
Web Map Tile Services
Tiny Tile Server

Bachelor Thesis
Department of Computer Science

University of Applied Science Rapperswil

Spring Term 2013

Author: Carmen Campos Bordons
Advisor: Prof. Stefan Keller, HSR
Project Partner: Klokan Technologies, Baar
External Co-Examiner: Claude Eisenhut, Burgdorf
Internal Co-Examiner: Prof. Dr. Andreas Rinkel, HSR

2 of 105

Abstract

Tiny Tile Server is a Python server that permits the user to display local MBTiles maps on the
internet. It extracts the data from the SQLite database where the map information is stored in
tables containing all the tiles, UTFGrid and metadata.
The tiles are the map images, smaller than the screen for better performance. The UTFGrid is
some extra information related with points in the map that appears in an infobox when the
user interact with these points. The metadata is the information about the map: name,
description, bounds, legend, center, minzoom, maxzoom.
Tiny Tile Server shows the tiles composing the map on a website and the UTFGrid data on top
of the tiles. It can also be used to show the getCapabilities information from Web Map Tile
Service in XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.
The server is a part in a website whose purpose is to show how it works and provide templates
for the user who wants to employ it, so he will not need to have programming knowledge in
order to use Tiny Tile Server, just to follow a simple installation tutorial.

To display the map, the user can choose between two different kind of templates: using
OpenLayers or Leaflet, which are libraries specialized in creating maps.
Because the user will need to have a map in a MBTiles database, tutorials about how to create
a map there are also provided.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

2 of 105

Abstract

Tiny Tile Server is a Python server that permits the user to display local MBTiles maps on the
internet. It extracts the data from the SQLite database where the map information is stored in
tables containing all the tiles, UTFGrid and metadata.
The tiles are the map images, smaller than the screen for better performance. The UTFGrid is
some extra information related with points in the map that appears in an infobox when the
user interact with these points. The metadata is the information about the map: name,
description, bounds, legend, center, minzoom, maxzoom.
Tiny Tile Server shows the tiles composing the map on a website and the UTFGrid data on top
of the tiles. It can also be used to show the getCapabilities information from Web Map Tile
Service in XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.
The server is a part in a website whose purpose is to show how it works and provide templates
for the user who wants to employ it, so he will not need to have programming knowledge in
order to use Tiny Tile Server, just to follow a simple installation tutorial.

To display the map, the user can choose between two different kind of templates: using
OpenLayers or Leaflet, which are libraries specialized in creating maps.
Because the user will need to have a map in a MBTiles database, tutorials about how to create
a map there are also provided.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

2 of 105

Abstract

Tiny Tile Server is a Python server that permits the user to display local MBTiles maps on the
internet. It extracts the data from the SQLite database where the map information is stored in
tables containing all the tiles, UTFGrid and metadata.
The tiles are the map images, smaller than the screen for better performance. The UTFGrid is
some extra information related with points in the map that appears in an infobox when the
user interact with these points. The metadata is the information about the map: name,
description, bounds, legend, center, minzoom, maxzoom.
Tiny Tile Server shows the tiles composing the map on a website and the UTFGrid data on top
of the tiles. It can also be used to show the getCapabilities information from Web Map Tile
Service in XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.
The server is a part in a website whose purpose is to show how it works and provide templates
for the user who wants to employ it, so he will not need to have programming knowledge in
order to use Tiny Tile Server, just to follow a simple installation tutorial.

To display the map, the user can choose between two different kind of templates: using
OpenLayers or Leaflet, which are libraries specialized in creating maps.
Because the user will need to have a map in a MBTiles database, tutorials about how to create
a map there are also provided.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

3 of 105

Management summary

Introduction

This project has been performed with the main objective of displaying local maps in MBTiles
format on the internet. That is the purpose of Tiny Tile Server. But also a website has been
developed with templates showing examples that the final user will only need to adapt to
display his maps. There are also tutorials about how to create your own map.

There are already similar projects related with serving tiles stored in a MBTiles file. What
makes Tiny Tile Server different is that it is also focused on users who do not need to have
programming skills, which is why it is simpler and easier to use.
Tiny Tile Server could also be used by developers to add new functionalities on it.

Results

Tiny Tile Server extracts the data from the SQLite database where the map information is
stored in tables containing all the tiles, UTFGrid and metadata.

3 of 105

Management summary

Introduction

This project has been performed with the main objective of displaying local maps in MBTiles
format on the internet. That is the purpose of Tiny Tile Server. But also a website has been
developed with templates showing examples that the final user will only need to adapt to
display his maps. There are also tutorials about how to create your own map.

There are already similar projects related with serving tiles stored in a MBTiles file. What
makes Tiny Tile Server different is that it is also focused on users who do not need to have
programming skills, which is why it is simpler and easier to use.
Tiny Tile Server could also be used by developers to add new functionalities on it.

Results

Tiny Tile Server extracts the data from the SQLite database where the map information is
stored in tables containing all the tiles, UTFGrid and metadata.

3 of 105

Management summary

Introduction

This project has been performed with the main objective of displaying local maps in MBTiles
format on the internet. That is the purpose of Tiny Tile Server. But also a website has been
developed with templates showing examples that the final user will only need to adapt to
display his maps. There are also tutorials about how to create your own map.

There are already similar projects related with serving tiles stored in a MBTiles file. What
makes Tiny Tile Server different is that it is also focused on users who do not need to have
programming skills, which is why it is simpler and easier to use.
Tiny Tile Server could also be used by developers to add new functionalities on it.

Results

Tiny Tile Server extracts the data from the SQLite database where the map information is
stored in tables containing all the tiles, UTFGrid and metadata.

4 of 105

Then it shows the tiles composing the map on a website and the UTFGrid data on top of the
tiles. It can also be used to show the getCapabilities information from Web Map Tile Service in
XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.

Technologies

The frontend is programmed using HTML5, CSS3 and JavaScript. There are also used two
libraries specialized in creating maps: Leaflet and OpenLayers. These libraries permits us to
display our thematic map on the internet on top of a base layer with topographic information,

4 of 105

Then it shows the tiles composing the map on a website and the UTFGrid data on top of the
tiles. It can also be used to show the getCapabilities information from Web Map Tile Service in
XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.

Technologies

The frontend is programmed using HTML5, CSS3 and JavaScript. There are also used two
libraries specialized in creating maps: Leaflet and OpenLayers. These libraries permits us to
display our thematic map on the internet on top of a base layer with topographic information,

4 of 105

Then it shows the tiles composing the map on a website and the UTFGrid data on top of the
tiles. It can also be used to show the getCapabilities information from Web Map Tile Service in
XML format extracted by the metadata table.

Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to
tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database.

Technologies

The frontend is programmed using HTML5, CSS3 and JavaScript. There are also used two
libraries specialized in creating maps: Leaflet and OpenLayers. These libraries permits us to
display our thematic map on the internet on top of a base layer with topographic information,

5 of 105

for that purpose is used OpenStreetMap. They also permit to add some functionalities in our
map, like zoom, scale, legend.
The backend is written in Python and using Bottle as only external dependency. Bottle is
necessary to handle requests/responses to the server, to get and to operate with the variables
and to simplify routing.

Outlook

The website can be used for any kind of user who wants to display its thematic maps on the
internet. The workspace is easy to reproduce and do not need any external reference apart
from installing Python. With the templates, which are well documented, the user only need to
change the part of the code to reference its maps. There are also some tutorials to create a
map in MBTiles format, in case the user needs it.

Tiny Tile Server can be installed in a different scope instead of a Python website. Using Tiny
Tile Server in a different scope that the website could be difficult for a normal user with no
programming knowledge. This is completely possible, but it is more focused for web
developers who prefer to integrate this server in another application or use a different web
framework instead of Bottle.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

5 of 105

for that purpose is used OpenStreetMap. They also permit to add some functionalities in our
map, like zoom, scale, legend.
The backend is written in Python and using Bottle as only external dependency. Bottle is
necessary to handle requests/responses to the server, to get and to operate with the variables
and to simplify routing.

Outlook

The website can be used for any kind of user who wants to display its thematic maps on the
internet. The workspace is easy to reproduce and do not need any external reference apart
from installing Python. With the templates, which are well documented, the user only need to
change the part of the code to reference its maps. There are also some tutorials to create a
map in MBTiles format, in case the user needs it.

Tiny Tile Server can be installed in a different scope instead of a Python website. Using Tiny
Tile Server in a different scope that the website could be difficult for a normal user with no
programming knowledge. This is completely possible, but it is more focused for web
developers who prefer to integrate this server in another application or use a different web
framework instead of Bottle.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

5 of 105

for that purpose is used OpenStreetMap. They also permit to add some functionalities in our
map, like zoom, scale, legend.
The backend is written in Python and using Bottle as only external dependency. Bottle is
necessary to handle requests/responses to the server, to get and to operate with the variables
and to simplify routing.

Outlook

The website can be used for any kind of user who wants to display its thematic maps on the
internet. The workspace is easy to reproduce and do not need any external reference apart
from installing Python. With the templates, which are well documented, the user only need to
change the part of the code to reference its maps. There are also some tutorials to create a
map in MBTiles format, in case the user needs it.

Tiny Tile Server can be installed in a different scope instead of a Python website. Using Tiny
Tile Server in a different scope that the website could be difficult for a normal user with no
programming knowledge. This is completely possible, but it is more focused for web
developers who prefer to integrate this server in another application or use a different web
framework instead of Bottle.

Website: http://152.96.56.43/
Repository: https://github.com/carmencampos/WMTS

6 of 105

Index

Abstract ... 2

Management summary... 3

Index.. 6

Definition of the project.. 9

Licensing agreement ... 11

Author declaration (Eigenständigkeitserklärung) ... 12

Technical report .. 13

1. Introduction .. 14

1.2. Presentation of the problem.. 14

1.3. Goals... 14

1.4. Conditions, environment, definitions and delimitations ... 15

1.5. Construction work.. 16

2. Initial situation .. 17

2.1. Existing approaches.. 17

2.2. Brief description and characterization... 17

Wax to add functionalities to our map ... 17

Tileserver to serve MBTiles on a website.. 18

Leaflet.utfgrid: a new kind of layer in Leaflet ... 18

TileStache .. 19

TileCloud.. 19

Importing and exporting MBTiles using MBUtil .. 19

Create a mbtiles database of a GeoTIFF using raster2mb .. 19

Create tiles of a GeoTIFF map using gdal2tiles ... 19

Create tiles of a GeoTIFF map using MapTiler .. 22

Landez operates and creates MBTiles files ... 24

Python-mbtiles helps you working with MBTiles databases... 24

MapProxy .. 24

MapCache.. 32

2.3. Further development ... 35

3. Review ... 37

3.1. Criteria.. 37

3.2. Conclusions .. 37

4. Implementation plan... 39

6 of 105

Index

Abstract ... 2

Management summary... 3

Index.. 6

Definition of the project.. 9

Licensing agreement ... 11

Author declaration (Eigenständigkeitserklärung) ... 12

Technical report .. 13

1. Introduction .. 14

1.2. Presentation of the problem.. 14

1.3. Goals... 14

1.4. Conditions, environment, definitions and delimitations ... 15

1.5. Construction work.. 16

2. Initial situation .. 17

2.1. Existing approaches.. 17

2.2. Brief description and characterization... 17

Wax to add functionalities to our map ... 17

Tileserver to serve MBTiles on a website.. 18

Leaflet.utfgrid: a new kind of layer in Leaflet ... 18

TileStache .. 19

TileCloud.. 19

Importing and exporting MBTiles using MBUtil .. 19

Create a mbtiles database of a GeoTIFF using raster2mb .. 19

Create tiles of a GeoTIFF map using gdal2tiles ... 19

Create tiles of a GeoTIFF map using MapTiler .. 22

Landez operates and creates MBTiles files ... 24

Python-mbtiles helps you working with MBTiles databases... 24

MapProxy .. 24

MapCache.. 32

2.3. Further development ... 35

3. Review ... 37

3.1. Criteria.. 37

3.2. Conclusions .. 37

4. Implementation plan... 39

6 of 105

Index

Abstract ... 2

Management summary... 3

Index.. 6

Definition of the project.. 9

Licensing agreement ... 11

Author declaration (Eigenständigkeitserklärung) ... 12

Technical report .. 13

1. Introduction .. 14

1.2. Presentation of the problem.. 14

1.3. Goals... 14

1.4. Conditions, environment, definitions and delimitations ... 15

1.5. Construction work.. 16

2. Initial situation .. 17

2.1. Existing approaches.. 17

2.2. Brief description and characterization... 17

Wax to add functionalities to our map ... 17

Tileserver to serve MBTiles on a website.. 18

Leaflet.utfgrid: a new kind of layer in Leaflet ... 18

TileStache .. 19

TileCloud.. 19

Importing and exporting MBTiles using MBUtil .. 19

Create a mbtiles database of a GeoTIFF using raster2mb .. 19

Create tiles of a GeoTIFF map using gdal2tiles ... 19

Create tiles of a GeoTIFF map using MapTiler .. 22

Landez operates and creates MBTiles files ... 24

Python-mbtiles helps you working with MBTiles databases... 24

MapProxy .. 24

MapCache.. 32

2.3. Further development ... 35

3. Review ... 37

3.1. Criteria.. 37

3.2. Conclusions .. 37

4. Implementation plan... 39

7 of 105

4.1. Rough outline of my own solution concept ... 39

4.2. Restrictions to consider.. 40

5. Results, evaluation and outlook.. 41

5.1. Achievement of objectives... 41

5.2. Outlook: further development... 41

Software project documentation.. 42

1. Vision.. 43

2. Analysis and requirements specification .. 46

2.1. Functional requirements.. 46

2.2. Use cases .. 46

2.3. System sequence diagrams.. 48

2.4. Non-functional requirements .. 51

3. Design.. 52

3.1. Architecture.. 52

3.2. Object Browser... 53

3.3. Package and class diagrams ... 54

4. Development... 59

4.1. Implementation.. 59

Tiny Tile Server .. 59

Webapp ... 61

JavaScript files ... 62

5. Test.. 63

5.1. Automatic test procedures .. 63

5.2. Manual test procedures ... 64

6. Further development .. 68

6.1. Results .. 68

6.2. Possibilities of development .. 69

Project management... 71

1. Project management... 72

Sprint 1 .. 72

Sprint 2 .. 73

Sprint 3 .. 73

Sprint 4 .. 74

Sprint 5 .. 75

7 of 105

4.1. Rough outline of my own solution concept ... 39

4.2. Restrictions to consider.. 40

5. Results, evaluation and outlook.. 41

5.1. Achievement of objectives... 41

5.2. Outlook: further development... 41

Software project documentation.. 42

1. Vision.. 43

2. Analysis and requirements specification .. 46

2.1. Functional requirements.. 46

2.2. Use cases .. 46

2.3. System sequence diagrams.. 48

2.4. Non-functional requirements .. 51

3. Design.. 52

3.1. Architecture.. 52

3.2. Object Browser... 53

3.3. Package and class diagrams ... 54

4. Development... 59

4.1. Implementation.. 59

Tiny Tile Server .. 59

Webapp ... 61

JavaScript files ... 62

5. Test.. 63

5.1. Automatic test procedures .. 63

5.2. Manual test procedures ... 64

6. Further development .. 68

6.1. Results .. 68

6.2. Possibilities of development .. 69

Project management... 71

1. Project management... 72

Sprint 1 .. 72

Sprint 2 .. 73

Sprint 3 .. 73

Sprint 4 .. 74

Sprint 5 .. 75

7 of 105

4.1. Rough outline of my own solution concept ... 39

4.2. Restrictions to consider.. 40

5. Results, evaluation and outlook.. 41

5.1. Achievement of objectives... 41

5.2. Outlook: further development... 41

Software project documentation.. 42

1. Vision.. 43

2. Analysis and requirements specification .. 46

2.1. Functional requirements.. 46

2.2. Use cases .. 46

2.3. System sequence diagrams.. 48

2.4. Non-functional requirements .. 51

3. Design.. 52

3.1. Architecture.. 52

3.2. Object Browser... 53

3.3. Package and class diagrams ... 54

4. Development... 59

4.1. Implementation.. 59

Tiny Tile Server .. 59

Webapp ... 61

JavaScript files ... 62

5. Test.. 63

5.1. Automatic test procedures .. 63

5.2. Manual test procedures ... 64

6. Further development .. 68

6.1. Results .. 68

6.2. Possibilities of development .. 69

Project management... 71

1. Project management... 72

Sprint 1 .. 72

Sprint 2 .. 73

Sprint 3 .. 73

Sprint 4 .. 74

Sprint 5 .. 75

8 of 105

Sprint 6 .. 76

Sprint 7 .. 76

Sprint 8 .. 77

2. Project monitoring .. 78

2.1. Target-time comparison... 78

2.2. Code statistics .. 78

Appendix ... 80

1. Contents of the CD .. 81

2. Glossary and abbreviations ... 82

3. TileMill tutorials .. 87

3.1 TileMill: initial example ... 87

3.2 TileMill: Points of Interest in Switzerland ... 98

4. Bibliography .. 102

8 of 105

Sprint 6 .. 76

Sprint 7 .. 76

Sprint 8 .. 77

2. Project monitoring .. 78

2.1. Target-time comparison... 78

2.2. Code statistics .. 78

Appendix ... 80

1. Contents of the CD .. 81

2. Glossary and abbreviations ... 82

3. TileMill tutorials .. 87

3.1 TileMill: initial example ... 87

3.2 TileMill: Points of Interest in Switzerland ... 98

4. Bibliography .. 102

8 of 105

Sprint 6 .. 76

Sprint 7 .. 76

Sprint 8 .. 77

2. Project monitoring .. 78

2.1. Target-time comparison... 78

2.2. Code statistics .. 78

Appendix ... 80

1. Contents of the CD .. 81

2. Glossary and abbreviations ... 82

3. TileMill tutorials .. 87

3.1 TileMill: initial example ... 87

3.2 TileMill: Points of Interest in Switzerland ... 98

4. Bibliography .. 102

9 of 105

Definition of the project

Background
The target audience of this thesis are people with basic GIS knowledge who want to publish
their data (raster=> GeoTIFF and/or vector => Spatialite/ShapeFiles) by using open-
source software. This thesis also contains a website with a gallery and practical exercises of
map tile rendering and online publishing in the cloud (free services) or on own servers. For
online publishing on own servers templates for server and clients need to be developed.
Finally, the thesis optionally evaluates and demonstrates 'enhanced' raster tiles (UTFGrid)
and pure vector tiling approaches (Kothic, OpenStreetMap Watch List/OWL).
State-of-the-art web mapping applications available today are using tiles as their core API
for publishing maps. This thesis explains the basics about tiling services and shows the open-
source software typically used for generating and distributing tiled maps on any ordinary
web server (like Apache) in standardized tiling formats and with minimal or no need
to install, configure or maintain any additional software.
Hosting of the rendered maps is also possible from the cloud, such as MapBox, Amazon
S3/CloudFront or RackSpace Files. The published custom maps can be used in
HTML5/JavaScript applications, on mobile devices (iOS: MapKit/RouteMe, Android:
OSMDroid), or even in desktop GIS systems such as QGIS (open source) and ESRI ArcGIS
Desktop (commercial).

