

Standardisierung von Agenten zur

Leistungserfassung in

Klinikinformationssystemen

MAS Software Engineering 2023 - 2025

Projektteam: Jvan Fadda, Guillaume Fricker, Benjamin Thormann

Hauptbetreuung: Tobias Büchel

Betreuung: Manuel Bauer, Tobias Büchel, Martina Lux

2

Inhaltsverzeichnis

Glossar ... 6

1 Einleitung ... 7

1.1 Problemstellung .. 7

1.1.1 Technische Herausforderungen ... 7

1.1.2 Probleme im operativen Betrieb.. 8

1.1.3 Organisatorische Defizite .. 8

1.2 Zielsetzung .. 9

2 Grundlagen .. 9

2.1 Klinisches Informationssystem ... 9

2.2 Leistung ..10

2.2.1 TARMED ...10

2.2.2 TARDOC ...10

2.2.3 Tarife im KIS-Kontext ..11

2.3 Agent im klinischen Kontext ...11

2.3.1 Zur Relevanz von Agenten im schweizerischen Gesundheitswesen11

2.4 Domänenspezifische und Systemabgrenzung..12

3 Methodik ..13

3.1 Projektorganisation und Vorgehen ...13

3.1.1 Aufwandsschätzung ...15

3.1.2 Entwicklungsprozess ..15

3.2 Risikoanalyse ..16

3.3 Stakeholder-Analyse ...16

3.3.1 Rollen ...17

3.3.2 Stakeholder ..18

3.3.3 Stakeholder-Matrix ..18

3.4 Architekturentscheidungen ..19

3.5 Testing Strategie ...19

3.6 DevOps-Strategie und Qualitätssicherung ...20

3.6.1 Entwicklungsphase ...20

3.6.2 CI/CD Pipeline ..21

3

3.6.3 Betrieb ...21

3.6.4 Metriken ..21

3.6.5 Systemverteilung und Deployment ...21

4 Problemanalyse ...22

4.1 Ist-Zustand / Ausgangslage ...22

4.1.1 Strukturelle Eigenschaften ...22

4.1.2 Persistenzschicht ..22

4.1.3 Deployment, Monitoring und Betrieb ...23

4.1.4 Kommunikation ..23

4.2 Use-Cases und Anforderungen..23

4.2.1 Quellen für Stakeholder- und Anforderungsanalyse..23

4.2.2 Akteure ..23

4.2.3 Use-Cases ...24

4.3 Anforderungskriterien ..26

4.4 Randbedingungen ..29

4.5 Domain Model ..29

4.6 Risikoanalyse ..30

4.6.1 Initial definierte Risiken ..31

4.6.2 Technische Risiken ...31

4.6.3 Organisatorische Risiken ..32

4.6.4 Finale Risikoanalyse..34

4.7 Architektur ...35

4.7.1 Auswertung möglicher Technologiestacks ..35

4.7.2 Walking Skeleton..36

4.7.3 Architekturentscheide / Architecture Decision Records (ADR’s)37

4.8 Systemverteilung und Deployment ...38

5 Ergebnisse ...38

5.1 Projektorganisation ..39

5.1.1 Zusammenarbeit mit der CISTEC AG ...39

5.1.2 Zusammenarbeit im Projektteam ...39

5.1.3 Arbeitsaufwände und Eigenverantwortung ..39

5.1.4 Risikoanalyse ..40

5.1.5 Domäne und Abnahmekriterien (ADR0007) ..40

4

5.1.6 Domänenspezifischer vs. generischer Framework-Prototyp40

5.1.7 Technischer Grossausfall ..41

5.1.8 Auswertung Risikomatrix ..41

5.1.9 Lessons Learned ...42

5.2 Architektur ...42

5.2.1 Architekturbeschreibung ..42

5.2.2 Microservices als Architekturansatz ...42

5.2.3 Kommunikationsmuster ...43

5.2.4 Evolution der Architekturentscheidungen ..43

5.2.5 Architekturprinzipien und Patterns...43

5.2.6 Trade-Offs ..44

5.2.7 Systemüberblick ...44

5.2.8 Tech-Stack ..47

5.3 Systemverteilung und Deployment ...47

5.3.2 GitOps & Fleet ..50

5.4 Monitoring und Logging ..50

5.4.1 Datenfluss und umgesetzte Architektur ..50

5.4.2 Verwendung...51

5.4.3 Bekannte Grenzen ..51

5.5 Qualitätssicherung ..51

5.5.1 Testinfrastruktur und Hilfsmittel ..51

5.5.2 Metriken ..52

6 Diskussion ...53

6.1 Zielerreichung ..53

6.2 Challenges ..53

6.2.1 Domänenspezifischer vs. generischer Framework-Prototyp53

6.2.2 Cyberangriff der CISTEC AG ..54

6.2.3 Enterprise-Infrastruktur ...54

6.2.4 Kommunikation und Zusammenarbeit..54

6.2.5 Fazit ...55

6.3 Weiterentwicklung ...55

6.3.1 Message Queue ...55

6.3.2 Transaction Logging ...55

5

6.3.3 Nachgenerierung ..55

6.3.4 Monitoring und Alerting ...56

6.3.5 NATS Queue-Groups und Jetstream ...56

6.3.6 Verteilung, Deployment, DevOps, Security und Skalierung56

7 Fazit ..57

8 Abbildungsverzeichnis ...58

9 Tabellenverzeichnis ...58

10 Literaturverzeichnis ..59

11 Anhang ...60

11.1 Deklaration zu genutzten (KI)-Tools ..60

11.2 Zeiterfassung und Zeitauswertung ..61

11.3 ADR’s ...63

11.4 Use Cases ...79

11.5 Produkt-Backlog ...92

11.6 Code of Conduct ...94

11.7 Auszug aus Build-Server und CI/CD ...96

11.8 Technische Diagramme ..97

12 Selbstständigkeitserklärung ..101

6

Glossar

ADR: Abkürzung für Architecture Decision Record, also für eine dokumentierte

Architekturentscheidung.

Agent: Eine Software-Komponente, welche im Kontext dieser Arbeit aus bestehenden

klinischen Daten mögliche Leistungen ableitet und diese in einem regelmässigen Zeitintervall

aggregiert, verarbeitet und in eine Datenbank schreibt.

Agent-Core: Der Projektname und das Endprodukt unserer Arbeit.

Agenten-Framework: Generische Bezeichnung für das Agent-Core Projekt, welches

grundlegende Strukturen und gebündelte Funktionalitäten für die Entwicklung von Agenten

anbietet.

Agentenlauf: Gesamter Ablauf eines Agenten, also der Lebenszyklus von Start bis Stopp des

Prozesses eines Agenten.

KISIM: Krankenhausinformationssystem der CISTEC AG.

KIS / Krankenhausinformationssystem: Zentrale Dokumentationssoftware im klinischen

Bereich.

Kurve: Patient:innendaten, welche in einer gesundheitlichen Institution während des

Aufenthalts laufend erfasst und konsultiert werden.

Leistung: Eine erbrachte medizinische Tätigkeit, ein Medikament, oder ein medizinisches

Material.

Leistungserbringer:in: Medizinische Fachperson, die eine Leistung ausführt - z. B. Ärzteschaft,

Pflegefachperson, Anästhesist:in, Psychiater:in.

Leistungserfassung: Allgemeiner Begriff für die Dokumentation einer erbrachten

medizinischen Leistung in einem KIS, bezogen auf Patient:in und Fall.

Leistungsgenerierung: Das Gleiche wie die Leistungserfassung, spezifisch auf Agenten

bezogen.

Nachgenerierung: Erneute Erstellung oder Generierung von Leistungen basierend auf die

aktuelle Datenlage (z. B. bei Problemen im ERP oder Bugs im Agenten).

PO: Product Owner.

PVC: Persistent-Volume-Claim (Kubernetes-Ressource).

Shift Left: Arbeitsweise, damit die Verifikation eines Prozesses so früh wie möglich geschieht.

Sofortexport: Im Bereich der Leistungserfassung als “sofortige Rechnungsstellung” zu

verstehen, z. B. wenn Patient:in ein Medikament erhält und dies gleich vor Ort im Spital

bezahlt, um anschliessend gleich wieder nach Hause zu gehen.

TARDOC: Leistungskatalog im Schweizer Gesundheitswesen ab 2016 (siehe Kapitel 2.2.2).

TARMED: Leistungskatalog im Schweizer Gesundheitswesen seit 2004 (siehe Kapitel 2.2.1).

7

1 Einleitung
Die CISTEC AG entwickelt und betreibt das Klinikinformationssystem KISIM. KISIM unterstützt

die tägliche Arbeit von medizinischen Fachkräften (Ärzt:innen, Pflegende, weitere

Spezialist:innen) im Schweizer Gesundheitswesen mit einem Fokus auf Akutspitäler und

Psychiatrien.

Die Leistungserfassung in Spitälern dient zur Erfassung und Abrechnung von medizinischen

Leistungen bei Krankenkassen oder Patient:innen und ist ein komplexer Prozess. Entsprechend

wird die Leistungserfassung durch verschiedene Tarifsysteme geregelt – im Schweizer

Gesundheitswesen sind das TARMED oder TARDOC.

Das KISIM bietet für diesen Anwendungsfall eine integrierte Leistungserfassung an, welche

Fachkräfte dabei unterstützt, abrechnungsrelevante Leistungen zu erfassen. Ziel der

Leistungserfassung ist es, abrechnungsrelevante Leistungen (Eingriffe, Konsultationen,

Medikamente, Materialien etc.) möglichst vollständig zu dokumentieren, damit die erbrachten

Leistungen eines Spitals oder einer Klinik korrekt in Rechnung gestellt werden können.

Um die Leistungserfassung teilweise automatisieren zu können, führte die CISTEC AG im

Rahmen des KISIM sogenannte Agenten ein, welche nach spezifizierter Logik zusätzliche

Leistungsdaten generieren können. Dies spart den Anwender:innen von KISIM viel manuellen

Erfassungsaufwand ein. Diese Agenten des KISIM Moduls Leistungserfassung unterstützen den

Prozess der Leistungserfassung, indem sie automatisch vorhandene Leistungen, Berichte und

Termindaten durchsuchen, um daraus beispielsweise Folgeleistungen, ganze Leistungsblöcke

oder ergänzende Leistungen für die Abrechnung bereitzustellen. Diese Automatisierung

entlastet die Fachkräfte im Bereich der Dokumentation und reduziert den manuellen

Erfassungsaufwand erheblich.

1.1 Problemstellung

Die CISTEC AG betreibt im klinischen Alltag ungefähr ein Dutzend produktiver Agenten zur

automatisierten Leistungserfassung auf zahlreichen Kundensystemen. Diese Agenten laufen als

nächtliche Cron-Jobs und generieren Leistungen auf Basis fachlicher Regeln wie Terminstatus,

laufende Massnahmen oder Dokumentationsdaten. Obwohl sie funktional ihren Zweck

erfüllen, zeigen sich im Betrieb eine Reihe technischer und organisatorischer Probleme: Der

aktuelle Zustand der Agentenlandschaft bei der CISTEC AG ist von heterogenen

Implementationen, einem hohem Wartungsaufwand und eingeschränkter Transparenz

geprägt. Die technische Architektur führt zu erheblichen Einschränkungen in Skalierbarkeit und

Robustheit. Für die Mitarbeitenden bedeutet dies eine erhöhte Komplexität bei

Nachgenerierungen, unklare Fehleranalysen und einen hohen Abstimmungsaufwand zwischen

Fach- und Entwicklungsteam. Diese Ausgangslage unterstreicht die Notwendigkeit einer

standardisierten, modularen und zukunftsfähigen Framework-Lösung, welche die aktuellen

Pain Points adressiert.

1.1.1 Technische Herausforderungen

Die bestehenden Agenten wurden jeweils individuell implementiert, also ohne ein

gemeinsames Framework oder eine wiederverwendbare Bibliothek. Daraus ergeben sich

8

folgende Probleme:

Hoher Wartungsaufwand: Jeder Agent bringt eigene Abhängigkeiten, Treiber und Bibliotheken

mit. Updates müssen für jeden einzelnen Agenten durchgeführt werden, wodurch redundanter

Aufwand entsteht. Copy-Paste-Code führt zudem zu Inkonsistenz und erhöhter

Fehleranfälligkeit.

Datenbankabfragen: Agenten greifen direkt auf die relationale Datenbank zu und formulieren

eigene SQL-Abfragen. Dadurch lassen sich Performance-Probleme nicht zentral optimieren.

Hinzu kommt, dass Abfragen in der Regel sequenziell ausgeführt werden und bei wachsendem

Datenvolumen kaum skalieren.

Deployment-Struktur: Jeder Agent wird als eigenständiges Deployment in Kubernetes

betrieben. Dabei müssen Deployment-Konfigurationen für jeden Agenten erneut erstellt und

gepflegt werden.

Keine Statusupdates der Records: Scheitert ein Agentenlauf (z. B. wegen Datenbankausfällen

über Nacht), werden die verpassten Leistungen nicht beim nächsten Lauf automatisch

aufgegriffen. Eine explizite Wiederanlauf- oder Recovery-Logik fehlt. Bei solchen Fällen kann

mindestens ein ganzer Tag an generierten Leistungen komplett verloren gehen. Sollte der

Ausfall über mehrere Tage unbemerkt bleiben, kann dies auch zu finanziellen Verlusten bei

den Spitälern führen.

Kein Monitoring: Es existieren weder ein konsolidiertes Dashboard über alle Agenten noch ein

Alerting System. Fehlerhafte Läufe oder Stillstände bleiben oft unbemerkt, bis

Fachanwender:innen auf fehlende Leistungen hinweisen.

1.1.2 Probleme im operativen Betrieb

Neben den technischen Defiziten ergeben sich im täglichen Betrieb weitere Pain Points:

Aufwändige Nachgenerierungen: Wenn Leistungen nachträglich exportiert werden müssen

(z. B. bei einem ERP-Fehler), setzen Entwickler:innen manuell Start- und Enddatum im

Deployment-Chart. Aufgrund schwacher Skalierung müssen Zeiträume in kleine Pakete zerlegt

werden. Eine Nachgenerierung von drei Monaten kann dadurch dutzende manuelle

Iterationen erfordern und mehrere Stunden Arbeit in Anspruch nehmen.

Fehleranalyse und Debugging: Ohne einheitliche Logs und Monitoring ist die Ursachenanalyse

auf Produktion zeitintensiv. Entwickler:innen müssen tief in die jeweilige Agentenlogik

einsteigen, was durch fehlende Standards stark erschwert wird.

1.1.3 Organisatorische Defizite

Die fehlende Standardisierung schlägt sich auch in der Organisation nieder:

Keine klaren Guidelines: Es existiert keine Definition, was einen korrekt implementierten und

sich korrekt verhaltenden Agenten ausmacht. Best Practices sind nicht dokumentiert und neue

Entwickler:innen müssen sich in jeden Agenten separat einarbeiten. Das verlängert

Einarbeitungszeiten und Projektlaufzeiten erheblich.

Unklare Verantwortlichkeiten: Ohne exaktes Monitoring ist nicht klar, wer die korrekte

Ausführung überwachen soll. Entwickler:innen werden regelmässig ad hoc mit manuellen

Nachgenerierungen betraut. Fachanwender:innen haben keine Möglichkeit, Logs einzusehen

9

oder Nachgenerierungen selbst anzustossen.

1.2 Zielsetzung

Die CISTEC AG hat sich aus den gerade aufgeführten Gründen dazu entschieden, den

Prototypen eines entsprechenden Agenten-Frameworks in Form dieser Masterarbeit in Auftrag

zu geben. Es soll ein standardisiertes technisches Grundgerüst erschaffen werden, welches die

spezifischen Pain-Points der CISTEC AG adressiert, um so die Arbeit mit bestehenden Agenten

massgeblich zu vereinfachen und die Umsetzung zukünftiger Agenten effizient, wartbar und

skalierbar zu gestalten. Das Framework soll zentrale Funktionen bündeln, die

Wiederverwendbarkeit von Logiken ermöglichen, sowie die Effizienz und Qualität der

Entwicklung steigern. So soll eine Grundlage für Agenten geschaffen werden, welche es

ermöglicht, nur noch die spezifischen Businesslogiken auf Agentenebene zu implementieren.

Andere Basisfunktionen wie zum Beispiel Authentifizierung, Datenbankverbindung sowie

Bausteine für die Datenverarbeitung werden zentral bereitgestellt.

2 Grundlagen
Um den Kontext dieser Arbeit nachvollziehen zu können, werden nun die wesentlichen

Konzepte aus dem Fachbereich der Spitalinformatik erläutert, welche für das Verständnis

essenziell sind. Die folgenden Kapitel legen als Wissensbausteine das benötigte Fachwissen

dar, um den groben Grundriss der fachlichen Domäne zu erfassen: den klinischen Kontext der

Leistungserfassung im Zusammenhang mit der CISTEC AG.

2.1 Klinisches Informationssystem

Ein Klinikinformationssystem (KIS) bildet die zentrale digitale Infrastruktur eines Spitals.

Es umfasst alle IT-Anwendungen, welche die medizinischen, pflegerischen und administrativen

Prozesse unterstützen und miteinander verbinden. Während einzelne Abteilungssysteme (z. B.

Labor, Radiologie) jeweils spezifische Aufgaben abdecken, verfolgt ein KIS den Anspruch, die

Vielzahl dieser Systeme zu integrieren und zentral eine einheitliche, patientenorientierte

Datenbasis bereitzustellen.

In der Medizininformatik existieren zahlreiche Begriffe, welche im Zusammenhang mit

elektronischen Informationssystemen verwendet werden. Prokosch (2001) weist darauf hin,

dass darunter häufig eine gewisse “Begriffsverwirrung” besteht (S. 1-2). So werden neben KIS

auch Bezeichnungen wie Klinisches Arbeitsplatzsystem (KAS), Elektronische Krankenakte (EKA),

Elektronische Patientenakte (EPA) oder Elektronische Gesundheitsakte (EGA) genutzt.

Während KAS typischerweise einzelne klinische Arbeitsplätze adressiert, beschreibt das KIS die

Gesamtheit aller Systeme, die ein Spital in seinen Abläufen unterstützen (Prokosch, 2001, S. 1-

2). Wichtig ist dabei, dass ein KIS nicht als einzelnes Produkt verstanden werden kann.

Vielmehr handelt es sich um einen konzeptionellen Rahmen, innerhalb dessen sich die

verschiedenen Anwendungen eines Spitals entwickeln und über Schnittstellen integriert

werden. Ziel ist die Schaffung einer kohärenten und durchgängigen Informationslandschaft.

Im Schweizer Kontext wird der Begriff Klinikinformationssystem (KIS) bevorzugt, da er die

10

Gesamtversorgung innerhalb eines Spitals adressiert und nicht nur die Verwaltung betont.

