme

Status

Wie ist der Status der Entscheaidung?

vorgeschlagen

~ angenommen
abgelehnt
veraltet
ersetzt

Hinweis: Diese Entscheldung wurde mit dem Product Owner der Leistungserfossung bel CISTEC AG (Martina Lux) besprochen und angenommen.

Kontext

Die CISTEC AG st die Auftraggeberin flr dieses Projekt und hat ein starkes Interesse daran, ein Endprodukt zu erhalten, das einen konkreten Nutzen
im Alltag der medizinischen Leistungserfassung bringt. Zu Projektbeginn wurde deshalb vereinbart, dass drei klinisch gepragte Agenten (NoShow,
OAT, Andsthesie) miglichst nahe am IST-Zustand des Systems nachgebaut werden sollten.

Im Laufe der Umsetzung stellte sich jedoch heraus, dass diese Vorgabe unndtig einschrankend wirkt. Man neigte stark dazu, sich zu fest an
bestehendan Strukturen zu orientieren, anstatt mit kreativen und ernedernden ldeen zu experimentieran.

Ebenfalls wurde klar, dass es fiir die Entwickler:innen chne Bezug zur CISTEC AG schwierig war, die klinischen Use Cases intuitiv zu verstehen, ohne
dabei sich strikte an eine Vorgabe zu halten,

Zusammen mit der CISTEC AG wurde deshalb geprift, ob der urspriingliche Scope angepasst werden kann, Ziel war es, Raum flr technische
Innovation und fachliche Abstraktion zu schaffen, ohne dabel den realen Mutzen aus den Augen zu verlieren.

Entscheidung

Die Vorgabe, bestehende Agenten der CISTEC AG nachzuimplementieren, wurde aufgehoben. Stattdessen sollen Use Cases und Agenten konzipiert
werden, welche Analogien zum nichtmedizinischen Alltag besitzen. Diese sind fachlich nachvellziehbar, technisch abbildbar und erleichtern die
Koemmunikation zwischen Entwicklung und Stakeholdern.

Die daraus resultierenden Aganten dirfen kreativ modelliert werden, solange sie:

+ Zentrale Anforderungen der urspringlichen Agenten weiterhin abdecken
+ Den fachlichen Workflow in abstrahierter Form widerspiegeln
+ In ein modulares und kenfigurierbares Framework integrierbar bleiben

Die Formulierung der Agenten wiirde wie folgt abweichen:

Agent- Anforderungsbeschreibung (vorher) Agent Name Anforderungsbeschreibung (nachher)

Name (nachher)

(vorher)

MNoShow- Der Agent sucht nach Terminen mit dem Business- Der Agent Uberpriift, ob Business-Perscnen bel einem

Agent Sprechstundenstatus PROC1=NOSHOW und Meeting-Agent geplanten Meeting gefehlt haben. Fehlende Teilnahme
dem Terminstatus DONE wird protokolliert und kann intern dber das Maonitoring

ausgewertet werden.

OAT-Agent Der Agent generiert laufend Leistungen fir Marathon- Der Agent bewertet regelmassig aktive Lauferinnen
die Laufzeit einer Intensivpauschalen- Leaderboard- wahrend eines Marathons. Wer bereits im Ziel ist, wird
Massnahme bis ein Tag vor STOPDAT Agent nicht neu bewertet.

Andsthesiae- Der Agent prift, ob zu einem Termin Flughafen- Der Agent prift an einer Grenzkontrolle, ob alle

Agent exportierte Eingriffs-/ Grenzkontrolle- Reisedokumente vollstandig sind. Der Agent kann
Untersuchungsleistungen nach TARMED Agent zwischen Reisepass, 1D und Visum unterscheiden. Nur
worhanden sind und ein Anfsthesie- vollstdndige Falle werden zugelassen. Fehlerdaten
MNachweis angelegt ist. werden ebenfalls protokolliert und zurlickgewiesen,

Konkrete Use Cases aus bastehenden Agenten werden entsprachend abgeleitet, Anforderungen wearden so generischer und haben mehr Frairaum bei
technischen Details wie 2.B. Ablauf, Datenmodell. Die dadurch entstehende einfache Sprache lasst konkrete Anforderungan klarer wirken.

Folgen
Das wird aufgrund dieser Veranderung einfacher:

+ Mehr kreativer Freiraum fir die Umsetzung von Anforderungen

70

* Mehr Maoglichkeiten fur neue Ideen
« Leichteres Verstandnis fir Entwickler:innen ohne klinischen Hintergrund
» Flexibleres Datenmodell und Entkopplung von konkreten KIS-Legacy-Strukturen

Das wird aufgrund dieser Veranderung schwieriger:

« Integration bestehender Agenten bei CISTEC AG mussen nach Abnahme nachgezogen werden
« Fachspezifische Feinlogik muss bei Bedarf erneut detailliert aufgenommen werden
« Validierung der Agenten durch Fachexperten erfordert starkere Kontextvermittiung

Fazit
Die Entscheidung, klinische Detailvorgaben zugunsten verstandlicher, abstrahierter Use Cases aufzugeben, ist zentral fur die technische und
gestalterische Freiheit des Frameworks. Sie schafft ein gemeinsames Verstandnis zwischen Entwicklung und Stakeholdern, ermaglicht Innovation und

kann spater bei Bedarf durch fachliche Prazisierung erganzt werden.

Diese Entscheidung erlaubt eine MVP-orientierte, explorative Umsetzung der Agentenlogik.

71

0008 E2E Tests mit Testcontainers

Status

Wie ie1 der Status der Enischeidung?

wargaschlagen

uangenamirien
angelennt
waraltel
arsaizt

Kontext

Mit der Umnstedlung von ainem Manolithen auf eine Microservice-Architekiur (Core « fgenten] war es notweandig, @e EZE-Tesls so U
gestalten, dass sle e reala AusfOhrungsumgabung maglichst gut abbddan, Kerngunkta dabai;

* Abgranzung der Tests: Jader Tastlauf soll eine saubera, isaliarts Umgeoung arhalen

* Realistische Infrastruktur: Cone, Pastgre30L und MATS missen wie im echien Beirieb laufan, damit die Agenten getesiet werden kinnen.

+ Einheitliche Sead-Daten: FOr jeden Test werdan Entithten geziell erstellr, um Abh#ngigkeiten Fu vermeiden.

Diskutierte Varianten:

1. Pregrammgesteusrt mit Tesicontainers (gewdhit)

» Dynamisches Staren von Core, Posigres, MATS pro Testlsuf
= Isolierte Netzwerk- und Contairarumgabiung
* Emfach zu kontrollieran, wann und wia Sarices gestartat/gestoppt weardan

2. SOL-Seed im image | entrypoaint

= Wordafiniarta Daten werdan baim Containerstart singaspiatt
» Weniger flexibel, Gefahr von weralleten Seads bei Anderungen
= Erforden hiufiges Neubauen der Images

3. TypeORM Migrations + Sead-Runnar

» Dateribarkstrukiur + Seed-Sxriple beim Start ausiinren
= Wizlich filr initiale Demo-iDev-Umgebungan
= Wenigar geaignat fir isoliarte Tests, da Seads global wirken

Entscheidung

Wir verwendan Testcontainers 10 den E2ZE-Testaulbau:

= Core, PostgraSOL und MATS werden programmgesteuart in einer sigenan Tast-Melzwerkumgabung als Comainer gestansat
* Fur jedan Tastlauf wird die Datanbank nau arstelit [Drop = Synchronize)
v Seed-Daten werdan im Tast ber Repository, S1all sin globabes Seed-Skeipt erzeugt

Begriindung

= Hohe Realititsndbe, da die Kempanenten wie Cone, Datenbank und NATS in Comainern laufen
= Jader Test ist vodlstandig isediart und kann beliabige Testdaten salbst arstallan
* Kein Abhdngigkeischaos durch globale Sead-Sxripte ooer Migrations-Overhead
= Anderungan an Entities brachan oia Tests friinzerio (Laft-Shift-Ansatz)
o Da dig Tests drakt mit echign Entity-Klassen arbehan, schlagen Anderungen an daren Struktur bareits baim Kompileren ader in
statiseher Codeanalyse fahl, nicht ersl zur Laufzeit

Folgen
Das wird aufgrend diesar Verandarung sinfachaer:

* |soligrte, repmoduziersare Testumgetung = Tasts sind wnabhangig und basintrachtigen shch nicht gegansaitig

72

» Realildtsnabs Tests [Comainer siat Mocks)
= Kein globaler Seed-Siate, sondern geziele Arrange-Phase pro Test
* Fahiar durch Schama-Ansarungan wardan frilh arkannt (Laft=-5hift; Comgllarfehlar start Runtima-Fehlar

Das wird aufgrund dieser Vernderung schwieriger:

 Tastausfihrung dausert [Enger (Containerdtan)

= Docker muss lokal cdar in G warfilighar sain

» Erfarden image-Build vor Teststart

+ Mehr Code beim Anlegen van Testdaten pro Test

0009 Microservices

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

~angenommen
abgelehnt
veraltet
ersetzt

Kontext

« Die Lésung bestent aus Agent-Core und mehreren Agenten.
» Core Ubernimmt API, und Persistenz; die Agenten enthalten die jeweilige Fachlogik.
» Ziel: lose Kopplung, klare Verantwortlichkeiten, zentrale Obsarvability, unabhangige Releasezyklan,

Entscheidung

» Wir setzen auf eine Microservice-Architektur mit klarer Aufgabentrennung:

o Agent-Core als zentraler, stateless Service:
= stellt REST-API bareit,
» ahstrahiert die Datenbank (Persistenz, Duplikat-Checks, Konsistenz),
= ibernimmt Validierung (DTC/Schemas), Health/Metriken.

= Agenten als eigene Workloads {Deployment oder CronJob):
» kapseln fachliche Regeln je Doméne,
= interagieren Uber den Core (kein direkter DBE-Zugriff),
= kannen unabhangig versioniert, ausgerollt und skaliert werden.

Folgen
Das wird aufgrund dieser Veranderung einfacher:

+ Dominenzuschnitt: Jede fachliche Logik kapselt ihre Regeln und Datenzugriffe sauber.