Tasks Assignment and Deliverables
There are three main goals for this thesis:

1. Delivering an overview of a state-of-the-art of (web) map tiling standards, open source
software and (free) services.

2. Producing a gallery of examples and introductory texts to selected map tiling software.
3. Programming templates to be used by web programmers who want to publish a topic as

interactive web maps on own servers.
4. Part of the third goal is the implementation of an own tiling server software, called

TinyTileServer (Python).

In the following there are main chapters to be covered by this thesis.

Getting to know TileMill, the "Map Design Studio"
1. About TileMill and CartoCSS (see also http://giswiki.hsr.ch/TileMill)
2. Preparing own vector data (files, databases)
3. Working with TileMill: Publishing rendered own vector data on a hosted server:

Uploading data to MapBox,
1. then publishing at MapBox directly (Ex.0

see http://api.tiles.mapbox.com/v3/carmencampos.example.html).
2. Publishing an own server: After exporting as MBTiles,
3. Uploading data to MapBox and integrating in own webpage.

4. Publishing maps from own server. Examples:
1. Simple example in Leaflet (Webpage Ex.1) / OpenLayers (Webpage Ex.2) with OSM

basemap
2. Example using SQL with OSM basemap

9 of 105

Definition of the project

Background
The target audience of this thesis are people with basic GIS knowledge who want to publish
their data (raster=> GeoTIFF and/or vector => Spatialite/ShapeFiles) by using open-
source software. This thesis also contains a website with a gallery and practical exercises of
map tile rendering and online publishing in the cloud (free services) or on own servers. For
online publishing on own servers templates for server and clients need to be developed.
Finally, the thesis optionally evaluates and demonstrates 'enhanced' raster tiles (UTFGrid)
and pure vector tiling approaches (Kothic, OpenStreetMap Watch List/OWL).
State-of-the-art web mapping applications available today are using tiles as their core API
for publishing maps. This thesis explains the basics about tiling services and shows the open-
source software typically used for generating and distributing tiled maps on any ordinary
web server (like Apache) in standardized tiling formats and with minimal or no need
to install, configure or maintain any additional software.
Hosting of the rendered maps is also possible from the cloud, such as MapBox, Amazon
S3/CloudFront or RackSpace Files. The published custom maps can be used in
HTML5/JavaScript applications, on mobile devices (iOS: MapKit/RouteMe, Android:
OSMDroid), or even in desktop GIS systems such as QGIS (open source) and ESRI ArcGIS
Desktop (commercial).

Tasks Assignment and Deliverables
There are three main goals for this thesis:

1. Delivering an overview of a state-of-the-art of (web) map tiling standards, open source
software and (free) services.

2. Producing a gallery of examples and introductory texts to selected map tiling software.
3. Programming templates to be used by web programmers who want to publish a topic as

interactive web maps on own servers.
4. Part of the third goal is the implementation of an own tiling server software, called

TinyTileServer (Python).

In the following there are main chapters to be covered by this thesis.

Getting to know TileMill, the "Map Design Studio"
1. About TileMill and CartoCSS (see also http://giswiki.hsr.ch/TileMill)
2. Preparing own vector data (files, databases)
3. Working with TileMill: Publishing rendered own vector data on a hosted server:

Uploading data to MapBox,
1. then publishing at MapBox directly (Ex.0

see http://api.tiles.mapbox.com/v3/carmencampos.example.html).
2. Publishing an own server: After exporting as MBTiles,
3. Uploading data to MapBox and integrating in own webpage.

4. Publishing maps from own server. Examples:
1. Simple example in Leaflet (Webpage Ex.1) / OpenLayers (Webpage Ex.2) with OSM

basemap
2. Example using SQL with OSM basemap

9 of 105

Definition of the project

Background
The target audience of this thesis are people with basic GIS knowledge who want to publish
their data (raster=> GeoTIFF and/or vector => Spatialite/ShapeFiles) by using open-
source software. This thesis also contains a website with a gallery and practical exercises of
map tile rendering and online publishing in the cloud (free services) or on own servers. For
online publishing on own servers templates for server and clients need to be developed.
Finally, the thesis optionally evaluates and demonstrates 'enhanced' raster tiles (UTFGrid)
and pure vector tiling approaches (Kothic, OpenStreetMap Watch List/OWL).
State-of-the-art web mapping applications available today are using tiles as their core API
for publishing maps. This thesis explains the basics about tiling services and shows the open-
source software typically used for generating and distributing tiled maps on any ordinary
web server (like Apache) in standardized tiling formats and with minimal or no need
to install, configure or maintain any additional software.
Hosting of the rendered maps is also possible from the cloud, such as MapBox, Amazon
S3/CloudFront or RackSpace Files. The published custom maps can be used in
HTML5/JavaScript applications, on mobile devices (iOS: MapKit/RouteMe, Android:
OSMDroid), or even in desktop GIS systems such as QGIS (open source) and ESRI ArcGIS
Desktop (commercial).

Tasks Assignment and Deliverables
There are three main goals for this thesis:

1. Delivering an overview of a state-of-the-art of (web) map tiling standards, open source
software and (free) services.

2. Producing a gallery of examples and introductory texts to selected map tiling software.
3. Programming templates to be used by web programmers who want to publish a topic as

interactive web maps on own servers.
4. Part of the third goal is the implementation of an own tiling server software, called

TinyTileServer (Python).

In the following there are main chapters to be covered by this thesis.

Getting to know TileMill, the "Map Design Studio"
1. About TileMill and CartoCSS (see also http://giswiki.hsr.ch/TileMill)
2. Preparing own vector data (files, databases)
3. Working with TileMill: Publishing rendered own vector data on a hosted server:

Uploading data to MapBox,
1. then publishing at MapBox directly (Ex.0

see http://api.tiles.mapbox.com/v3/carmencampos.example.html).
2. Publishing an own server: After exporting as MBTiles,
3. Uploading data to MapBox and integrating in own webpage.

4. Publishing maps from own server. Examples:
1. Simple example in Leaflet (Webpage Ex.1) / OpenLayers (Webpage Ex.2) with OSM

basemap
2. Example using SQL with OSM basemap

10 of 105

3. Example with own thematic data/picnic sites) (Webpage Ex. 3)
5. Publishing maps from own server using own TinyTileServer to read MBTiles

1. clients with Leaflet plus jQuery and Wax (Webpage Ex. 4)
2. clients with OpenLayers plus jQuery and Wax (Webpage Ex. 5)
3. Own basemap "Switzerland" as complex example (OpenStreetMap style) (Webpage

Ex. 6)
6. Working with raster (GeoTIFF) and grid files.

About Tiling and Raster Formats
1. GeoTIFF
2. MBTiles format (including UTFGrid)
3. Convert raster to tiles using command line tools like GDAL2Tiles, MapTiler,

raster2mbtiles, mbutil, MapCache.
4. Convert raster to tiles using GUIs like TileMill and QGIS (generating MBTiles, generating

GeoTIFF hierarchies)
5. An example (GeoTIFF)
6. Caching and seeding: MapProxy (can read also MBTiles), MapCache and GeoWebCache

Converting the MBTiles Format
1. Converting File Raster Formats to MBTiles (evaluating 'raster2mb')
2. Converting MBTiles to Raster Formats

About Raster and Tiles on the QGIS Desktop
1. Raster Images in QGIS (using example as raster file)
2. Web Map Tiling Services in QGIS (using example as WMS)
3. MBTiles in QGIS (via GDAL; own scripting task using Python console (ev. plugin?))

About Tiles in the PostgreSQL database
1. Overview of PostGIS Raster

Beyond Web Map Tiling
1. Overview
2. Vector Tiles - an overview (evaluate server code)

TinyTileServer - a Tiny Web Map Tiling Webserver (Software Project)
 Overview
 Configuration (e.g. for GetCapabilities)
 Usage

Deliverables
(basically everything in english):

 BA thesis documentation according to the guidelines of the department and advisor (incl.
a general part I and a SW engineering part II).

 Sep. document containing exercises
 Website with a show case and a gallery
 Ev. other helper tools
 Source Code (MIT license if possible)

10 of 105

3. Example with own thematic data/picnic sites) (Webpage Ex. 3)
5. Publishing maps from own server using own TinyTileServer to read MBTiles

1. clients with Leaflet plus jQuery and Wax (Webpage Ex. 4)
2. clients with OpenLayers plus jQuery and Wax (Webpage Ex. 5)
3. Own basemap "Switzerland" as complex example (OpenStreetMap style) (Webpage

Ex. 6)
6. Working with raster (GeoTIFF) and grid files.

About Tiling and Raster Formats
1. GeoTIFF
2. MBTiles format (including UTFGrid)
3. Convert raster to tiles using command line tools like GDAL2Tiles, MapTiler,

raster2mbtiles, mbutil, MapCache.
4. Convert raster to tiles using GUIs like TileMill and QGIS (generating MBTiles, generating

GeoTIFF hierarchies)
5. An example (GeoTIFF)
6. Caching and seeding: MapProxy (can read also MBTiles), MapCache and GeoWebCache

Converting the MBTiles Format
1. Converting File Raster Formats to MBTiles (evaluating 'raster2mb')
2. Converting MBTiles to Raster Formats

About Raster and Tiles on the QGIS Desktop
1. Raster Images in QGIS (using example as raster file)
2. Web Map Tiling Services in QGIS (using example as WMS)
3. MBTiles in QGIS (via GDAL; own scripting task using Python console (ev. plugin?))

About Tiles in the PostgreSQL database
1. Overview of PostGIS Raster

Beyond Web Map Tiling
1. Overview
2. Vector Tiles - an overview (evaluate server code)

TinyTileServer - a Tiny Web Map Tiling Webserver (Software Project)
 Overview
 Configuration (e.g. for GetCapabilities)
 Usage

Deliverables
(basically everything in english):

 BA thesis documentation according to the guidelines of the department and advisor (incl.
a general part I and a SW engineering part II).

 Sep. document containing exercises
 Website with a show case and a gallery
 Ev. other helper tools
 Source Code (MIT license if possible)

10 of 105

3. Example with own thematic data/picnic sites) (Webpage Ex. 3)
5. Publishing maps from own server using own TinyTileServer to read MBTiles

1. clients with Leaflet plus jQuery and Wax (Webpage Ex. 4)
2. clients with OpenLayers plus jQuery and Wax (Webpage Ex. 5)
3. Own basemap "Switzerland" as complex example (OpenStreetMap style) (Webpage

Ex. 6)
6. Working with raster (GeoTIFF) and grid files.

About Tiling and Raster Formats
1. GeoTIFF
2. MBTiles format (including UTFGrid)
3. Convert raster to tiles using command line tools like GDAL2Tiles, MapTiler,

raster2mbtiles, mbutil, MapCache.
4. Convert raster to tiles using GUIs like TileMill and QGIS (generating MBTiles, generating

GeoTIFF hierarchies)
5. An example (GeoTIFF)
6. Caching and seeding: MapProxy (can read also MBTiles), MapCache and GeoWebCache

Converting the MBTiles Format
1. Converting File Raster Formats to MBTiles (evaluating 'raster2mb')
2. Converting MBTiles to Raster Formats

About Raster and Tiles on the QGIS Desktop
1. Raster Images in QGIS (using example as raster file)
2. Web Map Tiling Services in QGIS (using example as WMS)
3. MBTiles in QGIS (via GDAL; own scripting task using Python console (ev. plugin?))

About Tiles in the PostgreSQL database
1. Overview of PostGIS Raster

Beyond Web Map Tiling
1. Overview
2. Vector Tiles - an overview (evaluate server code)

TinyTileServer - a Tiny Web Map Tiling Webserver (Software Project)
 Overview
 Configuration (e.g. for GetCapabilities)
 Usage

Deliverables
(basically everything in english):

 BA thesis documentation according to the guidelines of the department and advisor (incl.
a general part I and a SW engineering part II).

 Sep. document containing exercises
 Website with a show case and a gallery
 Ev. other helper tools
 Source Code (MIT license if possible)

11 of 105

Licensing agreement

MIT License
Copyright (c) 2013 Carmen Campos Bordons

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Rapperswil, 14.06.2013 ……………………………………………………..

The student

Rapperswil, 14.06.2013 ……………………………………………………..

The advisor

11 of 105

Licensing agreement

MIT License
Copyright (c) 2013 Carmen Campos Bordons

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Rapperswil, 14.06.2013 ……………………………………………………..

The student

Rapperswil, 14.06.2013 ……………………………………………………..

The advisor

11 of 105

Licensing agreement

MIT License
Copyright (c) 2013 Carmen Campos Bordons

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Rapperswil, 14.06.2013 ……………………………………………………..

The student

Rapperswil, 14.06.2013 ……………………………………………………..

The advisor

12 of 105

Author declaration (Eigenständigkeitserklärung)

Carmen Campos Bordons
Ich erkläre hiermit,

 dass ich die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt habe,
ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit dem
Betreuer schriftlich vereinbart wurde,

 dass ich sämtliche verwendeten Quellen erwähnt und gemäss gängigen
wissenschaftlichen Zitierregeln korrekt angegeben habe,

 dass ich keine durch Copyright geschützten Materialen (z.B. Bilder) in dieser Arbeit in
unerlaubter Weise genutzt habe.

Ort, Datum: Rapperswil, 14.06.2013

Name, Unterschrift: Carmen Campos Bordons,

12 of 105

Author declaration (Eigenständigkeitserklärung)

Carmen Campos Bordons
Ich erkläre hiermit,

 dass ich die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt habe,
ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit dem
Betreuer schriftlich vereinbart wurde,

 dass ich sämtliche verwendeten Quellen erwähnt und gemäss gängigen
wissenschaftlichen Zitierregeln korrekt angegeben habe,

 dass ich keine durch Copyright geschützten Materialen (z.B. Bilder) in dieser Arbeit in
unerlaubter Weise genutzt habe.

Ort, Datum: Rapperswil, 14.06.2013

Name, Unterschrift: Carmen Campos Bordons,

12 of 105

Author declaration (Eigenständigkeitserklärung)

Carmen Campos Bordons
Ich erkläre hiermit,

 dass ich die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt habe,
ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit dem
Betreuer schriftlich vereinbart wurde,

 dass ich sämtliche verwendeten Quellen erwähnt und gemäss gängigen
wissenschaftlichen Zitierregeln korrekt angegeben habe,

 dass ich keine durch Copyright geschützten Materialen (z.B. Bilder) in dieser Arbeit in
unerlaubter Weise genutzt habe.

Ort, Datum: Rapperswil, 14.06.2013

Name, Unterschrift: Carmen Campos Bordons,

13 of 105

Technical
report

13 of 105

Technical
report

13 of 105

Technical
report

14 of 105

1. Introduction

1.2. Presentation of the problem

The main idea is showing our thematic maps online. A thematic map is a type
of map or chart especially designed to show a particular theme connected with a
specific geographic area. These maps can portray physical, social, political, cultural, economic,
sociological, agricultural, or any other aspects of a city, state, region, nation, or continent.
A topographic map portraits the data in the relief, such as landforms, seas, rivers, lines of
countries or cities… But in a thematic map we show a particular set of data about any specific
theme on top of a previous general map that already exists.
We could display where are located the Lidl supermarkets around the world. Or the companies
which started a new business in USA recently. Or which countries are catholic in Europe. Or
where are bicycle streets in our city. Or the picnic sites in Switzerland.
There is also the possibility to make comparisons. To indicate that there is a different amount
of Lidl supermarket in different countries, we can assign a different color depending on the
amount of supermarket. But often we use the same color with different intensity, so when it is
most intense it indicates more supermarkets.
Other possibility is to use a bigger form when the company was founded recently and a smaller
one if it was some years ago. And instead of only show the catholic countries, we could show
the kind of religion in every country using different colors; and we attached a legend where we
indicate with which religion corresponds every color.
The possibilities are endless. Any idea you have can be showed in a thematic map.

1.3. Goals

And the possibilities to create these maps are endless too: QuantumGIS, ArcGIS, Mapnik,
Maptitude, SpatialKey, Excel… But we would concentrate in TileMill.
TileMill is a fast and easy to use design environment to create interactive maps. It uses
CartoCSS to apply the style in our maps, which let us modify and add visual elements in every
layer.
We can load the data from different sources like ESRI Shapefile, KML, GeoJSON, GeoTIFF,
PostGIS, CSV or SQLite. You can find out more here
http://www.mapbox.com/tilemill/docs/manual/adding-layers/. If the information is just in a
file, you just need to write the path to that file. Once you install TileMill there are some files
that you can access easily from the MapBox folder. If you want to create your own data, or you
need to edit the file you are going to use, you will need a geospatial information system (GIS).
For example, to manipulate a shapefile you can use QuantumGIS.
If you decide to use an SQLite database to load the data, apart from the path to the file, you
will also need to specify a SQL sentence where you indicate the table or subquery from where
you will get the information. Here http://www.mapbox.com/tilemill/docs/tutorials/sqlite-
work/ there is more information.