Ein prominentes Beispiel ist das KISIM, welches von der CISTEC AG entwickelt und unterhalten

wird und als Grundlage für diese Arbeit dient. KISIM wird insbesondere in Akutspitälern und

psychiatrischen Kliniken eingesetzt. Es unterstützt die Dokumentation und Steuerung klinischer

Prozesse, die Leistungserfassung sowie administrative Abläufe. Durch die modulare Architektur

lassen sich medizinische Kernprozesse mit abrechnungsrelevanten Anforderungen im Rahmen

von TARMED oder TARDOC verbinden. Damit entspricht KISIM dem in der Literatur

beschriebenen Verständnis eines KIS als integrierte Plattform, die verschiedene Anwendungen

bündelt und eine durchgängige Nutzung von Patientendaten ermöglicht. Dieser monolithische

Datenfluss von Patienten- und Falldaten v KISIM wurde auch als Grundlage für das Verständnis

in der Konzeptphase dieser Arbeit herangezogen. Wir beziehen uns im Verlauf dieser Arbeit

wie im deutschsprachigen Raum gewöhnlich auf die Begrifflichkeit “KIS”.

2.2 Leistung

Die Leistungserfassung ist ein zentraler Bestandteil der Spitalorganisation und der Abrechnung

medizinischer Dienstleistungen. Unter diesem Begriff versteht man die strukturierte Erfassung

und Dokumentation aller von Leistungserbringenden (z. B. Ärzt:innen, Pflegefachpersonen,

Therapeut:innen) erbrachten medizinischen Leistungen, um diese gegenüber Kostenträgern

(insbesondere Krankenversicherungen) abrechnen zu können.

In der Schweiz erfolgt die Abrechnung ambulanter ärztlicher Leistungen im Wesentlichen nach

einheitlichen Tarifsystemen, die von weiteren gesundheitlichen Akteuren (Krankenkassen,

Ärzteschaft, Spitälern und dem Bundesamt für Gesundheit) ausgehandelt und vom Bundesrat

genehmigt werden.

2.2.1 TARMED

TARMED ist seit 2004 der schweizweit gültige Einzelleistungstarif für ambulante Leistungen.

Jede medizinische Handlung (zum Beispiel eine Konsultation, Untersuchung oder Intervention)

ist in Form einer Tarifposition abgebildet und mit einem bestimmten Punktewert versehen.

Dieser Punktewert wird mit einem regional unterschiedlichen Taxpunktwert multipliziert,

woraus sich der Preis der Leistung ergibt. TARMED deckt das gesamte Spektrum ambulanter

ärztlicher Leistungen ab und ist für Spitäler ebenso verbindlich wie für niedergelassene

Ärzt:innen (FMH Swiss Medical Association, 2025).

2.2.2 TARDOC

TARDOC ist als Nachfolgetarif zu TARMED entwickelt worden. Ziel ist es, den veralteten und

vielfach kritisierten TARMED-Tarif abzulösen und eine zeitgemässe, medizinisch wie

ökonomisch korrekte Abbildung ärztlicher Leistungen zu schaffen. TARDOC berücksichtigt

unter anderem den tatsächlichen Ressourcenverbrauch (Zeitaufwand, Infrastruktur,

Qualifikation) und soll eine transparentere und differenzierte Abrechnung ermöglichen. Die

Einführung des neuen Tarifs ist für den 01.01.2026 geplant (FMH Swiss Medical Association,

2025).

11

2.2.3 Tarife im KIS-Kontext

Für Spitäler bedeutet die Leistungserfassung nach TARMED / TARDOC einen hohen

organisatorischen und administrativen Aufwand. Leistungen müssen vollständig, korrekt und

zeitnah erfasst werden, um einerseits eine faire Vergütung zu erhalten und andererseits

Transparenz gegenüber Versicherern zu gewährleisten. KISIM unterstützt diesen Prozess durch

die integrierte Leistungserfassung mit der Dokumentation von Leistungen. Zusätzlich (und der

Hauptfokus in dieser Arbeit) findet auch die automatisierte Generierung von Zusatzleistungen

durch hinterlegte Logiken oder sogenannte Agenten statt, welche erbrachte, aber noch nicht

dokumentierte Leistungen identifizieren und diese automatisch erfassen.

2.3 Agent im klinischen Kontext

In der Domänensprache der CISTEC AG ist ein Agent eine Softwarekomponente, die

automatisch und wiederkehrend spezifische Aufgaben zur Datenverarbeitung und

Datengenerierung übernimmt. Ein Agent ist Teil des KISIM-Moduls Leistungserfassung.

In der CISTEC AG werden diese Agenten verwendet, um in diversen Use-Cases abrechenbare

Leistungen für die Leistungserfassung zu generieren.

Diese Agenten laufen auf Kubernetes-Clustern als üblicherweise einmal nächtlich ausgeführte

CRON-Jobs, um so die notwendigen Daten zu verarbeiten und zu generieren. Diese Daten

werden anschliessend ausserhalb des KISIM-Moduls Leistungserfassung und / oder ausserhalb

von KISIM weiterverwendet – z. B. durch die Spitäler für das Controlling und in der

Rechnungserstellung.

Um die notwendigen Informationen für die Leistungserfassung zu generieren, fragen Agenten

die benötigten Daten aus einer klinischen Datenbank ab (z. B. Leistungen, Termine,

Kurvenmassnahmen). Dies geschieht aktuell über individuell erstellte und in jedem Agenten

hart-codierte SQL-Statements oder über vorhandene GraphQL-Schnittstellen, welche den

Backend-Service aus der Leistungserfassung ansprechen.

2.3.1 Zur Relevanz von Agenten im schweizerischen Gesundheitswesen

Die Agenten verkörpern für die CISTEC AG ein wichtiges Verkaufsargument, denn viele

Kund:innen zögern bei der Neueinführung eines KIS, ob die Projektkosten für die Einführung

der KISIM Leistungserfassung als Modul in der jeweiligen gesundheitlichen Institution die

Mehrkosten für sie berechtigt. Konkurrenzprodukte bieten oftmals auch eine von KISIM

losgelöste Leistungserfassung an, welche die gesetzlichen Vorgaben des Bundes erfüllt.

Durch das Angebot der Leistungsagenten wird die Leistungserfassung entsprechend erweitert

und kann den Erfassungsaufwand in verschiedenen Fachbereichen mit automatisierten

Erfassungen von Zusatzleistungen signifikant entlasten und den Kostendruck der Abteilungen

dämpfen. Die Agenten heben die Leistungserfassung der CISTEC AG von anderen Produkten

ab, wodurch sich die Leistungserfassung mit KISIM mittlerweile als beliebte Alternative im

schweizerischen Gesundheitswesen etabliert hat.

12

2.4 Domänenspezifische und Systemabgrenzung

Softwareentwicklung im Schweizer Gesundheitswesen erfordert ein tiefgreifendes Verständnis

über Gesetzgebungen, Prozesse, kontextbezogene Spezialanforderungen sowie ein fachliches

und medizinisches Verständnis. Oftmals sind im Gesundheitswesen Legacy-Systeme im Einsatz,

was dazu führt, dass viele Lösungen nicht optimal umgesetzt sind. Dies kann auch die

Einarbeitung in eine Fachdomäne und das Verständnis für die Implementation teils stark

erschweren.

Aus diesen Gründen wurde im Rahmen dieser Arbeit bewusst darauf verzichtet, die aktuellen

Agenten, welche bei der CISTEC AG aktuell produktiv im Einsatz sind, nachzubilden.

Die bestehenden Agenten wurden jedoch tiefgreifend für die Problemanalyse und zur

Bestimmung von technischen Anforderungen verwendet. In der Umsetzung wurde versucht,

diese nachzubilden, was sich als zu aufwändig und wenig zielführend für den Rahmen dieses

Projekts herausstellte. Daher wurden für die Implementation eigene Szenarien entwickelt,

welche sich von bestehenden Agenten inspirieren liessen, ohne dabei das Fachwissen

abzubilden. Zudem bearbeiten die tatsächlich eingesetzten Agenten der CISTEC AG unter

anderem personenbezogene und andere sensible Daten. Diese Sicherheitsaspekte wurden im

Rahmen dieser Arbeit abgegrenzt. Darunter fallen die Authentifizierung im

Nachrichtenaustausch zwischen Diensten, das Loggen bestimmter Daten sowie der Zugriff auf

Log-Ausgaben, sichere Passwörter sowie deren Verschlüsselung.

Abb. 1: Systemkontextdiagramm

Unser Augenmerk liegt auf dem Modul Leistungserfassung, welches unser System abbildet

(siehe Abb. 1: Systemkontextdiagramm, rot eingefärbt). Im zugehörigen Kontext (gelb) steht

links die KISIM-Software, die unter anderem das Leistungserfassungs-Modul als Baustein sowie

bestehende TARMED/TARDOC-Tarifregelwerke beherbergt. Auf der rechten Seite befindet sich

die Datenbank, welche erfasste sowie generierte Leistungen persistiert. Der Reporter ist am

Zustand des Systems interessiert, während der Maintainer treibender Akteur unserer Use-

Cases ist. Der Maintainer nutzt, wartet, pflegt und entwickelt das System weiter.

Folgende Beziehungen sind kontext-agnostisch zu betrachten: Die Beziehungen zwischen dem

System und dem Endkunden sowie die Beziehung zum ERP-System, welches unter anderem

auf Grundlage der Leistungen Rechnungen erstellt. Der Endkunde wiederum erfasst über KISIM

Termine, Berichte und Dokumente.

13

3 Methodik

3.1 Projektorganisation und Vorgehen

Das Projektteam setzte sich aus den Studierenden zusammen, weitere Projektbeteiligte waren

die Betreuer der OST und Ansprechpersonen der Auftraggeberin CISTEC AG (vgl. Tab. 1

Übersicht über Projektbeteiligte und Projektrollen).

Projektrolle Organisation Person Aufgabe

Studierende /

Projektteam

OST Jvan Fadda,

Guillaume Fricker,

Benjamin Thormann

Konzeption, Implementation und

Dokumentation des Agenten-

Frameworks

Hauptbetreuer OST Tobias Büchel Methodische Begleitung

Betreuer OST Tobias Büchel,

Manuel Bauer

Formale Abnahme der

Masterarbeit, Zwischenreview

Auftraggeberin CISTEC AG Martina Lux Bereitstellung von Use Cases und

Feedback zur korrekten

Umsetzung der Anforderungen

Auftraggeberin CISTEC AG David Gaudliz Fachliche Unterstützung bei

technischen Fragestellungen zu

Anforderungen im Bereich DevOps

und Developer Experience.

Tab. 1: Übersicht über Projektbeteiligte und Projektrollen

Zur Umsetzung wählten wir ein hybrides Vorgehensmodell: Auf höchster Ebene definierten wir

Phasen, ein klassisches Element aus der Wasserfall-Planung (vgl. Abb. 2: Projektplan zu

Projektbeginn).

Abb. 2: Projektplan zu Projektbeginn

14

Jede Phase hat ein Start- und Enddatum. Arbeitspakete werden als Tickets bzw. Issues erfasst

und einer Phase zugewiesen. Innerhalb der Phasen wird agil gearbeitet, und zwar mit

wöchentlichen Iterationen im Projektteam (Weekly) und in zusätzlichen Feedbackschleifen mit

den weiteren Projektbeteiligten (siehe Tab. 1: Übersicht über Projektbeteiligte und

Projektrollen). Im Weekly bespricht das Projektteam mithilfe eines gemeinsamen Issue Boards

Priorität und Status der anstehenden und aktuellen Tasks sowie aktuelle Probleme (vgl. Abb. 3:

Kollaboration und Kommunikationsablauf im Entwicklungsprozess).

Die Feedbackschleifen bestehen aus einem initialen Kick-off und einem mindestens

vierteljährlichen Austausch mit der Auftraggeberin sowie aus zweiwöchentlichen Meetings mit

dem Hauptbetreuer. Mit diesem Vorgehen soll die gebrauchte Flexibilität und Kommunikation

zwischen allen Projektbeteiligten sichergestellt und realistisch gestaltet werden.

Abb. 3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess

Als Tool zur Projektorganisation wurde GitLab verwendet, sodass wir das Repository, die

genutzten Build Pipelines, unsere Meilensteine sowie Arbeitspakete in Form von Issues direkt

mit einbeziehen und bei Bedarf untereinander verlinken konnten.

Im Rahmen der wöchentlichen Iterationen organisierten wir unsere Projektarbeit mittels Issue

Board Spalten (Open, WIP, Hold, Closed) und Labels.

Letztere nutzten wir zur Aufwandschätzung, dem Markieren von besonderen Issue Typen und

zum Erweitern der Issue Board Spalten wie folgt (Tab. 2: Nutzung und Erklärung der genutzten

Labels):

15

Label-Nutzung Label Label-Erklärung

Issue Typ discussion Issue mit Unklarheiten. Zur Markierung von

Besprechungsbedarf für das Weekly des

Projektteams.

documentation Dokumentations-Tasks.

Issue Status hold Blockiertes Issues, z. B. durch ausstehendes

Review. Grundlage für Issue Board Spalte.

wip Work in progress, also aktuell bearbeitetes Issue.

Grundlage für Issue Board Spalte.

bug Issue mit Bugs oder zur Behebung von Bugs.

💀 Totenkopf: Aktuell tot. Zu gross für den Projekt-

Scope oder tiefere Abklärungen benötigt.

Aufwandsschätzung 🍓 🍓. Erdbeere: Kleines Arbeitspaket (1 Tag).

🍏 🍏. Apfel: Mittleres Arbeitspaket (2 bis 3 Tage).

🍍 🍍. Ananas: Grosses Arbeitspaket (4 bis 6 Tage).

Tab. 2: Nutzung und Erklärung der genutzten Labels

3.1.1 Aufwandsschätzung

Um abschätzen zu können, wie viele Arbeitspakete wir in einer Iteration tatsächlich umsetzen

und damit wir unser Projektmanagement entsprechend verbessern können, bewerteten wir

während unserer Weeklys den Aufwand unserer Arbeitspakete. Den geschätzten und

tatsächlichen Aufwand hielten wir auf Issue-Ebene mit Labels fest (vgl. Tab. 2: Nutzung und

Erklärung der genutzten Labels). Zur Grösseneinteilung der Arbeitspakete haben wir einen Tag

als die Anzahl Stunden definiert, die wir berufsbegleitend für das Studium leisten können (ca. 2

bis 6 Stunden). Zur weiteren Unterscheidung führten wir blaue Labels zur Aufwandschätzung

und violette Labels für den tatsächlichen Aufwand ein.

3.1.2 Entwicklungsprozess

Der festgelegte Arbeitsablauf lässt sich anhand von Abb. 4: Branching sowie Build- und

Deploymentprozess im Entwicklungsprozess nachvollziehen: Arbeitspakete werden als Tickets

bzw. GitLab Issues im Backlog erfasst. Das Backlog besteht aus allen Issues, welche sich in

keiner Issue Board Spalte befinden. Während der Weeklys werden Issues zugewiesen und auf

einem eigenen Branch implementiert. Vor der Zusammenführung mit dem

Hauptentwicklungszweig müssen zuerst ein erfolgreich abgenommenes Code Review und ein

erfolgreicher Gitlab CI/CD Pipeline Durchlauf erfolgt sein. Stellt sich bei einem dieser Schritte

https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels
https://gitlab.ost.ch/tobirama-ultras/agent-core/-/labels

16

heraus, dass die Implementation angepasst werden muss, wird dies durch die

implementierende Person erledigt und der Prozess wird wieder beim Code Review oder dem

Gitlab CI/CD Pipeline Durchlauf weitergeführt. Zuletzt entsteht ein Artefakt, das bezogen und

deployed werden kann.

Abb. 4: Branching sowie Build- und Deploymentprozess im Entwicklungsprozess

3.2 Risikoanalyse

Zur systematischen Bewertung möglicher Unsicherheiten im Projekt wurde eine Risikoanalyse

in drei Etappen durchgeführt. Dieses Vorgehen erlaubte es, sowohl frühzeitig identifizierte

Risiken aus der Planungsphase als auch neu auftretende Risiken während der Umsetzung zu

berücksichtigen und auf Probleme zu reagieren. Die Risikoeinschätzung erfolgte mit der

folgenden Formel: Risiko = Wahrscheinlichkeit × Einfluss.

Wir berücksichtigten folgende Messwerte: niedrig (1–2), mittel (3–4), hoch (6–9).

Zur grafischen Darstellung wurden pro Etappe Risikomatrizen erstellt.

3.3 Stakeholder-Analyse

In diesem Abschnitt werden die für das Projekt relevanten Stakeholder festgehalten, ihre

Rollen und Interessen beschrieben, sowie ihre Bedeutung für den Projekterfolg eingeschätzt.

Die Analyse dient als Grundlage, um potenzielle Konflikte frühzeitig zu erkennen, Prioritäten in

der Zusammenarbeit zu setzen und sicherzustellen, dass die Projektziele im Einklang mit den

Anforderungen der Stakeholder erreicht werden können.

Aufgrund der Cyberattacke auf die CISTEC AG war der Projektstart in der wichtigen Kickoff-

Phase stark beeinträchtigt (Jochum, 2025). Daher wurde die Stakeholder-Analyse bewusst

minimal gehalten, um so auf die initialen Unsicherheiten eingehen und reagieren zu können.

17

3.3.1 Rollen

Für die Projektumsetzung wurden drei zentrale Rollen definiert:

Rolle Beschreibung Interessen und Ziele

Product
Owner

Verantwortlich für die fachliche

Ausrichtung des Projekts. Definiert die

erwarteten Features, priorisiert diese und

fungiert als zentrale Schnittstelle zwischen

der CISTEC AG und dem Projektteam. Der

Product Owner hat ein grosses Interesse

an einer erfolgreichen Zusammenarbeit

mit dem Projektteam und an der Erfüllung

der gestellten Anforderungen aus dem

Projekt. Definiert und priorisiert

Anforderungen, gibt Feedback zu Use-

Cases und übernimmt die Endabnahme.

Interessen der Endkund:innen

abholen und stellvertreten.

Bedürfnisse der Endkund:innen

realisieren. Maintenance-

Aufwand der Maintainer

verringern.

Neu- und Weiterentwicklungen

schnell umgesetzt bekommen.

Reporter Zuständig für die Analyse des Monitorings

und die Einsicht der Logs. In einem

Business-Alltag wäre der Reporter auch

die erste Anlaufstelle für Endkund:innen,

falls diese Auskunft zu den Agenten haben

möchten.

Der Reporter hat ein hohes Interesse

daran, über eine grafische

Benutzeroberfläche rasch an die

relevanten Logs zugreifen zu können.

Einzelne Agenten in einem

Monitoring einsehen.

Endkund:innen die Möglichkeit

bieten, Agenten selbst zu

bedienen.

Maintainer Übernimmt die technische Verantwortung

für die langfristige Wartbarkeit und

Stabilität der Lösung. Sorgt in einem

Business-Alltag für operativen Betrieb und

ist interessiert an technisch durchdachten

Lösungen und kann bei der Developer

Experience mitreden.