+ Skalierung: Agent-Core kann als stateless AP|-/Router-Schicht horizontal skaliert werden; Agenten je nach Bedarf separat.

* Robustheit & Isolation: Fehler/Lastspitzen in einem Agenten beeinflussen andere nicht.

« Wartbarkeit: Klare Schnittstelle und getrennte Deployments; Unterschiedliche Release-Zyklen; schnellere lteration pro Agent.

Das wird aufgrund dieser Veranderung schwieriger:

+ Betrieb: Mehr Services (Core + mehrere Agenten) erhdhen CI/CD- und Kubernetes-Aufwand.

» Schnittstellenpflege: Vertrage zwischen Core und Agenten (Versionierung, Riickwartskompatibilitat) missen aktiv gemanagt werden.
+ Konsistenz Gber Grenzen: Verteilie Abldufe erfordern Idempotenz, sauberes Fehler-/Retry-Handling und E2E-Tracing.

+ End-to-End-Tests & Tracing: Hoherer Aufwand fir Integrationstests.

74

0010 Kommunikation via NATS

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

~ angenommen
abgelshnt
veraltet
ersetzt

Kontext

» Wir brauchen intern sowsohl Request/Reply (2. B. Abfragen, Trigger) als auch Fire-and-Forget (2. B. Telemetrie).
» Das NestJS-Microservices-Maodul stellt kein HTTP/REST als Transport bereit, dafiir Adapter wie MNATS, Redis, MQTT, gRPC.
+ Ziel: verhandena Transport-Adapter nutzen, keine eigene Bus-Schicht bauen.

Entscheidung

MNATS als interner Transport zwischen Core und Agenten:

« Muster: Request/Reply, Pub/Sub, Fire-and-Forget; Queue Groups fUr Lastvertailung.
» Betrieb: Start mit NATS Core; JetStream optional fir Persistenz/Replay.
» Extern bleibt REST am Caore; intern NATS-Subjects.

Folgen
Das wird aufgrund dieser Veranderung einfacher:

» NATS is leichtgewichtig, portabel und schnell startklar sowohl lokal als auch in der CI/CD.,

+ Mehrere Kommunikationsmuster ohne Zusatzframework,

+ Optionale Parsistenz & Replay: Mit JetStream kbnnen wir (at-least-once” und Replays aktivieran (schrittweise einfihrbar).
+ Entkopplung und harizontale Skalierung pro Agent,

Das wird aufgrund dieser Veranderung schwieriger:

» Betrieb eines zusatzlichen Dienstes hzw Message-Brokers,
» |dempotenz/Retry/Timeouts milssen sauber definiert werden (sofern JetStraam aktiv).
» Tracing/Monitoring wird wichtiger, weil mehr asynchron passiert,

75

0011 Monitoring & Logging mit Promtail, Loki, Prometheus und Grafana)

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

v angenommen
abgelehnt
veraltet
ersetzt

Kontext

« Core und Agenten laufen als separate Workloads. Flir Support brauchen wir zentrale Sichten auf Metriken, Logs und Alerts.
« Lokale Container-Logs reichen nicht aus, um Vorfalle Gber mehrere Dienste hinweg zu analysieren.

Entscheidung

« Metriken/Alerting: Prometheus (Scrape) + Alertmanager; Grafana als Ul

+ Logging: Loki als Log-Backend, Promtail als Collector; Abfragen in Grafana.

« Jeder Dienst liefert Basis-Metriken (Erfolg/Fehler, Dauer, erzeugte Leistungen). Alerts z. B. bei ausbleibenden Laufen oder ungewdohnlicher
Fehlerquote.

Folgen

Das wird aufgrund dieser Entscheidung einfacher:

« Einheitliche Dashboards fur Core und Agenten.

« Schnellere Fehlersuche durch kombinierte Metrik-/Log-Sichten,

+ Wiederverwendbare Monitoring-Standards fir neue Agenten,

« Alerting bei Ausfallen oder Anomalien Uber verschiedene Kommunikationswege (Email, Slack etc).

Das wird aufgrund dieser Entscheidung schwieriger:

« Zusatzliche Infrastruktur (Ressourcen, Updates, Backups, Retention, Pflege/Wartung).
« Sorgfalt bei Log-Inhalten (Pll) und Label-Strategie (Cardinality).

76

0012 Standardisierung der Agenten-Pipeline

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

v angenommen
abgelehnt
veraltet
ersetzt

Kontext

« Bisher implementierten Agenten wie maraton oder noshow persistierten Anderungen direkt mit der process -Methode und hatten keine klare
Aufteilung von prozessierung, update und create.

« Dadurch war die Logik nicht klar von der Persistenz getrennt, was Testing, Nachvollziehbarkeit und Wiederverwendbarkeit langerfristig
erschweren wirde.

Entscheidung
Jeder Agent folgt einen einheitlichen Prozess:

« processItem : berechnet ausschliesslich den neuen Zustand oder ein Ergebnis-DTO, ohne Persistenz
* update : Ubernimmt die Persistierung und Seiteneffekte auf Basis des Ergebnisses
« create : wird aufgerufen, wenn ein neuer Eintrag erzeugt werden muss

Damit sind Berechnung und Persistenz strikt getrennt und das Framework unterstiitzt dabel einen klaren Denkprozess, ohne zu viele
Implementationsdetails zu forcieren.

Folgen
Das wird aufgrund dieser Veranderung einfacher:

+ Agenten sind konsistent implementiert
« Tests konnen die processing-Logik (aus processItem) isoliert prifen, ohne Seiteneffekte
« Persistenz- und Kommunikationsfehler lassen sich klarer lokalisieren

Das wird aufgrund dieser Veranderung schwieriger:

« Hoherer Initialaufwand bei neuen Agenten, da immer mehrere Methoden (processItem, update und create) befillt werden missen
« Entwickler:innen missen sich an die strikte Trennung halten und ggf. bestehende Agenten aus dem Legacy-System refaktorisieren
« Neue Agenten-Anforderungen miissen im vorgegebenen Rahmen des Frameworks umsetzbar gestaltet werden

77

0013 Verwendung von pnpm workspaces und eslint-plugin-boundaries

Status

Wie ist der Status der Entscheidung?

vorgeschlagen

+~ angenommen
abgelehnt
veraltet
ersetzt

Kontext

Das Projekt wachst und umfasst verschiedane Projekte, core , 1ibs und mehrere agents . Diese Projekte werden aktuell alle zentral im root packag

e.json verwaltet, was mittelfristig zu Skallerungsproblemen flhren wird.

Ohne klare Struktur besteht die Gefahr von unkontrollierten Abhdngigkeiten zwischen Modulen (z. B. agenta zu agentB oder libs zum core etc.). Dies

soll mit entsprechenden compiler-seitigen Einschrankungen verwaltet werden,

Entscheidung

« Einflhrung von pnpm workspaces fir core , 1ibs und agents/« .

+ Werwendung ven eslint-plugin-boundaries, um Importregeln festzulegen:

lios dirfen nur libs importieren

core darf libs + core importieren

agents dirfen core + libs + sich selbst importieren {aber keine anderen Agents)
niemand darf agents importieren

o

o

o

o

Folgen
Das wird aufgrund digser Veranderung einfacher:

» Konsistente, skalierbare Projektarchitektur

« Frihzeitige Validierung von Architekturregeln durch ESLint

» Gemeinsame build-, lint- und test-seripts (ber alle packages hinweg

» Bessere Wartbarkeit und Erweiterbarkeit, wenn weitere Agents hinzukommen

Das wird aufgrund dieser Verdnderung schwieriger;

» Entwickler.innen missen sich an die Boundaries-Regeln halten
+ Leichte Einstiegshirde fir neue Teammitgliederinnen {workspaces + boundaries-Konzept verstehen)
» evil. Anpassungen bestehender Strukturen bei zukdnftigen Refactorings notwendig, wann Regealn verletzt wearden

78

11.4 Use Cases

Batroffens
Anfarderungan

Vorbedingung

Erfolgs-
Endbedingung

Fahlar-
Endbedingung
Aktaurs
Ausitsar

Normalaer
Ablauf

Altarnative
Abliufe

Erwaiterungen

Verwandbe
Informationen

3%, Baeniamin Thormann @beniamin.thormann - 1 month aga

UCO0: Agenteniauf allgemein

Das Framewserk steld die nitigen Ablaufbausteine bareit, damit ein beliebiger Agert kensigtent gestariat, susgefihr
und saubér beandal waidan kann.

= EA_RER]
- EA_REQE

= Agant kann gestartat wardan,

- Agent-Cone 20 erreichbar.

= dgent-spezifische Konfiguration ist worhanden/valida,

= Der konkrate Agent ist eine Ablaitung des Basedgent (oder annlich),

Fir alk verarbeitharen Mems wurden die definierten GeschdMsaklionen ausgelhr |process -» creste -> update].
Dar Lauf ligfart sne zusammangafasste Rickmeldung [message, success, failed)

Kritischar Fehlar (z. B. bareits baim Lagan der tams) fuhet zu Abbruch des Laufs; Fehbar wird galoggt und
prapagiert. ltem-bezogens Fehler werden gazihll, geloggt und besintrichtigen die Verarbeitung der Dbeigen lems
niehe,

Maintainar
Pariodischar Trigger (CrondKubarnetes] oder manualles Starten, Ein Prozesslauf pro Trigger,

1) Start; Agant initialisiart und loggt Start (Kemtaxt, Sarvice-Mama),

2] FETCH: Ladt hems aus dem Agenl-Core (iber Messaging).

) FILTER: kann &ire Filterlogik anwenden.

&) PROCESS: Fur jades gefiterte ttem wird:

= dia fachiiche Aktion ausgeflhet [z, B. erzeugen/dndem)

- Fehler pro Nem pretokollien und mtzshil; Ghrige Eintrige weilsrverarbeilel.
5} RESULT: Der Agent fasst rusammen: Nems precgssed, suscess, failed.

- Kina ltams nach Filter -» _Mo activa itams o process® [adar Shnlichl,

= Kritischaer Fahlar in FETCH =» Lauf bricht mit Fehler ab; Fehlar wird galoggt (kritischa Maldung),
- Fehler in createfupdate j 11em - em wind als fafed gezdhll, Rest Eult wailsr.