14 of 105

1. Introduction

1.2. Presentation of the problem

The main idea is showing our thematic maps online. A thematic map is a type
of map or chart especially designed to show a particular theme connected with a
specific geographic area. These maps can portray physical, social, political, cultural, economic,
sociological, agricultural, or any other aspects of a city, state, region, nation, or continent.
A topographic map portraits the data in the relief, such as landforms, seas, rivers, lines of
countries or cities… But in a thematic map we show a particular set of data about any specific
theme on top of a previous general map that already exists.
We could display where are located the Lidl supermarkets around the world. Or the companies
which started a new business in USA recently. Or which countries are catholic in Europe. Or
where are bicycle streets in our city. Or the picnic sites in Switzerland.
There is also the possibility to make comparisons. To indicate that there is a different amount
of Lidl supermarket in different countries, we can assign a different color depending on the
amount of supermarket. But often we use the same color with different intensity, so when it is
most intense it indicates more supermarkets.
Other possibility is to use a bigger form when the company was founded recently and a smaller
one if it was some years ago. And instead of only show the catholic countries, we could show
the kind of religion in every country using different colors; and we attached a legend where we
indicate with which religion corresponds every color.
The possibilities are endless. Any idea you have can be showed in a thematic map.

1.3. Goals

And the possibilities to create these maps are endless too: QuantumGIS, ArcGIS, Mapnik,
Maptitude, SpatialKey, Excel… But we would concentrate in TileMill.
TileMill is a fast and easy to use design environment to create interactive maps. It uses
CartoCSS to apply the style in our maps, which let us modify and add visual elements in every
layer.
We can load the data from different sources like ESRI Shapefile, KML, GeoJSON, GeoTIFF,
PostGIS, CSV or SQLite. You can find out more here
http://www.mapbox.com/tilemill/docs/manual/adding-layers/. If the information is just in a
file, you just need to write the path to that file. Once you install TileMill there are some files
that you can access easily from the MapBox folder. If you want to create your own data, or you
need to edit the file you are going to use, you will need a geospatial information system (GIS).
For example, to manipulate a shapefile you can use QuantumGIS.
If you decide to use an SQLite database to load the data, apart from the path to the file, you
will also need to specify a SQL sentence where you indicate the table or subquery from where
you will get the information. Here http://www.mapbox.com/tilemill/docs/tutorials/sqlite-
work/ there is more information.

14 of 105

1. Introduction

1.2. Presentation of the problem

The main idea is showing our thematic maps online. A thematic map is a type
of map or chart especially designed to show a particular theme connected with a
specific geographic area. These maps can portray physical, social, political, cultural, economic,
sociological, agricultural, or any other aspects of a city, state, region, nation, or continent.
A topographic map portraits the data in the relief, such as landforms, seas, rivers, lines of
countries or cities… But in a thematic map we show a particular set of data about any specific
theme on top of a previous general map that already exists.
We could display where are located the Lidl supermarkets around the world. Or the companies
which started a new business in USA recently. Or which countries are catholic in Europe. Or
where are bicycle streets in our city. Or the picnic sites in Switzerland.
There is also the possibility to make comparisons. To indicate that there is a different amount
of Lidl supermarket in different countries, we can assign a different color depending on the
amount of supermarket. But often we use the same color with different intensity, so when it is
most intense it indicates more supermarkets.
Other possibility is to use a bigger form when the company was founded recently and a smaller
one if it was some years ago. And instead of only show the catholic countries, we could show
the kind of religion in every country using different colors; and we attached a legend where we
indicate with which religion corresponds every color.
The possibilities are endless. Any idea you have can be showed in a thematic map.

1.3. Goals

And the possibilities to create these maps are endless too: QuantumGIS, ArcGIS, Mapnik,
Maptitude, SpatialKey, Excel… But we would concentrate in TileMill.
TileMill is a fast and easy to use design environment to create interactive maps. It uses
CartoCSS to apply the style in our maps, which let us modify and add visual elements in every
layer.
We can load the data from different sources like ESRI Shapefile, KML, GeoJSON, GeoTIFF,
PostGIS, CSV or SQLite. You can find out more here
http://www.mapbox.com/tilemill/docs/manual/adding-layers/. If the information is just in a
file, you just need to write the path to that file. Once you install TileMill there are some files
that you can access easily from the MapBox folder. If you want to create your own data, or you
need to edit the file you are going to use, you will need a geospatial information system (GIS).
For example, to manipulate a shapefile you can use QuantumGIS.
If you decide to use an SQLite database to load the data, apart from the path to the file, you
will also need to specify a SQL sentence where you indicate the table or subquery from where
you will get the information. Here http://www.mapbox.com/tilemill/docs/tutorials/sqlite-
work/ there is more information.

15 of 105

You could also use a PostGIS database to add your data; and in this case, beside the SQL
sentence you will have to configure the connection with the database. Here
http://www.mapbox.com/tilemill/docs/guides/postgis-work/ there is more information.
Then we could add our own style to show the layer, or just edit the one that appears by
default. For every layer we get two kinds of information: 1) The location of the data; the
boundary in case is a polygon, like a country or a city; the completely location in case is a line,
like a river or a street; or the exact location in case is a point, like the situation of a museum or
a hospital. 2) Some extra information about the data; for example, if we are considering
countries: the name, the main city, the population, the language, the currency...
The last step is to export the map. TileMill can export maps to MBTiles, PNG, PDF, SVG, or
Mapnik XML formats. We are going to concentrate ourselves in the MBTiles format, which is a
database where we can store millions of tiles in a single file. Apart from the images of the map,
UTFGrid information (some extra data we could use to add interaction to our map) and
metadata about the map (like zoom levels, a description, a legend…) are also stored in the file.
Once we have our map, we are going to show it on the internet. In order to do that, we could
store it in a website like MapBox or we could use our own server. For this purpose I have
created Tiny Tile Server, a server in Python that extract the data from the MBTiles file and
display the map on the internet.
Apart from the Python code, we also need a library to use in our client in JavaScript. There are
several options like Modest Maps, Leaflet, Google Maps, ESRI, OpenLayers or Polymaps. I have
concentrated in Leaflet and OpenLayers, so I have created templates for this two libraries. So
when an user decide to display its maps, he will only need to change in the template the part
of the code where is the path to the MBTiles file.

1.4. Conditions, environment, definitions and delimitations

The final target is that the maps created will be integrated with OpenStreetMap (OSM), which
is a collaborative project to create a free editable map of the world. Rather than the map itself,
the data generated by the OpenStreetMap project are considered their primary output. The
data are then available for use in both traditional applications, like their usage
by Craigslist and Foursquare to replace Google Maps, and more unusual roles, like replacing
default data included with GPS receivers. These data have been favorably compared with
proprietary datasources, though data quality varies worldwide.
The initial map data were collected from scratch by volunteers performing systematic ground
surveys using a handheld GPS unit and a notebook, digital camera, or a voice recorder. These
data were then entered into the OpenStreetMap database. More recently, the availability
of aerial photography and other data sources from commercial and government sources has
greatly increased the speed of this work and has allowed land-use data to be collected more
accurately by the process of digitization. When especially large datasets become available, a
technical team manages the conversion and import of the data.
OpenStreetMap uses a topological data structure, with four core elements (also known as data
primitives):

15 of 105

You could also use a PostGIS database to add your data; and in this case, beside the SQL
sentence you will have to configure the connection with the database. Here
http://www.mapbox.com/tilemill/docs/guides/postgis-work/ there is more information.
Then we could add our own style to show the layer, or just edit the one that appears by
default. For every layer we get two kinds of information: 1) The location of the data; the
boundary in case is a polygon, like a country or a city; the completely location in case is a line,
like a river or a street; or the exact location in case is a point, like the situation of a museum or
a hospital. 2) Some extra information about the data; for example, if we are considering
countries: the name, the main city, the population, the language, the currency...
The last step is to export the map. TileMill can export maps to MBTiles, PNG, PDF, SVG, or
Mapnik XML formats. We are going to concentrate ourselves in the MBTiles format, which is a
database where we can store millions of tiles in a single file. Apart from the images of the map,
UTFGrid information (some extra data we could use to add interaction to our map) and
metadata about the map (like zoom levels, a description, a legend…) are also stored in the file.
Once we have our map, we are going to show it on the internet. In order to do that, we could
store it in a website like MapBox or we could use our own server. For this purpose I have
created Tiny Tile Server, a server in Python that extract the data from the MBTiles file and
display the map on the internet.
Apart from the Python code, we also need a library to use in our client in JavaScript. There are
several options like Modest Maps, Leaflet, Google Maps, ESRI, OpenLayers or Polymaps. I have
concentrated in Leaflet and OpenLayers, so I have created templates for this two libraries. So
when an user decide to display its maps, he will only need to change in the template the part
of the code where is the path to the MBTiles file.

1.4. Conditions, environment, definitions and delimitations

The final target is that the maps created will be integrated with OpenStreetMap (OSM), which
is a collaborative project to create a free editable map of the world. Rather than the map itself,
the data generated by the OpenStreetMap project are considered their primary output. The
data are then available for use in both traditional applications, like their usage
by Craigslist and Foursquare to replace Google Maps, and more unusual roles, like replacing
default data included with GPS receivers. These data have been favorably compared with
proprietary datasources, though data quality varies worldwide.
The initial map data were collected from scratch by volunteers performing systematic ground
surveys using a handheld GPS unit and a notebook, digital camera, or a voice recorder. These
data were then entered into the OpenStreetMap database. More recently, the availability
of aerial photography and other data sources from commercial and government sources has
greatly increased the speed of this work and has allowed land-use data to be collected more
accurately by the process of digitization. When especially large datasets become available, a
technical team manages the conversion and import of the data.
OpenStreetMap uses a topological data structure, with four core elements (also known as data
primitives):

15 of 105

You could also use a PostGIS database to add your data; and in this case, beside the SQL
sentence you will have to configure the connection with the database. Here
http://www.mapbox.com/tilemill/docs/guides/postgis-work/ there is more information.
Then we could add our own style to show the layer, or just edit the one that appears by
default. For every layer we get two kinds of information: 1) The location of the data; the
boundary in case is a polygon, like a country or a city; the completely location in case is a line,
like a river or a street; or the exact location in case is a point, like the situation of a museum or
a hospital. 2) Some extra information about the data; for example, if we are considering
countries: the name, the main city, the population, the language, the currency...
The last step is to export the map. TileMill can export maps to MBTiles, PNG, PDF, SVG, or
Mapnik XML formats. We are going to concentrate ourselves in the MBTiles format, which is a
database where we can store millions of tiles in a single file. Apart from the images of the map,
UTFGrid information (some extra data we could use to add interaction to our map) and
metadata about the map (like zoom levels, a description, a legend…) are also stored in the file.
Once we have our map, we are going to show it on the internet. In order to do that, we could
store it in a website like MapBox or we could use our own server. For this purpose I have
created Tiny Tile Server, a server in Python that extract the data from the MBTiles file and
display the map on the internet.
Apart from the Python code, we also need a library to use in our client in JavaScript. There are
several options like Modest Maps, Leaflet, Google Maps, ESRI, OpenLayers or Polymaps. I have
concentrated in Leaflet and OpenLayers, so I have created templates for this two libraries. So
when an user decide to display its maps, he will only need to change in the template the part
of the code where is the path to the MBTiles file.

1.4. Conditions, environment, definitions and delimitations

The final target is that the maps created will be integrated with OpenStreetMap (OSM), which
is a collaborative project to create a free editable map of the world. Rather than the map itself,
the data generated by the OpenStreetMap project are considered their primary output. The
data are then available for use in both traditional applications, like their usage
by Craigslist and Foursquare to replace Google Maps, and more unusual roles, like replacing
default data included with GPS receivers. These data have been favorably compared with
proprietary datasources, though data quality varies worldwide.
The initial map data were collected from scratch by volunteers performing systematic ground
surveys using a handheld GPS unit and a notebook, digital camera, or a voice recorder. These
data were then entered into the OpenStreetMap database. More recently, the availability
of aerial photography and other data sources from commercial and government sources has
greatly increased the speed of this work and has allowed land-use data to be collected more
accurately by the process of digitization. When especially large datasets become available, a
technical team manages the conversion and import of the data.
OpenStreetMap uses a topological data structure, with four core elements (also known as data
primitives):

16 of 105

 Nodes are points with a geographic position, stored as coordinates (pairs of a latitude
and a longitude) according to WGS 84. Outside of their usage in ways, they are used to
represent map features without a size, such as points of interest or mountain peaks.

 Ways are ordered lists of nodes, representing a polyline, or possibly a polygon if they
form a closed loop. They are used both for representing linear features such as streets
and rivers; and areas, like forests, parks, parking areas and lakes.

 Relations are ordered lists of nodes and ways (together called "members"), where
each member can optionally have a "role" (a string). Relations are used for
representing the relationship of existing nodes and ways. Examples include turn
restrictions on roads, routes that span several existing ways (for instance, a long-
distance motorway), and areas with holes.

 Tags are key-value pairs (both arbitrary strings). They are used to
store metadata about the map objects (such as their type, their name and their
physical properties). Tags are not free-standing, but are always attached to an object:
to a node, a way, a relation, or to a member of an relation. A recommended
ontology of map features (the meaning of tags) is maintained on a wiki.

1.5. Construction work

Tiny Tile Server has several points in common with the tools that already exists to display maps
on the internet. Displaying maps on the internet is nothing new, and here only maps in
MBTiles databases will be commented. MBTiles got really popular because you can store all
the tiles in a single file, with is easy to handle; and being a database simplifies the access to the
tiles.
Most of the tools related to Tiny Tile Server are focused in displaying maps from MBTiles
hosted in another server, instead of serving tiles from your own server, like you do with Tiny
Tile Server.
This is a small project, not only because of the little time to develop it, but also because that
makes it a manageable application.
Python is also pretty common between those tools, but the reason for choosing it as the
language programming is because of the server where the application was going to be
deployed.

16 of 105

 Nodes are points with a geographic position, stored as coordinates (pairs of a latitude
and a longitude) according to WGS 84. Outside of their usage in ways, they are used to
represent map features without a size, such as points of interest or mountain peaks.

 Ways are ordered lists of nodes, representing a polyline, or possibly a polygon if they
form a closed loop. They are used both for representing linear features such as streets
and rivers; and areas, like forests, parks, parking areas and lakes.

 Relations are ordered lists of nodes and ways (together called "members"), where
each member can optionally have a "role" (a string). Relations are used for
representing the relationship of existing nodes and ways. Examples include turn
restrictions on roads, routes that span several existing ways (for instance, a long-
distance motorway), and areas with holes.

 Tags are key-value pairs (both arbitrary strings). They are used to
store metadata about the map objects (such as their type, their name and their
physical properties). Tags are not free-standing, but are always attached to an object:
to a node, a way, a relation, or to a member of an relation. A recommended
ontology of map features (the meaning of tags) is maintained on a wiki.

1.5. Construction work

Tiny Tile Server has several points in common with the tools that already exists to display maps
on the internet. Displaying maps on the internet is nothing new, and here only maps in
MBTiles databases will be commented. MBTiles got really popular because you can store all
the tiles in a single file, with is easy to handle; and being a database simplifies the access to the
tiles.
Most of the tools related to Tiny Tile Server are focused in displaying maps from MBTiles
hosted in another server, instead of serving tiles from your own server, like you do with Tiny
Tile Server.
This is a small project, not only because of the little time to develop it, but also because that
makes it a manageable application.
Python is also pretty common between those tools, but the reason for choosing it as the
language programming is because of the server where the application was going to be
deployed.

16 of 105

 Nodes are points with a geographic position, stored as coordinates (pairs of a latitude
and a longitude) according to WGS 84. Outside of their usage in ways, they are used to
represent map features without a size, such as points of interest or mountain peaks.

 Ways are ordered lists of nodes, representing a polyline, or possibly a polygon if they
form a closed loop. They are used both for representing linear features such as streets
and rivers; and areas, like forests, parks, parking areas and lakes.

 Relations are ordered lists of nodes and ways (together called "members"), where
each member can optionally have a "role" (a string). Relations are used for
representing the relationship of existing nodes and ways. Examples include turn
restrictions on roads, routes that span several existing ways (for instance, a long-
distance motorway), and areas with holes.

 Tags are key-value pairs (both arbitrary strings). They are used to
store metadata about the map objects (such as their type, their name and their
physical properties). Tags are not free-standing, but are always attached to an object:
to a node, a way, a relation, or to a member of an relation. A recommended
ontology of map features (the meaning of tags) is maintained on a wiki.

1.5. Construction work

Tiny Tile Server has several points in common with the tools that already exists to display maps
on the internet. Displaying maps on the internet is nothing new, and here only maps in
MBTiles databases will be commented. MBTiles got really popular because you can store all
the tiles in a single file, with is easy to handle; and being a database simplifies the access to the
tiles.
Most of the tools related to Tiny Tile Server are focused in displaying maps from MBTiles
hosted in another server, instead of serving tiles from your own server, like you do with Tiny
Tile Server.
This is a small project, not only because of the little time to develop it, but also because that
makes it a manageable application.
Python is also pretty common between those tools, but the reason for choosing it as the
language programming is because of the server where the application was going to be
deployed.