Simple, reproduzierbare

Konfiguration von Agenten.

Angenehme und effiziente

Developer Experience.

Maintenance-Aufwand

verringern und möglichst

automatisieren. Abläufe und

Architektur optimieren, um Zeit

einzusparen und einfacher

verständliche Agenten.

Tab. 3: Rollendefinition

18

3.3.2 Stakeholder

Die folgende Matrix fasst die relevanten Stakeholder mit ihren Rollen, Interessen und

Einflussmöglichkeiten zusammen:

Name Martina Lux David Gaudliz

→ Aufgrund des erhöhten

Workloads durch die erfolgte

Cyberattacke eingeschränkt

(substituiert durch Guillaume

Fricker)

Rollen Product Owner, Reporter Maintainer

Einfluss Hoch Niedrig

Interesse Hoch Mittel

Kontaktkanäle Bei Bedarf, direkt per E-Mail oder

vor Ort bei CISTEC AG

Eingeschränkt verfügbar,

Kommunikation über Guillaume

Fricker oder Gruppentreffen

Verfügbarkeit Lange Ferien vorausgeplant

→ Mitte Juni bis Mitte August

Keine Kapazität, für Engineering-

Inputs nur für kurze Austausche

kontaktieren.

Fachwissen Hohes fachliches Know-How. Hohes technisches Know-How.

Tab. 4: Stakeholder-Liste

3.3.3 Stakeholder-Matrix

Die Stakeholderanalyse zeigt deutlich auf, dass Martina Lux als Hauptansprechperson sehr

wichtig für den Erfolg des Projekts ist. David Gaudliz sollte beim Projekt möglichst entlastet

werden, aber es kann auf spezifische Bedürfnisse des Maintainers eingegangen werden.

Abb. 5: Stakeholder-Matrix

19

3.4 Architekturentscheidungen

In der Entwicklung entpuppen sich falsche Annahmen und Unwissenheit meist während der

Umsetzung. Dies kann je nach Problem zu einer grösseren oder kleineren Auswirkung führen.

Wir möchten mittels ADR’s festhalten, welche Entscheide wir als Team getroffen haben und

deren Auswirkungen aufzeigen, so dass solche Entscheidungen im Nachgang chronologisch

nachverfolgbar und nachvollziehbar sind, auch für CISTEC AG.

Ein ADR (Architectural Decision Record) ist die Kurzbeschreibung einer einzelnen getroffenen

Architekturentscheidung: Sie beschreibt den Kontext, vor dem die Entscheidung getroffen

wurde, die eigentliche Entscheidung und deren Folgen. Ausserdem führt ein ADR den Status

der Entscheidung. Gerade in einem iterativen Vorgehen ist der Status wichtig, da sich eine

Entscheidung ändern kann, wenn die Situation es verlangt. Für das Vorhaben der

Architekturentscheidungen folgen wir dem Architectural Decision Records Schema nach

Nygard (Nygard, 2011).

Unsere ADR-Schablone ist wie folgt:

Titel: Bestehend aus Laufnummer und einer sehr knappen Zusammenfassung der

Architekturentscheidung.

Status: Status der Entscheidung (vorgeschlagen, angenommen, abgelehnt, veraltet, ersetzt).

Kontext: Welches Problem sehen wir, das uns zu dieser Veränderung oder Entscheidung

motiviert?

Entscheidung: Welche Veränderung schlagen wir vor und / oder setzen wir um?

Folgen: Was wird aufgrund dieser Veränderung einfacher? Was wird aufgrund dieser

Veränderung schwieriger?

3.5 Testing Strategie

Unsere Testing Strategie lässt sich wie folgt
zusammenfassen:

1. Alle Tests sind durchgängig nach dem “Arrange-
Act-Assert”-Muster erstellt.

2. Mittels Unit-Tests prüfen wir die reine Logik mit
minimalen Abhängigkeiten.

3. Die E2E-Tests haben eine hohe Priorität, weil
unser System mit verteilten Services und
Messaging arbeitet, wo potenziell viele Fehler
entstehen.

4. Nicht-funktionale Tests (z. B. ein gezielter
Stresstest) bleiben unterstützend, sind aber nicht
im Vordergrund.

Abb. 6: Microservices Testing-Strategie
(Schaffer, 2018)

Damit folgt unsere Teststrategie am ehesten dem Testing-Honeycomb-Prinzip (vgl. Abb. 6:

Microservices Testing-Strategie), welches speziell für Microservice-Architekturen sinnvoll ist.

Der Grund ist, dass Microservices eher klein sind und deren Komplexität nicht in der Business-

Logik liegt, sondern vielmehr in der Interaktion mit anderen Services. Daher sollte gemäss dem

Testing-Honeycomb-Prinzip der Fokus auf der Interaktion mit anderen Services liegen.

Ein weiterer Aspekt ist, dass der Schwerpunkt dieser Arbeit nicht darauf lag, die fachliche Logik

der Agenten so weit wie möglich abzudecken – die Agenten dienen lediglich als Beispiele.

20

Unser Augenmerk richtete sich bewusst darauf, schnelle und solide E2E-Tests schreiben zu

können und somit die Entwicklungszeit auch beim Schreiben von Tests zu reduzieren.

Für E2E-Tests haben wir die erforderlichen Infrastrukturkomponenten wie Datenbank,

Message Broker, Agent-Core und optionales Logging mit Testcontainern bereitgestellt. Diese

konnten wir bequem über Factories in die Tests integrieren, wodurch wir mit geringem

Aufwand eine realitätsnahe und isolierte Umgebung mit klarer Struktur schaffen konnten.

3.6 DevOps-Strategie und Qualitätssicherung

Durch die Kombination von automatisierten Prüfungen und definierten Prozessen entstand ein

mehrstufiges Qualitätssicherungskonzept. Dieses adressiert sowohl technische als auch

organisatorische Aspekte und stellt sicher, dass die entwickelte Lösung robust, wartbar und

nachvollziehbar bleibt. Die Qualitätssicherung wurde als durchgängiger Prozess verstanden,

der sich von der lokalen Entwicklung über die Integration bis hin zum Betrieb erstreckte.

Dabei wurde das Prinzip von Shift Left verfolgt, um möglichst schnelle Feedback-Zyklen zu

realisieren und deren Kosten gering zu halten. Der gesamte Entwicklungs- und Betriebsprozess

wurde durch geeignete technische und organisatorische Massnahmen abgesichert.

3.6.1 Entwicklungsphase

Bereits in der lokalen Entwicklungsumgebung kamen verschiedene Massnahmen zur

Anwendung, um die Codequalität sicherzustellen (vgl. Schritte Entwicklung in Abb. 7

Entwicklungsphasen):

Abb. 7: Entwicklungsphasen

Die Compiler-Prüfung dient als erste Instanz, um syntaktische und typisierte Fehler frühzeitig

zu erkennen.

Die Schema-Validierung stellt sicher, dass Datenstrukturen konsistent und robust gegen

fehlerhafte Daten sind.

Der Pre-Commit Hook verhindert mittels Linter, dass fehlerhafter Code eingecheckt wird.

Mit definierten Regeln wird verhindert, dass unerlaubte Code-Segmente wie `console.log` in

das Repository gelangen und spezifizierte Formatierungen mit Prettier eingehalten werden.

Eine definierte Branching-Strategie in Kombination mit Code Reviews sorgt dafür, dass

Änderungen nachvollziehbar diskutiert und überprüft werden können, bevor diese in den

Hauptentwicklungszweig integriert werden.

21

3.6.2 CI/CD Pipeline

Die automatisierte GitLab Pipeline übernimmt die kontinuierliche Prüfung der Code-Base und

der Bereitstellung der Docker-Images (vgl. Schritte CI/CD Pipeline in Abb. 7:

Entwicklungsphase). Diese besteht aus mehreren, sequenziell durchzulaufenden Stufen.

Dieser Aufbau trägt dazu bei, das Risiko auf fehlerhafte Software und die damit verbundenen

Entwicklungskosten möglichst klein zu halten.

Die Install-Stage installiert alle Abhängigkeiten.

Die Build-Stage stellt sicher, dass sowohl der Applikations-Code als auch die Container

fehlerfrei gebaut werden können.

Die Lint-Stage stellt sicher, dass definierte Regeln im Code mit ESLint eingehalten werden

(derselbe Lint-Prozess wie beim Pre-Commit Hook)

Die Test-Stage führt Unit- und End-to-End-Tests sowie eine Coverage-Messung aus, um somit

die Funktionalität und Testabdeckung zu prüfen.

Die Deploy-Stage ist nur auf dem Hauptzweig (main) aktiviert und dient der automatisierten

Bereitstellung der Docker-Images in der GitLab-Container-Registry.

3.6.3 Betrieb

Nach der Bereitstellung (Deployment) wird die Qualitätssicherung ad hoc durch manuelles

Austesten sichergestellt, beispielsweise die Einsehbarkeit der Agenten-Logs auf Grafana (vgl.

Schritte Betrieb in Abb. 7: Entwicklungsphase).

3.6.4 Metriken

Zur Ergänzung der automatisierten Qualitätssicherung wurden während der Entwicklung

verschiedene Metriken erhoben. Diese dienten als objektive Indikatoren zur Codequalität und

Testabdeckung, welche wir mittels Coverage-Reports zur Ermittlung der Testabdeckung, der

Anzahl der implementierten Tests sowie einer SonarQube-Analyse zur Prüfung auf potenzielle

Sicherheitslücken und Verstösse gegen Clean-Code Prinzipien erhoben haben. Die Auswertung

dieser Metriken wird im Kapitel 5.5.2 dargestellt.

3.6.5 Systemverteilung und Deployment

Für die Umsetzung wurde ein technologiegestützter Ansatz gewählt, der sich an den

Anforderungen der Domäne der CISTEC AG orientiert, aber bewusst in Umfang und

Komplexität reduziert ist. Die Kombination aus GitLab CI/CD, Docker, Kubernetes und Fleet

erlaubt ein kostengünstiges und gut realisierbares Vorgehen, welches für den Projektrahmen

(Prototyp und Machbarkeit) angemessen ist.

3.6.5.1 Continuous Integration und Continuous Deployment (CI/CD)

Die Builds und Deployments wurden über GitLab realisiert. Die GitLab Community Edition

genügt als Grundlage, da es die wesentlichen CI/CD-Funktionalitäten kostenfrei anbietet und

für die schulische Projektumgebung praktikabel ist.

22

3.6.5.2 Containerisierung (Docker)

Alle Komponenten – Core, Agents sowie Infrastruktur – wurden in Container verpackt.

Dies gewährleistet eine reproduzierbare Umgebung und entspricht modernen Standards in der

Softwarebereitstellung.

3.6.5.3 Orchestrierung (Kubernetes)

Kubernetes dient als Orchestrierung-Plattform. Damit können die Services in separaten

Namespaces isoliert betrieben und durch standardisierte Deployment-Artefakte verwaltet

werden.

3.6.5.4 GitOps mit Fleet

Anstelle einer komplexen Deployment-Infrastruktur, wie die CISTEC AG in der Produktion nutzt

(ArgoCD, Kundenclusters, mandantenfähige Rollouts), wurden simpel gehaltene Fleet-Charts

eingesetzt. Fleet ermöglicht es, Deployments aus Git heraus zu steuern, benötigt jedoch keine

zusätzliche Infrastruktur ausser des GitLab-Repositories. Damit blieb der methodische Ansatz

einfach und realistisch, ohne den Rahmen eines Prototypen zu sprengen.

4 Problemanalyse
Ziel dieses Abschnitts ist es, die fachlichen und technischen Herausforderungen im aktuellen

Ist-Zustand zu analysieren und daraus eine belastbare Problemdefinition für die Framework-

Entwicklung abzuleiten. Die Problemanalyse bildet die Grundlage für die funktionalen

Anforderungen, die Gestaltung der Use-Cases sowie das resultierende Domain Model.

4.1 Ist-Zustand / Ausgangslage

Die bestehenden Agenten wurden über die Jahre heterogen entwickelt und folgen keinem

einheitlichen Entwicklungsstandard. Typische Merkmale des Stacks sind:

4.1.1 Strukturelle Eigenschaften

Aktuell ist kein gemeinsames Framework und kein geteilter Code vorhanden. Validierungen

erfolgen ad hoc im Code mit einzeln implementierten Schema-Definitionen. Datenbankzugriffe

werden häufig direkt über SQL-Statements im Code abgewickelt.

4.1.2 Persistenzschicht

Alle Agenten greifen direkt auf die relationale Datenbank (Oracle) zu. Es existiert kein

abstrahierter Code, welcher Datenzugriffe kapselt, sondern dieser wird für jeden Agenten

einzeln implementiert. Queries existierten für jeden Agent individuell und sind oft nicht

optimiert. Joins über grosse Tabellen ohne Primary Key führen regelmässig zu

Performanceproblemen.

23

4.1.3 Deployment, Monitoring und Betrieb

Jeder Agent wird als separates Deployment in Kubernetes betrieben. Eine zentrale Middleware

oder ein zentrales Gateway existieren nicht. Die Agenten interagieren direkt mit der

Datenbank. Logs werden primär in das Container-Stdout geschrieben und in Kubernetes

gesammelt. Auswertungen erfolgen reaktiv, meist durch Entwickler:innen im Fehlerfall.

Alerting ist nicht vorhanden. Ein Agentenstillstand bleibt oft unbemerkt, bis fehlende

Leistungen gemeldet werden.

4.1.4 Kommunikation

Externe Anstösse (z. B. manuelle Nachgenerierungen) erfolgen über Änderungen in den

Deployment-Charts, nicht über API’s oder Message Queues. Die Agenten wissen zu keinem

Zeitpunkt, welche Records sie bearbeitet haben. Wenn ein Agent für einen Tag nicht

ausgeführt werden kann oder einen Absturz erleidet, gehen diese Daten für immer verloren.

4.2 Use-Cases und Anforderungen

Nach dem Erfassen des Ist-Zustands erarbeiteten wir die Soll-Szenarien, also die benötigten

Features der konkreten Endbenutzer:innen des Frameworks für einen gelungenen Prototypen.

Hierzu haben wir, beginnend im Stakeholder-Austausch, Quellen gesammelt, diese Quellen

und die Stakeholder zum Ableiten von Use-Cases analysiert und schliesslich verfeinernde

Anforderungen erarbeitet.

4.2.1 Quellen für Stakeholder- und Anforderungsanalyse

Zur Identifikation der gebrauchten Prototyp-Features und deren Abbildung in Form von Use-

Cases und Anforderungen, verwendeten wir initial folgende Quellen:

Personen: Austausch mit Stakeholder Martina Lux (Rollen PO und Reporter)

Dokumente: Initiale Anforderungsliste des Stakeholders Martina Lux

Im Laufe des Projekts gewannen wir folgende Quellen hinzu und werteten diese aus, sodass

sich der Fokus weiter auf die technisch wesentlichen Aspekte des Frameworks einengte:

Personen: Austausch mit Stakeholder Guillaume Fricker (Rolle Maintainer).

Dokumente: Produktdokumentationen des Moduls Leistungserfassung und einzelner Agenten:

● Ablauf Ausleitung von Anästhesieleistungen

● Leistungsgenerierung

● NoShow Agent

● Anästhesie Agent

● OAT Agent

Daten: Leistungserfassungs-Testdaten aus KISIM Datenbank (vgl. Abb. 1:

Systemkontextdiagramm)

4.2.2 Akteure

Die Stakeholder beeinflussen als Interessenseigner die Ziele des Prototyps (Tab. 4:

Stakeholder-Liste), sind jedoch noch nicht die tatsächlichen Akteure, welche die zu

24

entstehenden Features nutzen und vom Framework-Prototypen direkt profitieren werden.

Als zentrale Akteure leiteten wir Maintainer und Reporter ab, welche beide seitens CISTEC AG

operieren und die Features des Frameworks nutzen und direkt profitieren.

Mögliche Akteure ausserhalb unseres Scopes haben wir verworfen (vgl. Abb. 1:

Systemkontextdiagramm: Systemadministration bei Endkundschaft im Spital, welches den

KISIM-Betrieb indirekt überwacht sowie medizinisches Fachpersonal, welches das KISIM als

Endanwender:in bedient und Leistungen erfasst).

Ein Maintainer besitzt technische Expertise und entwickelt Agenten, wartet diese und nutzt

das Framework. Aufgrund mangelnder Ressourcen durch einen Ransomware-Angriff bei der

CISTEC AG wurde der Akteur indirekt vertreten: Initial durch den Stakeholder Martina Lux in

der Rolle als Product Owner und im weiteren Projektverlauf durch den Stakeholder-

Stellvertreter Guillaume Fricker in der Rolle als Maintainer.

Ein Reporter besitzt fachliche Expertise und vermittelt zwischen Endkundschaft und

Maintainer: Ein Reporter fordert die Konfiguration und Informationen aus der Überwachung

von Agenten beim Maintainer an. Dieser Akteur wurde direkt und indirekt durch den

Stakeholder Martina Lux in den Rollen als Reporter und als Product Owner vertreten.

4.2.3 Use-Cases

Durch die Analyse unserer Quellen und Stakeholder konnten wir Use-Cases ableiten. Die

detaillierte Use-Case-Beschreibungen sind in tabellarischer Form mit Normal- und

Alternativabläufen im Anhang aufgeführt (siehe Kapitel 11.5).

Das Schema zur Beschreibung der Use-Cases orientiert sich an RUP (Rational Unified Process)

bzw. an dem von Cockburn beschriebenen RUP Style (Cockburn, 2011, S. 123 f.).

Im Use-Case Diagramm (Abb. 8: Use-Case Diagramm) wird der Zusammenhang zwischen den

Akteuren und ihren Interaktionen mit dem Framework sowie die Beziehungen zwischen den

Use Cases klar.

25

Abb. 8: Use-Case Diagramm

Um die Relevanz der Use-Cases aus Akteur-Sicht zu verdeutlichen, wurden zusätzlich die

übergeordneten User Goals (Cockburn, 2011, S. 68) dargestellt. Diesem Flow folgend (das

Diagramm von links nach rechts lesend), werden die Use-Cases immer feingranularer.