- DomBnenspezifische Skips arfolgen in des FILTER-Phase,

= Dry=Run (nur fetchffilkeriprocass chne creataupdata),

= dempotenz/Duplikatschutz (Token/Meays j RemBatchl.

- Metriken/Tracing (2. B. Zihler My successifailed, Daver je Phasa),
- Konfigurierbare Defaults (Performer, Kostenstellan, Fenstar).

- [LCoi: Business Mesting Agent

- [coe: Marsthon Agent

- 1 wCoa: Flughaten Grenzkartralls Agant

- (Y ucod: Meshow Agent

- [LChs: Koaliguratian

- [ucig: Agentenbatriah starten und StOpREn

Bei Versirhailichung der Use Case Nusnmarn und Namen wusde Telgende Uss Cases mit [UC00: Ageatenlaut allgemrein vereinl:

+ enemaliger UCT Datenselertion durehfahren wurde [UCD0: Agameniaul algemen Fugeordnet

Ehamaltiga Usa Casas:

]

(=]

Use-Case Akteur Ziel

Datensaleklian durshfihren Agent Der Agent filarl relévante Datensitze vor der Genemierung.

)

79

UCOT: Business Mesting Agent

Fied Twei Executives fenlan bei ainem strategechen Business-basting. Der Agent erkennt das anhand der Terminstatus
und ergtelll ein Protakall e HR cder Geschifisleitung Bur Nachverfolgung.

Batroffana - FA_REQIE

Anfardarungan

Worbedingung Agent-Core 5t arreichinar. Ein Business-Maating mit Pflichitelinahmandan ist geplant und dokumantiert,

Erfulgs-

Alle abwesanden Teilnehmenden wurden karreid anhand von ihrem Terminstatus identifizien und als Terminbaistung

Endbedingung pratakalliart,

Fehles-

- Tesinin-SLati Tehlen oder sind nicht sindeuwtig

Endbadingung = Maating {Haupttarminh und Tedtnahmea (Lintertarmin) kénnen nicht zugeardnat wardan

Aktaurs Mairtainsr
Austiser Periadischer Lauf [z, B. Cren/Kubarmetes Job) oder manuelles Auslicen (CLI. Pre Trigger ein Prazaesslaul.
Harmaler 1. Mesting-Daten abrufen
Ablauf Z. Erwarlele Teilnehmer:innen mil @sachlicher Teilnahme abgleichen
3. Fahilande Teilrehmar protakolliaran
4. Ergabinés an Geschiftsstalla uber Alerting waltarlaiten
Allsrnative - Telnahimer hat abgasagl, wird als abgesagl vermerkl
Abliufe - Tedlnahmer hat Terminstatus "unklar = sls nicht teilgenommen gewerts
Erweiterungen - Eskalationsmeldung bei wiederhaltern Fehlen
= Ausweartung der Fanllaistungen (2.8, Or, Qetkar hat Sx nicht teilgenammen)
Varwandte - [uEote Agententaut aligemain
Informationen - Leigtung: z.B. MEETEA4
- Aktion: 2.B. PARTICIPATED , MOSHOW , CAMCELLED
= Haufigkait: Periodisch (z.8. wochentlich, manatlich)
- Kann an Abrechrungssystame und HR-Workllows gekoppall werden, Optional tglicher Repart 2ur Maeting-
Disziplin.
Comments
LR
c+t; Banlamin Thermann @benjaminthormann - 3 months ago (Qunar)

* Habe sine Frage

L]

=]

a

Use Case: Flughafan Grenzkontralle Agant. Ereeiterung Zwaitprafung bel manuallam Qvarride

Entwader brauchte s noch dan Alternaliven Abkaul “VIP Reisende:r dasl sinfach £o rain, hat Aufsaber der Grenzkontralle
baschiossan®

Ouder der manuelle Override und Zweltprifung waren sin weller womiglicher Use Case, dar uns im Mamenl nichil
interassiart,

leh warmube latztares

* Rest varsteha ich, bin dabal
* Habe ein paar Satze, 50 wia ich die Lise Casas warsiehe, umformuliert:

=}
o
a

=]

Use Caze: Business Mesting Agent
"ausliser Das haeting findat statt (Triggar Ober Terminstatus ader gaplantar Tageslauf® van allan Flichthailnehmendean *)~
Use Caze: Marathan Agem

"Fehlerendbedingung Falls das Rennen affiziell beendet wird (2.8, Unweltern Verbelzungen eic.], bledbean alle”
fwischan®Bawartungen final und as enistahen kaine naws Bawartung®

80

Ziel
Betraffana
Anfarderungan

Virbiedingung

Erfolgs-
Endbedingung

Fatiar-
Endbadingung

Altarnative
Abliufe

Erwaiterungan

Verwandbe
Infermationen

UCO2: Marathon-Agent

Iwischanstiinde akliver Lauferinnen aus neuesian Positionsdatan forsshraiben, Zielerreichung erkennen und
Lauferimnen bew. beendete Rennan finalisieren.

= FA_REQIZ

Agent-Core 5t erreichoar. Es existiaran Liufarinnan in laufendan Rennen. FOr einzalng Laufarinnan liegan gof.
aktuelle Pasitionsangaben (neuests Messung) vor. Verlsizie oder abgemeldate Tednshmende werden im
Prozasslauf nicht berlcksichtigt.

Fur alle aktivan Laufarinnan wird - falls die neuesta gemassanae Distanz grassar als die gespaicherte ist - dis
zurlickgelagta Stracke (in km) aktualisiart; bel Erreichan Doarschretten dar Banndistanz wird gar Tellnahmeastatus
aul besndet geselzl. Mach dem Prazesslaud, werden in beraits beendeten Rennen alle noch aktiven Liulerinnen als
beendet markiert [FinalEierung).

Unglttige Pesitionedatan (2. B, Distanz « Q) fihran zu smem Fablar fur die batreffens Person; diase wind
libersprungen, Mia vararbaiung ger dbrigen Liufarinnen lauft waitar. Fahlen Pasitionsdaten, arfalgt keine
Anderung.

Mgintai
Periodischer Lauf [z, B. Cren/Kubernetes Jab) oder manuelles Auslisen {CLIL. Pre Trigger sin Prozessiaul,

1 Aktive Lauferinnan in laufanden Rannan samittaln,

) Nauaste Position ja Parson abrufen,

3) Keine oder nicht gestiegensa Distanz -> keine Aktualisierung.

4] Gestiegene Distanz -» zurbckgelsgle Sirecke akiualisienan - falls >= Renndistanz pusdzlich Status aul beendet
satzan.

%] Finaliskarung: baendeta Rennen laden und darin aktive Liuferinnen auf beandet setzen,

- Kaine aktivan Laularinnen -» nichis 2u un’.

- Lauterin ohrne Positionsmessung -> OGberspringen (keine Anderung).

= Uinglltige Positionsangabe (Destang < @) == Fehlar loggan, Lauferin blalbt urverdngart, Obrige weiterverarbesten,

= Rannen nicht laufend - Liufar:in im Hauptdurchlauf ibarspringan (Finalisisrung graift nur bel baandatan Rannan,

O UCo0: Agantenlaul aligamein

Srenario: Der Agent wird (2. B. alle ¥ Minuten oder manuell) gestartet. Er ladt alle akliven Liulerinnen. Fir jede Person in einem lauenden
Rennen holt r die nedeste Positian:

= |st die Distanz grasser als die bisher gespeicherte, aklualisien er die Distanz; bei Zielemaichung setzt er den Status auf beendet.

* Fehi eine Position oder kst dia Distanz nicht gastiegan, passiert nichts,

* Ungultige Positansdaten warden pro Lawufar:in ais Fahler galoggt; da Obrigen Liufarinnan warden trotzdem verarbeitet. Nach dam
[urchlauf finadisiart der Agent beandete Rennen, indem ar dart alla noch aktiven Laufarinnen als basndet markiert

81

Hame UC03: Flughafen-Grenzkontrolle

Tiel REALY-Eintriige gegen aktuele Einreiseanforderungen des Ziellands evaluieren und den Einreisestaius
[GRANTEYREJECTED] mit Bagrindung setzen.

Estroffena - FA_REQNZ
Anfordarungan

Worbedingung Agent-Core 15t arrabchivar, Es liegan Eintrige in der Einreisaliste vor, die den Status READY haben, Fir das Zielland
sind akluelle Einreiseanforderungen hintedagt,

Erfolge- Alle READY-Eimirdge werden bawertet und arbalten einen akiual=ierten Status (GRANTED cder REJECTED) samt
Endbedingung Bagrindung.

Faihlar= Unguttigefnkonsistarte Daten fohran zu einar Zurlickwaisung des batraffandan Eintrags mit Begriindung; die
Endbedinging Verarbeitung der ibrigen Enbrdge Hult weiter,

Akteure Mairiainsr
Ausliser Periadischer Lauf [z, B. Cron/Kubernetes-Job) oder manuelles Ausldsen. Pre Trigger ein Prozesslauf,
MNarmaler b READY-Eirtrdgpe abrufen.
Ablauf #) Aktualle Anforderungan rum Fiel-Land ladan (z. B Visumspficht, Passpfiicht),
3| Bawarten: Dokumantgitigheit prifan; falls Passpflicht -» Pass erforderlich; falls Visumspflicht <= Yisum
erfanderlich.
4] Gtatus setzan: GRANTEDR, wenn alle Bedingungen arflllt; sonst REJECTED inkl. Grund,
5] Ergenis im EnftryLog spaichern,
Altarnative - Michi-READY-Eintrage warden lbersprungen (keine Andening).
AblLiufe - Ungiliges Dokurmsenl -> REJECTED mit Grurnd Document is invalid®,

- Passpllichl, aber kein Pass -» REJECTED [, Passporl is requited Bul nal presemed?).
= Wisumspflicht chne Visum -> REJECTED [,Visa ks requirad but nat prasanted*),

Erwaitorungan Erwaiterte Regein pro Harkunfisland [z, B. Sonderabkommen), manusller Owverride (flinrt zu Nicht=-READY und damit
Ausschluss aus der Autamatik], nachgelagens Stichprobenprifung.