17 of 105

2. Initial situation

2.1. Existing approaches

The use of MBTiles is so extended because it possible to store and transfer web maps in a
single file. And because SQLite is available on many platforms. That is why there are so many
tools to work with them. It may happen that we have out map in other format, a set of tiles or
a GeoTIFF file, and we want to transform it in a MBTiles file.
There are some tools related to serve MBTiles:

 Wax: add functionalities to a map shown in our website.
 tileserver-php : extract MBTiles for a local file and show them on a website.
 Leaflet.utfgrid: create a UTFGrid layer.
 TileStache
 TileCloud

These are some tools we could be interested in related with MBTiles:
 MBUutil: extract the tiles from a MBTiles database, or generate the MBTiles of a tiles

directory.
 raster2mb: generates the MBTiles from a GeoTIFF file.
 GDAL2Tiles: generates a set of tiles from a GeoTIFF file.
 MapTiler: generates a set of tiles from a GeoTIFF file.
 landez: to manipulate MBTiles .
 python-mbtiles: to work with MBTiles databases.

Another projects:
 MapProxy
 MapCache

2.2. Brief description and characterization

Wax to add functionalities to our map

This tool can be found in this repository https://github.com/mapbox/wax or in its website
http://www.mapbox.com/wax/.
Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. It provides zoom controls and other
stuff that people already expect, functionalities that can be found in some portals, but that our
map does not show by default when we use our own server.
After downloading Wax, you just need to add in your HTML file the reference to the CSS and
JavaScript files corresponding to the library you are going to use:

 Google Maps API v3 can be consulted here https://developers.google.com/maps/
 Leaflet 0.x.x can be consulted here http://leafletjs.com/
 Modest Maps 1.x.x can be consulted here http://modestmaps.com/
 OpenLayers 2.11 can be consulted here http://openlayers.org/

17 of 105

2. Initial situation

2.1. Existing approaches

The use of MBTiles is so extended because it possible to store and transfer web maps in a
single file. And because SQLite is available on many platforms. That is why there are so many
tools to work with them. It may happen that we have out map in other format, a set of tiles or
a GeoTIFF file, and we want to transform it in a MBTiles file.
There are some tools related to serve MBTiles:

 Wax: add functionalities to a map shown in our website.
 tileserver-php : extract MBTiles for a local file and show them on a website.
 Leaflet.utfgrid: create a UTFGrid layer.
 TileStache
 TileCloud

These are some tools we could be interested in related with MBTiles:
 MBUutil: extract the tiles from a MBTiles database, or generate the MBTiles of a tiles

directory.
 raster2mb: generates the MBTiles from a GeoTIFF file.
 GDAL2Tiles: generates a set of tiles from a GeoTIFF file.
 MapTiler: generates a set of tiles from a GeoTIFF file.
 landez: to manipulate MBTiles .
 python-mbtiles: to work with MBTiles databases.

Another projects:
 MapProxy
 MapCache

2.2. Brief description and characterization

Wax to add functionalities to our map

This tool can be found in this repository https://github.com/mapbox/wax or in its website
http://www.mapbox.com/wax/.
Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. It provides zoom controls and other
stuff that people already expect, functionalities that can be found in some portals, but that our
map does not show by default when we use our own server.
After downloading Wax, you just need to add in your HTML file the reference to the CSS and
JavaScript files corresponding to the library you are going to use:

 Google Maps API v3 can be consulted here https://developers.google.com/maps/
 Leaflet 0.x.x can be consulted here http://leafletjs.com/
 Modest Maps 1.x.x can be consulted here http://modestmaps.com/
 OpenLayers 2.11 can be consulted here http://openlayers.org/

17 of 105

2. Initial situation

2.1. Existing approaches

The use of MBTiles is so extended because it possible to store and transfer web maps in a
single file. And because SQLite is available on many platforms. That is why there are so many
tools to work with them. It may happen that we have out map in other format, a set of tiles or
a GeoTIFF file, and we want to transform it in a MBTiles file.
There are some tools related to serve MBTiles:

 Wax: add functionalities to a map shown in our website.
 tileserver-php : extract MBTiles for a local file and show them on a website.
 Leaflet.utfgrid: create a UTFGrid layer.
 TileStache
 TileCloud

These are some tools we could be interested in related with MBTiles:
 MBUutil: extract the tiles from a MBTiles database, or generate the MBTiles of a tiles

directory.
 raster2mb: generates the MBTiles from a GeoTIFF file.
 GDAL2Tiles: generates a set of tiles from a GeoTIFF file.
 MapTiler: generates a set of tiles from a GeoTIFF file.
 landez: to manipulate MBTiles .
 python-mbtiles: to work with MBTiles databases.

Another projects:
 MapProxy
 MapCache

2.2. Brief description and characterization

Wax to add functionalities to our map

This tool can be found in this repository https://github.com/mapbox/wax or in its website
http://www.mapbox.com/wax/.
Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. It provides zoom controls and other
stuff that people already expect, functionalities that can be found in some portals, but that our
map does not show by default when we use our own server.
After downloading Wax, you just need to add in your HTML file the reference to the CSS and
JavaScript files corresponding to the library you are going to use:

 Google Maps API v3 can be consulted here https://developers.google.com/maps/
 Leaflet 0.x.x can be consulted here http://leafletjs.com/
 Modest Maps 1.x.x can be consulted here http://modestmaps.com/
 OpenLayers 2.11 can be consulted here http://openlayers.org/

18 of 105

 ESRI ArcGIS API 2.8 can be consulted here http://developers.arcgis.com/en/javascript/

In the website there are specified the link of every file for the different libraries. Depending on
the library you use, there are more or less functionalities. You could have:

 Legend: explains how you should interpret the map. Normally it is a small box or table
on the image that explains what the symbols you can find mean.

 Tooltip: shows a particular information about every different point on the map (that
has some information associated). It could be a point, a line or a polygon. And you can
write any HTML you want that would be the same for all the points, and choose the
characteristic(s) you want to display: like the name, the longitude and latitude, the
number of people who lives there, the dimension… It is a small box that could appear
always in the same place or near the point of what you want to show the information,
in this case is called movetip.

 Zoom: a zoom control with in and out buttons.
 Point selector: adds points in the map by clicking in a specific places and then removes

it by clicking in the point.
 Attribution: displays attribution information about the map.

Tileserver to serve MBTiles on a website

This tool can be found in this repository https://github.com/klokantech/tileserver-php/
It is a PHP server which distributes maps to desktop and web applications from an Apache +
PHP web hosting.
It supports the following protocols:

 Direct access to XYZ tiles.
 OpenGIS WMTS 1.0.0, that can be consulted here

http://www.opengeospatial.org/standards/wmts/
 OSGeo TMS 1.0.0, that can be consulted here

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
 TileJSON.js, that can be consulted here http://www.mapbox.com/developers/tilejson/

This server is similar to Tiny Tile Server, the initial idea was to do a server with the same
functionality but programmed in Python.
The differences are that Tileserver also support the protocol TMS for accessing tiles, but it
does not provide UTFGrid information.

Leaflet.utfgrid: a new kind of layer in Leaflet

This tool can be found in this repository https://github.com/danzel/Leaflet.utfgrid
It is for Leaflet, and you just need to download the code file to your directory and reference it
when you want to use this layer.
It is used to create a layer in order to show the UTFGrid data on the map. It is used like any
other kind of layer, just indicating the source when it needs to get the info.
You can add an event listener to specify what action should be performed depending on what
the user does: hover, move, click… You can also show a different infobox depending on the
case.
OpenLayers has already integrated the possibility of adding a UTFGrid layer.

18 of 105

 ESRI ArcGIS API 2.8 can be consulted here http://developers.arcgis.com/en/javascript/

In the website there are specified the link of every file for the different libraries. Depending on
the library you use, there are more or less functionalities. You could have:

 Legend: explains how you should interpret the map. Normally it is a small box or table
on the image that explains what the symbols you can find mean.

 Tooltip: shows a particular information about every different point on the map (that
has some information associated). It could be a point, a line or a polygon. And you can
write any HTML you want that would be the same for all the points, and choose the
characteristic(s) you want to display: like the name, the longitude and latitude, the
number of people who lives there, the dimension… It is a small box that could appear
always in the same place or near the point of what you want to show the information,
in this case is called movetip.

 Zoom: a zoom control with in and out buttons.
 Point selector: adds points in the map by clicking in a specific places and then removes

it by clicking in the point.
 Attribution: displays attribution information about the map.

Tileserver to serve MBTiles on a website

This tool can be found in this repository https://github.com/klokantech/tileserver-php/
It is a PHP server which distributes maps to desktop and web applications from an Apache +
PHP web hosting.
It supports the following protocols:

 Direct access to XYZ tiles.
 OpenGIS WMTS 1.0.0, that can be consulted here

http://www.opengeospatial.org/standards/wmts/
 OSGeo TMS 1.0.0, that can be consulted here

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
 TileJSON.js, that can be consulted here http://www.mapbox.com/developers/tilejson/

This server is similar to Tiny Tile Server, the initial idea was to do a server with the same
functionality but programmed in Python.
The differences are that Tileserver also support the protocol TMS for accessing tiles, but it
does not provide UTFGrid information.

Leaflet.utfgrid: a new kind of layer in Leaflet

This tool can be found in this repository https://github.com/danzel/Leaflet.utfgrid
It is for Leaflet, and you just need to download the code file to your directory and reference it
when you want to use this layer.
It is used to create a layer in order to show the UTFGrid data on the map. It is used like any
other kind of layer, just indicating the source when it needs to get the info.
You can add an event listener to specify what action should be performed depending on what
the user does: hover, move, click… You can also show a different infobox depending on the
case.
OpenLayers has already integrated the possibility of adding a UTFGrid layer.

18 of 105

 ESRI ArcGIS API 2.8 can be consulted here http://developers.arcgis.com/en/javascript/

In the website there are specified the link of every file for the different libraries. Depending on
the library you use, there are more or less functionalities. You could have:

 Legend: explains how you should interpret the map. Normally it is a small box or table
on the image that explains what the symbols you can find mean.

 Tooltip: shows a particular information about every different point on the map (that
has some information associated). It could be a point, a line or a polygon. And you can
write any HTML you want that would be the same for all the points, and choose the
characteristic(s) you want to display: like the name, the longitude and latitude, the
number of people who lives there, the dimension… It is a small box that could appear
always in the same place or near the point of what you want to show the information,
in this case is called movetip.

 Zoom: a zoom control with in and out buttons.
 Point selector: adds points in the map by clicking in a specific places and then removes

it by clicking in the point.
 Attribution: displays attribution information about the map.

Tileserver to serve MBTiles on a website

This tool can be found in this repository https://github.com/klokantech/tileserver-php/
It is a PHP server which distributes maps to desktop and web applications from an Apache +
PHP web hosting.
It supports the following protocols:

 Direct access to XYZ tiles.
 OpenGIS WMTS 1.0.0, that can be consulted here

http://www.opengeospatial.org/standards/wmts/
 OSGeo TMS 1.0.0, that can be consulted here

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
 TileJSON.js, that can be consulted here http://www.mapbox.com/developers/tilejson/

This server is similar to Tiny Tile Server, the initial idea was to do a server with the same
functionality but programmed in Python.
The differences are that Tileserver also support the protocol TMS for accessing tiles, but it
does not provide UTFGrid information.

Leaflet.utfgrid: a new kind of layer in Leaflet

This tool can be found in this repository https://github.com/danzel/Leaflet.utfgrid
It is for Leaflet, and you just need to download the code file to your directory and reference it
when you want to use this layer.
It is used to create a layer in order to show the UTFGrid data on the map. It is used like any
other kind of layer, just indicating the source when it needs to get the info.
You can add an event listener to specify what action should be performed depending on what
the user does: hover, move, click… You can also show a different infobox depending on the
case.
OpenLayers has already integrated the possibility of adding a UTFGrid layer.

19 of 105

TileStache

This tool can be found in its website http://tilestache.org/ or in this repository
https://github.com/migurski/TileStache
It has many functionalities and it is mainly focused on the intersection between synthetic
imagery, composites of existing imagery, and delivery of raw vector data to browsers. It is
similar to TileCache but easier and more oriented to designers and creating a new kind of map.
It is also written in Python, and it uses ModestMaps as a client.
Between its features, it serves tiles out of MBTiles tileset. And it also cache to MBTiles.

TileCloud

This tool can be found in this repository https://github.com/twpayne/tilecloud
It is a powerful utility for generating, managing, transforming, visualising and map tiles in
multiple formats. It can create, read update, delete tiles in multiple back ends, which include
MBTiles.
You can transform from a format to a different one, server tiles or render tiles from a server
and save them in a MBTiles file.
It can also serve UTFGrid information or metadata in .json format.

Importing and exporting MBTiles using MBUtil

This tool can be found in this repository https://github.com/mapbox/mbutil
MBUtil can be used to generate a tiles directory from the MBTiles database, or the opposite, to
generate the MBTiles database from a tiles directory.
In order to use it we need to have Python installed, and then we can copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
Export a .mbtiles file to tiles on the filesystem:
 mb-util name_of_file.mbtiles name_of_directory
Import a directory into a .mbtiles file
 mb-util name_of_directory name_of_file.mbtiles

Create a mbtiles database of a GeoTIFF using raster2mb

This tool can be found in this repository https://github.com/crschmidt/raster2mb
As its name indicates, it is used to generate a MBTiles database using a raster file, like GeoTIFF,
as input file.
In order to use it we need GDAL and Python, and then we have to copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
We just need to type:
 raster2mb name_of_file.tiff new_name.mbtiles

Create tiles of a GeoTIFF map using gdal2tiles

GDAL2Tiles is distributed together with GDAL library, that can be found here
http://www.gdal.org/

19 of 105

TileStache

This tool can be found in its website http://tilestache.org/ or in this repository
https://github.com/migurski/TileStache
It has many functionalities and it is mainly focused on the intersection between synthetic
imagery, composites of existing imagery, and delivery of raw vector data to browsers. It is
similar to TileCache but easier and more oriented to designers and creating a new kind of map.
It is also written in Python, and it uses ModestMaps as a client.
Between its features, it serves tiles out of MBTiles tileset. And it also cache to MBTiles.

TileCloud

This tool can be found in this repository https://github.com/twpayne/tilecloud
It is a powerful utility for generating, managing, transforming, visualising and map tiles in
multiple formats. It can create, read update, delete tiles in multiple back ends, which include
MBTiles.
You can transform from a format to a different one, server tiles or render tiles from a server
and save them in a MBTiles file.
It can also serve UTFGrid information or metadata in .json format.

Importing and exporting MBTiles using MBUtil

This tool can be found in this repository https://github.com/mapbox/mbutil
MBUtil can be used to generate a tiles directory from the MBTiles database, or the opposite, to
generate the MBTiles database from a tiles directory.
In order to use it we need to have Python installed, and then we can copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
Export a .mbtiles file to tiles on the filesystem:
 mb-util name_of_file.mbtiles name_of_directory
Import a directory into a .mbtiles file
 mb-util name_of_directory name_of_file.mbtiles

Create a mbtiles database of a GeoTIFF using raster2mb

This tool can be found in this repository https://github.com/crschmidt/raster2mb
As its name indicates, it is used to generate a MBTiles database using a raster file, like GeoTIFF,
as input file.
In order to use it we need GDAL and Python, and then we have to copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
We just need to type:
 raster2mb name_of_file.tiff new_name.mbtiles

Create tiles of a GeoTIFF map using gdal2tiles

GDAL2Tiles is distributed together with GDAL library, that can be found here
http://www.gdal.org/

19 of 105

TileStache

This tool can be found in its website http://tilestache.org/ or in this repository
https://github.com/migurski/TileStache
It has many functionalities and it is mainly focused on the intersection between synthetic
imagery, composites of existing imagery, and delivery of raw vector data to browsers. It is
similar to TileCache but easier and more oriented to designers and creating a new kind of map.
It is also written in Python, and it uses ModestMaps as a client.
Between its features, it serves tiles out of MBTiles tileset. And it also cache to MBTiles.

TileCloud

This tool can be found in this repository https://github.com/twpayne/tilecloud
It is a powerful utility for generating, managing, transforming, visualising and map tiles in
multiple formats. It can create, read update, delete tiles in multiple back ends, which include
MBTiles.
You can transform from a format to a different one, server tiles or render tiles from a server
and save them in a MBTiles file.
It can also serve UTFGrid information or metadata in .json format.

Importing and exporting MBTiles using MBUtil

This tool can be found in this repository https://github.com/mapbox/mbutil
MBUtil can be used to generate a tiles directory from the MBTiles database, or the opposite, to
generate the MBTiles database from a tiles directory.
In order to use it we need to have Python installed, and then we can copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
Export a .mbtiles file to tiles on the filesystem:
 mb-util name_of_file.mbtiles name_of_directory
Import a directory into a .mbtiles file
 mb-util name_of_directory name_of_file.mbtiles

Create a mbtiles database of a GeoTIFF using raster2mb

This tool can be found in this repository https://github.com/crschmidt/raster2mb
As its name indicates, it is used to generate a MBTiles database using a raster file, like GeoTIFF,
as input file.
In order to use it we need GDAL and Python, and then we have to copy the repository to our
system. Also in the repository can be found some documentation about the description,
installation and the usage.
We just need to type:
 raster2mb name_of_file.tiff new_name.mbtiles

Create tiles of a GeoTIFF map using gdal2tiles

GDAL2Tiles is distributed together with GDAL library, that can be found here
http://www.gdal.org/

20 of 105

One of the problems with high-resolution raster data is that it takes a lot of memory to display
it. And if you are pushing it out over the net, you have bandwidth concerns as well. To address
that problem, you have to create tiles.
GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.
Simple web pages with viewers based on Google Maps and OpenLayers are generated as well -
so anybody can comfortably explore your maps on-line and you do not need to install or
configure any special software; and the map is displayed very fast in the web browser. You
only need to upload the generated directory onto a web server.
GDAL2Tiles also creates the necessary metadata for Google Earth (KML SuperOverlay), in case
the supplied map uses EPSG:4326 projection.
You can use any image, but you need to know the boundaries of the image, the latitude and
longitude of each of the corners of the image.