Ausserdem lassen sich die Use-Cases in zwei Sichtweisen aufteilen, welche jeweils einen

anderen Fokus setzen (vgl. Tab. 5: Use-Case Unterteilung):

Auf die Domäne fokussierte Use-Cases, welche sich mit fachlich orientierten Features der

Leistungsgenerierung beschäftigen (violett eingefärbt)

Auf das Agenten-Framework fokussierte Use-Cases, welche sich mit technisch orientierten

Features rund um Betrieb, Infrastruktur und Entwicklung beschäftigen (blau eingefärbt)

Use Cases mit Fokus auf gewünschte
technische Features

Use Cases mit Fokus auf gewünschte
fachliche Features

UC00 Agentenlauf allgemein UC01 Business-Agent

UC05 Konfiguration UC02 Marathon-Agent

UC07 Agentenlauf manuell auslösen UC03 Flughafen-Grenzkontrolle-Agent

UC09 Fehlerhafte Leistungsgenerierung

protokollieren

UC04 NoShow-Agent

26

UC10 Generierungsintervall intern

konfigurieren

UC06 Duplikatcheck

UC14 Logging einsehen UC08 Agent seit X Tagen keine Leistung mehr
erzeugt

UC15 Fehlerlogs einsehen UC12 Leistung ohne Stopdatum generieren

UC16 Agentenbetrieb starten und stoppen UC13 Anpassung bei Datenstrukturen

 UC17 Leistungsgenerierung auf Entitäten
beschränken

Tab. 5: Use-Case Unterteilung

Als die fundamentalsten Use-Cases, welche einen Durchstich ermöglichen, priorisierten wir

UC00 und UC05. In Verhandlung mit den Stakeholdern wird zum Zwecke der

Prototypenentwicklung versucht, vor allem jene Use-Cases zu priorisieren, welche sich weniger

auf die Businesslogik fokussieren: Erstens ist diese Logik bei jedem Agenten einzigartig, also

schwierig zu automatisieren. Zweitens ist das primäre Ziel die Entwicklung eines Framework-

Prototypen für Agenten.

In diesem Sinne wurden der Use-Case 11 und die damit zusammenhängenden Akteure

(Endkund:innen können den Agentenbetrieb mittels eines GUI selbst steuern) bereits sehr

frühzeitig verworfen, sodass wir hierzu keine detaillierten Beschreibungen aufführen und sich

diese Elemente auch nicht im Use-Case Diagramm wiederfinden.

Die Use-Cases 1 bis 4 sind Trade-Offs zwischen erstens den fachlichen und technischen

Interessen der Stakeholder an der Prototypenentwicklung sowie zweitens den

Rahmenbedingungen dieser Abschlussarbeit und dem benötigten Aufwand, um die CISTEC AG

Infrastruktur in diesem Projektrahmen abzubilden. Diese Beispiel-Agenten sind für die

Entwicklung und das Testing nötig, während sie gleichzeitig die Umsetzung von

domänenspezifischen Use-Cases und Anforderungen demonstrieren.

4.3 Anforderungskriterien

Die von den Akteuren erwarteten Funktionen an den Prototypen des Agentenframeworks

wurden bereits durch die Use-Cases definiert (vgl. Abb. 8: Use-Case Diagramm). Um das

erwartete Ergebnis oder Verhalten der gewünschten Features verfeinert zu spezifizieren,

wurden funktionale und Qualitätsanforderungen aufgestellt (vgl. Tab. 6: Funktionale und

Qualitätsanforderungen). Jede Anforderung wurde priorisiert (muss, soll, oder kann) und

aufgeteilt nach funktionalen und Qualitätsanforderungen gewichtet (Pro

Anforderungskategorie: Durchnummerierung aller Anforderungen, wobei jede Zahl nur einmal

vorkommen darf und die kleinste Zahl die höchste Priorität bedeutet), um eine Priorisierung zu

erzielen. Ähnlich wie der UC11 wurden die Anforderungen FA5, FA9 und NFA8 ebenfalls

frühzeitig verworfen.

Im Rahmen der Framework-Entwicklung ist es zu erwarten, dass bereits einige funktionale

Anforderungen aspektorientiert sind, um z. B. Modularität zu gewährleisten. Dies ist auch in

27

diesem Projekt bei den funktionalen Anforderungen rund um Logging und Konfiguration

(FA_REQ3, FA_REQ6) sowie bei einem von allen Beispiel-Agenten genutzten Feature

(FA_REQ12) der Fall.

Funktionale Anforderung Qualitätsanforderung

FA_REQ1 (muss): Der Agent muss eine
vorgängige Datenselektion durchführen,
damit er effizient mit grossen Datenmengen
umgehen kann. Grosse Datenmengen sind
1500 - 2000 Entitäten, also ca. 2 MB.

NFA_REQ1 (muss): Die Anforderungen und
Konfigurationen des Agenten-Frameworks
müssen eindeutig, vollständig und
verständlich dokumentiert werden.
ANMERKUNG: Es soll auch klar sein, ob und
welche Konfigurationen Agent-Spezifisch
oder Global vorgenommen werden können.

FA_REQ2 (kann): Der Agent muss einen
Duplikats-Check durchführen, wenn es sich
um eine Nachgenerierung handelt.

NFA_REQ2 (muss): Das Agenten-Framework
muss in TypeScript entwickelt werden, um
Kompatibilität zur bestehenden Web-
Infrastruktur sicherzustellen.

FA_REQ3 (muss): Das System muss ein Log
führen, in dem nicht erfolgreiche
Leistungsgenerierungen dokumentiert
werden.

NFA_REQ3 (muss): Das System muss in einer
Container-basierten Umgebung (Docker)
betrieben werden können.

FA_REQ4 (kann): Der Agent muss
konfigurierbar sein, um entweder einen
'Sofortexport' oder einen 'Export mit
Verzögerung' zu unterstützen.

NFA_REQ4 (muss): Es muss ein
automatisiertes CI/CD-Pipeline-Setup
existieren, um frühzeitiges Feedback durch
Tests sicherzustellen.

FA_REQ6 (soll): Der Maintainer soll das
Generierungsintervall eines Agenten über
eine Konfigurationsdatei oder interne
Systemeinstellungen konfigurieren können.

NFA_REQ5 (muss): Änderungen und Events
im Agentenbetrieb müssen mit einem
Logging- und Monitoring-Tool nachverfolgt
werden können.

FA_REQ7 (soll): Der Agent soll Leistungen
auch dann erzeugen können, wenn für die
Massnahme, das Rennen o. ä. noch kein
Stopdatum gesetzt wurde.
Ein Beispiel aus Domäne zum Verständnis:
Laufende Kurvenmassnahme beim OAT-
Agenten.

NFA_REQ6 (muss): Das Framework muss
modular und erweiterbar aufgebaut sein,
sodass neue Agenten effizient entwickelt
werden können.

FA_REQ8 (kann): Das System soll bei
ausbleibender Leistungsgenerierung einen
Alert auslösen.

NFA_REQ7 (muss): Die entwickelte Lösung
muss unter einer Open-Source-Lizenz (MIT,
Apache 2.0 oder BSD) veröffentlicht werden.

FA_REQ10 (kann): Der Benutzer soll auf
einem Log der nicht erfolgreichen
Leistungsgenerierungen zugreifen können.

NFA_REQ9 (soll): Das Agenten-Framework
soll die Implementierung eines neuen
Agenten innerhalb von max. zehn
Arbeitstagen ermöglichen.
Bemerkung: Die aktuelle Implementation
dauert ca. zwei - drei Arbeitswochen.

28

FA_REQ11 (kann): Der Benutzer soll
konfigurieren können, ob der Agent läuft
oder gestoppt ist (Aktivierung und
Deaktivierung des Agenten).

NFA_REQ10 (soll): Der Agent muss bei
Änderungen an der zugrundeliegenden
Datenstruktur – insbesondere beim
Hinzufügen von Feldern, der Änderung von
Feldtypen oder einer Umstellung zwischen
optional und required – durch Anpassung
des zentralen Schema-Files weiterhin korrekt
funktionieren, ohne dass die Agentenlogik
manuell angepasst werden muss.

FA_REQ12 (kann): Das System soll die
Generierung auf bestimmte Entitäten (über
ID) einschränkbar machen.

Tab. 6: Funktionale und Qualitätsanforderungen

In Bezug auf die CISTEC AG sollen die Qualitätsanforderungen (NFA’s) eine moderne,

kompatible Infrastruktur (NFA_REQ3, NFA_REQ4) und eine erfolgreiche Übernahme des

Framework-Prototypen sicherstellen (NFA_REQ1, NFA_REQ2, NFA_REQ7).

Ausserdem sollen sie die Senkung des Implementations- und Betriebsaufwands direkt

(NFA_REQ9) oder indirekt durch moderne und nachhaltig gestaltete Architektur (NFA_REQ6,

NFA_REQ10) und Logging (NFA_REQ5) unterstützen.

Die Relationen zwischen Use-Cases und funktionalen Anforderungen (FA’s) sind in Tab 7:

Traceability Matrix nochmals aufgezeigt.

 F
A
_
R
E
Q
1

F
A
_
R
E
Q
2

F
A
_
R
E
Q
3

F
A
_
R
E
Q
4

F
A
_
R
E
Q
6

F
A
_
R
E
Q
7

F
A
_
R
E
Q
8

F
A
_
R
E
Q
1
0

F
A
_
R
E
Q
1
1

F
A
_
R
E
Q
1
2

UC00 Agentenlauf allgemein X X

UC05 Konfiguration X X X

UC07 Agentenlauf manuell auslösen X

UC09 Fehlerhafte Leistungsgenerierung protokollieren X

UC10 Generierungsintervall intern konfigurieren X

UC14 Logging einsehen X

UC15 Fehlerlogs einsehen X

UC16 Agentenbetrieb starten und stoppen X

UC01 Business-Agent X

29

UC02 Marathon-Agent X

UC03 Flughafen-Grenzkontrolle-Agent X

UC04 NoShow-Agent X

UC06 Duplikatcheck X

UC08 Agent seit X Tagen keine Leistung mehr erzeugt X

UC12 Leistung ohne Stopdatum generieren X

UC13 Anpassung bei Datenstrukturen

UC17 Leistungsgenerierung auf Entitäten beschränken X

Tab. 7: Traceability Matrix

4.4 Randbedingungen

Die wesentlichen Rahmenbedingungen wurden durch die CISTEC AG vorgegeben:

1. TypeScript als bevorzugte Programmiersprache

2. Node.js als bevorzugte Laufzeitumgebung

3. Datenhaltung über relationale Datenbanken (PostgreSQL und Oracle werden bei

CISTEC AG bereits eingesetzt)

4. Keine Lizenzierungskosten: Der Betrieb und die Übergabe des Frameworks darf keine

zusätzlichen Kosten für die CISTEC AG generieren

5. Permissive Open Source Lizenz, damit die CISTEC AG das Framework bei sich intern frei

nutzen und erweitern darf

4.5 Domain Model

Abb. 9: Domain Model

Aus den Use Cases wurde ein Domänenmodell abgeleitet, welches die wichtigsten

Komponenten für die automatisierte Leistungserfassung mittels Agenten veranschaulicht.

Das Domain Model umfasst unter anderem folgende zentrale Entitäten:

30

Agent ist die zentrale Logik-Einheit. Er verarbeitet Falldaten, generiert Leistungen und

exportiert diese in eine Datenbank. Jeder Agent:

● hat seine eigene Konfiguration

● nutzt Datenselektor, um auf Daten (Berichte, Termine etc.) und die Datenbank

zuzugreifen.

● generiert die zu erstellenden Leistungen aufgrund von TARMED und TARDOC

(bestehendes Regelwerk)

● schreibt Logs und kann Alerts auslösen

Konfiguration enthält spezifische Einstellungen des Agenten:

● Generierungs-Intervalle

● Zeithorizont der Generierung

● Exportverhalten (sofort oder verzögert für mögliche Nachbearbeitung)

● Log-Level

● Aktivitäts-Status, ob der Agent laufen soll oder nicht

Datenselektor definiert die Kriterien, die bestimmen, welche Daten ein Agent vor der

Leistungsgenerierung verarbeitet.

Leistung ist das von einem Agenten zu erzeugende Ergebnis. Sie wird nach bestimmten Regeln

und gemäss Konfiguration exportiert. Eine Leistung kann sensible Daten enthalten, da sie im

Zusammenhang mit Patient:innen- und Falldaten steht.

Logeintrag dokumentiert Fehler oder fehlgeschlagene Generierungen, um die

Nachvollziehbarkeit zu gewährleisten. Es gibt unterschiedliche Levels wie z. B. DEBUG, INFO,

ERROR.

Alerting löst eine Warnung aus, wenn ein Agent über einen definierten Zeitraum keine

Leistungen generiert. Ein Agent kann auch selbst ein Alerting auslösen, z. B. bei kritischen

Fehlern.

Nutzer (CISTEC AG Entwickler:innen, also Maintainer) kann Agenten starten/stoppen,

Konfigurationen einsehen und Logs prüfen.

Datenbank ist nicht als Entität aufgeführt: Sie existiert ausserhalb des Systems und ist damit

out of Scope, da sie in diesem Kontext domänengerecht als Bericht, Termine, Kurve modelliert

wird.

4.6 Risikoanalyse

Aufbauend auf der beschriebenen Methodik werden in diesem Abschnitt die im Projekt

identifizierten Risiken vorgestellt. Im Vordergrund stehen dabei die während der

Implementierung neu erkannten technische (Kapitel 4.6.2) sowie organisatorischen Risiken

(Kapitel 4.6.3). Jedes Risiko wurde hinsichtlich seiner Eintrittswahrscheinlichkeit und

31

Auswirkung bewertet und mit möglichen Gegenmassnahmen versehen. Durch diese

strukturierte Analyse konnten sowohl ein Überblick über den aktuellen Risikostatus gewonnen

werden als auch die Grundlage für spätere Vergleiche mit tatsächlich eingetretenen

Ereignissen geschaffen werden.

Die nachfolgenden Tabellen und Matrizen bauen auf die initial definierten Risiken (Kapitel

4.6.1) auf, teilen diese besser auf und erweitern die Gesamteinschätzung, dokumentieren

diese und bilden die Grundlage für die spätere Auswertung im Ergebnisteil (Kapitel 5.1.8). Die

nachfolgenden Kapitel dokumentieren diese Einschätzungen:

4.6.1 Initial definierte Risiken

Zum Projektstart wurde eine initiale Risikoanalyse betrieben, welche sich mit den

grundlegenden möglichen Problemen befasst

Abb. 10: Risikomatrix der initial definierten Risiken

Diese Risikoanalyse war noch stark an die domänenspezifischen Anforderungen der CISTEC AG

gekoppelt und erwies sich zum Projektstart als hilfreich, musste aber beim Start der

Umsetzung sehr rasch neu evaluiert werden. Dieser Teil wird deshalb nur zur

Nachvollziehbarkeit aufgeführt und nicht weiter behandelt.

4.6.2 Technische Risiken

Im Verlauf der Implementierung traten verschiedene potenzielle technische Risiken hervor, die

in der initialen Planungsphase noch nicht vollständig absehbar waren. Dazu zählen

insbesondere Fragestellungen rund um die Architekturentscheidungen, die Komplexität der

Fachdomäne und der einzelnen Komponenten sowie die Handhabbarkeit der

Entwicklungsumgebung.

Um diese Aspekte systematisch angehen zu können, wurden die Risiken in einer Risikomatrix

erfasst und mit geeigneten Massnahmen ergänzt. Die folgende Analyse zeigt die identifizierten

technischen Risiken, ihre Bewertung sowie die vorgeschlagenen Gegenmassnahmen:

32

Abb. 11: Risikomatrix der technischen Risiken

Kürzel Einschätzung Beschreibung Massnahme

A 9 Performanceprobleme bei Re-
Exports oder grossen
Datenmengen

Architektur skalierbar entwerfen,
DB-Queries limitieren, Paging
einbauen

B 6 Komplexität der Agentenlogik
wird unterschätzt

Use-Cases einzeln verifizieren,
generischere Use-Cases
priorisieren

C 6 WebUI-Komponenten zu
aufwändig (Monitoring,
Trigger, Nachgenerierung)

Keine UI-Umsetzung, sondern auf
CLI oder Fleet fokussieren (User
sind Entwickler:innen, keine
Endkund:innen)

D 4 Kubernetes-Deployment zu
komplex für lokale Umgebung

Einfache Fleet-Charts und
Templates bereitstellen

G 1 Agentenlogik zu stark auf alte
Struktur der CISTEC AG
zugeschnitten

Abstrakte Use Cases verwenden,
Fachtransfer absichern

H 1 Uneinheitliche Verwendung
von Zod und class-validator,
keine konsequente Einhaltung
von DTOs

Validierungsstrategie in ADR
dokumentieren und durchsetzen,
den Einsatz von Shared Types
abwägen

Tab. 8: Erwartete technische Risiken

4.6.3 Organisatorische Risiken

Neben den technischen Herausforderungen müssen auch organisatorische Risiken

berücksichtigt werden, die sich insbesondere mit dem Zeitmanagement, Teamkoordination

und die Zusammenarbeit mit den Stakeholdern auseinandersetzen. Diese Faktoren sind für

den Projekterfolg ebenso entscheidend wie die technische Umsetzung, da sie die Effizienz und

Qualität der Arbeit massgeblich beeinflussen. Die nachfolgende Analyse fasst die ermittelten

organisatorischen Risiken zusammen, bewertet sie nach Eintrittswahrscheinlichkeit und

Auswirkung und stellt anschliessend die vorgesehenen Gegenmassnahmen dar:

33

Abb. 12: Risikomatrix der organisatorischen Risiken

Kürzel Einschätzung Beschreibung Massnahme

A 9 Zeitrahmen unterschätzt:
Parallele Entwicklung, Thesis,
Review-Phasen kollidieren

Umfang frühzeitig abgrenzen,
Projektplan mit Puffer
kommunizieren

B 6 Stakeholderwechsel oder
plötzliche Umdisposition
durch CISTEC AG

Projektentscheidungen und
Anforderungen schriftlich in ADR’s
dokumentieren

C 6 ADR’s nicht einheitlich oder
widersprüchlich dokumentiert

ADR als Teil vom Reviewprozess
einschleusen

D 6 Unklare Abnahme- oder
Erfolgskriterien

Kriterien für erfolgreichen
Prototyp schriftlich fixieren,
Review-Termine einplanen

E 4 Team zieht nicht an einem
Strang (z. B. Rollen unklar,
Ownership fehlt)

Klare Verantwortlichkeiten im
Team festlegen, Weekly Syncs zur
Abstimmung einführen

F 4 Dokumentation wird zu spät
oder unstrukturiert erstellt

Dokumentationsstruktur früh
definieren, regelmässig
aktualisieren

G 4 Projektmanagement-Tool
wird nicht effektiv genutzt

Einheitliches Toolset festlegen
und aktiv nutzen

H 3 Projektfokus verschiebt sich
durch externe Anforderungen
(z. B. Bugs oder Unklarheiten
bei CISTEC AG)

Feature-Umfang definieren,
Feature-Freeze ab gewissem
Zeitpunkt einführen und einhalten

I 3 Kommunikation mit CISTEC
AG unregelmässig (z. B. PO
nicht erreichbar, in den
Ferien)

Fragen frühzeitig stellen,
Antworten dokumentieren,
technische Feinheiten mit
Maintainer und Stv. klären

Tab. 9: Erwartete organisatorische Risiken

34

4.6.4 Finale Risikoanalyse

In der abschliessenden Etappe der Risikoanalyse wurden teilweise sowohl bestehende Risiken

zusammengeführt als auch neue Risiken berücksichtigt, welche sich während der

Implementation herauskristallisierten. Das Ziel war hier, die Risikoanalyse für das Projekt

weiter zu festigen und systematisch auszuwerten. Dabei wurden sowohl technische als auch

organisatorische Aspekte berücksichtigt, um eine vollständige Übersicht über das Risikoprofil

des Projekts zu erhalten. Diese wird in den Ergebnissen im Kapitel 5.1.8 dann im Detail

ausgewertet.