Vervwandle - O oo Agententaut allgamein

Infermationen - Entitdtan; Country, EntryRequiremant, Entrylog
EntryLog-5Status [technisch): READY -» wird bewertet; GRANTEDVREJECTED -» Ergabnis; OVERRIDDEN -> manuall,
wird Dbersprungen.
Anfarderungen: passportAequired, visaRequired [Hinweis: idCardAoccepted ist zuldssig, sofern keine
Passpflicht besteht).

Seenario: Der Agent startet, Wdt alle READY-Eirtrige und bewsarte! jedan Eintrag gegen die aktuelen Anforderungen des Zllands:

» Dakurment ungdlliy -»> REJECTED {,Docurment is invalid™).
* Passpflicht & kein Pass -> REJECTED.
* Visumspflicht & kain Visum -» REJEGTED.

Andernfalls wird GRANTED gasalrt. Nicht-READY-Eimrége (2. B. OVERRIDDEN) wearden nicht angefasst. Bai Zurlckwaisungen wird &in Warn-
Lag geschrieban, die restlichan Eintrige wardan unabhangig waitarvararbaitat,

82

Eatroffena
Anfarderungan

Vorbeaingung

Erfolgs-
Endbedingung

Fehlar-

Endbedingung

Ausibser

Normalar
Ablauf

Altarnative
Abliufe

Erwaiterungan

Werwandte
Infermatianen

UC0d: MaShow-Agent

Fir albe nicht verarbaietan NOSHOWNOESHOW_PAY{DONE-Terming je eine Abrechnungspasitian arzeugen und den
Termin als verarbeitel markisren; SCHEDULED-Termine ignarieran.

- FA_REGNE

Agent-Cora arrelchbar; 85 existieran Tarming mit gibkiger Fallrefarenz.,
Fir alle nicht verarbeiteten Termina im Status NOSHOW, NOSHOW_PAY ader DONE wird genau eine
Abrechnungspasition arzeugt und dar Termin als serarbeitet markierl. Tarmine im S1aius SCHEDULED baiben
unbeaiihrt,
Kann fir @inen Termin keina glitige Position abgedeitetierstelit werden (z. B. unbekanntar Status, faande
Fallmummer o, &), wird dieser Tarmin Gbersprungen, pratakaliar und die Verarbeitlung der Obrigan Entrige
fortgesetzt

Asirtai

Perigdisch [Cron/Mubemeatas Job) oder manwell Container-Start, Bra Triggar ain Prozesslauf

1) Alke Terming ladan,

21 Fittern: gaplanta Terming fin dar Zukunft/ SCHEDULED), beraits vararbedtate ader ohne Fallrefarenz werdan
libersprungen.

3] Mapping nach Tarminstatus:

= MOSHOW -= Chargaltemn code = "HOSHOM® | kostenios

= MOSHON_PAY -» code = "NOSHOW_FEE® , kostenpflichtig [mit Kostanstalla),

- DOME -> code = "REGULAR_WISIT® (reqgulds, mit Kostenstalla),

4] Erstellan der Abrechnungspasition pro Tarmin.

51 Tarmin updatan als vararbaitat markiaren

= Kaine verarbaitharen Terming - » Meldung _nichis zu tun®

= Unbe kanmter Terminstatus == Warn-Log, Tarmin bleios unvarandert (zdhit als folled), Rest wird waltarvararbaitat,
- Fehlende Fallrefersnz -» Warn-Log, Termin Gbersprungan.

- Erstallung fahigaschlagen -» Fehlar geloggt, Vararbaitung dar dibrigen Eintrage gaht waitar,

[gaplantioptanall Zedtfanster fr Selaktion (z, & T-n,.T-11, idempatenz/Dupdikat-Varmaidung (z. B. Schidssel j
Tarmin), Chunking grossar Datenmangan, konfigurierbare Standardwerte [Farformer/Kostanstalla), Dry-Run,

- O uCog: Agententaut allgemein

- Terminstatus (Eingang): MOSHONM, NOSHOW_PAY , DOME, SCHEDULED (wird Dbersprumgen).
Erzeigle Codes [Ausgang): ROSHON, NOSHOW_FEE , REGULAR_VISIT.

Mach Verareitung: Terminflag isProcessed = true .

Szenario; Gestern existiartan drel Terming: 4 = NOSHOW, B = NDSHOW_PAY, C = DONE; morgen ain Tarmin [= SCHEDULED, Beim Lauf
eTZRUGE dar Agent drai Abrachnungspositonen (fur AJBIC)H und markiart thasa Tarmine als verarbeitet; [blaibt unverdndart,

¢ Dhne medicalCaseld wird ein Tesmin nichi verarbeist [Warn-Logl.
= Bei unbekannism Status wird gewarnl und nur deser Eintrag verworlen; der Rest Huft weiber.

83

UCOE: Konfiguration

Ziel Dienste (Agem-Core und Agemean) lesen e Laulzen-Kanfiguration einbeitlich, sicher und nachvolizishbar ein.
Fenlkanfligurationen werden frih erkann.
Betroffana = A REGS
Anforderungan - EA_REGE
- EA_REGE
Vorbedingung Kerfigurationswerte sind bereilgestellt (2. B. Env-Variablen / env-Dateien je Modull.
Erfolgs- Dr Dienst startel mit validierter Konliguration; alle benitiglen Werte sind varbanden oder durch definierte Defaults
Endbedingung abgadeckt
Fahtar- Eai ungditiger odar inkensistenter Korfiguration bricht dar Start determindstisch ab; dia Fehlursache is1im Log
Endbedingung eindeulig ersichtlich. Teilstarts mit halb giltiger Korfiguration Tinden nicht stan
Akteurs Mairtainsr
Ausliser Diensistan (2. B. Cran/Kubernetes, manuvell, CIFCD-Pipe)
Harmaler 1} Kenfiguration Laden.
Ablauf 1 Validisran gegen ein Schama (Typan, Flichifeldar, erlaubte Werteharaichal,
Alternativa = Konfigurationsdatal fahit -» abbruch mit Hinwais.
Abliufe - Plichtwert fehlt/Ty pfebler -= Validiarung schiigt fehl -> Abbruch; Log enthéh kankrete Varable und erwarieben
TypBarsich.
= Unbekannte Variablan -» ignariaran oder waman, chne Start zu varhindarn,
= Tasthatriab -> Yalidiarungsumfang kann bewusst raduziert werden
Erweiterungen - Dynamische Neu-Ladung bei dnderung.
- Konfigurations-Telemetry (2. B, Melrik cenfig leaded_ok”, config validation_failed”).
Werwandte - [WOl Agententau allgamein
Informationen = [1e0: Generierynasinteryall intern kenfigurisren
Kenfigurationsdomanan;
= Allgemain (7. B. Umgabung, Log-Lewal, Servica=-Mame, Broker-LIRL)
- Agent-Core-spezifisch (2. B. DB-Zugriff]
- Agent-spezifisch (z. B. FilerZeitfenstier, Defaulis].
Comments
e
%) Barlamin Thermann @benjamin.tharmann - 1manth ago @

Bai Verainhaitlichung der Uise Case Nummarn und Mamen wurde folgande Use Cases mit [UC0S; Konfiguration veraint:

« ghamaliger UG Bootstrap ist gleich LCGOS: Konfiguration

» ehemaliger UC4 Export-Sirategie keafiguseren wirde [UC0S; Kanbguration 2ugeordnet und damil aufgelast

+ enemaliger UCS Standard-Lagiken keafiguriaren wurde [UC0S: Karfisuration 2ugeardnel und aufgrund ven [0007
Eachlicha Knierien gestrichsan

Eramaliga Lsa Casas:

U

U

Usa-Case Akteur Tiel

Baotsirag

Export= Systamadministratar [ar dministrator wahit zwischen Sefortexport coar Export nach ALIS-
Strategie Lagik.

konligurieren J Fachpersonal

84

. Standard- @all wer Ist hler cer
Lagiken Akteur?
ucs konfigurieren

Edited 1 manth 230 by Benlamin Theemann

@all bestimmen!

Kontext: «Logiken fir Standard-Leistungsinformationen missen
einrichtbor sein, 2.8. zur Ermiltlung eines Leistungsarbringer, einer
Iplstungserbringenden Kostenstelle» & Was ist hier fachlich gemeint?
[Das hatten wir leider nicht gonz verstanden, Bezlehungsweise, wie soll
das in einem CISTEC-Agnostischen Framewark implementiert werden?

Martina: Mir fehit es etwas schwer, die Leistungsbrille abzulegen.,,
Vielleicht wird es so verstandlicher: Wichtige Altribute fir eine
Leistungssitzung mdssen unabhdngig von der Logik pro Kunde
inalviduell einstellbor seln. Befsplel erbringende Kostenstelle beim
Medi-Leistungs-Agenten. Hier soll der Kunde definleren kénnen, b die
erbringende Kostenstelle ous dem Patientenfali arenittell wird oder ous
der erbringenden Orgonisationseinheit wo der dokumentierende User

Zugehorig Ist.

85

Zied
Betroffana
Anforderungan

Vorbedingung

Erfoigs-
Endbedingung

Fehler-
Endbedingung
Aktaura
Aushiar

Harmalar Ablauf

Alernative
Abliufe

Erwaiterungan

Verwandte
Informatianen

Comments

3
1
Pt i

Benjamin Thesmann @benjamin tharmann - 1manth aga

UCDE: Duplikatcheck

Durch ldempotentes Persistieren wird sichergestalll, dass der Agent Core beim mehrfachen Emplang eines
Agenenaipebnisses diese als ain Ergebnis verarbetel.