Once you have installed the GDAL libraries and selected the image, the first thing you have to
do is to get some information about the image so that you can georeference it. Specifically,
you need the pixel and line positions of each corner of the image.
GDAL provides a handy utility, gdalinfo, for capturing this information. At the command line,
simply type
 gdalinfo name_of_your_file
You will get something like this:
Driver: GTiff/GeoTIFF
Files: mundo_creado.tif
Size is 16200, 8100
Coordinate System is `'
GCP Projection =
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

GCP[0]: Id=1, Info= (0,0) -> (-180,90,0)
GCP[1]: Id=2, Info= (16200,0) -> (180,90,0)
GCP[2]: Id=3, Info= (16200,8100) -> (180,-90,0)
Metadata:

AREA_OR_POINT=Area
EXIF_ColorSpace=1
EXIF_DateTime=2007:06:27 19:49:19
EXIF_Orientation=1
EXIF_PixelXDimension=16200
EXIF_PixelYDimension=8100

20 of 105

One of the problems with high-resolution raster data is that it takes a lot of memory to display
it. And if you are pushing it out over the net, you have bandwidth concerns as well. To address
that problem, you have to create tiles.
GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.
Simple web pages with viewers based on Google Maps and OpenLayers are generated as well -
so anybody can comfortably explore your maps on-line and you do not need to install or
configure any special software; and the map is displayed very fast in the web browser. You
only need to upload the generated directory onto a web server.
GDAL2Tiles also creates the necessary metadata for Google Earth (KML SuperOverlay), in case
the supplied map uses EPSG:4326 projection.
You can use any image, but you need to know the boundaries of the image, the latitude and
longitude of each of the corners of the image.

Once you have installed the GDAL libraries and selected the image, the first thing you have to
do is to get some information about the image so that you can georeference it. Specifically,
you need the pixel and line positions of each corner of the image.
GDAL provides a handy utility, gdalinfo, for capturing this information. At the command line,
simply type
 gdalinfo name_of_your_file
You will get something like this:
Driver: GTiff/GeoTIFF
Files: mundo_creado.tif
Size is 16200, 8100
Coordinate System is `'
GCP Projection =
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

GCP[0]: Id=1, Info= (0,0) -> (-180,90,0)
GCP[1]: Id=2, Info= (16200,0) -> (180,90,0)
GCP[2]: Id=3, Info= (16200,8100) -> (180,-90,0)
Metadata:

AREA_OR_POINT=Area
EXIF_ColorSpace=1
EXIF_DateTime=2007:06:27 19:49:19
EXIF_Orientation=1
EXIF_PixelXDimension=16200
EXIF_PixelYDimension=8100

20 of 105

One of the problems with high-resolution raster data is that it takes a lot of memory to display
it. And if you are pushing it out over the net, you have bandwidth concerns as well. To address
that problem, you have to create tiles.
GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.
Simple web pages with viewers based on Google Maps and OpenLayers are generated as well -
so anybody can comfortably explore your maps on-line and you do not need to install or
configure any special software; and the map is displayed very fast in the web browser. You
only need to upload the generated directory onto a web server.
GDAL2Tiles also creates the necessary metadata for Google Earth (KML SuperOverlay), in case
the supplied map uses EPSG:4326 projection.
You can use any image, but you need to know the boundaries of the image, the latitude and
longitude of each of the corners of the image.

Once you have installed the GDAL libraries and selected the image, the first thing you have to
do is to get some information about the image so that you can georeference it. Specifically,
you need the pixel and line positions of each corner of the image.
GDAL provides a handy utility, gdalinfo, for capturing this information. At the command line,
simply type
 gdalinfo name_of_your_file
You will get something like this:
Driver: GTiff/GeoTIFF
Files: mundo_creado.tif
Size is 16200, 8100
Coordinate System is `'
GCP Projection =
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

GCP[0]: Id=1, Info= (0,0) -> (-180,90,0)
GCP[1]: Id=2, Info= (16200,0) -> (180,90,0)
GCP[2]: Id=3, Info= (16200,8100) -> (180,-90,0)
Metadata:

AREA_OR_POINT=Area
EXIF_ColorSpace=1
EXIF_DateTime=2007:06:27 19:49:19
EXIF_Orientation=1
EXIF_PixelXDimension=16200
EXIF_PixelYDimension=8100

21 of 105

EXIF_ResolutionUnit=2
EXIF_Software=Adobe Photoshop CS2 Macintosh
EXIF_XResolution=(72)
EXIF_YResolution=(72)

Image Structure Metadata:
INTERLEAVE=PIXEL

Corner Coordinates:
Upper Left (0.0, 0.0)
Lower Left (0.0, 8100.0)
Upper Right (16200.0, 0.0)
Lower Right (16200.0, 8100.0)
Center (8100.0, 4050.0)
Band 1 Block=16200x1 Type=Byte, ColorInterp=Red
Band 2 Block=16200x1 Type=Byte, ColorInterp=Green
Band 3 Block=16200x1 Type=Byte, ColorInterp=BlueDriver: GTiff/GeoTIFF

The important information for this case are the Upper Left, Lower Left, Upper Right, Lower
Right lines. These tell you the pixel and line values of each corner. In this case: the Upper Left is
at 0,0; the Lower Left is at 0,8100; the Upper Right is at 16200,0; and the Lower Right is at
16200,8100
The next step will be georeferencing the image. Georeferencing in this case means to create
metadata describing the geographic position of each of the corners of the image. Using the
information gained before and gdal_translate, you can assign georeference information to the
file.
 gdal_translate -a_srs EPSG:4326 -gcp 0 0 -180 90 -gcp 16200 0 180 90 -gcp 16200 8100 180
-90 name_of_your_file.jpg new_name.tif
-a_srs assigns a spatial reference system to the file. That tells any application consuming it
what coordinate system is being used. In this case, it is using EPSG:4326, which is the same as
WGS84.
-gcp, or ground control point, assigns coordinates to positions in the file. For -gcp, define the
gcp by setting the pixel and then line number, and then the longitude and latitude. Each of
those is separated by a space.
The last two parameters are the origin file and the target file.
There are more options you can use, just type gdal_translate and you can see them.

The original image was not created for a round globe, it was created to appear to lie flat. In GIS
terms, it is projected, which means that it is a two-dimensional representation of a three-
dimensional object. Projection requires distorting the image so that it appears how you would
expect a flat image of the Earth to look.
In order to get it to look right, you have to warp the image to fit the globe. Fortunately GDAL
provides a great tool for that too. Simply type
 gdalwarp -t_srs EPSG:4326 new_name.tif new_name _4326.tif
-t_srs indicates the spatial reference system we are going to define. This will create a new file,
which provides metadata about the warping procedure.
There are more options you can use, just type gdalwarp and you can see them.

21 of 105

EXIF_ResolutionUnit=2
EXIF_Software=Adobe Photoshop CS2 Macintosh
EXIF_XResolution=(72)
EXIF_YResolution=(72)

Image Structure Metadata:
INTERLEAVE=PIXEL

Corner Coordinates:
Upper Left (0.0, 0.0)
Lower Left (0.0, 8100.0)
Upper Right (16200.0, 0.0)
Lower Right (16200.0, 8100.0)
Center (8100.0, 4050.0)
Band 1 Block=16200x1 Type=Byte, ColorInterp=Red
Band 2 Block=16200x1 Type=Byte, ColorInterp=Green
Band 3 Block=16200x1 Type=Byte, ColorInterp=BlueDriver: GTiff/GeoTIFF

The important information for this case are the Upper Left, Lower Left, Upper Right, Lower
Right lines. These tell you the pixel and line values of each corner. In this case: the Upper Left is
at 0,0; the Lower Left is at 0,8100; the Upper Right is at 16200,0; and the Lower Right is at
16200,8100
The next step will be georeferencing the image. Georeferencing in this case means to create
metadata describing the geographic position of each of the corners of the image. Using the
information gained before and gdal_translate, you can assign georeference information to the
file.
 gdal_translate -a_srs EPSG:4326 -gcp 0 0 -180 90 -gcp 16200 0 180 90 -gcp 16200 8100 180
-90 name_of_your_file.jpg new_name.tif
-a_srs assigns a spatial reference system to the file. That tells any application consuming it
what coordinate system is being used. In this case, it is using EPSG:4326, which is the same as
WGS84.
-gcp, or ground control point, assigns coordinates to positions in the file. For -gcp, define the
gcp by setting the pixel and then line number, and then the longitude and latitude. Each of
those is separated by a space.
The last two parameters are the origin file and the target file.
There are more options you can use, just type gdal_translate and you can see them.

The original image was not created for a round globe, it was created to appear to lie flat. In GIS
terms, it is projected, which means that it is a two-dimensional representation of a three-
dimensional object. Projection requires distorting the image so that it appears how you would
expect a flat image of the Earth to look.
In order to get it to look right, you have to warp the image to fit the globe. Fortunately GDAL
provides a great tool for that too. Simply type
 gdalwarp -t_srs EPSG:4326 new_name.tif new_name _4326.tif
-t_srs indicates the spatial reference system we are going to define. This will create a new file,
which provides metadata about the warping procedure.
There are more options you can use, just type gdalwarp and you can see them.

21 of 105

EXIF_ResolutionUnit=2
EXIF_Software=Adobe Photoshop CS2 Macintosh
EXIF_XResolution=(72)
EXIF_YResolution=(72)

Image Structure Metadata:
INTERLEAVE=PIXEL

Corner Coordinates:
Upper Left (0.0, 0.0)
Lower Left (0.0, 8100.0)
Upper Right (16200.0, 0.0)
Lower Right (16200.0, 8100.0)
Center (8100.0, 4050.0)
Band 1 Block=16200x1 Type=Byte, ColorInterp=Red
Band 2 Block=16200x1 Type=Byte, ColorInterp=Green
Band 3 Block=16200x1 Type=Byte, ColorInterp=BlueDriver: GTiff/GeoTIFF

The important information for this case are the Upper Left, Lower Left, Upper Right, Lower
Right lines. These tell you the pixel and line values of each corner. In this case: the Upper Left is
at 0,0; the Lower Left is at 0,8100; the Upper Right is at 16200,0; and the Lower Right is at
16200,8100
The next step will be georeferencing the image. Georeferencing in this case means to create
metadata describing the geographic position of each of the corners of the image. Using the
information gained before and gdal_translate, you can assign georeference information to the
file.
 gdal_translate -a_srs EPSG:4326 -gcp 0 0 -180 90 -gcp 16200 0 180 90 -gcp 16200 8100 180
-90 name_of_your_file.jpg new_name.tif
-a_srs assigns a spatial reference system to the file. That tells any application consuming it
what coordinate system is being used. In this case, it is using EPSG:4326, which is the same as
WGS84.
-gcp, or ground control point, assigns coordinates to positions in the file. For -gcp, define the
gcp by setting the pixel and then line number, and then the longitude and latitude. Each of
those is separated by a space.
The last two parameters are the origin file and the target file.
There are more options you can use, just type gdal_translate and you can see them.

The original image was not created for a round globe, it was created to appear to lie flat. In GIS
terms, it is projected, which means that it is a two-dimensional representation of a three-
dimensional object. Projection requires distorting the image so that it appears how you would
expect a flat image of the Earth to look.
In order to get it to look right, you have to warp the image to fit the globe. Fortunately GDAL
provides a great tool for that too. Simply type
 gdalwarp -t_srs EPSG:4326 new_name.tif new_name _4326.tif
-t_srs indicates the spatial reference system we are going to define. This will create a new file,
which provides metadata about the warping procedure.
There are more options you can use, just type gdalwarp and you can see them.

22 of 105

Finally, you just need to use GDAL2Tiles to generate the map tiles:
 gdal2tiles new_name _4326.tif name_of_folder
There are a lot of options you can use here:
gdal2tiles [-p profile] [-r resampling] [-s srs] [-z zoom]

[-e] [-a nodata] [-v] [-h] [-k] [-n] [-u url]
[-w webviewer] [-t title] [-c copyright]
[-g googlekey] [-b bingkey] input_file [output_dir]

-s SRS, --s_srs=SRS: The spatial reference system used for the source input data.
-z ZOOM, --zoom=ZOOM: Zoom levels to render (format:'2-5' or '10').
-w WEBVIEWER, --webviewer=WEBVIEWER: Web viewer to generate (all, google, openlayers,
none) - default 'all'.
-t TITLE, --title=TITLE: Title of the map.
-c COPYRIGHT, --copyright=COPYRIGHT: Copyright for the map.
-k, -n, -u are options only for KML (Google Earth).
And now in your output_dir would we your new tileset.

Create tiles of a GeoTIFF map using MapTiler

You can download MapTiler here http://www.maptiler.org/.
MapTiler is a desktop application for the creation of map tiles for rapid raster map publishing.
Geodata is transformed to tiles compatible with Google Maps and Earth - ready for publishing
via direct upload to any webserver or a cloud storage (such as Amazon S3).
No extensive configuration on the server side is necessary, any simple file hosting is fine.
Dynamic interaction such as panning and zooming, overlay of markers and vector data is
provided by powerful browser functionality.
The application directly generates a ready to use simple viewer based on OpenLayers and
Google Maps API and can be easily customized.
MapTiler is a graphical interface for GDAL2Tiles utility, but much faster and needing less space
to store the tiles. As an example to compare: rendering of map (51025x73135 pixels) with
raster reprojection on a standard computer with 16 cores against GDAL2Tiles:

How to use it:
Firstly, you have to select the Tile profile. Choose Google Maps Compatible (Spherical
Mercator) for standard web publishing. Choose Google Earth (KML SuperOverlay) if you also
want to generate a KML file for use in Google Earth. Click the “Continue” button.
Then you need to choose the Source Data Files. Browse to select the raster image you want to
tile. It is also possible to select a NOData color that will appear as transparent in the resulting
image. The NOData color allows you to hide or highlight these values. Usually the NOData
color is set to transparent, so that the NOData values are hidden. You have to click “Add” and
select the file you want to create tiles for.
Once you have choose you file, you click “Georeference”. Here you can specify the bounding
box for your image.

22 of 105

Finally, you just need to use GDAL2Tiles to generate the map tiles:
 gdal2tiles new_name _4326.tif name_of_folder
There are a lot of options you can use here:
gdal2tiles [-p profile] [-r resampling] [-s srs] [-z zoom]

[-e] [-a nodata] [-v] [-h] [-k] [-n] [-u url]
[-w webviewer] [-t title] [-c copyright]
[-g googlekey] [-b bingkey] input_file [output_dir]

-s SRS, --s_srs=SRS: The spatial reference system used for the source input data.
-z ZOOM, --zoom=ZOOM: Zoom levels to render (format:'2-5' or '10').
-w WEBVIEWER, --webviewer=WEBVIEWER: Web viewer to generate (all, google, openlayers,
none) - default 'all'.
-t TITLE, --title=TITLE: Title of the map.
-c COPYRIGHT, --copyright=COPYRIGHT: Copyright for the map.
-k, -n, -u are options only for KML (Google Earth).
And now in your output_dir would we your new tileset.

Create tiles of a GeoTIFF map using MapTiler

You can download MapTiler here http://www.maptiler.org/.
MapTiler is a desktop application for the creation of map tiles for rapid raster map publishing.
Geodata is transformed to tiles compatible with Google Maps and Earth - ready for publishing
via direct upload to any webserver or a cloud storage (such as Amazon S3).
No extensive configuration on the server side is necessary, any simple file hosting is fine.
Dynamic interaction such as panning and zooming, overlay of markers and vector data is
provided by powerful browser functionality.
The application directly generates a ready to use simple viewer based on OpenLayers and
Google Maps API and can be easily customized.
MapTiler is a graphical interface for GDAL2Tiles utility, but much faster and needing less space
to store the tiles. As an example to compare: rendering of map (51025x73135 pixels) with
raster reprojection on a standard computer with 16 cores against GDAL2Tiles:

How to use it:
Firstly, you have to select the Tile profile. Choose Google Maps Compatible (Spherical
Mercator) for standard web publishing. Choose Google Earth (KML SuperOverlay) if you also
want to generate a KML file for use in Google Earth. Click the “Continue” button.
Then you need to choose the Source Data Files. Browse to select the raster image you want to
tile. It is also possible to select a NOData color that will appear as transparent in the resulting
image. The NOData color allows you to hide or highlight these values. Usually the NOData
color is set to transparent, so that the NOData values are hidden. You have to click “Add” and
select the file you want to create tiles for.
Once you have choose you file, you click “Georeference”. Here you can specify the bounding
box for your image.

22 of 105

Finally, you just need to use GDAL2Tiles to generate the map tiles:
 gdal2tiles new_name _4326.tif name_of_folder
There are a lot of options you can use here:
gdal2tiles [-p profile] [-r resampling] [-s srs] [-z zoom]

[-e] [-a nodata] [-v] [-h] [-k] [-n] [-u url]
[-w webviewer] [-t title] [-c copyright]
[-g googlekey] [-b bingkey] input_file [output_dir]

-s SRS, --s_srs=SRS: The spatial reference system used for the source input data.
-z ZOOM, --zoom=ZOOM: Zoom levels to render (format:'2-5' or '10').
-w WEBVIEWER, --webviewer=WEBVIEWER: Web viewer to generate (all, google, openlayers,
none) - default 'all'.
-t TITLE, --title=TITLE: Title of the map.
-c COPYRIGHT, --copyright=COPYRIGHT: Copyright for the map.
-k, -n, -u are options only for KML (Google Earth).
And now in your output_dir would we your new tileset.