Abb. 13: Risikomatrix der finalen Risiken

Kürzel Einschätzung Beschreibung Massnahme

A 6 Bereitstellung der Testdaten durch
Stakeholder verzögert sich nach
Cyberattacke

Frühzeitige Bereitstellung
von und Validierung mit
Stakeholdern

B 6 Testdaten aus bestehendem KISIM
sind für Entwicklungszwecke
qualitativ nicht ausreichend nutzbar

Eigene Domäne definieren,
um so die Bedürfnisse der
Stakeholder abzudecken

C 4 Eingeschränkter Stakeholderkontakt,
Hauptstakeholder längere Zeit
abwesend, kein regelmässiger
Austausch möglich

Gezielte Abnahmen nach
Ferienabwesenheit,
grösserer Fokus auf
Selbsteinschätzung

D 4 Entwicklungsprozess gerät ins
Stocken, Prozesse nicht systematisch
gelebt, Dokumentation und
Abnahmen lassen teils mit
Verzögerung auf sich warten

Definierte Prozesse,
zeitnahe Dokumentation
von wichtigen
Entscheidungen mittels
ADR’s

E 3 Ungleichmässige
Arbeitslastverteilung und temporäre
Abwesenheiten im Team, die den
Fortschritt verzögern könnten

Rollenverteilung,
regelmässige
Abstimmungen, Code
Sessions

F 6 Fachspezifische Domäne statt einem Abstraktion auf Framework-

35

generischen Framework,
Stakeholder-Vorgaben zu spezifisch
und / oder nicht auf Framework
übertragbar

orientierte Use-Cases und
eigene Definitionen von
Agenten, die den
Funktionsumfang von
CISTEC AG -spezifischen
Agenten abdecken

Tab. 10: Erwartete finale Risiken

4.7 Architektur

Die Architektur- und Technologieauswahl wurde in enger Koppelung mit den Stakeholder-

Interessen, der Risikobetrachtung und den zuvor definierten Qualitätszielen getroffen.

Es galt, eine langfristig wartbare, skalierbare und erweiterbare Lösung zu entwerfen, welche

die Betriebskosten nicht unnötig erhöht. Es ergaben sich drei zentrale Qualitätsziele:

Wartbarkeit: Klare Strukturen, Minimierung von Redundanz, gute Testbarkeit.

Skalierbarkeit: Agenten sollen unabhängig voneinander deploy- und versionierbar sein.

Transparenz: Logs, Monitoring und Fehlermeldungen müssen konsolidiert und einfach

einsehbar sein.

Erweiterbarkeit: Neue Agenten müssen sich mit minimalem Aufwand in die bestehende

Infrastruktur einfügen.

4.7.1 Auswertung möglicher Technologiestacks

Es wurden drei Frameworks für die Auswahl des Technologiestacks untersucht:

Framework Eigenschaften

AdonisJS ● Laravel-ähnliches JavaScript-Framework

● Kleine Community, rein Community-getrieben, wenige

Lernressourcen

● Mögliches Risiko hinsichtlich langfristiger Wartbarkeit

Express ● Maximale Kontrolle und Flexibilität

● Gefahr von chaotischem Code, da wenig Struktur vorgegeben wird

● Wartbarkeit hängt stark von der Disziplin der Entwickler:innen ab

● Keine integrierte Microservice-Unterstützung

NestJS ● Wird bereits in der CISTEC AG verwendet

● Wird von einer Firma maintained, breite Community und

Lernressourcen

● OOP-Ansätze, Modularität, Dependency Injection, Decorators

● Integrierte Microservice-Schnittstellen, einfache Integration in

Kubernetes

Tab. 11: Auswertung Technologiestack

36

Die Entscheidung fiel aufgrund der vielen genannten Vorteile eindeutig auf NestJS.

Diese erfolgte dabei stets im Abgleich mit den Stakeholder-Bedürfnissen (z. B. Wartbarkeit und

Transparenz für Entwickler:innen, Monitoring für Projektleiter:innen), den Qualitätszielen

(Skalierbarkeit, Robustheit) und der Risikoanalyse (Minimierung von Bottlenecks und Legacy-

Abhängigkeiten). Zum weiteren Technologiestack hinzu kam die Entscheidungen für

PostgreSQL als Datenbank, TypeORM als Library für das Daten-Mapping, Jest zwecks Testing

sowie Grafana zwecks Monitorings.

4.7.2 Walking Skeleton

Im Rahmen der Arbeit wurde ein Walking Skeleton entwickelt, der als technischer Prototyp

diente und den architektonischen Rahmen für die Umsetzung der Agenten vorgab. Das Ziel war

es, frühzeitig einen minimal funktionsfähigen Durchstich durch alle relevanten

Systemkomponenten zu realisieren, um technische Risiken zu adressieren und zentrale

Architekturentscheidungen zu validieren.

Zu Beginn wurden zwei alternative Ansätze für das Walking Skeleton skizziert:

Version 1: Ein schlankes Monolith-Design, bei dem Core- und Agentenlogik in einem Prozess

zusammengeführt werden. Vorteil: schnelle Umsetzung; Nachteil: keine saubere Trennung der

Verantwortlichkeiten.

Version 2: Agenten als eigenständige Deployments mit direkter Kommunikation zu einem

zentralen Core-Service über API oder Message Queue. Vorteil: zentrale Wartung und klare

Schnittstellen; Nachteil: höherer initialer Setup-Aufwand.

Bei der Abwägung dieser Varianten fiel die Wahl schliesslich auf einen serviceorientierten

Ansatz. Damit konnte sowohl die Skalierbarkeit als auch die künftige Versionierung von

Agenten und Core berücksichtigt werden. Die umgesetzte Version des Walking Skeletons war

Gegenstand des Zwischenreviews am 26.05.2025 und entspricht dem Commit

bec4b20bcc6967ce359a7685e2ad7f297b927876 im Git-Repository.

Das Walking Skeleton umfasste in der Endausführung folgende Merkmale:

● Eine lauffähige NestJS-Anwendung mit Basisfunktionalität für Core-Module

● Eine erste Agenten-Implementation als Cron-Job, welche den definierten Use Case in

seinen Grundzügen abbildet

● Eine funktionale Anbindung an die Datenbank mittels TypeORM

● Initiale API-Endpunkte inklusive automatisierter Tests

● Ein rudimentäres Deployment auf Kubernetes (lokal über Minikube)

Damit wurde ein vollständiger Durchstich über alle Layers erreicht: Datenhaltung,

Businesslogik, API-Schnittstelle und Deployment waren im Kern erprobt. Das Walking Skeleton

konnte also sicherstellen, dass die technische Basis stabil und erweiterbar integriert wurde.

Damit konnte das Team die verbleibende Entwicklungszeit gezielt auf die Umsetzung der

Agentenlogik und der Erweiterungen am Framework fokussieren.

37

4.7.3 Architekturentscheide / Architecture Decision Records (ADR’s)

Während des Projektverlaufs sind wir auf einige Herausforderungen gestossen und mussten

bezüglich der Architektur Entscheidungen treffen. Alle ADR’s sind im Anhang aufgeführt (siehe

Kapitel 11.4). Die wichtigsten ADR’s werden nun erläutert.

4.7.3.1 0003 Architektur-Prototyp Agentenframework

Zu Beginn der Arbeit wurde der Walking Skeleton implementiert, um einen vollständigen

Durchstich durch alle Layers des Systems zu ermöglichen. Das Walking Skeleton stellte sicher,

dass grundlegende Konzepte wie Schema-Validierung, Persistenz mit TypeORM und CI-Tests

auf Agentenebene (also für jeden einzelnen Agenten) von Beginn an berücksichtigt wurden.

Für das Zwischenreview konnte ein konsistenter Minimal-Durchstich bis zur Datenbank

präsentiert werden, welcher die Basis für die weitere Arbeit bildete. Allerdings war der

Walking Skeleton nur als Zwischenstand gedacht und wurde durch spezifische Entscheidungen

weiterentwickelt und verfeinert. Damit erfüllte ADR0003 seine Rolle als Architekturprototyp,

wurde aber schrittweise durch die nachfolgenden ADR’s erweitert oder abgelöst. Es diente als

Fundament, auf dem alle späteren Entscheidungen aufbauen konnten.

4.7.3.2 0007 Fachliche Kriterien

Der Kontext, die Umsysteme und die fachliche Agentenlogik der CISTEC AG überstiegen die

Ressourcen des Projektrahmens. Die Komplexität war im Rahmen dieser Arbeit nicht machbar.

Deshalb haben wir uns in Absprache mit Martina Lux (Stakeholder und PO seitens CISTEC AG)

aus dem klinischen, also fachlichen Kontext gelöst, ohne den ursprünglichen Funktionsumfang

einzuschränken. Diese Entscheidung erwies sich als sehr gelungen, kam aber leider etwas spät.

4.7.3.3 0009 Microservices

Im Verlauf der Umsetzung stieg die Komplexität des Projekts stetig an. Um die Kopplung

zwischen den Diensten (Agent-Core und Agenten) zu minimieren, einen modernen Ansatz zu

verfolgen und die Basisfunktionalität weiter herauszutrennen, beschlossen wir, ein verteiltes

System mit Microservices umzusetzen. In der Folge konnten wir die Agentenlogik sauber

kapseln sowie den Datenzugriff über den Agent-Core reduzieren. Die ermöglichte Skalierung

und unterschiedliche Release-Zyklen sind weitere Vorteile. Zu den Nachteilen gehören eine

komplexere Architektur, erschwerte Bedingungen bei E2E-Tests sowie die Schnittstellenpflege.

4.7.3.4 0010 Kommunikation via NATS

Anfänglich hatten wir REST als Kommunikationsprotokoll zwischen den Diensten angedacht.

Da das eingesetzte NestJS-Framework eine Microservice-Unterstützung anbietet, versuchten

wir, möglichst viel damit zu lösen. REST gehörte nicht zu den unterstützten Protokollen.

Damit wir auf einen selbst entwickelten Kommunikationsbus mit Idempotenz verzichten

konnten, hatten wir uns für die unterstützte Transportschicht mit dem Messaging Service NATS

entschieden. Diese bietet mehrere Kommunikationsmuster, zum Beispiel Fire-and-Forget,

Request/Reply sowie Publish/Subscribe. Darüber hinaus stellt NATS optionale Features wie

Queue Groups zur Lastverteilung und über JetStream zusätzlich Persistenz & Replay für einen

38

„at least once“ Zustellungsmodus bereit. Damit haben wir für viele Ausbaumöglichkeiten

vorgesorgt, nehmen dafür jedoch einen zusätzlichen Dienst in der Architektur in Kauf.

4.7.3.5 0012 Standardisierung der Agenten-Pipeline

In den bestehenden Agenten waren die fachliche Logik und die Persistenzschicht stark

miteinander vermischt. Änderungen wurden direkt in der process-Methode geschrieben, was

zu einem unklaren Ablauf führte und somit die Testbarkeit und Wartbarkeit erschwerte.

Im Rahmen der Arbeit wurde deshalb ein Standardprozess des Agentenlaufs eingeführt,

welcher die Verantwortlichkeiten klar trennt: Die processItem-Methode kümmert sich

ausschliesslich um die Berechnung und liefert ein Ergebnis-DTO zurück, während die update-

und create-Methoden für die Persistierung verantwortlich sind. Dies führte zu konsistenten

Agenten und verbesserte die Trennung von Logik und Datenzugriff. Tests können gezielt auf

der reinen Processing-Ebene ohne Seiteneffekte ausgeführt werden.

4.8 Systemverteilung und Deployment

Die Ausgangslage der CISTEC AG ist eine komplexe Agentenlandschaft, die mit selbst

entwickelten Deployment-Prozessen auf Basis von Argo-CD und internen Tools betrieben wird.

Dies stellt die Maintainer vor Herausforderungen: Es existiert eine Vielzahl von Agenten und

Services mit sehr unterschiedlichen Anforderungen, die Komplexität der Build- und

Deployment-Prozesse ist hoch und die Integration in die bestehende Infrastruktur tief und

schwer nachvollziehbar. Daher soll die Agentenlandschaft mithilfe des Agenten-Frameworks

auf mehrere, lose gekoppelte Dienste verteilt werden. Dabei sollen die Deployments

vereinheitlicht und Abhängigkeiten explizit gemacht werden. Auch eine zukünftige horizontale

Skalierung soll möglich sein.

Im Rahmen der Prototypentwicklung konnte (Zeit- und Budgetbegrenzung) und sollte

(Produktfokus bewahren) diese vollständige Landschaft nicht nachgebaut werden.

Stattdessen wurde ein vereinfachtes, aber funktionales Setup gewählt: Core, Agenten und

zentrale Infrastruktur (NATS, PostgreSQL, Monitoring), orchestriert über Fleet / GitOps.

Auch auf Features wie Secrets-Management, High Availability, Persistenz für Loki oder

ausgereifte Skalierungs-Strategien wurde bewusst verzichtet: Der Fokus des Projekts lag

darauf, die Grundbedürfnisse und Basisanforderungen an eine Agentenarchitektur in einem

Prototypen abzubilden – nicht die gesamte Produktionsumgebung der CISTEC AG.

5 Ergebnisse
In diesem Kapitel zeigen wir auf, was wir erreicht haben und wie wir dorthin gekommen sind.

Wir geben einen Überblick, wie der Prototyp aufgebaut ist, welche Use-Cases und

Anforderungen abgedeckt wurden und welche nicht. Mit dem methodischen Vorgehen

konnten wir die Ausgangslage grösstenteils gut lenken und konnten teilweise auch Risiken früh

erkennen. Durch unsere Problemanalyse haben wir die fachlichen Anforderungen von den

technischen unterschieden und konnten eine transparente Architektur auf die Beine stellen.

Bei dieser wird schnell klar, was der technische Basis-Funktionsumfang ist und was fachlich

zugeordnet wird.

39

5.1 Projektorganisation

Die Projektarbeit startete mit einem offiziellen Kick-off Meeting mit der CISTEC AG am

09.04.2025. Dabei wurden die Rahmenbedingungen geklärt und ein Systemüberblick

geschaffen. Erste gewünschte Anforderungen konnten bereits dort benannt werden. Auf

Seiten der CISTEC AG stand Martina Lux (Product Owner, Reporter) als primäre

Ansprechpartnerin zur Verfügung.

5.1.1 Zusammenarbeit mit der CISTEC AG

Der Kontakt zur CISTEC AG war weniger technisch geprägt, sondern erfolgte primär über die

fachliche Rolle des Product Owners. Ein direkter Austausch mit Entwickler:innen der CISTEC AG

war zwar vorgesehen, konnte aber aufgrund der hohen Arbeitslast nach dem Cyberangriff

kaum in Anspruch genommen werden. Darüber hinaus führte die längere Abwesenheit des PO

(zwei Monate Ferien) dazu, dass die Kapazitäten für regelmässige Reviews auf Seiten der

CISTEC AG eingeschränkt waren.

Eine Übergabe von Artefakten (vgl. Abb. 4: Branching sowie Build- und Deploymentprozess im

Entwicklungsprozess) an den PO erfolgte daher nicht. Dies war insofern unproblematisch, da

es sich um einen Framework-Prototypen handelt, dessen Integration in die produktive CISTEC-

Infrastruktur ohnehin nicht Teil des Projektumfangs war. Der Nachbau der komplexen

Infrastruktur der CISTEC AG wurde bereits zu Beginn der Masterarbeit als out of scope

identifiziert und nicht als Ziel aufgenommen.

5.1.2 Zusammenarbeit im Projektteam

Zur internen Zusammenarbeit wurde von Beginn an ein wöchentliches Projekttreffen etabliert.

Im Verlauf des Projekts zeigte sich jedoch, dass zur gemeinsamen Bearbeitung technischer

Fragestellungen ein zusätzlicher Austausch notwendig war. Ab Projektwoche 13 (03.07.2025)

wurde daher ein zweites wöchentliches Zeitfenster eingeführt, das gezielt für Pair

Programming und enge Abstimmungen im Entwicklerteam genutzt wurde. Diese Anpassung

stellte eine Abweichung von der ursprünglich in Kapitel 3.1 beschriebenen Methodik dar (vgl.

Abb. 3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess), erwies sich jedoch

als sinnvoll, um die Effizienz zu steigern und technische Herausforderungen im Team besser zu

bewältigen.

5.1.3 Arbeitsaufwände und Eigenverantwortung

Die Arbeitsaufwände wurden pro Teammitglied kontinuierlich erfasst:

Name Stunden

Jvan Faddah 452

Guillaume Fricker 416

Benjamin Thormann 483

Tab. 12: Arbeitsaufwände (zusammengefasst)

40

Das Team arbeitete oft zusammen und konnte die Arbeitslast gut aufteilen. Aufgrund der

eingeschränkten Möglichkeiten zur fachlichen Abnahme seitens CISTEC AG arbeitete das

Projektteam in hohem Masse eigenverantwortlich. Regelmässige Abstimmungen und Reviews

fanden vor allem intern statt, während externe Reviews auf das notwendige Minimum

reduziert wurden. Im Laufe des Projekts musste bei den ersten groben Zeitengpässen gezielt

die Zusammenarbeit intensiviert werden. Essenziell war auch der reduzierte Fokus auf eine

externe Abnahme, bedingt durch die organisatorischen und infrastrukturellen

Rahmenbedingungen der CISTEC AG. Dadurch entwickelte sich ein Arbeitsmodus, der stark auf

Eigenverantwortung und Teamkoordination setzte und dennoch eine kontinuierliche

Zielerreichung sicherstellen konnte.

5.1.4 Risikoanalyse

Im Rahmen der Ergebnisse wird aufgezeigt, welche der erwarteten Risiken tatsächlich

eingetreten sind, wie sie sich auf den Projektverlauf ausgewirkt haben und in welchem Mass

die geplanten Gegenmassnahmen wirksam waren. Dabei zeigt sich, dass sowohl technische als

auch organisatorische Risiken in unterschiedlicher Stärke realisiert wurden. Darüber hinaus

traten auch unvorhergesehene Risiken auf, die in der ursprünglichen Planung nicht

berücksichtigt wurden. Die nachfolgenden Kapitel dokumentieren diese Befunde und leiten

daraus zentrale Learnings aus dem Projekt ab.

5.1.5 Domäne und Abnahmekriterien (ADR0007)

Ein zentrales Risiko bestand darin, dass der Erfolg des Projekts anfangs stark an klinische

Fachkriterien gekoppelt war. Diese Vorgabe führte zu einer Einschränkung der Entwicklung, da

die Agentenlogik zu nah an bestehenden KISIM-Strukturen und klinischen Use-Cases orientiert

war.