EA_REQZ

= Agent hat eina Batch-Fayload erzeugt

- Jader Einlrag enthdll einen ldampotenz-key

= dadiziarta Tabelle fiir procassad-kays

= Fir alle Eintrage, deren idampotanz-Kay noch nicht existaran, wurdan Gaschiftsobjekte arzeugt und in der DB
gespaichart

- Berails vorhandene Keys wurden dbersprungen; Agent edhall Liste welche bersprungen wurden_

- Doppeite Bntrige in der DB

Iaintainer
Agant sandat POST jresults an Agent-Core

1. For jedas result pruft Core auf Taballe processed_kays:

- Key vorhanden -> skippedkey add

= Kay nau -» spelchert Entitdt und fligt key in to-processed_kays

2, Cora Antwartet mit HTTR=-201 und mit Bste 'created’ und 'skippea’
3, Agent loggt und Tahrt fart

- Kein procoessed_key mitgesendst
- Anfrage wird abgewissen Hrip-dix

Idempatancy: hitps:! iosamadey, mesdium, comyid emoaten cy=in- apis-making -5 ure-api-raquesis=-are-safe-and=
raliabie- foo bS5

Bei Versinhaillichung der Use Case Mummern und Namen wurden falgende Use Casas mit n UCOE: Duplisatcheck vensint:

» enemaliger UC2 Duplikste srkennen und aussehbessen wurde [UC02: Marathon Aqentzugeard met

Ehamaliga Lisa Casas:

ue2

Use-Case Akteur Ziel
Puplikata arkennen und Agant- [ar Agant pelift, ob Lelstungan beraits an und v icdet
ausschilassan Cora [applungan,

86

MHama
Zied

Betroffens
Anfardarungan

Vorbeingung

Erfolgs-
Endbadingung

Fahlar
Endbedingung

Akteure

Ausliser

Ablauf

Allernative
Abliufe

Erwaiterungan

Warwandta
Informationen

UCOT: Agentenlauf manuesll ausldsen
Mairmainar mochbe ainen Agent geziel manuall starten und nicht aul das seheduling des Cranjebs wanan

- EA_BEQE

Kubernates-Cluster verfiigbar, Flast-Daploymant angewandat (CranJobs axistieran: moahew-agent ,
marathon-agant , granzkestrella-agent), Agent=-Core + MATS + DB laufen, kubectl =-Fugriff vorhansan, Agant=
Images in Registry

Job pro ausgawihitam Agant wurde ainmatig gestartat und arfolgreich abgeschlossen; Agant hat vararbaitat,
Ergebnissa sind wia Agent-Core indar DB parsistiert; Logs des Laufs sind abrufbar,

Job#O0 startat richt oder andet nicht erfolgreich; s wunden keine Ergetnissa persistart; Fahlermaldungan sind
i Pod-{Jelb-Lag ersichtlich; Skript beendat sich mit Fehlar,

Agiriiai
Maimainer 21dest den Laul manuell an, Gber beretgestallie Skript.

1, Maintainer startat serigts/Flest/atart-crenjob, ah

2. Das Sxripl erstel je Agent ginen Job aus dem bestehanden CranJob.

3. Mormaler Agent-Lauf wia im [Y LSO Agantentauf aligemein beschriaben
4. Agent-Core persistien) Ergebnisse; Skripl zeigh Live-Lags des Jobs.

5. Job erreicht Complets; Skript beandal sich arfolgraich.

- Timeout: Job wird nichi complete innerhalb der Frist -z Skript andat mit Fehler.

- Fahistart; CronJdobflob-Mame axistient nicht (falschar NamaspacalAgent) -» kubectl-Fahler, Skript bricht ab,

- Abhangigkeit down: fgem-Core/NATS/DE nicht emraichbar -» Agent maldat Fehler, Job eandet failad.

- Agent-Fehler: Dominensaitiga Fabler fihren 2u failed-Ziklern pro tem; der Job kann trotzdem oversll efolgraich
sain,

Pocker-anly-Run: Altarnativ lokal per deckar run [Dna-Shat], wann kein Clustar bendtigh wind

[g sganangatriah starten und stegpen

87

MNama
Zied
Betroffens Anforderungen

Vorbedingung

Erfelgs-Endbadingung

Fehler-Endbedingiing

Marmaber Ablauf

Allernative Abliufe

Erwaiterungen

Verwandte Informationen

UCO8: Agent seit X Tagen keine Leistung mehr srzeugt

Reparter miche benachrichiigt werden, sabald ein Agent nach X Tagen keine Laistung erzeugt hat.

Ef_REQHA

- jsddiar fgemt publiziern nach jedem Laul eine Matsi
= Alart-Regal und Banachrichtigungskanal sind eingarichtat

= Alart wird ausgalast
- Man kann die Ursache im Log nachvollziehan

- Alart wird nichl ausgetdst
- Ursache nicht nachvallziehen
= keing Logs arstelft

Reparier
Sehweltwert van X Tage dberschitten

1. Monitering System warte! Regal ainmal Eglich aus
2. Badingunyg > x Tage 1riff zu

3. Manitaring-System List Abert sus- B Email an Subscriber mit Maldung und Log

4, Raporter arhalt Maldung mit betroffanan Agant und Log

5. Mach Fix erzeugt nachster Agent-Lauf wiader Leistungan (= Metrik wird akbualisiest)
. Maniloring-Syetem Lost kein arneubes Aler aus

1a. Marilaring System erkennt (bewussie) inaktivitil des Agenten
= Alart wird nicht ausgeli=t

1B, Menitaring-Systam ausser Betrieh

- wird nicht behandet

3. keine Subscriber vorhandan

= Subscriner wardan nicht validiart (zb kaina gutige Email)

= wird nicht behandest bzw. Alart wird ignariart

- [ucos: Eshlechale Laislunnspenesisning protakallisres
= 01 U4: Logging ainsshen

Comments

E;EQ Ban|amin Thermann @benjamin tharmann - 1 month aga (uner)
Bai Vereinheillichung der Use Case Numamarn und Mamen wurde feigende Use Caces mit [J UC08: Agent seit) Tages keine
Leistung mehr erpeugl veraint:

= ghamaliger LEI0 Akarting el fenlandar Laistungsarzeugung wurdga [UG0S onfiguration zugeardnat

Ehamalige e Cases:

o] Usa-Casa Aktaurs Ziml

LCAD Alerting bei fehlendar

Leistungsarzeugung

Manilaring-
Systam

Das System meldet automatiseh, wann dber sinen Zeitraum keine
Leistungen mehs erzeugl werden.

88

Tiel

Betraffana
Anfordarungan
Aktaure

WVerwandte
Informationen

Mame
Tiel

Betraffene Anfordarungen
Akteure

Verwandta Infarmaticnan

UCO9: Fehlerhafe Lelstungsgenerierung protekolbersn

Der Maintainer oder Reparter mochte fehlerhafte Leistungen protokolliert haben, um diese Analysieren

Zu Kdnnen

EA_RERQS

MEII‘I Almar HE £ I!E

- [LC0a: Agen seil X Taqen keire Leisting mehr sraugt

- [LC15: Fanlariogs ainsshan

UCT0: Generierungsintervall intern konfiguriersn
Der Maintainer setzt das Generierungsintervall dber Konfigurationsdateien,
Ef_REQH

Maintsi

[wcos: Kanfiguration

Hame UC2: Leistungen ahne Stopdatum generieran
Zied Der Agent generiert Leistungen auch bei fehlendem Enddatem der Massnahme | des Marathon-
Rennens
Betraffana EA_REQT
Anfardarungan
Akctaura Maintain
Hame UC13: Anpassung bei Datenstrukiurdnderungen
Fied Der Agent verarbeibet Daten weiterhin korrekt bei abwartskompatiblen Schemadnderungen (. B. rusitzliche
optionale Felder, neve Spalten, geanderts Reibenfalge).
Betroffens HEA_REQID
Anfarderengan
Aktaura intamar
Comments

0 Juan Fadda @juanfadda - just now
hier haban vir I-EI‘IQ'I.L "Der .ﬁ.gil"l! bleibt bei moderaten Bmmmﬂnman fllr*“ﬁl‘l!lflﬂ'l"ﬂ.' als Ziel stefen gthﬁhl..

Da das Ziel unklar und nicht Messbar ist, und bis heute keine genavere Spezifikation seitens Cistec gekammen i1, haben wis
dieses Jiel definiert, was implizit erfilll st bew. nichl weltler daraul aingegangen warden =1,

89

Ziel

Betraffens
Anfardarungan

Vorbedingung

Erfolgs-
Endbadingung

Alern ative
Abliufe

Erwaiterungen

Werwandte
Informationen

UC14: Logging einsehen
Deer Maintaines kann Lﬁ'gﬂ- aifsehen, wim Eyﬂh‘l‘!uﬂﬁl‘ldt und Feflar 2 ﬂl‘lﬂly!i!fh'l.

- EA_BEQE
= HEA_REEGS

Loggar aingabunden; Notwandiga Env gesetzt (2.6, SERVICE_NAME , LOG_LEVEL , NODDE_ENY |

- Wiihrend der Laufzeit entstaben farbige, menschlich lesbare Console-Logs und JSON-Fils-Logs unter
LogsS<SERVICE_NANE>.lag (mit Timastamp, Stackiraces, strukturiarta Faldar),

= Fehler wargan mit Stacktrace gedaggt,

= In test antstehan keine Logfiles,

- Meszages enthallan Service-Kontexl (v noshow, marathon).

Fenlanda Bflicht-Eny [z, B, SERVICE_NANE , LOB_LEVEL) -> Start bricht ab.

Asiniai
ServicejAgent staried; Code schreibt Legs (info/warnferren'detug...|.

1) Lagges injizieran,
21 Fachlich karreit loggen: Snfo flr Businass-Events, warm fOr abweichende, abar arwartare Fille, arror mit
Stack-Trace, debug Tir delailierte Ablaufinfos.

HODE_ENV=test -= mur Console-Transport [Kein File),

- [WE15: Famterlogs ainsehen

- [UCoE: Agent seilx Tagen keine Leisling menr erzeugt

- Cansobe: Mesat-like Format (farben, pretty). File: J30MN + Rotalion(max-size ~20MB, max-Files 10). Dateipfad:
LogsS<3ERVICE_NANE=>.log . Standardisiarta, konsistantas, strukturiestes Logging, das plug-and-play fur naua
Servicas/Agenten ganutzl warden kann

90

Betraffana
Anfardarungan

Vorbedingung

Erfolgs-
Endbadingung

Altarnativa
Abliufe

Erwaiterungen

Verwandte
Informationen

Ziel

WC15: Fehlerlogs einsehen

Der Maintaines kann 2amral Lﬂgﬂ-til‘ltﬂltﬂ und disrchsushan, um Fabler dar ﬂ.ﬂtﬂuﬁlﬁﬂluﬁg Iu-ﬂl‘lﬁlj'siﬂ'tl‘l [2.B.:
B nichl erfalgreicher Lestungegenatisrung)

= EA_RELID
= NFA_REQS

Stack aktiv (Promtail, Loki, Grafanal: premtail liest | /legs , sandat an Loki; Grafana ist provisioniart autamatisch
vorkonfiguriart), Sarvices (Agent-Core/dgants] schredben nach . Megs .