Create tiles of a GeoTIFF map using MapTiler

You can download MapTiler here http://www.maptiler.org/.
MapTiler is a desktop application for the creation of map tiles for rapid raster map publishing.
Geodata is transformed to tiles compatible with Google Maps and Earth - ready for publishing
via direct upload to any webserver or a cloud storage (such as Amazon S3).
No extensive configuration on the server side is necessary, any simple file hosting is fine.
Dynamic interaction such as panning and zooming, overlay of markers and vector data is
provided by powerful browser functionality.
The application directly generates a ready to use simple viewer based on OpenLayers and
Google Maps API and can be easily customized.
MapTiler is a graphical interface for GDAL2Tiles utility, but much faster and needing less space
to store the tiles. As an example to compare: rendering of map (51025x73135 pixels) with
raster reprojection on a standard computer with 16 cores against GDAL2Tiles:

How to use it:
Firstly, you have to select the Tile profile. Choose Google Maps Compatible (Spherical
Mercator) for standard web publishing. Choose Google Earth (KML SuperOverlay) if you also
want to generate a KML file for use in Google Earth. Click the “Continue” button.
Then you need to choose the Source Data Files. Browse to select the raster image you want to
tile. It is also possible to select a NOData color that will appear as transparent in the resulting
image. The NOData color allows you to hide or highlight these values. Usually the NOData
color is set to transparent, so that the NOData values are hidden. You have to click “Add” and
select the file you want to create tiles for.
Once you have choose you file, you click “Georeference”. Here you can specify the bounding
box for your image.

23 of 105

After that, click the “Continue” button.
Then you need to specify the Spatial Reference System / Coordinate System of the image.
Most of the geodata formats (like GeoTIFF) contains the definition of the Coordinate Reference
System already - then it is used by MapTiler automatically. In case it is not like this, you can
find more information in MapTiler help (http://help.maptiler.org/coordinates/). Click the
“Continue” button.
At this point, you can set the minimum and maximum zoom levels, and choose the file format.
The default settings for zoom levels and file format are often best. Click the “Continue” button.
Then, you could specify details about the Destination folder and Addresses / URLs for the
tileset. If you do not know these, they can be added into the
default googlemaps.html and openlayers.html files after tile generation. Click the “Continue”
button.
After that, tick the Viewers that should be generated. By default,
a googlemaps.html and openlayers.html file are generated. You can also choose to generate a
KML SuperOverlay file for Google Earth. Click the “Continue” button.
Finally, you can specify the details for generating the Viewers, such as the title, copyright
notice, and API keys. If you do not know these, they can be added into the
default googlemaps.html / openlayers.html files after tile generation. Click the “Continue”
button.

23 of 105

After that, click the “Continue” button.
Then you need to specify the Spatial Reference System / Coordinate System of the image.
Most of the geodata formats (like GeoTIFF) contains the definition of the Coordinate Reference
System already - then it is used by MapTiler automatically. In case it is not like this, you can
find more information in MapTiler help (http://help.maptiler.org/coordinates/). Click the
“Continue” button.
At this point, you can set the minimum and maximum zoom levels, and choose the file format.
The default settings for zoom levels and file format are often best. Click the “Continue” button.
Then, you could specify details about the Destination folder and Addresses / URLs for the
tileset. If you do not know these, they can be added into the
default googlemaps.html and openlayers.html files after tile generation. Click the “Continue”
button.
After that, tick the Viewers that should be generated. By default,
a googlemaps.html and openlayers.html file are generated. You can also choose to generate a
KML SuperOverlay file for Google Earth. Click the “Continue” button.
Finally, you can specify the details for generating the Viewers, such as the title, copyright
notice, and API keys. If you do not know these, they can be added into the
default googlemaps.html / openlayers.html files after tile generation. Click the “Continue”
button.

23 of 105

After that, click the “Continue” button.
Then you need to specify the Spatial Reference System / Coordinate System of the image.
Most of the geodata formats (like GeoTIFF) contains the definition of the Coordinate Reference
System already - then it is used by MapTiler automatically. In case it is not like this, you can
find more information in MapTiler help (http://help.maptiler.org/coordinates/). Click the
“Continue” button.
At this point, you can set the minimum and maximum zoom levels, and choose the file format.
The default settings for zoom levels and file format are often best. Click the “Continue” button.
Then, you could specify details about the Destination folder and Addresses / URLs for the
tileset. If you do not know these, they can be added into the
default googlemaps.html and openlayers.html files after tile generation. Click the “Continue”
button.
After that, tick the Viewers that should be generated. By default,
a googlemaps.html and openlayers.html file are generated. You can also choose to generate a
KML SuperOverlay file for Google Earth. Click the “Continue” button.
Finally, you can specify the details for generating the Viewers, such as the title, copyright
notice, and API keys. If you do not know these, they can be added into the
default googlemaps.html / openlayers.html files after tile generation. Click the “Continue”
button.

24 of 105

The last step is to click “Render” to start rendering the image. When complete, MapTiler
provides a link to the finished tileset. Open the googlemaps.html or openlayers.html files in a
web browser to view the tileset as an overlay.

Publish tiles in a server:
You only need to copy the entire tileset and all subdirectories to a web server.
Then you can edit the googlemaps.html or openlayers.html files as required to present this on

the web.

Landez operates and creates MBTiles files

Landez can be found in this repository https://github.com/makinacorpus/landez.
It is programmed in Python and it does not need any dependency, apart from Mapnik in case
you want to render tiles locally. To install it, you just need to copy the repository.
To build the MBTiles file it uses mb-util at the end.
Landez permits several different operations related with MBTiles:

 Building MBTiles files: using a remote tile service, a local rendering, another MBTiles
file you already have. Or a WMS server.

 Merging tiles together: you can build a new MBTiles file taking at the same time tiles
from different sources.

 Exporting image: assemble and arrange the tiles together in a single image.
 Extracting MBTiles contents: you can get a particular tile, the UTFGrid information

from a tile, or the metadata store in a MBTile file.
 Post-processing filters: convert map tile to gray scale or replace a specific color by

transparent.

Python-mbtiles helps you working with MBTiles databases

This tool can be found in this repository https://github.com/perrygeo/python-mbtiles.
It is also programmed in Python, does not have any external dependency, and to install it you
just need to copy the repository.
What you can do with this tool:

 Access to the tiles and their UTFGrid from the MBTiles in an abstract way, just calling
the function that it is provided.

 Tile web server that serves the tiles and their UTFGrid data.
 Convert the MBTiles file to png or json files, extracting the information from the

database.

MapProxy

Mapproxy is a Python proxy server for geospatial images. It can read data from WMS, tiles,
MapServer and Mapnik, and cache and serve that data as WMS,WMTS,TMS and KML. It can
also do reprojections between different coordinate reference systems.
You can check here (http://mapproxy.org/docs/latest/install.html) to know how to install
MapProxy.

24 of 105

The last step is to click “Render” to start rendering the image. When complete, MapTiler
provides a link to the finished tileset. Open the googlemaps.html or openlayers.html files in a
web browser to view the tileset as an overlay.

Publish tiles in a server:
You only need to copy the entire tileset and all subdirectories to a web server.
Then you can edit the googlemaps.html or openlayers.html files as required to present this on

the web.

Landez operates and creates MBTiles files

Landez can be found in this repository https://github.com/makinacorpus/landez.
It is programmed in Python and it does not need any dependency, apart from Mapnik in case
you want to render tiles locally. To install it, you just need to copy the repository.
To build the MBTiles file it uses mb-util at the end.
Landez permits several different operations related with MBTiles:

 Building MBTiles files: using a remote tile service, a local rendering, another MBTiles
file you already have. Or a WMS server.

 Merging tiles together: you can build a new MBTiles file taking at the same time tiles
from different sources.

 Exporting image: assemble and arrange the tiles together in a single image.
 Extracting MBTiles contents: you can get a particular tile, the UTFGrid information

from a tile, or the metadata store in a MBTile file.
 Post-processing filters: convert map tile to gray scale or replace a specific color by

transparent.

Python-mbtiles helps you working with MBTiles databases

This tool can be found in this repository https://github.com/perrygeo/python-mbtiles.
It is also programmed in Python, does not have any external dependency, and to install it you
just need to copy the repository.
What you can do with this tool:

 Access to the tiles and their UTFGrid from the MBTiles in an abstract way, just calling
the function that it is provided.

 Tile web server that serves the tiles and their UTFGrid data.
 Convert the MBTiles file to png or json files, extracting the information from the

database.

MapProxy

Mapproxy is a Python proxy server for geospatial images. It can read data from WMS, tiles,
MapServer and Mapnik, and cache and serve that data as WMS,WMTS,TMS and KML. It can
also do reprojections between different coordinate reference systems.
You can check here (http://mapproxy.org/docs/latest/install.html) to know how to install
MapProxy.

24 of 105

The last step is to click “Render” to start rendering the image. When complete, MapTiler
provides a link to the finished tileset. Open the googlemaps.html or openlayers.html files in a
web browser to view the tileset as an overlay.

Publish tiles in a server:
You only need to copy the entire tileset and all subdirectories to a web server.
Then you can edit the googlemaps.html or openlayers.html files as required to present this on

the web.

Landez operates and creates MBTiles files

Landez can be found in this repository https://github.com/makinacorpus/landez.
It is programmed in Python and it does not need any dependency, apart from Mapnik in case
you want to render tiles locally. To install it, you just need to copy the repository.
To build the MBTiles file it uses mb-util at the end.
Landez permits several different operations related with MBTiles:

 Building MBTiles files: using a remote tile service, a local rendering, another MBTiles
file you already have. Or a WMS server.

 Merging tiles together: you can build a new MBTiles file taking at the same time tiles
from different sources.

 Exporting image: assemble and arrange the tiles together in a single image.
 Extracting MBTiles contents: you can get a particular tile, the UTFGrid information

from a tile, or the metadata store in a MBTile file.
 Post-processing filters: convert map tile to gray scale or replace a specific color by

transparent.

Python-mbtiles helps you working with MBTiles databases

This tool can be found in this repository https://github.com/perrygeo/python-mbtiles.
It is also programmed in Python, does not have any external dependency, and to install it you
just need to copy the repository.
What you can do with this tool:

 Access to the tiles and their UTFGrid from the MBTiles in an abstract way, just calling
the function that it is provided.

 Tile web server that serves the tiles and their UTFGrid data.
 Convert the MBTiles file to png or json files, extracting the information from the

database.

MapProxy

Mapproxy is a Python proxy server for geospatial images. It can read data from WMS, tiles,
MapServer and Mapnik, and cache and serve that data as WMS,WMTS,TMS and KML. It can
also do reprojections between different coordinate reference systems.
You can check here (http://mapproxy.org/docs/latest/install.html) to know how to install
MapProxy.

25 of 105

Configuration
MapProxy configuration is set up in the mapproxy.yaml file. The MapProxy configuration is a
dictionay, each key configures a different aspect of MapProxy. There are the following keys:

 services: this is the place to activate and configure MapProxy’s services like WMS and
TMS. They define how the tiles are organized.

 layers: configure the layers that MapProxy offers. Each layer can consist of multiple
sources and caches. We can have several layers, in that case we need to use the
transparent option.

 sources: define where MapProxy can retrieve new data, where our tiles are stored.
One of the options will be the tiles url.

 caches: here you can configure the internal caches. When the layer is requested by a
client, MapProxy looks in the cache for the requested data and only if it hasn’t cached
the data yet, it requests the required data source.

 grids: MapProxy aligns all cached images (tiles) to a grid. Here you can define that grid.
Among other options, you can define a factor between each resolution. It should be
either a number or the term sqrt2. The default factor is 2.

 globals: here you can define some internals of MapProxy and default values that are
used in the other configuration directives.

To start the development server we use the command:
mapproxy-util serve-develop mapproxy.yaml

Seeding and caching
MapProxy creates all tiles on demand. That means, only tiles requested once are cached.
Fortunately MapProxy comes with a command line script for pre-generating all required tiles
called mapproxy-seed. It has its own configuration file called seed.yaml and a couple of
options. In the file we can find these options.

 Seeds: configure seeding tasks. Here you can create multiple seeding tasks that define
what should be seeded. You can specify a list of caches for seeding with caches. If you
have specified multiple grids for one cache in your MapProxy configuration, you can
select these caches to seed.

 Cleanups: configure cleanup tasks, to remove the old tiles stored. You can clean up
caches, grids, levels, coverages, all tiles before a date.

 Coverages: configure coverages for seeding and cleanup tasks. You can define areas
where data is available or where the interesting data is.

The tool can seed one or more polygon areas for each cached layer. It can be really useful for
lake or sea areas, where the tiles are exactly the same to each others.
Apart from using normal files as cache, you can also use a single SQLite file for the cache. It
uses the MBTiles specification(https://github.com/mapbox/mbtiles-spec).

caches:
name of our cache

mbtiles_cache:
A list of data sources for this cache. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources from left (bottom) to right (top)
before they are stored on disk.

sources: [my_source]

25 of 105

Configuration
MapProxy configuration is set up in the mapproxy.yaml file. The MapProxy configuration is a
dictionay, each key configures a different aspect of MapProxy. There are the following keys:

 services: this is the place to activate and configure MapProxy’s services like WMS and
TMS. They define how the tiles are organized.

 layers: configure the layers that MapProxy offers. Each layer can consist of multiple
sources and caches. We can have several layers, in that case we need to use the
transparent option.

 sources: define where MapProxy can retrieve new data, where our tiles are stored.
One of the options will be the tiles url.

 caches: here you can configure the internal caches. When the layer is requested by a
client, MapProxy looks in the cache for the requested data and only if it hasn’t cached
the data yet, it requests the required data source.

 grids: MapProxy aligns all cached images (tiles) to a grid. Here you can define that grid.
Among other options, you can define a factor between each resolution. It should be
either a number or the term sqrt2. The default factor is 2.

 globals: here you can define some internals of MapProxy and default values that are
used in the other configuration directives.

To start the development server we use the command:
mapproxy-util serve-develop mapproxy.yaml

Seeding and caching
MapProxy creates all tiles on demand. That means, only tiles requested once are cached.
Fortunately MapProxy comes with a command line script for pre-generating all required tiles
called mapproxy-seed. It has its own configuration file called seed.yaml and a couple of
options. In the file we can find these options.

 Seeds: configure seeding tasks. Here you can create multiple seeding tasks that define
what should be seeded. You can specify a list of caches for seeding with caches. If you
have specified multiple grids for one cache in your MapProxy configuration, you can
select these caches to seed.

 Cleanups: configure cleanup tasks, to remove the old tiles stored. You can clean up
caches, grids, levels, coverages, all tiles before a date.

 Coverages: configure coverages for seeding and cleanup tasks. You can define areas
where data is available or where the interesting data is.

The tool can seed one or more polygon areas for each cached layer. It can be really useful for
lake or sea areas, where the tiles are exactly the same to each others.
Apart from using normal files as cache, you can also use a single SQLite file for the cache. It
uses the MBTiles specification(https://github.com/mapbox/mbtiles-spec).

caches:
name of our cache

mbtiles_cache:
A list of data sources for this cache. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources from left (bottom) to right (top)
before they are stored on disk.

sources: [my_source]

25 of 105

Configuration
MapProxy configuration is set up in the mapproxy.yaml file. The MapProxy configuration is a
dictionay, each key configures a different aspect of MapProxy. There are the following keys:

 services: this is the place to activate and configure MapProxy’s services like WMS and
TMS. They define how the tiles are organized.

 layers: configure the layers that MapProxy offers. Each layer can consist of multiple
sources and caches. We can have several layers, in that case we need to use the
transparent option.

 sources: define where MapProxy can retrieve new data, where our tiles are stored.
One of the options will be the tiles url.

 caches: here you can configure the internal caches. When the layer is requested by a
client, MapProxy looks in the cache for the requested data and only if it hasn’t cached
the data yet, it requests the required data source.

 grids: MapProxy aligns all cached images (tiles) to a grid. Here you can define that grid.
Among other options, you can define a factor between each resolution. It should be
either a number or the term sqrt2. The default factor is 2.

 globals: here you can define some internals of MapProxy and default values that are
used in the other configuration directives.

To start the development server we use the command:
mapproxy-util serve-develop mapproxy.yaml

Seeding and caching
MapProxy creates all tiles on demand. That means, only tiles requested once are cached.
Fortunately MapProxy comes with a command line script for pre-generating all required tiles
called mapproxy-seed. It has its own configuration file called seed.yaml and a couple of
options. In the file we can find these options.

 Seeds: configure seeding tasks. Here you can create multiple seeding tasks that define
what should be seeded. You can specify a list of caches for seeding with caches. If you
have specified multiple grids for one cache in your MapProxy configuration, you can
select these caches to seed.

 Cleanups: configure cleanup tasks, to remove the old tiles stored. You can clean up
caches, grids, levels, coverages, all tiles before a date.

 Coverages: configure coverages for seeding and cleanup tasks. You can define areas
where data is available or where the interesting data is.

The tool can seed one or more polygon areas for each cached layer. It can be really useful for
lake or sea areas, where the tiles are exactly the same to each others.
Apart from using normal files as cache, you can also use a single SQLite file for the cache. It
uses the MBTiles specification(https://github.com/mapbox/mbtiles-spec).

caches:
name of our cache

mbtiles_cache:
A list of data sources for this cache. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources from left (bottom) to right (top)
before they are stored on disk.

sources: [my_source]

26 of 105

You can configure one or more grids for each cache. MapProxy will create one cache for each
grid.

grids: [my_grid]
Configure the type of the background tile cache.

cache:
You configure the type with thetype option. The default type is file

type: mbtiles
This is where your .mbtiles file is located

filename: /path/to/cache.mbtiles

You could also set the sources to an empty list, if you use an existing MBTiles file and do not
have a source.
You could also use a cache as the source of another cache. For example, you might need to
change the grid of an existing cache to cover a larger bounding box, or to support tile clients
that expect a different grid, but you do not want to seed the data again.

Each layer contains information about the layer and where the data comes from.
layers:
The name of the layer. You can omit the name for group layers.