Mit der Entscheidung ADR0007 wurde dieses Risiko entsprechend adressiert. Die Vorgabe,

klinische Agenten nachzubauen, wurde aufgehoben und durch abstrahierte, alltagsnahe Use-

Cases ersetzt (z. B. Marathon-Agent anstelle eines OAT-Agenten). Dadurch ergaben sich

mehrere Vorteile:

● Flexibilität bei der technischen Umsetzung und beim Datenmodell

● Nachvollziehbarkeit für Entwickler:innen ohne klinischen Hintergrund

● Raum für Innovation und kreative Lösungsansätze anstelle von Aufrechterhaltung von

Legacy-Strukturen

In Zukunft muss mit einem erhöhten Aufwand bei der späteren Integration auf echte klinische

Systeme gerechnet werden, da diese nicht 1:1 im Prototyp abgebildet wurden. Insgesamt war

dieser Schritt jedoch entscheidend, um das Risiko einer auch lediglich fachliche Aspekte

begrenzte Abnahme zu vermeiden und den Erfolg des Projekts auf technischer Ebene zu

sichern, was wesentlich zum Erfolg des Projekts beitrug.

5.1.6 Domänenspezifischer vs. generischer Framework-Prototyp

Ein weiteres Risiko betraf die Balance zwischen domänenspezifischer und generischer

Ausrichtung des Frameworks. Während ein enger klinischer Fokus zwar eine hohe Relevanz

41

und Attraktivität für die CISTEC AG darstellt, führte dieser zu hohen Abhängigkeiten zu

bestehenden Legacy-Datenstrukturen und erschwerte die Übertragbarkeit von wichtigen

Anforderungen. Die Lösung bestand darin, eine eigene Entwicklungsdomäne zu definieren, die

als Basis für generische Agenten diente. So konnten Risiken wie mangelnde Testdatenqualität

oder zu starke Kopplung an bestehende KISIM-Module umgangen werden. Gleichzeitig blieb

durch die konsequente Einhaltung der technischen Requirements die Möglichkeit erhalten,

spätere klinische Erweiterungen zu integrieren.

5.1.7 Technischer Grossausfall

Ein unerwartetes Risiko entstand durch eine Cyberattacke auf die Systeme der CISTEC AG.

Diese Attacke verzögerte die Bereitstellung von Testdaten und die Flexibilität des Stakeholders

erheblich. Dieses Risiko konnte nicht durch das Projektteam beeinflusst werden, hatte aber

einen hohen Einfluss auf den Projektplan.

Das Team reagierte, indem es einen eigenen Testrahmen definierte, eigene Use Cases und

deren Entwicklung unabhängig von Stakeholder-Daten vorantrieb.

Diese Massnahmen ermöglichten es, trotz des Ausfalls Fortschritte zu erzielen und die

Entwicklungsziele nach bestem Gewissen einzuhalten.

5.1.8 Auswertung Risikomatrix

In diesem Abschnitt wird die Auswertung der Risikoanalyse zusammengefasst. Die Tabelle fasst

die während des Projektverlaufs relevanten Risiken, ihre Bewertung, die geplanten

Gegenmassnahmen sowie die tatsächlichen Auswirkungen kurz zusammen.

Kürzel Einschätzung Beschreibung und Massnahme Reflexion

A 6 Testdaten verzögert, Cyberattacke
→ Frühzeitige Bereitstellung und
Validierung

Eingetreten, externe Ursache,
hoher Einfluss

B 6 KIS-Testdaten unbrauchbar
→ Eigene Domäne definieren

Eingetreten, Legacy-System
unbrauchbar, hoher
Zusatzaufwand

C 4 Stakeholderkontakt eingeschränkt
→ Gezielte Abnahmen, Fokus auf
Selbsteinschätzung

Teilweise eingeschränkt,
ausreichend durch gezielten
Austausch

D 4 Entwicklung gerät ins Stocken
→ Definierte Prozesse und ADR-
Dokumentation

Teilweise eingetreten, ADRs
nachgezogen, Prozess iterativ
erweitert

E 3 Ungleichmässige Arbeitslast
→ Rollenverteilung, Abstimmungen,
Code Sessions

Eingetreten, nicht systematisch
adressiert, moderater Einfluss

F 6 Fachspezifische Domäne
→ Abstraktion auf Framework, eigene
Agenten-Definitionen

Eingetreten, aber erfolgreich
entschärft, Massnahme wirksam

Tab. 13: Auswertung finaler Risiken (zusammengefasst)

42

5.1.9 Lessons Learned

Die Risikoanalyse hat verdeutlicht, dass die grössten Risiken nicht wie zuerst angenommen

hauptsächlich in der technischen Natur lagen, sondern auch in Organisation, Abhängigkeiten

und Scope-Definition. Die wichtigsten Erkenntnisse sind:

Abstraktion statt Fachlogik: Durch die Scope-Definition in ADR0007 wurde die Entwicklung

von klinisch engstirnigen Abnahmekriterien gelöst, was Innovationsspielraum eröffnete.

Eigene Domäne als Basis: Der Aufbau einer unabhängigen Domäne erwies sich als effektive

Massnahme, um externe Risiken wie Datenqualität und die Cyberattacke abzufedern.

Resilienz durch Flexibilität: Unerwartete Ausfälle und Stakeholder-Abwesenheiten konnten

durch pragmatische Workarounds (regelmässige Syncs, selbstdefinierte Agenten und deren

Use-Cases, Feature-Freeze) abgefangen werden. Die Auswertung zeigt somit, dass das

Projektergebnis weniger von einer risikofreien Umsetzung abhing, sondern von der Fähigkeit,

auf Unsicherheiten adaptiv zu reagieren und zentrale Entscheidungen transparent zu

dokumentieren.

5.2 Architektur

5.2.1 Architekturbeschreibung

Das entwickelte Framework basiert auf einem modularen Monorepo, in dem alle

Komponenten (Agent-Core, zentrale Library und einzelne Agenten) in einer konsistenten

Projektstruktur zusammengeführt werden. Dieses Vorgehen ermöglichte eine einheitliche

Verwaltung des Datenflusses zwischen Core und Agenten sowie eine gemeinsame Nutzung der

zentralen Datenbank. Darüber hinaus vereinfacht es Refactorings und erlaubt eine flexible

Weiterentwicklung, wie sie im Kontext der CISTEC AG erforderlich ist.

Die Entscheidung für ein Monorepo ist zugleich eine strukturierte Zusammenfassung der

gesamten Agentenlandschaft, um so die Developer Experience signifikant zu steigern, da so

alle Änderungen an Agenten an einem zentralen Ort vorgenommen werden können.

5.2.2 Microservices als Architekturansatz

Die Struktur der Agenten wird als Microservices betrieben. Der Agent-Core stellt eine zentrale

Schnittstelle zur Datenbank bereit, während die Agenten jeweils eigenständige Workloads

(Microservices als CronJobs) darstellen. Zwischen den Agenten existieren keine direkten

Abhängigkeiten und die gesamte Kommunikation läuft ausschliesslich über den Core. Die

Trennung der Agenten in Microservices adressiert mehrere Ziele:

Modularität und Kohäsion: Jeder Agent kapselt seine eigene Business-Logik, ohne die Logik

oder Kommunikation anderer Agenten zu kennen.

Lose Kopplung: Änderungen im Core, in der zentralen Library, oder in einem Agenten können

unabhängig voneinander erfolgen.

Skalierbarkeit: Core und Agenten können horizontal skaliert werden, je nach Bedarf und

Ressourcenauslastung.

Resilienz: Ein Ausfall eines Agenten beeinträchtigt nicht die Funktionsfähigkeit der restlichen

Plattform.

Damit ist auch die nichtfunktionale Anforderung NFA_REQ6 nach einer skalierbaren und

43

modularen Architektur erfüllt.

5.2.3 Kommunikationsmuster

Die Kommunikation zwischen Core und Agenten folgt einem RPC-Pattern auf Basis von NATS,

welches über ein publish-subscribe Modell kommuniziert (NATS.io, 2025). Agenten senden ihre

Anfragen an den Core, der diese beantwortet. Der Core selbst initiiert keine Kommunikation

mit Agenten. Weitere Kommunikationspfade sind wie folgt definiert:

Core und Datenbank (PostgreSQL): Klassischer Read/Write-Zugriff über TypeORM.

Logging: Promtail sammelt Container-Logs und pusht sie an Loki. Grafana greift auf Loki als

Datasource zu (siehe Kapitel 5.4).

Obwohl eine Event-Driven-Architektur naheliegt, wurde bewusst auf eine vollständige

Message Queue verzichtet. Die aktuelle Lösung deckt die benötigten Muster ab und reduziert

Komplexität. Sollte sich beim Stakeholder später der Wunsch nach einer Kommunikation

mittels Message Queue äussern, kann dies nahtlos in NestJS und NATS integriert werden, da

NATS Message Queues unterstützt. Gleichzeitig ermöglicht die Wahl von NATS eine spätere

Erweiterung, beispielsweise durch JetStream für Persistenz oder Replay (NATS.io, 2025).

5.2.4 Evolution der Architekturentscheidungen

Die Architektur entwickelte sich iterativ weiter. Ursprünglich war ein REST-basiertes

Kommunikationsmodell vorgesehen, das durch Versionierung abgesichert werden sollte. Diese

Variante erwies sich allerdings als unzureichend, da das NestJS-Framework keine native

Unterstützung für REST im Microservice-Modul bietet.

Im Zuge der Evaluation wurde daher der Wechsel zu NATS vollzogen. Dieser Entscheid

überholte einige der ursprünglichen Annahmen, insbesondere in Bezug auf Idempotenz und

API-Versionierung. Dennoch blieben die grundlegenden Vorteile der Microservice-Architektur,

etwa klare Verantwortlichkeitstrennung und unabhängige Skalierbarkeit, bestehen.

Im Zwischenreview wurde mit dem Walking Skeleton (ADR0003) ein erster lauffähiger Prototyp

präsentiert. Die späteren Architekturentscheidungen (ADR0009 Microservices, ADR0010

Kommunikation via NATS, ADR0011 Monitoring & Logging, ADR0012 Standardisierung der

Generierungsprozesses) bauten darauf auf und erweiterten das Konzept kontinuierlich weiter.

5.2.5 Architekturprinzipien und Patterns

Die Architektur folgt etablierten Prinzipien und Patterns:

Trennung der Verantwortlichkeiten: Der Core übernimmt Datenzugriffe, Validierung und

Metriken und dient als zentraler Pool für Abfragen. Agenten implementieren ausschliesslich

fachliche Logik und sind somit kleine, isolierte Tasks, die unabhängig voneinander skalierbar

und austauschbar sind.

Wiederverwendbarkeit: Gemeinsame Bausteine (DTOs, Message-Pattern, NATS-Client,

Logging) werden als Bausteine bereitgestellt. Dadurch wird vermieden, dass der Core zum

unübersichtlichen Monolithen anwächst. Kommunikation über NATS entkoppelt Agents und

Core zeitlich und organisatorisch.

Erweiterbarkeit: Neue Agenten können integriert werden, ohne bestehende Komponenten

44

anzupassen.

Resilienz: Fällt ein Agent aus, bleiben die anderen lauffähig. Der Core bleibt weiterhin stabil.

Bei einem Absturz des Cores warten die Agenten auf ihre nächste Ausführung.

Ein zentrales Pattern ist das Repository Pattern, das durch NestJS und TypeORM vorgegeben

wird. Es trennt Datenzugriffe von der Geschäftslogik und stellt über DTOs und Zod-Schemas

sicher, dass nur gültige Daten verarbeitet werden.

5.2.6 Trade-Offs

Die gewählte Architektur bringt klare Vorteile, erfordert aber auch bewusste Kompromisse:

Vorteile ● Hohe Skalierbarkeit und Flexibilität.

● Saubere Trennung von Logik, Messaging und Persistenz.

● Verbesserte Wartbarkeit durch modulare Services.

● Vereinfachtes projektweites Refactoring (z.B. Umstrukturierung oder

Dependency-Updates)

Nachteile ● Zusätzliche Komplexität im Betrieb (was jedoch durch die hohe

Skalierbarkeit ausgehebelt wird)

● Strikte Regeln für Entwickler:innen und (z.B. Modulgrenzen, Schema-

Validierung, fixer Prozess in der Datenverarbeitung) erhöht die

Lernkurve marginal.

● Die Codebasis hat sehr klare Vorstellungen darüber, wie Dinge gemacht

werden sollten. Dies kann bei neuen Anforderungen zu Refactorings

führen.

Tab. 14: Architektur Vor- und Nachteile

Trotz der Nachteile ist die Architektur ein nachhaltiger Entscheid, der sowohl die kurzfristigen

Projektziele als auch die langfristige Erweiterbarkeit sicherstellt.

Das Framework ermöglicht durch die Modulare Struktur auch Integrationen mit anderen

Systemen, wie zum Beispiel der KISIM-Datenbank, die ins TypeORM integriert werden kann.

Dadurch holt Framework Ist-Zustand CISTEC AG ab und setzt keine Schranken, damit CISTEC

AG auch andere Systeme ausprobieren, migrieren sowie andere KIS-Anbieterinnen das

Framework nutzen können.

5.2.7 Systemüberblick

Das entwickelte System besteht aus einem zentralen Agent-Core und mehreren Agenten, die

jeweils eine abgegrenzte fachliche Aufgabe erfüllen (z. B. NoShow, Marathon, Grenzkontrolle).

Der Agent-Core abstrahiert die Datenbank und fungiert als zentraler Service, welcher von allen

Agenten benötigt wird. Die Kommunikation erfolgt über NATS, wodurch die Agenten

entkoppelt und unabhängig voneinander betrieben werden können.

45

Abb. 14: Systemüberblick

Um den Systemüberblick im Detail nachzuvollziehen, wird nun auf die nummerierten Stationen

des Ablaufs im System Agent-Framework sowie dem darin enthaltenen Subsystem Logging &

Monitoring (Schritte 10 bis 13) eingegangen (siehe Abb. 14: Systemüberblick):

1. Der Agent Container führt die Businesslogik aus. Dementsprechend gibt es für jede

Fachdomäne (Noshow, Marathon, Grenzkontrolle) einen eigenständigen Service. Damit sind

die Agenten fachlich sauber voneinander getrennt. Da die Änderungen an einem Agenten nur

diesen und keine weiteren Agenten betreffen, können Agent unabhängig voneinander skaliert

werden. Die Anfragen an den Core stellt der Agent im Request-Reply-Muster über NATS.

2. Die Environment-Variablen jedes einzelnen Agenten beinhalten die Konfigurationswerte

zur Parametrisierung des Laufzeitverhaltens des jeweiligen Agenten. Dadurch werden

Umkonfigurationen pro Umgebungen vereinfacht und ein einheitliches, reproduzierbares

Deployment ermöglicht.

3. Der Agent-Core Container ist der zentrale Backend-Service, welcher als Single Source of

Truth die Datenhaltung und die Datenbank abstrahiert: Er antwortet auf Anfragen der Agenten

und führt die Datenzugriffe aus. Durch diese saubere Entkopplung bleiben die eigentlichen

Agenten schlank und müssen keine Datenbank-Details kennen.

4. Die Environment-Variablen des Agent-Core beinhalten die Konfigurationswerte des Agent-

Core (Datenbank-Zugriff, NATS-Einstellungen). Dadurch werden Umkonfigurationen pro

Umgebungen vereinfacht und ein einheitliches, reproduzierbares Deployment ermöglicht.

5. Die Libraries sind wiederverwendbare, gemeinsame Code-Bausteine für Core und Agenten

und dienen zur Vereinheitlichung von Typen und DTOs, Messaging-Patterns, Infrastruktur

Zugriffen und des Loggings. Dadurch wird die benötigte Boilerplate erheblich gesenkt, eine

konsistente Struktur in allen Agenten erreicht und potentielle Fehlerquellen reduziert.

6. Der NATS Container ist ein leichtgewichtiges, schnelles Messaging-System und fungiert als

Transportschicht zwischen Agenten und Core: NATS unterstützt Subjects/Topics, Request-

Reply und optionale Queue-Groups, hat eine sehr geringe Latenz, ist einfach zu skalieren und

ist lose gekoppelt. NATS ist also für die Kommunikation zwischen Microservices und damit für

46

damit für den Agenten-Framework sehr gut geeignet

7. Die NATS Queue-Groups ermöglichen die Nachrichtenverteilung als Lastverteilung in

Pub/Sub-Szenarien: hierbei hören mehrere Worker auf das gleiche Subject, jedoch verarbeitet

nur ein Worker aus der Gruppe die Nachricht. Das System ist auf die Nutzung der optionalen

Erweiterung JetStream vorbereitet, sodass in Zukunft eine horizontale Skalierung und

erweiterte Anforderungen an die Persistenz und die garantierte Zustellung leicht umgesetzt

werden können. JetStream ermöglicht die Nutzung folgender Features: Persistente

Nachrichten, eine garantierte Zustellung (at-least-once oder exactly-once), eine historische

Wiedergabe (replay) sowie ein verteilter Schlüssel/Wertspeicher (z. B. zur Konfiguration oder

für Zustände).

8. Der Datenbank Container (Postgres) ist die relationale Persistenzschicht, auf welche

ausschliesslich der Agenten-Core via TypeORM zugreift. Es ist also eine klare Zugriffskontrolle

vorhanden. Die Datenbank selbst bildet die zentrale, konsistente Datenhaltung für fachliche

Daten bzw. Leistungen.

9. Die Applikations-Logdateien sind die Grundlage für die Fehlersuche und Datenanalyse. Sie

existieren für den Core und jeden einzelnen Agenten. Es werden Betriebszustände, Fehler

sowie fachliche Ereignisse protokolliert.

10. Beginn Subsystem Logging & Monitoring: Der Promtail Container liest und sammelt die

Logs aus den Log-Dateien, versieht sie mit Labels und sendet diese an den Loki-Container. Das

Ergebnis ist eine einheitliche Log-Pipeline mit minimalem Konfigurationsaufwand pro Service.

11. Der Loki Container speichert und indexiert die Logs über Labels, um so eine Log-

Aufbewahrung mit schneller Suche und Filterung zu realisieren.

12. Der Prometheus Container (inkl. Alert Manager) kann Metriken vom Core-Service ziehen,

Regeln auswerten und Alerts versenden (E-Mail, Slack etc.). Dies wurde nicht umgesetzt,

würde jedoch die Sichtbarkeit von und Benachrichtigung bei Fehlern und Ereignissen

verbessern.

13. Ende Subsystem Logging & Monitoring: Der Grafana Container wird als zentrale

Visualisierungs- und Dashboard-Plattform für das Binden von Prometheus (Metriken) und Loki

(Logs) genutzt. Die konfigurierbare, einheitliche Monitoring-Oberfläche (Metriken / Logs)

vereinfacht die Datenanalyse sowie den Datenexport.