= Logs erscheinen in Grafana innarhalb ainer Minuta,

= Logs sind in Grafana filkersar nach Sarvice-Nama & Lavel (2. B. nach service=cnoshowe | (mindastans wann mit
dockar-conpoas gestarbat)

- Ratation verhindert Dateien chne Grissan-fAnzahlbegranzung.

= Lewal-Andarungan graifen nach Meustart,

Kaine Logs auf Grafana sichibar

Asinisi
Betrisbastart

1) Enw priifan: SERVICE_MAME , LOG_LEVEL .

2] Files erscheingn wuater . Mogsf+4.log [Ausser wenn test |

3] promtail versendet Logs nach Loki und erseheinan aufl Grafana
4] Bei Bedarl Log-Level per Erv Sndern und néeu starben.

= Umgabung test | keina Fila-Logs,
- Rechafdwner-Probbame im . Mogs -Volwme -> promiail kann nicht lesen -> fiven und new laden.
- LDE_LEVEL=error - géringe Sichilbarkei —= Level erfidhen.

Alerts aus Logs (Loki-Rukes), Dashboards pro Sarvice/Usa-Casa, Log-basiarte Maetriken [Error-Ratel,
reandamenfihige Labels

- [LCog: Fehlerhatie |eistung sgeparierung protokolliesan
- (¥ Lc14: Logaing sinsehan
- docker-compose: loki, promtail, grafana; Agemsf/hgen-Core mounten _flogs . Retation lokal durch Winstan

UEC18: Agentenbetrish starten und stoppen

Dier Mairainar kann Agenten starten und stoppen [aktivieran/deaklivieran].

Betraffens Anforderungen E&_BEQT]

Akteurs

Verwandta Infarmaticnan - O ucon: Agantanlaut stligameain

Ziel

UEIT: Leistungsgeneriering auf Entititen beschrinken

Dier Mairtainer kann die Agenbenkeisiung auf spezifische Enititen ainschrinken [Gber PIDFID].

Betroffens Anforderungen Ef_REQI2

Akteurs

Maintai

91

11.5 Produkt-Backlog

Title Issue ID State Author Assignee Milestone Labels
Gitlab aufsetzen 1 Closed Jvan Fadda Guillaume Fricker Projektsetup 4.9
Typescript Framework evaluieren 2 Closed Juan Fadda Benjamin Tharmann Requirements Engineering oy o
Domain model 3 Closed Jvan Fadda Juan Fadda Requiremants Engineering | documentation, @, .
Ziele[MUSS, KANN, SOLL) vereinbaren 4 Closed Jvan Fadda Juan Fadda Requirements Engineering documentation, @, @)
IST-Situation analysiersn 5 Closed Jvan Fadda Guillaume Fricker Requiremants Engineering LT T
und & Closed Jvan Fadda Benjamin Tharmann Requirements Engineering 5 4
Terminplan erstellen 7 Closed Jvan Fadda Jvan Fadda Requirements Engineering oy o,
cl’co 8 Closed Jvan Fadda Guillaume Fricker Projektsetup .9
Initiales mit 9 Closed Jvan Fadda Giuill Fricker L W
Durchstich: DB-Anbindung mit ORM (TypeORM + PostgreSQL) testen 11 Closed Jvan Fadda Jvan Fadda Architekturprototyp &.&.
Architektur skizzieren 12 Closed Jvan Fadda Benjamin Thormann P @.4.
Use Case erfassen 13 Closed Jvan Fadda Jvan Fadda Requiremants Engineering g, mentation, &, &.
Code Of Coduct erstellen 14 Closed Jvan Fadda Jvan Fadda Projektsetup documentation,
Agenten” 16 Closed Benjamin Thormann Banjamin Thommann Requiremants Engineering | documentation, @, .
ADR erstellan 17 Closed Benjamin Thormann Benjamin Thormann Projektsetup dosumentation, @), @
ag 18 Closed Benjamin Thormann Banjamin Thormann Requiremants Engineering | documentation, @, 8.
Demo-Daten/Testmandant zur Verfiigung stellen 19 Closed Jvan Fadda Guill Fricker P .3
Risikoanalyse erstellen 20 Closed Benjamin Thormann Guillaume Fricker Requiremants Engineering &3
estimate abmachen 21 Closed Benjamin Tharmann Benjamin Tharmann Projekisetup a9
Architekturdokumentation Packages 22 Closed Benjamin Thormann Benjamin Thormann 9.9
Architekturdokumentation Version Fallback 23 Closed Benjamin Thormann Benjamin Thormann Requirements Engineering documentation, @ @
ion F rototyp 24 Closed Benjamin Tharmann Benjamin Tharmann 3.3
Architekturdokumentation Zod 25 Closed Benjamin Thormann Guillaume Fricker 4.9
Simple NoShow Agent 26 Closed Jvan Fadda Jvan Fadda Architekturprototyp &9
Logging zentral machen 27 Closed Jvan Fadda Jvan Fadda Implementation "X}
E2E-Tests: Automatischer DB-Rollback pro Test 28 Closed Jvan Fadda Implementation L
GI/CD extended 29 Closed Juan Fadda Guillaume Fricker Implementation .
Agent-Core AP| Versionierung 30 Closed Jvan Fadda Implementation 3.
‘Gore Messaging Queue Integration 31 Closed Jvan Fadda Implementation L
Core: D 1g auf D 32 Open Jvan Fadda Benjamin Tharmann Implementation &
Agent: OAT-Agent Logik 33 Closed Jvan Fadda Implementation &
Agent: Anssthesie-Nachweis-Parsing 34 Closed Jvan Fadda Implementation &.w
APL: fiir 35 Closed Jvan Fadda Jvan Fadda Implementation 9.9
Config: Konfigurationsmodul fir Agenten 36 Closed Jvan Fadda Jvan Fadda Implementation Ry
Config: Toggle fiir Agent-Laufe a7 Open Jvan Fadda Implementation ™
CORE: durch 38 Open Jvan Fadda Architakturprototyp "
i Begriffe 39 Closed Jvan Fadda Architekturprototyp .9
Monitoring: Logging-System einfilhren 40 Closed Jvan Fadda Jvan Fadda Implementation a.4.
Monitoring: Zentralisiertes Logging mit Loki & Grafana 41 Closed Jvan Fadda Jvan Fadda Implementation &\
Agent-Core und NoShow-Agent auf Docker bringen 42 Closed Guilaume Fricker Guillaume Fricker Implementation .\
Agent-Core mit NoShow Agent als Microservices implementieren 44 Closed Benjamin Thermann Jvan Fadda Architakturprototyp Wi
Agent Marathonldufer 45 Closed Benjamin Thormann Jvan Fadda Implementation 9.
Agent Flughafengrenzkontrolle 47 Closed Benjamin Thormann Guillaume Fricker &.d.
Agent Businessmeeting 48 Closed Benjamin Tharmann Benjamin Tharmann Implementation a9
Agent fiir Use Case Nachgenerierung 49 Closed Benjamin Tharmann Implementation @
Use Gase Nachgenerierung schreiben 50 Closed Benjamin Tharmann Guillaume Fricker -
Linter aufsetzen fiir statische code analyse 51 Closed Guillaume Fricker Guillaume Fricker 9.9
Follow-up from in - Core & Noshow-Agent via NATS® 52 Closed Jvan Fadda Guillaume Fricker P
p from in =Core & -Ag! via NATS" 53 Closed Jvan Fadda Jvan Fadda Implementation ‘_‘
Follow-up from in - Core & Noshow-Agent via NATS* 54 Closed Jvan Fadda P
F p from in - Core & Agent via NATS" 55 Closed Jvan Fadda Jvan Fadda <
Follow-up from in - Core & Noshow-Agent via NATS* 56 Closed Jvan Fadda Jvan Fadda -
F p from in =Core & -Ag) via NATS* 57 Closed Jvan Fadda Guillaume Fricker .-
Foll p from in = Core & Noshow-Agent via NATS" 58 Closed Jvan Fadda -
‘Config: und 59 Closed Jvan Fadda Jvan Fadda Implementation 3.9
Agent als 80 Closed Benjamin Thormann Benjamin Thormann Implementation &\
Use Case 81 Closed Benjamin Thormann Benjamin Thormann Implementation &
Foll p from in = Core & Noshow-Agent via NATS" 82 Closed Jvan Fadda Guillaume Fricker -
Follow-up from in - Core & Noshow-Agent via NATS* 83 Closed Jvan Fadda Jvan Fadda Implementation .9

92

p from in i = Core & -Agent via NATS"
- Core & Noshow-Agent via NATS®
F p from in i = Core & -Agent via NATS"

Follow-up from in

Follow-up from in - Core & Noshow-Agent via NATS®
linter: pre-commit hook
Follow-up from "agent- ion in Test-Suite bringen
Follow-up from "agent-marathon" DTO/ Schema Naming
p from “ager DTO in der 7
Anforderungen (NFAs und FAs) iiberarbeiten
E2E-Tests i nach von auf
skipped test E2E Grezkontrolle
‘Gore EZE test adaptieren mit TestContainer
Foll p from “E2E fiir Mit EZ2E Test fiir Agenten
Anforderungen und Use Cases verbessern
Stakeholder-Analyse
Prozess und Persistierung sauber trennen
Fleet Chart ausbauen
“envtest und i s
Fleet-Config Modul fiir Agel
Fleet-Config Gitops Reviewen
Setup Readme
Noshow verarbeitet Termine mit Status SCHEDULED
Logging im p
‘Core-client provider clean up
i i mit pnpm und impaort

Clean-up: diverses
TypeOrm in eigenes DatabaseModule auslagern
Environment Schema Validierung fiir die Agenten.