- name: layer1
Readable name of the layer, the one that will appear in the website.

title: Layer using data from existing_cache
A list of data sources for this layer. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources.

sources: [new_cache]

caches:
new_cache:

grids: [new_grid]
sources: [existing_cache]

existing_cache:
grids: [old_grid]
sources: [my_source]

Here you can define the tile grids that MapProxy uses for the internal caching.
grids:

utm32n:
The spatial reference system used for the internal cache, written as EPSG:xxxx.

srs: 'EPSG:27700'
The extent of your grid. You can use either a list or a string with the lower left and upper
right coordinates.

bbox: [4, 46, 16, 56]
The SRS of the grid bbox.

bbox_srs: 'EPSG:4326'

26 of 105

You can configure one or more grids for each cache. MapProxy will create one cache for each
grid.

grids: [my_grid]
Configure the type of the background tile cache.

cache:
You configure the type with thetype option. The default type is file

type: mbtiles
This is where your .mbtiles file is located

filename: /path/to/cache.mbtiles

You could also set the sources to an empty list, if you use an existing MBTiles file and do not
have a source.
You could also use a cache as the source of another cache. For example, you might need to
change the grid of an existing cache to cover a larger bounding box, or to support tile clients
that expect a different grid, but you do not want to seed the data again.

Each layer contains information about the layer and where the data comes from.
layers:
The name of the layer. You can omit the name for group layers.

- name: layer1
Readable name of the layer, the one that will appear in the website.

title: Layer using data from existing_cache
A list of data sources for this layer. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources.

sources: [new_cache]

caches:
new_cache:

grids: [new_grid]
sources: [existing_cache]

existing_cache:
grids: [old_grid]
sources: [my_source]

Here you can define the tile grids that MapProxy uses for the internal caching.
grids:

utm32n:
The spatial reference system used for the internal cache, written as EPSG:xxxx.

srs: 'EPSG:27700'
The extent of your grid. You can use either a list or a string with the lower left and upper
right coordinates.

bbox: [4, 46, 16, 56]
The SRS of the grid bbox.

bbox_srs: 'EPSG:4326'

26 of 105

You can configure one or more grids for each cache. MapProxy will create one cache for each
grid.

grids: [my_grid]
Configure the type of the background tile cache.

cache:
You configure the type with thetype option. The default type is file

type: mbtiles
This is where your .mbtiles file is located

filename: /path/to/cache.mbtiles

You could also set the sources to an empty list, if you use an existing MBTiles file and do not
have a source.
You could also use a cache as the source of another cache. For example, you might need to
change the grid of an existing cache to cover a larger bounding box, or to support tile clients
that expect a different grid, but you do not want to seed the data again.

Each layer contains information about the layer and where the data comes from.
layers:
The name of the layer. You can omit the name for group layers.

- name: layer1
Readable name of the layer, the one that will appear in the website.

title: Layer using data from existing_cache
A list of data sources for this layer. You can use sources defined in the sources
and caches section. MapProxy will merge multiple sources.

sources: [new_cache]

caches:
new_cache:

grids: [new_grid]
sources: [existing_cache]

existing_cache:
grids: [old_grid]
sources: [my_source]

Here you can define the tile grids that MapProxy uses for the internal caching.
grids:

utm32n:
The spatial reference system used for the internal cache, written as EPSG:xxxx.

srs: 'EPSG:27700'
The extent of your grid. You can use either a list or a string with the lower left and upper
right coordinates.

bbox: [4, 46, 16, 56]
The SRS of the grid bbox.

bbox_srs: 'EPSG:4326'

27 of 105

The default origin (x=0, y=0) of the tile grid is the lower left corner, similar to TMS. WMTS
defines the tile origin in the upper left corner. MapProxy can translate between services and
caches with different tile origins, (but there are some limitations for grids with custom bbox
and resolutions that are not of factor 2). ll or sw: if the x=0, y=0 tile is in the lower-left/south-
west corner of the tile grid. This is the default. ul or nw: if the x=0, y=0 tile is in the upper-
left/north-west corner of the tile grid.

origin: 'nw'
The resolutions of the first level.

min_res: 5700
osm_grid:

With this option, you can base the grid on the options of another grid you already defined.
base: GLOBAL_MERCATOR
origin: nw

Grids

By default the resolutions between each pyramid level doubles. If you want to change this, you
can do so by defining your own grid. Fortunately, MapProxy grids provide the ability to inherit
from another grid. We let our grid inherit from the previously used GLOBAL_GEODETIC grid
and add five fixed resolutions to it.

grids:
res_grid:

base: GLOBAL_GEODETIC
A list with all resolutions that MapProxy should cache.

res: [1, 0.5, 0.25, 0.125, 0.0625]

The resolutions are always in the unit of the SRS, in this case in degree per pixel.
Instead of defining fixed resolutions, we can also define a factor that is used to calculate the
resolutions. The default value of this factor is 2, but you can set it to each value you want. Just
change res with res_factor and add your preferred factor after it.
A magical value of res_factor is sqrt2, the square root of two. It doubles the number of cached
resolutions, so you have 40 instead of 20 available resolutions.

Let see how to define our own grid.
For this example we define a grid for Germany. We need a spatial reference system (srs) that
match the region of Germany and a bounding box (bbox) around Germany to limit the
requestable aera. To make the specification of the bbox a little bit easier, we put
the bbox_srs parameter to the grid configuration. So we can define the bbox in EPSG:4326
(European Petroleum Survey Group).

germany:
srs: 'EPSG:25832'
bbox: [6, 47.3, 15.1, 55]
bbox_srs: 'EPSG:4326'

In bbox we consider: lat_min,lon_min,lat_max,lon_max; which means minimal latitude is 6,
minimal longitude is 47.3, maximal latitude is 15.1, maximal longitude is 55.

27 of 105

The default origin (x=0, y=0) of the tile grid is the lower left corner, similar to TMS. WMTS
defines the tile origin in the upper left corner. MapProxy can translate between services and
caches with different tile origins, (but there are some limitations for grids with custom bbox
and resolutions that are not of factor 2). ll or sw: if the x=0, y=0 tile is in the lower-left/south-
west corner of the tile grid. This is the default. ul or nw: if the x=0, y=0 tile is in the upper-
left/north-west corner of the tile grid.

origin: 'nw'
The resolutions of the first level.

min_res: 5700
osm_grid:

With this option, you can base the grid on the options of another grid you already defined.
base: GLOBAL_MERCATOR
origin: nw

Grids

By default the resolutions between each pyramid level doubles. If you want to change this, you
can do so by defining your own grid. Fortunately, MapProxy grids provide the ability to inherit
from another grid. We let our grid inherit from the previously used GLOBAL_GEODETIC grid
and add five fixed resolutions to it.

grids:
res_grid:

base: GLOBAL_GEODETIC
A list with all resolutions that MapProxy should cache.

res: [1, 0.5, 0.25, 0.125, 0.0625]

The resolutions are always in the unit of the SRS, in this case in degree per pixel.
Instead of defining fixed resolutions, we can also define a factor that is used to calculate the
resolutions. The default value of this factor is 2, but you can set it to each value you want. Just
change res with res_factor and add your preferred factor after it.
A magical value of res_factor is sqrt2, the square root of two. It doubles the number of cached
resolutions, so you have 40 instead of 20 available resolutions.

Let see how to define our own grid.
For this example we define a grid for Germany. We need a spatial reference system (srs) that
match the region of Germany and a bounding box (bbox) around Germany to limit the
requestable aera. To make the specification of the bbox a little bit easier, we put
the bbox_srs parameter to the grid configuration. So we can define the bbox in EPSG:4326
(European Petroleum Survey Group).

germany:
srs: 'EPSG:25832'
bbox: [6, 47.3, 15.1, 55]
bbox_srs: 'EPSG:4326'

In bbox we consider: lat_min,lon_min,lat_max,lon_max; which means minimal latitude is 6,
minimal longitude is 47.3, maximal latitude is 15.1, maximal longitude is 55.

27 of 105

The default origin (x=0, y=0) of the tile grid is the lower left corner, similar to TMS. WMTS
defines the tile origin in the upper left corner. MapProxy can translate between services and
caches with different tile origins, (but there are some limitations for grids with custom bbox
and resolutions that are not of factor 2). ll or sw: if the x=0, y=0 tile is in the lower-left/south-
west corner of the tile grid. This is the default. ul or nw: if the x=0, y=0 tile is in the upper-
left/north-west corner of the tile grid.

origin: 'nw'
The resolutions of the first level.

min_res: 5700
osm_grid:

With this option, you can base the grid on the options of another grid you already defined.
base: GLOBAL_MERCATOR
origin: nw

Grids

By default the resolutions between each pyramid level doubles. If you want to change this, you
can do so by defining your own grid. Fortunately, MapProxy grids provide the ability to inherit
from another grid. We let our grid inherit from the previously used GLOBAL_GEODETIC grid
and add five fixed resolutions to it.

grids:
res_grid:

base: GLOBAL_GEODETIC
A list with all resolutions that MapProxy should cache.

res: [1, 0.5, 0.25, 0.125, 0.0625]

The resolutions are always in the unit of the SRS, in this case in degree per pixel.
Instead of defining fixed resolutions, we can also define a factor that is used to calculate the
resolutions. The default value of this factor is 2, but you can set it to each value you want. Just
change res with res_factor and add your preferred factor after it.
A magical value of res_factor is sqrt2, the square root of two. It doubles the number of cached
resolutions, so you have 40 instead of 20 available resolutions.

Let see how to define our own grid.
For this example we define a grid for Germany. We need a spatial reference system (srs) that
match the region of Germany and a bounding box (bbox) around Germany to limit the
requestable aera. To make the specification of the bbox a little bit easier, we put
the bbox_srs parameter to the grid configuration. So we can define the bbox in EPSG:4326
(European Petroleum Survey Group).

germany:
srs: 'EPSG:25832'
bbox: [6, 47.3, 15.1, 55]
bbox_srs: 'EPSG:4326'

In bbox we consider: lat_min,lon_min,lat_max,lon_max; which means minimal latitude is 6,
minimal longitude is 47.3, maximal latitude is 15.1, maximal longitude is 55.

28 of 105

Defining Resolutions

There are multiple options that influence the resolutions MapProxy will use for
caching: res, res_factor, min_res, max_res, num_levels and also bbox andtile_size.
If you supply a list with resolution values in res then MapProxy will use this list and will ignore
all other options.
If min_res is set then this value will be used for the first level, otherwise MapProxy will use the
resolution that is needed for a single tile (tile_size) that contains the whole bbox.
If you have max_res and num_levels: the resolutions will be distributed between
min_res and max_res, both resolutions included. The resolutions will be logarithmical, so you
will get a constant factor between each resolution. For example, with resolutions from 1000 to
10 and 6 levels you would get 1000, 398, 158, 63, 25, 10 (rounded here).
If you have max_res and res_factor: the resolutions will be multiplied by res_factor until larger
then max_res.
If you have num_levels and res_factor: the resolutions will be multiplied by res_factor for up
to num_levels levels.
You can set every cache resolution in the res option of a layer.

caches:
custom_res_cache:

grids: [custom_res]
sources: [vector_source]

grids:
custom_res_cache:

srs: 'EPSG:31467'
res: [10000, 7500, 5000, 3500, 2500]

You can specify a different factor that is used to calculate the resolutions. By default a factor of
2 is used, but you can set smaller values:

grids:
custom_factor:

Here you can define a factor between each resolution. It should be either a number or the
term sqrt2.

res_factor: 1.6
Other option is a convenient variation of the previous option. A factor of 1.41421, the square
root of two, would get resolutions of 10, 7.07, 5, 3.54, 2.5,…. Notice that every second
resolution is identical to the power-of-two resolutions. This comes in handy if you use the layer
not only in classic WMS clients but also want to use it in tile-based clients like OpenLayers,
which only request in these resolutions.

grids:
sqrt2:

res_factor: sqrt2

28 of 105

Defining Resolutions

There are multiple options that influence the resolutions MapProxy will use for
caching: res, res_factor, min_res, max_res, num_levels and also bbox andtile_size.
If you supply a list with resolution values in res then MapProxy will use this list and will ignore
all other options.
If min_res is set then this value will be used for the first level, otherwise MapProxy will use the
resolution that is needed for a single tile (tile_size) that contains the whole bbox.
If you have max_res and num_levels: the resolutions will be distributed between
min_res and max_res, both resolutions included. The resolutions will be logarithmical, so you
will get a constant factor between each resolution. For example, with resolutions from 1000 to
10 and 6 levels you would get 1000, 398, 158, 63, 25, 10 (rounded here).
If you have max_res and res_factor: the resolutions will be multiplied by res_factor until larger
then max_res.
If you have num_levels and res_factor: the resolutions will be multiplied by res_factor for up
to num_levels levels.
You can set every cache resolution in the res option of a layer.

caches:
custom_res_cache:

grids: [custom_res]
sources: [vector_source]

grids:
custom_res_cache:

srs: 'EPSG:31467'
res: [10000, 7500, 5000, 3500, 2500]

You can specify a different factor that is used to calculate the resolutions. By default a factor of
2 is used, but you can set smaller values:

grids:
custom_factor:

Here you can define a factor between each resolution. It should be either a number or the
term sqrt2.

res_factor: 1.6
Other option is a convenient variation of the previous option. A factor of 1.41421, the square
root of two, would get resolutions of 10, 7.07, 5, 3.54, 2.5,…. Notice that every second
resolution is identical to the power-of-two resolutions. This comes in handy if you use the layer
not only in classic WMS clients but also want to use it in tile-based clients like OpenLayers,
which only request in these resolutions.

grids:
sqrt2:

res_factor: sqrt2

28 of 105

Defining Resolutions

There are multiple options that influence the resolutions MapProxy will use for
caching: res, res_factor, min_res, max_res, num_levels and also bbox andtile_size.
If you supply a list with resolution values in res then MapProxy will use this list and will ignore
all other options.
If min_res is set then this value will be used for the first level, otherwise MapProxy will use the
resolution that is needed for a single tile (tile_size) that contains the whole bbox.
If you have max_res and num_levels: the resolutions will be distributed between
min_res and max_res, both resolutions included. The resolutions will be logarithmical, so you
will get a constant factor between each resolution. For example, with resolutions from 1000 to
10 and 6 levels you would get 1000, 398, 158, 63, 25, 10 (rounded here).
If you have max_res and res_factor: the resolutions will be multiplied by res_factor until larger
then max_res.
If you have num_levels and res_factor: the resolutions will be multiplied by res_factor for up
to num_levels levels.
You can set every cache resolution in the res option of a layer.

caches:
custom_res_cache:

grids: [custom_res]
sources: [vector_source]

grids:
custom_res_cache:

srs: 'EPSG:31467'
res: [10000, 7500, 5000, 3500, 2500]

You can specify a different factor that is used to calculate the resolutions. By default a factor of
2 is used, but you can set smaller values:

grids:
custom_factor:

Here you can define a factor between each resolution. It should be either a number or the
term sqrt2.

res_factor: 1.6
Other option is a convenient variation of the previous option. A factor of 1.41421, the square
root of two, would get resolutions of 10, 7.07, 5, 3.54, 2.5,…. Notice that every second
resolution is identical to the power-of-two resolutions. This comes in handy if you use the layer
not only in classic WMS clients but also want to use it in tile-based clients like OpenLayers,
which only request in these resolutions.

grids:
sqrt2:

res_factor: sqrt2

29 of 105

In this example, we have only chosen min_res: 10000; and the res_factor will be 2, which is the
default value. And bbox: [5, 50, 10, 55]

Here we select min_res: 10000 and res_factor: ‘sqrt2’

29 of 105

In this example, we have only chosen min_res: 10000; and the res_factor will be 2, which is the
default value. And bbox: [5, 50, 10, 55]

Here we select min_res: 10000 and res_factor: ‘sqrt2’

29 of 105

In this example, we have only chosen min_res: 10000; and the res_factor will be 2, which is the
default value. And bbox: [5, 50, 10, 55]

Here we select min_res: 10000 and res_factor: ‘sqrt2’

30 of 105

Reprojecting

When the grids are not compatible, for example, when they use different projections, then
MapProxy will access the source cache as if it is a WMS source and it will use meta-requests
and do image reprojection as necessary.
It will reproject data if it needs to get data from this layer in any other SRS.
If MapProxy needs to reproject and the source has multiple supported_srs, then it will use the
fist projected SRS for requests in projected SRS, or the fist geographic SRS for requests in
geographic SRS. For example, when supported_srs is ['EPSG:4326','EPSG:31467'] caches with
EPSG:900913 will use EPSG:32467.
Here is an example that uses OSM tiles as a source and offers them in UTM projection.
The disable_storageoption prevents MapProxy from building up two caches.
The meta_size makes MapProxy to reproject multiple tiles at once.
Note that reprojecting vector data results in quality loss. For better results you need to find
similar resolutions between both grids.

layers:
- name: osm
title: OSM in UTM
sources: [osm_cache]

caches:
osm_cache:

grids: [utm32n]

MapProxy does not make a single request for every tile but will request a large meta-tile that
consist of multiple tiles. meta_size defines how large a meta-tile is. A meta_size of [4, 4] will
request 16 tiles in one pass. With a tile size of 256x256 this will result in 1024x1024 requests to
the source WMS.

meta_size: [4, 4]
sources: [osm_cache_in]

osm_cache_in:
grids: [osm_grid]

If set to true, MapProxy will not store any tiles for this cache. MapProxy will re-request all
required tiles for each incoming request, even if the there are matching tiles in the cache.

disable_storage: true
sources: [osm_source]

You need to choose a unique name for each configured source. This name will be used to
reference the source in the caches and layers configuration.
sources:

osm_source:
Use the type tile to request data from from existing tile servers like TileCache and
GeoWebCache.