5.2.7.1 Bausteinsicht

Im Paketdiagramm ist die modulare Architektur des Framework-Prototypen gut (Abb. 15

Paketdiagramm) zu erkennen: Die Agenten (agent) und der Agent-Core (core) sind

voneinander getrennt und es besteht keine direkte Abhängigkeit. Beide greifen auf eine

gemeinsame Bibliothek (libs) zu: Durch diese Wiederverwendung von Code-Bausteinen wird

die Entwicklung und Anpassung von Agenten nochmals stark vereinfacht. Zum Beispiel wird ein

abstrakter Basis-Agent bereitgestellt (libs/agent in Abb. 15 Paketdiagramm), welcher als

Grundlage für neue Agenten dient.

47

Abb. 15: Paketdiagramm

5.2.8 Tech-Stack

Der Tech-Stack wurde wie in Kapitel 4.7.1 umgesetzt und hat sich als zufriedenstellend und

zielführend herausgestellt. Durch die Wahl von TypeScript ist NFA_REQ2 umgesetzt.

Ausserdem wurde durch den Einsatz von pnpm workspaces ein kohäsives monorepo mit

unabhängigen Modulen, wie in ADR0013 beschrieben, erreicht. Dies hat die Struktur des

Frameworks weiter gefestigt und aufgewertet. Desweiteren ist der Tech-Stack

zusammengestellt aus:

● TypeScript: primäre Programmiersprache (moderner CISTEC-Standard)

● NestJS: Basis-Framework (modular, strukturiert, skalierbar, enterprise-ready)

● TypeORM: Entity-Mapping (Datenbankabstraktion, gut lesbar)

● Zod: Schema-Validierung (Typensicherheit zur Laufzeit, sicher und deklarativ).

● Winston: Logging (Konfigurierbarer Logger, super für CI/CD)

● Grafana + Promtail: Monitoring (Standard in der Webentwicklung)

● pnpm: Package-Manager mit Monorepo Workspaces (schnell, platzsparend,

konsistent, einfach, flexibel)

5.3 Systemverteilung und Deployment

Die entwickelte Lösung basiert auf einer GitOps-gesteuerten, verteilten Architektur und

addressiert die Use-Cases UC05 (Kofiguration), UC07 (Agentenlauf manuell auslösen), UC10

(Generierungsintervall konfigurieren) und somit die Anforderungen FA_REQ3, FA_REQ4 und

NFA_REQ6.

48

Alle relevanten Komponenten (Core, Agents, Infrastruktur wie NATS/Postgres sowie

Monitoring) werden zentral im Git-Repository versioniert und über Fleet automatisch in das

Kubernetes-Cluster ausgerollt. Die Aufteilung im Cluster durch die Namespaces sorgt dafür,

dass man schnell erkennt, was läuft und was nicht.

Im Prototyp wurde die Verteilung der Systemkomponenten vereinheitlicht und auf zwei

zentralen Helm-Charts gebaut: eines für den Agent-Core, eines für alle Agenten. Der Agent-

Core wird über sein Chart als Deployment ausgerollt, während das Agenten-Chart CronJobs

erzeugt, bei dem der Intervall angegeben werden kann pro Job. Ein neuer Agent wird lediglich

über einen zusätzlichen Block der Datei “gitops/agent/chart/values.yaml” eingebunden – das

Chart selbst bleibt unverändert.

Die Infrastrukturkomponenten sind als eigene Fleet-Pakete implementiert. PostgreSQL, NATS

sowie die Monitoring-Dienste laufen in separaten Namespaces und werden über `dependsOn`-

Beziehungen in Fleet orchestriert, um die Reihenfolge der Inbetriebnahme zu steuern.

Für die Installation ist ein Installationsscript im Anhang angefügt sowie für das manuelle

Starten der Cronjobs ausserhalb des konfigurierten Intervalls.

Für die lokale Entwicklung steht ein Docker-Compose-Setup bereit, das das Cluster-Setup in

vereinfachter Form spiegelt. Entwickler:innen können so End-to-End-Tests mit Core, Agents,

Datenbank und Logging-Pipeline auch ohne Kubernetes durchführen.

49

5.3.1 Verteilungssicht

Abb. 16: Verteilungsdiagramm

Abbildung 16: Verteilungsdiagramm stellt die Verteilung dar: Von links nach rechts ist der

Ablauf zu erkennen: ausgehend von den Git-Repo-Definitionen (z. B. fleet-yaml) enstehen

Bundles, welche die Charts aus den Repositories installieren oder Container-Images von der

GitLab-Registry gezogen werden. Daraus resultieren in den Ziel-Namespaces die ausgerollten

Dienste als Deployment, Cronjob, Service etc.

Im unteren linken Bereich ist die Fleet-Control-Plane (Manager) u. a. für Aufgaben wie

Überwachung des Git-Repos und automatisches Ausrollen. Es gibt folgende Runtime-

Namespaces:

Core: beherbergt den zentralen Core-Service. Als Deployment dauerhaft verfügbar; persistiert

in Postgres und kommuniziert über NATS.

Agents: enthält die spezialisierten Agents (z. B. `noshow`, `marathon`, `grenzkontrolle`), die

periodisch als CronJobs laufen und nach dem Job wieder terminieren.

Nats: stellt den Message Broker bereit.

Postgres: verwaltet den Datenbank-State; persistent über PVC.

Monitoring: stellt Observability über Loki, Promtail und Grafana bereit.

50

5.3.2 GitOps & Fleet

GitOps gibt uns die Möglichkeit, Änderungen an Verteilung, Konfiguration und Charts, bequem

und direkt im Git-Repo des Quellcodes zu handhaben. Dies ermöglicht es, jeden ausgerollten

Zustand zu reproduzieren. Abhängigkeiten zwischen Workloads lassen sich bequem steuern,

etwa um den Agent-Core erst zu starten, wenn Postgres und NATS verfügbar sind. Das

automatische Ausrollen bei neuen Commits erhöht die Developer Experience und hilft, stabile

und nachvollziehbare Deployments über verschiedenen Systemen auszurollen.

Bei Fleet unterscheiden wir zwei technische Aspekte: Fleet-Control-Plane (Manager) und

Runtime. Die Runtime-Services laufen in eigenen Namespace gemäss der Definition wie core,

agents, nats, postgres und monitoring. Diese sind von uns erstellte Namespaces sowie die

darin laufenden Dienste. Die Control-Plane wird installiert und übernimmt die Git-

Überwachung sowie das automatische Ausrollen. Fleet setzt dafür mehrere Dienste ein, die in

der Control-Plane laufen: Der gitjob-Controller überwacht das Git-Repo und reagiert auf neue

Commits. Der fleet-/ & helmops-Controller rendert die Manifeste zu Bundles und

berücksichtigt Abhängigkeiten. Der fleet-Agent übernimmt die Aufgabe, Manifeste auf Ziel-

Namespaces anzuwenden. Über Pfadangaben wird gesteuert, welche Artefakte gebaut und

ausgerollt werden (vgl. Abb. 16: Verteilungsdiagramm).

5.4 Monitoring und Logging

Um Fehler schnell zu finden und Abläufe nachzuverfolgen, benötigt man einen zentralen Blick

auf alle Logs der Dienste – vom Agent-Core bis zu den einzelnen Agenten. Unsere Lösung ist

bewusst leichtgewichtig gehalten und funktioniert auch dann zuverlässig, wenn ein Agent nur

kurz als Cronjob läuft. Das Ergebnis: Alle relevanten Ereignisse landen an einem Ort, sind

einfach durchsuchbar und lassen sich einem konkreten Lauf zuordnen.

Unsere Monitoring- und Logging-Lösung adressiert die technischen Use-Cases UC09

(fehlerhafte Leistungsgenerierung protokollieren), UC14 (Logging einsehen) und UC15

(Fehlerlogs einsehen) und stützt damit die Anforderungen FA_REQ3, FA_REQ10 sowie

NFA_REQ5. Weiter wird der fachlich Use-Case UC08 (Agent seit X Tagen keine Leistung mehr

erzeugt) mit FA_REQ8 behandelt.

5.4.1 Datenfluss und umgesetzte Architektur

Jeder Dienst schreibt Meldungen mit dem Logger in eine eigene Datei (z. B. agent-core.log

oder noshow-agent.log). Diese Einträge sind als JSON strukturiert und werden mit einem

Hilfsprogramm namens Promtail fortlaufend mit Zusatzangaben versehen. Unter anderem der

Service-Name und das Log-Level. Anschliessend werden die Daten an Loki geschickt. Loki ist ein

Dienst für die zentrale Ablage der Logs. Dort werden sie gespeichert und so indexiert, dass

man sie später wiederfinden kann. Die Auswertung erfolgt mithilfe von Grafana, das eine

bequeme und schnelle Durchsuchung der Logs ermöglicht („Zeige mir alle Fehler des Agent-

Core der letzten zwei Stunden.“) (UC09, UC15). Darüber hinaus können einfache

Auswertungen direkt aus den Logdaten gebildet werden (z. B. „Wie viele Warnungen gab es

pro Stunde?“) – siehe Abb. 14: Systemüberblick.

51

5.4.2 Verwendung

Sowohl im Agent-Core als auch in den Agenten wird das Logger-Modul importiert und per

Dependency Injection in den Konstruktor übergeben. Danach kann direkt geloggt werden,

beispielsweise mit logger.info(...), logger.warn(...) oder logger.error(...). In Grafana erscheinen

die Logs der Dienste unmittelbar und können direkt durchsucht werden, ohne manuelle

Konfiguration – alles ist bereits bereitgestellt (UC14).

5.4.3 Bekannte Grenzen

Aus Zeitgründen wurde eine automatische Überwachung über Metriken und eingerichtete

Alarmmeldungen nicht umgesetzt. Falls etwas aus dem Ruder läuft, wird dies nur über eine

Auswertung der Logs erkennbar – nicht über Metrik-Dashboards oder Benachrichtigungen

(UC08).

5.5 Qualitätssicherung

Das Shift Left Prinzip wurde im Projektverlauf über eine durchgehende, automatische CI/CD

Pipeline umgesetzt. Um die E2E Test sowie eine sinnvolle Verteilung sicherzustellen, wurde

Docker eingesetzt. Die Test-Stage sichert die Qualität noch weiter über einen Pre-Commit-

Hook und Unit-Tests. Zur Laufzeit wird über Zod sichergestellt, dass die Daten typsicher sind.

Die Qualitätsanforderungen NFA_REQ3, NFA_REQ4 wurden somit erfolgreich umgesetzt. Die

Schema Validierung trägt zudem zur Realisierung von NFA_REQ9 bei.

5.5.1 Testinfrastruktur und Hilfsmittel

Für die Testinfrastruktur wurden verschiedene Hilfsmittel als Bausteine realisiert:

Infra-Builder für E2E-Tests: Startet Postgres, NATS und den Agent-Core in einem isolierten

Netzwerk als Testcontainer. Per Builder-Pattern kann man frei wählen, welche Dienste

benötigt werden, und kann leicht erweitert werden. Bei Bedarf lassen sich zusätzlich die

Container-Logs aktivieren – das hilft, die Ursache bei fehlgeschlagenen Tests schnell zu finden.

DataSource-Factory für E2E-Tests: Initialisiert eine TypeORM-Datenquelle mit den

übergebenen Domänenentitäten und stellt eine Reset-Funktion bereit, um die Datenbank in

Test-Hooks (Setup/Teardown) sauber zurückzusetzen. Damit lassen sich Arrange- und Assert-

Phasen realistisch und flexibel aufsetzen, und die Tests bleiben sauber isoliert.

AgentTest-Factory für E2E-Tests: Erstellt einen Agenten als Nest-App und vereint den Infra-

Builder und DataSource-Factory in einem. Damit lässt sich mit sehr wenig Zeilen Code ein

gesamter E2E-Test aufziehen.

TestLogger-Factory für Unit- und E2E-Tests: Stellt einen Winston-Logger bereit, mit dem sich

Logs der Ablauflogik gezielt “ausspionieren“ oder für die Konsole aktivieren bzw. deaktivieren

lassen. Dies erleichtert die Verfolgung von Prozessen beim Schreiben von Tests sowie bei der

Fehlersuche erheblich – insbesondere, weil mehrere Dienste gleichzeitig ausgeführt werden.

Diese Bausteine senken den Setup-Aufwand, vereinheitlichen den Testaufbau ohne Flexibilität

zu verlieren – so werden auch komplexere E2E-Tests gut handhabbar.

52

5.5.2 Metriken

Wir haben folgende Metriken protokolliert:

• Anzahl Tests: 43

• Testabdeckung (Coverage): 85.86% (Stmts), 68.9% (Branch)

• SonarQube Quality-Gate: 18 Open issues, 6 Accepted issues, 12 Security Hotspots

(dies liegt daran, dass wir die Docker-Images nicht Infra-spezifisch abgesichert haben)

• Umsetzungszeit Template Agent: 2 Stunden (Bei CISTEC AG normalerweise 2 Tage für

komplettes Setup)

• Lines of Code für einen simplen Agenten: 48 Zeilen für den Service, 283 Zeilen für den

gesamten Agenten inkl. Domain, DTOs und Entities.

Die Interpretation von Metriken ist keine exakte Wissenschaft, jedoch ist hier klar sichtbar,

dass das Framework eine hohe Testabdeckung erzielt hat und den Arbeitsaufwand sowie die

Umsetzungszeit für einen simplen Agenten massiv verringert hat. Das SonarQube Quality-Gate

schlägt 24 bestätigte Issues vor (grösstenteils TODO oder FIXME Kommentare) und fand 12

Sicherheits-Vulnerabilitäten. Diese liegen ausschliesslich an den Docker-Images, welche die

Dependencies direkt in das Image kopieren, sowie nicht ausreichend gegen Role Based Access

Control (RBAC) geschützt sind. Dies ist in unserem definierten Scope und in einem nicht

produktiven Setting vertretbar und kann bei der Integration in eine richtige

Firmeninfrastruktur gepatcht werden.

Abb. 17: SonarQube Quality Gate

53

6 Diskussion

6.1 Zielerreichung

Ausgehend von der formulierten Problemstellung im Kapitel 1.1 und 4.1 – einer

fragmentierten, schwer wartbaren und kaum skalierbaren Agentenlandschaft – konnte im

Rahmen dieser Arbeit ein standardisiertes, modulares Framework entwickelt werden. Der rote

Faden von der Analyse des Ist-Zustands über die Definition von Anforderungen bis hin zu

Architekturentscheidungen und Prototyping wurde nach bestem Wissen und Gewissen

verfolgt.

Die wesentlichen Pain Points aus Kapitel 1.1 wurden adressiert:

Standardisierung und Wiederverwendbarkeit: Klare Guidelines, konsistente

Implementationsmuster (Prozess mit processItem, update, create), und ADR-Dokumentation

schaffen eine belastbare Grundlage für künftige Agenten. Erweiterbare Codebausteine (libs)

bieten eine Basis, welche von allen Agenten verwendet und erweitert werden können.

Wartbarkeit: Durch die Trennung von Core und Agenten, Zod-Schemata und Monitoring-

Infrastruktur (Prometheus, Grafana, Loki) ist der Betrieb nachvollziehbarer und Fehler lassen

sich schneller eingrenzen. Reporter können auf ein vorkonfiguriertes Dashboard zugreifen.

Skalierbarkeit: Die Microservice-Architektur mit Kubernetes-Deployments erlaubt horizontale

Skalierung und Deployments pro Agent, welche enterprise-ready sind.

Flexibilität: Mit NATS als Kommunikationsschicht ist das Framework offen für neue Use Cases

und zukünftige Erweiterungen.

Für die CISTEC AG entsteht ein klarer Mehrwert durch reduzierten Wartungsaufwand, höhere

Wiederverwendbarkeit, gesteigerte Flexibilität und konsequente Standardisierung. Besonders

deutlich wird dies an der Entwicklungsgeschwindigkeit neuer Agenten: Während bislang

mehrere Tage für die Umsetzung benötigt wurden, reduziert das Framework diesen Aufwand

auf wenige Stunden, da zentrale Infrastruktur und Basiskomponenten bereits vorhanden sind.

Die gewählte Architektur stellt zugleich sicher, dass das System sowohl Batch-Verarbeitungen

als auch eventgetriebene Szenarien unterstützt und damit nachhaltig auf unterschiedliche

Einsatzkontexte vorbereitet ist. Damit erfüllt das Framework nicht nur die inhaltlichen Ziele der

Masterarbeit, sondern liefert der CISTEC AG eine tragfähige Grundlage, um ihre

Agentenlandschaft langfristig resilienter, effizienter und zukunftssicher zu gestalten.

6.2 Challenges

Die Projektergebnisse zeigen, dass der Erfolg dieser Arbeit weniger von einer idealisierten

Planung als vielmehr von der Fähigkeit abhing, auf Unsicherheiten adaptiv zu reagieren und

zentrale Entscheidungen transparent zu dokumentieren. Die im Kapitel der Risikoanalyse

dargestellten Entwicklungen verdeutlichen, dass sowohl fachliche als auch technische und

organisatorische Faktoren den Projektverlauf massgeblich beeinflussten.

6.2.1 Domänenspezifischer vs. generischer Framework-Prototyp

Ein zentrales Spannungsfeld lag in der Abgrenzung zwischen einem domänenspezifischem und

generischen Framework-Ansatz. Ursprünglich bestand die Erwartung, klinische Agenten aus

54

KISIM nachzubilden. Diese Ausrichtung erwies sich jedoch als zu komplex und zu eng mit

spezifischen Strukturen der CISTEC AG verknüpft. Mit der Entscheidung ADR0007 wurde dieser

Pfad bewusst verlassen und durch abstrahierte, alltagsnahe Use-Cases ersetzt. Diese Abkehr

von fachlicher Detailtreue ermöglichte eine generische Lösung, die auch für Entwickler:innen

ohne klinischen Hintergrund nachvollziehbar blieb. Gleichzeitig wurden gute Grundlagen für

Innovation und langfristige Erweiterbarkeit bereitet. Allerdings führte die späte Abgrenzung zu

Verzögerungen, was die Bedeutung eines frühzeitigen Scope-Managements unterstreicht.

6.2.2 Cyberangriff der CISTEC AG

Neben der fachlichen Dimension prägten externe Ereignisse den Projektverlauf erheblich. Der

Ransomware-Angriff auf die CISTEC AG verzögerte die Bereitstellung von Testdaten und

reduzierte die Möglichkeiten der Auftraggeberin und des Maintainers, aktiv am Projekt

mitzuwirken. Als die Daten verfügbar wurden, erwiesen sie sich zudem als ungeeignet für

Entwicklungszwecke. Die Konsequenz war die Definition einer eigenen Domäne, die es

erlaubte, unabhängigen Fortschritt zu erzielen. Dieses Vorgehen erwies sich als entscheidend

für den Projekterfolg, zeigte jedoch auch, dass externe Abhängigkeiten frühzeitig durch

eigenständige Initiativen abgefedert werden müssen.