E B B3 8 R ETBRR 2

Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closad
Closed
Closed
Closed
Closed
Closed
Closed
Closad
Closed
Closed
Closed
Closed
Closad
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed

Jvan Fadda

Jvan Fadda

«Jvan Fadda

Jvan Fadda

Jvan Fadda

Jvan Fadda

Jvan Fadda

Jvan Fadda
Guillaume Fricker
«Jvan Fadda

Jvan Fadda

«Jvan Fadda

Jvan Fadda
Benjamin Tharmann
Benjamin Tharmann
Jvan Fadda
Benjamin Thormann
Benjamin Tharmann
Jvan Fadda

Jvan Fadda
Benjamin Tharmann
«Jvan Fadda

Jvan Fadda

Jvan Fadda
Guillaume Fricker
Jvan Fadda

Jvan Fadda

Jvan Fadda

Jvan Fadda

«Jvan Fadda

Jvan Fadda
Guillaume Fricker
Jvan Fadda

Jvan Fadda

Jvan Fadda
Benjamin Tharmann
«Jvan Fadda
Guillaume Fricker
«Jvan Fadda
Benjamin Tharmann
Benjamin Tharmann
Banjamin Tharmann
Guillaume Fricker

Banjamin Thormann

Jvan Fadda
Banjamin Tharmann
Guillaume Fricker
Jvan Fadda

Jvan Fadda

Jvan Fadda
Guillaume Fricker
Jvan Fadda

Jvan Fadda

Implementation .9

2.9

Implementation Y

Requirements Engineering oy

Implementation &\
Implementation bug, =
Implementation bug, @ . 8.
Implementation -

2wischenreview mit Betreu gy
Requirements Engineering gy 4

Implementation IR Y
Implementation -

-
Implementation Y
Implementation &3

Feature-Freeze & Finalisiery W,

Feature-Freeze & Finalisien bug, @ .48,
Feature-Freeze & Finalisier @\
Feature-Freeze & Finalisien ae
o.@
Feature-Freeze & Finalisiery ae

Feature-Freaze & Finalisian

Feature-Freeze & Finalisiery ER)

93

11.6 Code of Conduct

Unser Entwicklungs-Team arbeitet gemass folgenden Verhaltensregeln, die von allen Entwicklern einzuhalten sind, um die Zusammenarbeit maglichst
reibungslos sicherzustellen:

Allgemeine Grundsditze und ethisches Verhalten:

. Wir behandeln ginander mit Respekt und kommunizieren haflich und konstruktiv.

. Jedes Teammitglied erfillt seine Aufgaben termingerecht, sorgfaltig und informiert das Team bel Verzdgerungen.

. Wir fordern eine Kultur des offenen Austauschs von Feedback und Ideen.

. Wir nutzen die Starken jedes Einzelnen, treffen Entscheidungen gemeinsam und unterstiitzen uns gegenseitig.

. Wir legen Wert auf lesbare, wartbare sowie einheitliche Programmierung.

. Codebeitrdge werden vor der Integration griindlich getestat und einem Review unterzogen - "Qualitat geht vor Quantitét”,
. Wir nehmen Code Reviews ernst und geben konstruktives Feedback.

. Wir teilen Wissen und Erfahrung innerhal des Teams.

. Alle Emtwicklungsarbeiten werden ausfihrlich dekumentiert, aktuell gehalten, und ist fur alle Teammitglieder zuganglich.

Wm0 N W R e

Workflow und Branching-Strategie Grundsétze:

. Wir synchronisieren vor jedem Arbeitsbeginn unseren Arbeitsbereich mit dem Repository.

2. Wir committen und pushen regelmassig in méglichst kurzen Abstanden implementierte Arbeitseinheiten, die erfolgreich kompilieren und getestet
sind.

3. Die Behebung eines defekten Builds hat oberste Prioritdt. Micht funktionsfahige Anderungen werden riickgéngig gemacht.

4, Entwickler, die den Build brechen, sind verantwartlich fir dessen Reparatur. Dabei unterstiitzen die Teammitglieder sich gegenseitig,

5. Ein gebrochener Build muss analysiert, den Grund ermittein und Massnahmen ergriffen werden, die sicherstellen, dass dieser Fehlar in Zukunft
vermieden wird.

6. Zustandigkeiten flir Bugfizes werden innerhalb des Teams kommuniziert.

7. Branching-Konventionen und Strategie:

Wir verwenden Trunk-Based Development: Unser Hauptzweig heisst main und bildet direkt den Entwicklungszweig. Es gibt keinen eigenen

develop-Branch, keine Hotfix-Branches und keine Release-Branches. Anderungen werden direkt iiber Feature- oder Bugfix-Branches in main

integriert.

Fur die Benennung der Branches folgen wir einer klaren Konvention: feat/ fir neue Features und fix/ fir Bugfixes. Release-Branches werden

nicht bendtigt. Versionen werden direkt Uber Tags auf dem main-Branch markiert,

Fir Anderungen, die ausschliesslich die Dokumentation betreffen, verwanden wir den Prefix ‘doe/’, gefolgt von einem spezifischen Thema,

z.B. 'doc/code-of-conduct’, um die Cl-Infrastruktur nicht unniétig zu belasten.

Fiir jaden neuen Feature, Bugfix oder Release wird ein eigenar Branch erstellt, deren Mamen baschreiband sind und den Zweck klar

kemmunizieren (2.8, 'featfadd-user-login', fix/login-issue’).

Branch-Mamen sind in Kleinbuchstaben zu halten und Warter durch Bindestriche zu verbinden.

Commit-Nachrichten soliten klar und prazise sein und den Zweck des Commits in kurzer Form erkldren.

Wir wenden kein Rebase oder dhnliches an, welche die Historie der Commits veriindert,

Wir streben nach kurzen Lebenszyklen fir Feature-Branches.

Grosse Features werden in kleinera Features untertellt und iterative - méglichst oft - in den Develop-Branch integriert.

Ein Feature wird als abgeschlossen betrachtet, wenn:

das Projekt ohne Fehler gebuildet (Clean-Build) werden kann und alle Funktionalitdten mit Unit-Tests geprift wurden.

die dazugehdrige Dokumentation angepasst oder erstellt wurde, einschliesslich aller notwendigen technischen Spezifikationen und

Benutzeranleitungen.

der Code keine auskommentierten Teile enthélt und alle TODO-Kommentare ein Issue-Ticket auf Gitlab refarenzieren.

die Funktionalitit im Client manuell getestet wurde und die Ergebnisse den erwarteten Anforderungen entsprechen,

vor dem Mergen alle Tests fehlerfrel durchlaufen, ein Peer-Raview erfolgt ist und alle Phasen der CI/CD-Pipeline fehlarfrei absolviert

wurder.

&

&

&

&

&

&

&

&

&

&

8. Fiir die Integration von Anderungen in den Develop-Branch verwenden wir Pull/Merge Requests.

9. Wir folgen Semantic Versioning 2.0. Das bedeutet, Versionen werden nach dem Schema MAJOR.MINOR.PATCH benannt, wobei inkompatible
Anderungen die MAJOR-Version erhéhen, rickwirts kompatible Funktionshinzufiigungen die MINOR-Version und rilckwirts kompatible Bugfixes
die PATCH=Varsion erhahen.

10. Fir die Code Reviews nutzen wir die integrierte Review und Kommentar-Funktienalitdt in Git-Lab. Mach Abschluss des Reviews wird ein
zusammenfassender Koemmentar im 'Summary-Comment' hinterlassen, der eine kurze Gesamtbeurteilung der vorgenommenen Anderungen
enthalt.

11. Jedes Teammitglied wird einer Disziplin zugewiesen, um im Konfliktfall Entscheidungen sowie Massnahmen zu fallen. Die Aufteilung und
Zustandigkeit der Disziplinen sind auf der Seite [J Rollenverteilung & Verantwartlichkeiten beschrieten.

Testing Grundsdtze:

Dieser Leitfaden soll das wichtigste fir das schreiben von guten Unit Tests beschreiben. Eine genauere Beschreibung ist unter How to Write Good
Unit Tests zu finden,

. Wir testen kleine Codeabschnitte isoliert und ohne Abhdngigkeiten zu externen Elementen.

. Wir folgen dem Arrange, Act, Assert (AAA)} Schema in unseren Tests.

. Wir halten unsere Tests kurz und auf das Wesentliche beschrankt.

. Wir decken zuerst den Happy Path - Idealfall mit optimalen Bedingungen - ab, hevor wir uns komplexeren Szenarien zuwanden.
. Wir testen Edge Cases, um die Robustheit unserer Anwendung zu gewahrleisten.

L R

94

6. wir schreiben Tests, bevor wir Bugs beheben, um eine effektive Fehlerbehebung zu gewihrleisten,

7. Wir schreiben deterministische Tests, die unter gleichen Bedingungen stets dasselbe Ergebnis liefern.
8. Wir verwenden beschreibende Namen fir unsere Tests, um deren Zweck klar zu kommunizieren.

9. Wir bevorzugen prazise Assertions, um spezifische und informative Fehlermeldungen zu erhalten.

Q

10. Wir fiihren unsere Tests automatisch als Teil des Build-Prozesses aus.

Tooling und Weitere:

1. Jedes Tool muss von der Mehrheit des Teams akzeptiert werden.
2. Projektnahe, technische Dokumentation (z.B. Anforderungen, Architektur, Use-Cases, Diagramme) bevorzugen wir direkt im Projekt-Wiki zu
pflegen.
o Fur Diagramme verwenden wir die integrierte draw.io Anbindung im Wiki, Mermaid oder PlantUML,
= Ziel ist eine nachvollziehbare, versionierte und code-nahe Dokumentation.
3. Kollaborative Inhalte (2.8, Besprechungsnotizen, Skizzen, Fotos, Ideensarnmlungen] wearden flexibel entweder im Wiki oder in Google Docs
erfasst, je nachdem, was situativ besser passt.
4. Fir Besprechungen, Austausch und als allgemeiner Kommunikationsweg werden die Programme Microsoft Teams, WhatsApp oder der Email-
Verkehr genutzt.
3. Alle Dateien werden, sofern text-basiert und/oder sinnvoll, in das Git-Repository des Projekts eingecheckt, als Wiki-Page oder in Google-Drive
abgelegt, das von jadem Teammitglied zuganglich ist.

Comments

o Jvan Fadda @jvan.fadda - 4 months ago

Zusammen besprochen:
Branching-Strategie

+ Kein Git Flow nur Trunk-Based
= Branch-MNaming:
o main Haupt-Entwicklungszweig -> trunk
o fix ->flr alle fixes
o feat -> fur alle Features
= Kein release -Branch und keine Release-Viorbereitung notwendig, da nicht mehrere Viersionen gewartet werden,
» Releases bzw. Versionen kennzeichnen wir lediglich mit Tags

Tooling

» wo woegmlich mit Wiki-Pages und integriertem draw-10 flr Grafiken arbeiten.
o Anforderungen, Use-Cases, Diagramme, Mermaid, PlantUml
+ Google-Docs als alternative fir PDFs, Dokumente der Cistec AG und kollaborative Dokumente wige Notizen, Skizzen, Fotos, Protokolle
bzw. alles was nicht direkt mit dem code zu tun hat

Edited 4 months ago by Jwan Fadda

95

11.7 Auszug aus Build-Server und CI/CD

CI/CD Analytics

Pipelines @

Total pipeline runs

487

Success rate

66%

Failure rate
34%

View all

Pipelines charts

Last week Last month Last year |

Date range: Sep 14, 2024 - Sep 14, 2025

180

120

w T\
. N\

N

Pipelines

0
September 2024

November 2024 January 2025 March 2025 May 2025 July 2025 September 20
Date
== all == success

Pipeline durations for the last 30 commits

10 —

8

6
2
£
= 4 S S S

2 I [I

, D0 e HOOT T Ll _ Ll Ll

SO o £ & & A o @ s & & > » ©) & 2 [SN » e & >
“{Lg) &E \\‘59 & 55# ‘;“&? & & & ,,;“b o ,gf\e 0@9 & & :;,“’né\ o 6"{\? 65@ t :;,ﬁ) g ggf ;‘T‘S & & & 5
P S g g 8 & F 9 AV g N P &P
Commit

@ Passed Merge branch ‘exampleagent’ into ‘main’ 2322 00000 &~
@ 00:06:33 #434719 ¥ main - 7daf2fén hO S04
£ 3 days ago branch
@ Passed fixing import ©0 00 & v
@ 00:04:26 #434718 ¥ exampleagent < dflad583 i
B 3 days ago branch
© Failed silencing logs in e2e test 0000 ol
@ 00:04:14 #434715 P exampleagent < Jaebeebe it
£ 3 days ago branch

Tobirama Ultras = | agent-core | Pipelines /| #434719

Merge branch ‘exampleagent' into ‘'main’

@ Passed Benjamin Thormann created pipeline for commit 7daf2fé8 [% 3 days ago, finished 3 days ago

For main

branch €05 jobs (U 6 minutes 33 seconds, queued for 2 seconds

Pipeline Jobs 5

Group jobs by | Stage | Job dependencies

Tests 0

install lint build test deploy

@ install o @ lint o ® build o @ test o @ deploy [

96

11.8 Technische Diagramme

Use-Case Diagramm

waby
€000

N
/' weby Bunsejy ssauisng
109n

uajueby-eidsiag

allonuoyzuaID uaeybniy |

s

<<apnjau=> L
uasanoxaioid
Burusisuabsbun)sia
ayesiyay
602N
<<apnpup>
vowshye mewawety) SOPIOURE

002N

e
\Q

uaLEls
waby :slujod uoisuaixa

"qolucid) sa18uIagny oI
‘10 BIA LIS {UOPU0D

<<apnpup> |

<<apnjour>>

uojeinByuay

500N

paususbydeu uepiam
uabunisia uasosny

yuequaleq
i8p uju

Jauodey

N\

16nezio yaw Gumsie]

[ouyusbel xweseby | — [usussue nm:mncm_:ww_ J

UBL3sUR
BuibBo :sjuiod uoisuaxa
"|6nazia Bumsia suley

uayssuie buibo
¥1on

— \.\.

A

<<IPN|ouUE> " | usyoesuagn geulequaUB

usyasuie sBoyiue-
s1on

uaddaojs pun
usliEls gaulequalsby
919n

A / =

<<pusixes> |

e ccmEormoneeD O

uBsQisnE
[IenUBW Jnejusiusty
JeurelulEl

uasslinByuoy
wia) lesslusbunisueusn

“ \
uaepeust \ iouuoy uaeueuas %mzy

wniepdols auyo usbunisie) — { pun usuy m:wum_zum_g.

z1on \, /

/7 uenupapsequelug
jne bunseusuebsbumisie] |

210Nn Vs

eauaiexdng

s03n _

N e — \
~— { 18LIBMIS BIM OIS

| Jewan Bunisuausbsbunsie |
N e

a
Bunuspuy :1esgisny

Jiomaweijuaiuaby

97

jne usiseq ey iopejaselEq

yalzuaiajel 1qie1yos

98

Bumysja] pabbiuy lsqn usjeq isal| Byuoueby

\Bnazia / \ ﬁ;\\
ualsiZUBIajel Heylue / \\
uabunjsia uuey / juaby

uojesadp uo|ssag

snjejspodxg \
<<UO[jBiaLUnUa=>

sne jysisaq usbunzygissejwn

anny
ujuwa)
sse|9vsly Wopeg ?/}E_mun_

Domain Model

<<UOEIIWNUAS> r(r...ff!r/.a
ase]
7
sojaeyaguodxy
<<uopRiIWNUIS> a|ed ey
lanar o juaped
<<UojIBaWNUA=>

Systemiiberblick

99

Verteilungsdiagramm

elEp-saibisod
<<ondzz>
B o saubisod
<cEsinEies>
zovgseibisod -7
<<aomss=>

A
saiBisod aoedsawey
7 2EZRZTZUEZZYSIBY o AA speu _‘\
<<saimEs> <<qesINeIES>>
S
{ s10u :acedsalweN
umpeas saday f
sisenbas
'
' ebe-uoye e
I <<gofuciz>
webe-aionucyzuab
<<ofuosass
2103 :eoudsawey

wwabe-mausou T
<=golusios>
[&t ‘sowdsewen
A

#60| 8100)j00

prenwosd
_ sBojysnd. — — <BEUOLBEN>>

0BODERUERID
<<}100-BPOU/BIHAIBT>

Bunoyuow :soedsswen

seoedsaueu
e o) seyuew Adde

Jusbe-isey
a e
ponsep
sdouwneu
usia) '
qopiB v

<uswAodep=> v

v
v
weisAs-1eel-eniE (ecEdsewEN !

0
\
-)
~ saubisod saufisodreyu \
=<pPEpUEE> I - <<Blpung>> \
<7 " v
; \ \
sieu H sreuresUl .)
r= oy “r-1% <<sipung>> \ \
, . |
- \
gy A souprom
sueyoRIRLIG/OrIaRa0R | -AnsiBalyio0 H / v _‘
any J8%204 (100 ‘suEug-wisH) Loysoday H] \
\
NN .
v Y
si00-usbE E : v \
r = <<aBew> H o v
~ uo spuadep o '
~.| - p N N
wabe-agonuoxzuaub ~ 2100 W]
r— <<abew> “ro1% <<ajpungz=> AN N
1 -~ W '
P Il ~L A 1
T ~ AN)
webe-UouBIEW - S w N
= <<sbewr> ° - w .
uo spuadep Soow v
i ~ %
1wabe-mousou wabe = as00-uabe
r= <<sbewe> “r-T- <<opunge> ~ [W— - = - === == <<odas-ufiz>
%
-
s \\\
sty
150" qepbAns) s Ay
T
qe D [(sebrwiieuisuc) Arousoden P \\
e - \\x
’
P
weyuoid IO BuOHUOUIEIU] L
- <pepES> e = <<spungs> . ,
o
s
1oy -
r= <R -1 L
’
-
Ul Ui/ BuoyuOWRI
r— <<rEpE e - <<BpUNgs=>
SUEUD-wisWoranunE euseB s sduy
sebed gD (suEYD-wisH) fioysodey (1ea0r190y)) 19914

100

<<gofuois>>
<<@sucwaEp>>
<<jss|njElErsS>

<UBWADIIAE>>

<<and>>

ez leg — — sosodxs _ _ _ |

lg- — — —sewesa. _ _ _ |

<afewp>

<<jojuEs> (-

Esuysind. _ _ | <<ajpung=> lg — souoEm_ _ | <<odau-bi>

wmoly Bupesy
_q pebeueuypaieiousb si.
s kouspuedeq ; Bujuosinolg — — — — — —
UONESIUNLUILIOD YOMBN
:pusban

12 Selbststandigkeitserklarung

Selbststandigkeitserkldrung

Hiermit erkl@ren wir, dass wir die vorliegende Masterarbeit im MAS Software Engineering mit dem
Titel «Standardisierung von Agenten zur Leistungserfassung in Kiinikinformationssystermen »
selbststiindig und ohne unerlaubte fremde Hilfe angefertigt, keine anderen als die angegebenen
Cuellen und Hilfsmittel verwendet und die den verwendeten Quellen und Hilfsmitteln wirtlich oder
inhaltlich entnommenen Stellen als solche kenntlich gemacht haben. Weiterhin erkldren wir, dass wir
keine durch Copyright geschitzten Materialien (2.B. Bilder) in dieser Arbeit in unerlaubter Weise
wverwendet haben und in dieser Arbeit keine Adressen, Telefonnummern und andere personliche
Daten won Personen, die nicht zum Kernteam gehdren, publizieren,

ort, Daturm Campus Rapperswil-Jona, 14.09.2025

Mame, Unterschrift; Fricker Guillaume, g%ﬂ/
[

Name, Unterschrift: Thormann Benjamin, _ﬁ' Thotpne

*1-,_;"
el

Mame, Unterschrift: Fadda Jvan, At

101