6.2.3 Enterprise-Infrastruktur

Technisch stellte die Intransparenz der bestehenden Build- und Deployment-Pipelines eine

weitere Herausforderung dar. Da die internen Prozesse der CISTEC AG aufgrund ihrer

Komplexität und Sicherheitsvorgaben nicht zugänglich waren, musste das Projektteam eine

eigenständige, schlanke CI/CD-Pipeline aufbauen. Mit Fleet und GitOps konnte eine

funktionale Lösung geschaffen werden, die die Kernanforderungen abdeckte, sich jedoch nicht

nahtlos in die Verteilung der CISTEC AG mit ArgoCD integrieren lässt. Abstriche bei Persistenz,

Skalierung und Security waren dabei unvermeidlich, etwa durch fehlende Log-Historien oder

fehlendes Secret-Management. Dennoch zeigte sich, dass der Fokus auf Deployment, Logging

und Modularität ausreichend war, um einen praxistauglichen Prototyp zu liefern.

6.2.4 Kommunikation und Zusammenarbeit

Organisatorisch erwiesen sich eingeschränkte Stakeholder-Präsenz und fehlende technische

Rollen auf Seiten der CISTEC AG als Hemmfaktoren. Der Product Owner war über längere Zeit

abwesend, wodurch regelmässige Abnahmen nicht stattfinden konnten. Entscheidungen

mussten daher eigenverantwortlich getroffen und in Architecture Decision Records (ADR’s)

dokumentiert werden. Auch innerhalb des Projektteams führten ungleichmässige Arbeitslast

und temporäre Abwesenheiten zu zusätzlichem Koordinationsaufwand. Diese

Herausforderungen konnten durch zusätzliche Syncs, Pair Programming und eine konsequente

Dokumentation abgemildert, jedoch nicht vollständig gelöst werden.

55

6.2.5 Fazit

Zusammenfassend lässt sich feststellen, dass die grössten Herausforderungen weniger in der

technischen Umsetzung als vielmehr in der Domänenabgrenzung, der Abhängigkeit von

externen Faktoren und der organisatorischen Koordination lagen. Die Entscheidung für ein

generisches Framework, die Einführung einer eigenen Testdomäne und der Aufbau einer

unabhängigen Deployment-Pipeline erwiesen sich als zentrale Weichenstellungen, um das

Projekt erfolgreich abzuschliessen. Gleichzeitig verdeutlicht der Projektverlauf, dass Resilienz

in der Softwareentwicklung nicht durch Risikofreiheit entsteht, sondern durch die Fähigkeit,

auf Unsicherheiten flexibel, offen und transparent zu reagieren.

6.3 Weiterentwicklung

Der im Rahmen dieser Arbeit entwickelte Prototyp bildet eine robuste Grundlage für den

Betrieb von Agenten im klinischen Kontext. Gleichwohl konnten nicht alle potenziellen

Funktionen im Prototypen umgesetzt werden. Für eine zukünftige Weiterentwicklung sind

insbesondere folgende funktionale Erweiterungen denkbar:

6.3.1 Message Queue

Die aktuelle Kommunikation zwischen Core und Agenten basiert auf einem Request-Response-

Muster via NATS. Für den produktiven Einsatz könnte dieser Mechanismus um eine Message

Queue ergänzt werden. Eine solche Warteschlange erlaubt es, Agenten nach dem Pull-Prinzip

Aufträge abarbeiten zu lassen. Jeder Agent kann so eigenständig neue Jobs aus der Queue

entnehmen und abarbeiten. Dieses Verfahren erhöht die Robustheit, da Aufträge im Falle

eines Absturzes nicht verloren gehen. Zusätzlich sind Retries durch den Broker unmittelbar

umsetzbar. NestJS bietet hierfür bereits integrierte Adapter (z. B. für NATS JetStream oder

Redis Streams), sodass die Architektur flexibel erweiterbar bleibt.

6.3.2 Transaction Logging

Für Nachvollziehbarkeit und Revisionssicherheit soll künftig ein zentrales Transaction Logging

etabliert werden. Jede erzeugte oder aktualisierte Leistung wird dabei in einer separaten

Entität der Datenbank persistiert. Durch dieses Vorgehen entsteht ein detailliertes Journal aller

durchgeführten Operationen, das sowohl für Audits als auch für technische Analysen genutzt

werden kann. Darüber hinaus bildet es die Basis für Nachgenerierungen, da Transaktionen für

eine bestimmte Zeitspanne erneut ausgerollt werden können.

6.3.3 Nachgenerierung

Im aktuellen Prototyp existiert noch kein Mechanismus zur Nachgenerierung von Leistungen.

Dieser ist jedoch essenziell, wenn Daten nachträglich korrigiert werden müssen

(z. B. bei ERP-Störungen oder fehlerhaften Abrechnungsdaten). Eine mögliche Erweiterung

besteht darin, dass Agenten auf Basis des Transaction Logs oder Message Queues mithilfe

eines Von- und Bis-Datums erneut ausgeführt werden können. Auf diese Weise lassen sich

vergangene Leistungen vollständig oder partiell neu berechnen, ohne die Integrität der

56

bestehenden Daten zu gefährden.

Eine praxisnahe Ergänzung wäre ebenfalls die Einführung eines Betriebsmodus-Flags, mit dem

Agenten zwischen Normalbetrieb und Nachgenerierung umgeschaltet werden können. Im

Normalbetrieb arbeiten die Agenten wie gewohnt im kontinuierlichen Modus und verarbeiten

aktuelle Daten. Im Nachgenerierungsmodus hingegen wird eine spezifische Zeitspanne

berücksichtigt, die Agenten arbeiten alle relevanten Datensätze innerhalb dieses Bereichs

erneut ab. Dieses Vorgehen trennt die beiden Anwendungsfälle klar und erleichtert die

Nachvollziehbarkeit bei Bugs.

6.3.4 Monitoring und Alerting

Im Bereich Monitoring ist bislang nur Logging umgesetzt, das Systemereignisse in Grafana

sichtbar und bequem zugänglich macht. Für die nächste Ausbaustufe bietet es sich an, das

Setup um Prometheus und den Alertmanager zu erweitern (siehe Abb. 14: Systemüberblick).

Prometheus sammelt Metriken wie CPU- und RAM-Auslastung, Durchsatz und Fehlerraten und

macht Trends sichtbar. Der Alert Manager löst bei definierten Schwellwerten automatisch

Benachrichtigungen (z. B. per Mail oder Slack) aus. So lässt sich gezielt und frühzeitig

eingreifen und würde den UC08 “Agent seit X Tagen keine Leistung mehr erzeugt” abdecken.

Die Erweiterung von Prometheus für das Monitoring gilt es auch in der Verteilung

nachzuziehen und zu integrieren. Metriken sollten im Agent-Core aggregiert werden, bis sie

von Prometheus abgerufen werden. Ausserdem läuft Loki derzeit ohne Persistenz. Für eine

produktive Umgebung sollten Persistent-Volume-Claims mit ausreichender Retention

eingeplant werden.

6.3.5 NATS Queue-Groups und Jetstream

NATS bietet verschiedene Kommunikationsmuster an – unter anderem Queues-Groups. Wir

empfehlen, das System um Queues-Groups zu erweitern, um eine robustere und skalierbare

Lösung zu erreichen. Diese Erweiterung ermöglicht die Nachrichtenverteilung als

Lastverteilung in Pub/Sub-Szenarien: hierbei hören mehrere Worker auf das gleiche Subject,

jedoch verarbeitet nur ein Worker aus der Gruppe die Nachricht.

Für persistente Nachrichten und grantierte Zustellung, lässt sich NATS optional mit Jetstream

erweitern, sodass Nachrichten Ausfälle überdauern und später automatisch nachgeholt

werden können. Lastspitzen werden gepuffert und Verbraucher entkoppelt und stellen einen

schlanken Key/Value-Store für Zustände oder Konfigurationen bereit. In Kombination mit NATS

und Queue-Groups ergibt sich eine robuste Basis, die sich leicht horizontal skalieren lässt.

6.3.6 Verteilung, Deployment, DevOps, Security und Skalierung

Die heutige Fleet/GitOps-Struktur funktioniert gut, ist aber von automatischen Tests

ausgeschlossen. Für den produktiven Betrieb sollte die automatische Verteilung um

automatisierte Tests ergänzt werden. Beim Thema Sicherheit haben wir im Prototyp bewusst

Abstriche gemacht. In einem produktiven Betrieb gehören Passwörter und Zugangsdaten nicht

ins Repo, sondern in ein Secret-Management. Ebenso ist die Kommunikation zwischen den

Diensten über NATS zu verschlüsseln.

57

7 Fazit

Ziel dieser Arbeit war es, ein Framework zu entwickeln, welches die Agenten-basierte

Leistungserfassung in Klinikinformationssystemen standardisiert, modularisiert und langfristig

wartbar macht. Ausgangspunkt bildete die Analyse der bestehenden, Agentenlandschaft bei

der CISTEC AG, die durch individuelle Implementierungen, hohen Wartungsaufwand und

eingeschränkte Skalierbarkeit geprägt war.

Die Entscheidung, die bestehenden Agenten nicht 1:1 nachzubilden, sondern eine eigene

Domäne aus nicht-medizinischen Szenarien zu verwenden, reduzierte die fachliche

Komplexität erheblich und führte zu einer klareren, robusteren Architektur. Auf dieser Basis

wurden exemplarische Use Cases umgesetzt (Agent-NoShow, Agent-Marathon, Agent-

Grenzkontrolle), welche die Modularisierung und Wiederverwendbarkeit von Komponenten

demonstrieren.

Die Arbeit zeigt, dass mit einer serviceorientierten Architektur auf Basis von NestJS, NATS,

TypeORM, Schema-Validierung in zod, und Kubernetes ein tragfähiges Fundament für Agenten

geschaffen werden kann.

Ergänzt durch einen einheitlichen Prozess, welcher als Grundlage für alle Agenten gültig ist,

werden Doppelspurigkeiten in der Business-Logik signifikant verringert. Mittels gebündelten

Logging-Ressourcen können die Agenten mühelos in Grafana eingesehen werden, um bei

allfälligen Problemen im klinischen Bereich schneller auf Schlussfolgerungen kommen zu

können. Damit wurde ein System entworfen, das sowohl robust als auch flexibel ist und bei

fachlichen Anforderungen im klinischen Bereich einfach erweitert werden kann. Durch die

zentrale Rolle von ADR’s konnte die Transparenz im Entwicklungsprozess sichergestellt und

zukünftige Weiterentwicklungen methodisch abgesichert werden.

Die Evaluierung anhand von Muss- und Kann-Kriterien sowie einer Risikomatrix verdeutlicht,

dass das Framework die identifizierten Pain Points adressiert: Wiederverwendbarkeit,

Standardisierung und Wartbarkeit wurden deutlich verbessert. Gleichzeitig wurde durch die

modulare Struktur die Grundlage für Erweiterbarkeit geschaffen.

Für die Zukunft eröffnen sich Weiterentwicklungsmöglichkeiten wie Message Queues,

erweitertes Transaction-Logging, Mechanismen für Nachgenerierungen, oder die Erweiterung

um kundenindividuelle Konfigurationen. Diese Arbeit bildet somit die Basis für einen

nachhaltigen Transformationsprozess in der Leistungserfassung von einer fragmentierten,

schwer wartbaren Landschaft hin zu einem standardisierten, transparenten und

zukunftsfähigen System.

58

8 Abbildungsverzeichnis

Abb. 1: Systemkontextdiagramm ..12

Abb. 2: Projektplan zu Projektbeginn ..13

Abb. 3: Kollaboration und Kommunikationsablauf im Entwicklungsprozess14

Abb. 4: Branching sowie Build- und Deploymentprozess im Entwicklungsprozess16

Abb. 5: Stakeholder-Matrix ...18

Abb. 6: Microservices Testing-Strategie (Schaffer, 2018) ...19

Abb. 7: Entwicklungsphasen ..20

Abb. 8: Use-Case Diagramm ..25

Abb. 9: Domain Model ..29

Abb. 10: Risikomatrix der initial definierten Risiken ...31

Abb. 11: Risikomatrix der technischen Risiken ...32

Abb. 12: Risikomatrix der organisatorischen Risiken ..33

Abb. 13: Risikomatrix der finalen Risiken ...34

Abb. 14: Systemüberblick ..45

Abb. 15: Paketdiagramm ...47

Abb. 16: Verteilungsdiagramm ..49

Abb. 17: SonarQube Quality Gate ..52

Abb. 18: Projektplan Soll-Ist-Vergleich ...61

Abb. 19: Aufwandsverlauf (kumuliert) ...61

Abb. 20: Aufwandsintensität (exponentiell geglättet) ..62

9 Tabellenverzeichnis

Tab. 1: Übersicht über Projektbeteiligte und Projektrollen ..13

Tab. 2: Nutzung und Erklärung der genutzten Labels ...15

Tab. 3: Rollendefinition ...17

Tab. 4: Stakeholder-Liste ...18

Tab. 5: Use-Case Unterteilung ...26

Tab. 6: Funktionale und Qualitätsanforderungen ..28

Tab. 7: Traceability Matrix ...29

Tab. 8: Erwartete technische Risiken ...32

Tab. 9: Erwartete organisatorische Risiken ..33

Tab. 10: Erwartete finale Risiken ...35

Tab. 11: Auswertung Technologiestack ...35

Tab. 12: Arbeitsaufwände (zusammengefasst) ..39

Tab. 13: Auswertung finaler Risiken (zusammengefasst)..41

Tab. 14: Architektur Vor- und Nachteile ..44

Tab. 15: Deklaration genutzter (KI)-Tools ..60

59

10 Literaturverzeichnis

Cockburn, A. (2011). Writing effective use cases (23rd printing). Addison-Wesley.

FMH Swiss Medical Association: TARMED: Online-Tarifbrowser. Publikationsdatum unbekannt.

Zuletzt abgerufen am 14.09.2025 von https://www.fmh.ch/themen/ambulante-tarife/tarmed-

tarifbrowser-datenbank.cfm

FMH Swiss Medical Association: Wichtige Tarif-Info | TARDOC. Publiziert am 04.09.2025.

Zuletzt abgerufen am 14.09.2025 von https://tarifeambulant.fmh.ch/wichtige-tarif-info.cfm

Jochum, K. Ransomware-Angriff auf KIS-Anbieter Cistec. Publiziert am 28.02.2025. Zuletzt

abgerufen am 13.09.2025 von https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-

cistec-20250228

NATS.io. The official NATS documentation. Publiziert am 01.08.2025. Zuletzt abgerufen am

15.09.2025 von https://docs.nats.io/

NATS.io. Queue Groups. Publiziert am 06.12.2024. Zuletzt abgerufen am 15.09.2025 von

https://docs.nats.io/nats-concepts/core-nats/queue

Nygard, M. Documenting Architecture Decisions. Publiziert am 15.11.2011. Zuletzt abgerufen

am 13.09.2025 von https://www.cognitect.com/blog/2011/11/15/documenting-architecture-

decisions

Prokosch, H.-U. (2001) KAS KIS EKA EPA EGA E-Health: Ein Plädoyer gegen die babylonische

Begriffsverwirrung in der Medizinischen Informatik. Münster: Westfälische-Wilhelms-

Universität Münster.

Schaffer, A. Testing of Microservices. Publiziert am 11.01.2018. Zuletzt abgerufen am

12.09.2025 von https://engineering.atspotify.com/2018/01/testing-of-microservices

https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-cistec-20250228
https://www.inside-it.ch/ransomware-angriff-auf-kis-anbieter-cistec-20250228
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions

60

11 Anhang

11.1 Deklaration zu genutzten (KI)-Tools

Tool-Kategorie Tools Verwendungszwecke im Projekt

Plattform zur

Versionsverwaltung

● GitLab (self-hosted

durch OST)

● Code Reviews

● Issue Board

● Technische Dokumentation

● Versionsverwaltung

Kommunikation ● Discord

● Microsoft Teams

● WhatsApp

● Zoom

● Teamkommunikation,

● Abstimmungen intern und

extern

● Pair-Programming Sessions

IDE ● Visual Studio Code

● WebStorm

● Lokale Entwicklungsumgebung

● Pair-Programming Sessions

Ergänzungen zur

Lokalen

Entwicklungsumgebung

● Docker

● Helm

● kubectl

● Lokale Entwicklungsumgebung

AI ● ChatGPT

● Codepilot

● Hilfsmittel für das Generieren

von Code-Bausteinen,

Dokumentation, sowie

Fehlerbehandlung.

Darstellungen ● Draw.io

● Excalidraw

● Erstellung von Diagrammen und

Visualisierungen

Zeiterfassung ● Excel

● Timecamp

● Nachvollziehbarkeit der

aufgewendeten Arbeit

Dokumentenablage ● Google Drive ● Datenablage

● Kollaborativer Zugriff auf

Protokolle und Abschlussarbeit

Tab. 15: Deklaration genutzter (KI)-Tools

61

11.2 Zeiterfassung und Zeitauswertung

Soll-Ist-Vergleich:

Abb. 18: Projektplan Soll-Ist-Vergleich

Die Abb. 18 zeigt Soll (grau) und Ist (blau). Das Setup dauerte etwas länger, das Requirements

Engineering zog sich bis in den Mai. Beim Architekturprototyp konnten wir leicht aufholen. Die

Implementierung startete teils vorzeitig, erwies sich jedoch als komplexer als erwartet. Zur

gleichen Zeit entschieden wir Mitte Juni, von den fachlichen Kriterien Abstand zu nehmen, was

weitere Anpassungen nötig machte. Dadurch verschob sich der Feature-Freeze leicht, und die

Abgabephase fiel entsprechend kompakter aus.

Aufwandsverlauf (kumuliert):

Abb. 19: Aufwandsverlauf (kumuliert)

Der kumulierte Aufwand steigt über die gesamte Laufzeit stetig an und erreicht zum Schluss

gut über tausend Stunden. Ab Ende Mai zieht die Kurve sichtbar an – die steilste Phase liegt

zwischen Mitte Juni und Ende Juli.

Hinweis: Darstellung endet am 3. September, da der Export aufwändig war.

62

Aufwandsintensität (exponentiell geglättet):

Abb. 20: Aufwandsintensität (exponentiell geglättet)

Die tägliche Intensität startet moderat, erreicht Mitte April erste Spitzen, fällt kurz ab und

steigt ab Juni erneut deutlich an. Im Juli/August halten längere Hochphasen an. In den letzten

Wochen nimmt die Intensität spürbar ab.

Hinweis: Darstellung endet am 3. September, da der Export aufwändig war.

63

11.3 ADR’s

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

11.4 Use Cases

80

81

82

83

84

85

86

87

88

89

90

91

92

11.5 Produkt-Backlog

93

94

11.6 Code of Conduct

95

96

11.7 Auszug aus Build-Server und CI/CD

97

11.8 Technische Diagramme

Use-Case Diagramm

98

Domain Model

99

Systemüberblick

100

Verteilungsdiagramm

101

12 Selbstständigkeitserklärung