type: tile

30 of 105

Reprojecting

When the grids are not compatible, for example, when they use different projections, then
MapProxy will access the source cache as if it is a WMS source and it will use meta-requests
and do image reprojection as necessary.
It will reproject data if it needs to get data from this layer in any other SRS.
If MapProxy needs to reproject and the source has multiple supported_srs, then it will use the
fist projected SRS for requests in projected SRS, or the fist geographic SRS for requests in
geographic SRS. For example, when supported_srs is ['EPSG:4326','EPSG:31467'] caches with
EPSG:900913 will use EPSG:32467.
Here is an example that uses OSM tiles as a source and offers them in UTM projection.
The disable_storageoption prevents MapProxy from building up two caches.
The meta_size makes MapProxy to reproject multiple tiles at once.
Note that reprojecting vector data results in quality loss. For better results you need to find
similar resolutions between both grids.

layers:
- name: osm
title: OSM in UTM
sources: [osm_cache]

caches:
osm_cache:

grids: [utm32n]

MapProxy does not make a single request for every tile but will request a large meta-tile that
consist of multiple tiles. meta_size defines how large a meta-tile is. A meta_size of [4, 4] will
request 16 tiles in one pass. With a tile size of 256x256 this will result in 1024x1024 requests to
the source WMS.

meta_size: [4, 4]
sources: [osm_cache_in]

osm_cache_in:
grids: [osm_grid]

If set to true, MapProxy will not store any tiles for this cache. MapProxy will re-request all
required tiles for each incoming request, even if the there are matching tiles in the cache.

disable_storage: true
sources: [osm_source]

You need to choose a unique name for each configured source. This name will be used to
reference the source in the caches and layers configuration.
sources:

osm_source:
Use the type tile to request data from from existing tile servers like TileCache and
GeoWebCache.

type: tile

30 of 105

Reprojecting

When the grids are not compatible, for example, when they use different projections, then
MapProxy will access the source cache as if it is a WMS source and it will use meta-requests
and do image reprojection as necessary.
It will reproject data if it needs to get data from this layer in any other SRS.
If MapProxy needs to reproject and the source has multiple supported_srs, then it will use the
fist projected SRS for requests in projected SRS, or the fist geographic SRS for requests in
geographic SRS. For example, when supported_srs is ['EPSG:4326','EPSG:31467'] caches with
EPSG:900913 will use EPSG:32467.
Here is an example that uses OSM tiles as a source and offers them in UTM projection.
The disable_storageoption prevents MapProxy from building up two caches.
The meta_size makes MapProxy to reproject multiple tiles at once.
Note that reprojecting vector data results in quality loss. For better results you need to find
similar resolutions between both grids.

layers:
- name: osm
title: OSM in UTM
sources: [osm_cache]

caches:
osm_cache:

grids: [utm32n]

MapProxy does not make a single request for every tile but will request a large meta-tile that
consist of multiple tiles. meta_size defines how large a meta-tile is. A meta_size of [4, 4] will
request 16 tiles in one pass. With a tile size of 256x256 this will result in 1024x1024 requests to
the source WMS.

meta_size: [4, 4]
sources: [osm_cache_in]

osm_cache_in:
grids: [osm_grid]

If set to true, MapProxy will not store any tiles for this cache. MapProxy will re-request all
required tiles for each incoming request, even if the there are matching tiles in the cache.

disable_storage: true
sources: [osm_source]

You need to choose a unique name for each configured source. This name will be used to
reference the source in the caches and layers configuration.
sources:

osm_source:
Use the type tile to request data from from existing tile servers like TileCache and
GeoWebCache.

type: tile

31 of 105

The grid of the tile source. Defaults to GLOBAL_MERCATOR, a grid that is compatible with
popular web mapping applications.

grid: osm_grid
This source takes a url option that contains a URL template. The template format
is %(key_name)s.

url: http://a.tile.openstreetmap.org/%(z)s/%(x)s/%(y)s.png

grids:
utm32n:

srs: 'EPSG:25832'
bbox: [4, 46, 16, 56]
bbox_srs: 'EPSG:4326'
origin: 'nw'
min_res: 5700

osm_grid:
base: GLOBAL_MERCATOR
origin: nw

If you do not want to cache data but still want to use MapProxy’s ability to reproject WMS
layers on the fly, you can use a direct layer. Add your source directly to your layer instead of a
cache.
You should explicitly define the SRS the source WMS supports. Requests in other SRS will be
reprojected. You should specify at least one geographic and one projected SRS to limit the
distortions from reprojection.

layers:
- name: direct_layer

sources: [direct_wms]

sources:
direct_wms:

Use the type wms to for WMS servers.
type: wms

A list with SRSs that the WMS source supports. MapProxy will only query the source in these
SRSs. It will reproject data if it needs to get data from this layer in any other SRS.

supported_srs: ['EPSG:4326', 'EPSG:25832']
This describes the WMS source. The only required options are url and layers. You need to
set transparent to true if you want to use this source as an overlay.

req:
url: http://wms.example.org/service?
layers: layer0, layer1

31 of 105

The grid of the tile source. Defaults to GLOBAL_MERCATOR, a grid that is compatible with
popular web mapping applications.

grid: osm_grid
This source takes a url option that contains a URL template. The template format
is %(key_name)s.

url: http://a.tile.openstreetmap.org/%(z)s/%(x)s/%(y)s.png

grids:
utm32n:

srs: 'EPSG:25832'
bbox: [4, 46, 16, 56]
bbox_srs: 'EPSG:4326'
origin: 'nw'
min_res: 5700

osm_grid:
base: GLOBAL_MERCATOR
origin: nw

If you do not want to cache data but still want to use MapProxy’s ability to reproject WMS
layers on the fly, you can use a direct layer. Add your source directly to your layer instead of a
cache.
You should explicitly define the SRS the source WMS supports. Requests in other SRS will be
reprojected. You should specify at least one geographic and one projected SRS to limit the
distortions from reprojection.

layers:
- name: direct_layer

sources: [direct_wms]

sources:
direct_wms:

Use the type wms to for WMS servers.
type: wms

A list with SRSs that the WMS source supports. MapProxy will only query the source in these
SRSs. It will reproject data if it needs to get data from this layer in any other SRS.

supported_srs: ['EPSG:4326', 'EPSG:25832']
This describes the WMS source. The only required options are url and layers. You need to
set transparent to true if you want to use this source as an overlay.

req:
url: http://wms.example.org/service?
layers: layer0, layer1

31 of 105

The grid of the tile source. Defaults to GLOBAL_MERCATOR, a grid that is compatible with
popular web mapping applications.

grid: osm_grid
This source takes a url option that contains a URL template. The template format
is %(key_name)s.

url: http://a.tile.openstreetmap.org/%(z)s/%(x)s/%(y)s.png

grids:
utm32n:

srs: 'EPSG:25832'
bbox: [4, 46, 16, 56]
bbox_srs: 'EPSG:4326'
origin: 'nw'
min_res: 5700

osm_grid:
base: GLOBAL_MERCATOR
origin: nw

If you do not want to cache data but still want to use MapProxy’s ability to reproject WMS
layers on the fly, you can use a direct layer. Add your source directly to your layer instead of a
cache.
You should explicitly define the SRS the source WMS supports. Requests in other SRS will be
reprojected. You should specify at least one geographic and one projected SRS to limit the
distortions from reprojection.

layers:
- name: direct_layer

sources: [direct_wms]

sources:
direct_wms:

Use the type wms to for WMS servers.
type: wms

A list with SRSs that the WMS source supports. MapProxy will only query the source in these
SRSs. It will reproject data if it needs to get data from this layer in any other SRS.

supported_srs: ['EPSG:4326', 'EPSG:25832']
This describes the WMS source. The only required options are url and layers. You need to
set transparent to true if you want to use this source as an overlay.

req:
url: http://wms.example.org/service?
layers: layer0, layer1

32 of 105

MapCache

MapCache is a server that implements tile caching to speed up access to wms layers.
It can be found in this repository https://github.com/mapserver/mapcache/.
It serves tiles using a variety of different request protocols: TMS, KML, OGC WMTS, OGC WMS,

GoogleMaps xyz, Virtual Earth Tile.
To enable a particular service you should add this in your service configuration, where type
indicate the protocol.
<service type="tms" enabled="true"/>
There are several types of cache you could use:

 Disk cache: the easiest to configure and the fastest to access to tiles. It is the best
option when caching small maps, but it could cause problems when storing millions of
tiles, because of the creation of so many directories. You could use the default
structure or create your template to indicate how you want your tiles to store.

 Sqlite cache: they store the tiles as blobs inside a single database file, so the number of
tiles does not affect. There is also a default schema or you could use the MBTiles
schema.

 GeoTIFF cache: storing the tiles in a tiff file. This cache should be considered read-only,
because although written is possible, there may be file corruption troubles. Until all
the tiles have been cached, the tiff file is missing a number of jpeg tiles.

A configuration example:
<mapcache>

<!-- A grid is the matrix that maps tiles on an area, and consists of a spatial reference,
a geographic extent, resolutions, and tile size. -->

<grid name=”grid_4326”>
<!-- number of pixels indicating the width and height of the tiles -->
<size>256 256</size>
<!-- the bounds covered by the grid -->
<extent>-180 -90 180 90</extent>
<!-- the spatial reference system of the grid, it is used to look which grid to use when
getting a WMS request. You must make sure that the source that is queried is capable of

returning image data for this srs -->
<srs>epsg:4326</srs>
<!-- the units used by the grid’s projection, it could be meters, decimal degrees or feet -->
<units>dd</units>
<!—the resolutions for every zoom level included in the grid. The biggest value will
correspond to the grid’s zoom level 0. Resolutions are expressed in “units-per-pixel” -->
<resolutions>0.703125000000000 0.351562500000000 0.175781250000000
8.78906250000000e-2 4.39453125000000e-2</resolutions>

</grid>

<!- - this is the service that will obtain the image data. Right now only the WMS service is
available -->

<source name="swiss_map" type="wms">

32 of 105

MapCache

MapCache is a server that implements tile caching to speed up access to wms layers.
It can be found in this repository https://github.com/mapserver/mapcache/.
It serves tiles using a variety of different request protocols: TMS, KML, OGC WMTS, OGC WMS,

GoogleMaps xyz, Virtual Earth Tile.
To enable a particular service you should add this in your service configuration, where type
indicate the protocol.
<service type="tms" enabled="true"/>
There are several types of cache you could use:

 Disk cache: the easiest to configure and the fastest to access to tiles. It is the best
option when caching small maps, but it could cause problems when storing millions of
tiles, because of the creation of so many directories. You could use the default
structure or create your template to indicate how you want your tiles to store.

 Sqlite cache: they store the tiles as blobs inside a single database file, so the number of
tiles does not affect. There is also a default schema or you could use the MBTiles
schema.

 GeoTIFF cache: storing the tiles in a tiff file. This cache should be considered read-only,
because although written is possible, there may be file corruption troubles. Until all
the tiles have been cached, the tiff file is missing a number of jpeg tiles.

A configuration example:
<mapcache>

<!-- A grid is the matrix that maps tiles on an area, and consists of a spatial reference,
a geographic extent, resolutions, and tile size. -->

<grid name=”grid_4326”>
<!-- number of pixels indicating the width and height of the tiles -->
<size>256 256</size>
<!-- the bounds covered by the grid -->
<extent>-180 -90 180 90</extent>
<!-- the spatial reference system of the grid, it is used to look which grid to use when
getting a WMS request. You must make sure that the source that is queried is capable of

returning image data for this srs -->
<srs>epsg:4326</srs>
<!-- the units used by the grid’s projection, it could be meters, decimal degrees or feet -->
<units>dd</units>
<!—the resolutions for every zoom level included in the grid. The biggest value will
correspond to the grid’s zoom level 0. Resolutions are expressed in “units-per-pixel” -->
<resolutions>0.703125000000000 0.351562500000000 0.175781250000000
8.78906250000000e-2 4.39453125000000e-2</resolutions>

</grid>

<!- - this is the service that will obtain the image data. Right now only the WMS service is
available -->

<source name="swiss_map" type="wms">

32 of 105

MapCache

MapCache is a server that implements tile caching to speed up access to wms layers.
It can be found in this repository https://github.com/mapserver/mapcache/.
It serves tiles using a variety of different request protocols: TMS, KML, OGC WMTS, OGC WMS,

GoogleMaps xyz, Virtual Earth Tile.
To enable a particular service you should add this in your service configuration, where type
indicate the protocol.
<service type="tms" enabled="true"/>
There are several types of cache you could use:

 Disk cache: the easiest to configure and the fastest to access to tiles. It is the best
option when caching small maps, but it could cause problems when storing millions of
tiles, because of the creation of so many directories. You could use the default
structure or create your template to indicate how you want your tiles to store.

 Sqlite cache: they store the tiles as blobs inside a single database file, so the number of
tiles does not affect. There is also a default schema or you could use the MBTiles
schema.

 GeoTIFF cache: storing the tiles in a tiff file. This cache should be considered read-only,
because although written is possible, there may be file corruption troubles. Until all
the tiles have been cached, the tiff file is missing a number of jpeg tiles.

A configuration example:
<mapcache>

<!-- A grid is the matrix that maps tiles on an area, and consists of a spatial reference,
a geographic extent, resolutions, and tile size. -->

<grid name=”grid_4326”>
<!-- number of pixels indicating the width and height of the tiles -->
<size>256 256</size>
<!-- the bounds covered by the grid -->
<extent>-180 -90 180 90</extent>
<!-- the spatial reference system of the grid, it is used to look which grid to use when
getting a WMS request. You must make sure that the source that is queried is capable of

returning image data for this srs -->
<srs>epsg:4326</srs>
<!-- the units used by the grid’s projection, it could be meters, decimal degrees or feet -->
<units>dd</units>
<!—the resolutions for every zoom level included in the grid. The biggest value will
correspond to the grid’s zoom level 0. Resolutions are expressed in “units-per-pixel” -->
<resolutions>0.703125000000000 0.351562500000000 0.175781250000000
8.78906250000000e-2 4.39453125000000e-2</resolutions>

</grid>

<!- - this is the service that will obtain the image data. Right now only the WMS service is
available -->

<source name="swiss_map" type="wms">

33 of 105

<!-- this are the parameters that will be added to the GetMap request, you can specify any
parameter here, e.g. FORMAT to indicate the kind of tiles.
request -->

<getmap>
<params>

<!—this parameter is mandatory -->
<LAYERS>basic</LAYERS>
<FORMAT>image/png</FORMAT>
<!-- these parameter are used by default and can be override -->

<REQUEST>GetMap</REQUEST>
<SERVICE>WMS</SERVICE>
<STYLES></STYLES>
<VERSION>1.1.0</VERSION>

</params>
</getmap>
<!-- http url and parameters that will be used when making WMS requests -->
<http>

<!-- url of the wms service, without any parameters -->
<url>http:// 152.96.56.43/wms/swiss_map</url>
<!-- http headers added here will take precedence over any default headers added to the
request. Typical headers that can be added here are User-Agent and Referer. -->

<headers>
<User-Agent>mod-mapcache</User-Agent>

</headers>
<!-- timeout in seconds before bailing out from a request -->
<connection_timeout>60</connection_timeout>

</http>
</source>

<!--here will be configured the directory where the tiles will be stored. The cache could be a
sqlite database and also a MBTiles file; that would be specified as the type -->

<cache name="maps" type="disk">
<!-- directory where the tile structure will be stored. It needs to be readable and writable by

the user -->
<base>/mapserver/cache</base>
<!—when this appears it indicates that blank tiles will be detected at creation time and

linked to a single blank tile on disk not to use disk space -->
<symlink_blank/>
<!—you can use a template to indicate how to map a tile (by tileset, grid name, dimension,

format, x, y, and z) to a filename on the filesystem.
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile's dimension
- {ext} : the filename extension for the tile's image format

33 of 105

<!-- this are the parameters that will be added to the GetMap request, you can specify any
parameter here, e.g. FORMAT to indicate the kind of tiles.
request -->

<getmap>
<params>

<!—this parameter is mandatory -->
<LAYERS>basic</LAYERS>
<FORMAT>image/png</FORMAT>
<!-- these parameter are used by default and can be override -->

<REQUEST>GetMap</REQUEST>
<SERVICE>WMS</SERVICE>
<STYLES></STYLES>
<VERSION>1.1.0</VERSION>

</params>
</getmap>
<!-- http url and parameters that will be used when making WMS requests -->
<http>

<!-- url of the wms service, without any parameters -->
<url>http:// 152.96.56.43/wms/swiss_map</url>
<!-- http headers added here will take precedence over any default headers added to the
request. Typical headers that can be added here are User-Agent and Referer. -->

<headers>
<User-Agent>mod-mapcache</User-Agent>

</headers>
<!-- timeout in seconds before bailing out from a request -->
<connection_timeout>60</connection_timeout>

</http>
</source>

<!--here will be configured the directory where the tiles will be stored. The cache could be a
sqlite database and also a MBTiles file; that would be specified as the type -->

<cache name="maps" type="disk">
<!-- directory where the tile structure will be stored. It needs to be readable and writable by

the user -->
<base>/mapserver/cache</base>
<!—when this appears it indicates that blank tiles will be detected at creation time and

linked to a single blank tile on disk not to use disk space -->
<symlink_blank/>
<!—you can use a template to indicate how to map a tile (by tileset, grid name, dimension,

format, x, y, and z) to a filename on the filesystem.
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile's dimension
- {ext} : the filename extension for the tile's image format

33 of 105

<!-- this are the parameters that will be added to the GetMap request, you can specify any
parameter here, e.g. FORMAT to indicate the kind of tiles.
request -->

<getmap>
<params>

<!—this parameter is mandatory -->
<LAYERS>basic</LAYERS>
<FORMAT>image/png</FORMAT>
<!-- these parameter are used by default and can be override -->

<REQUEST>GetMap</REQUEST>
<SERVICE>WMS</SERVICE>
<STYLES></STYLES>
<VERSION>1.1.0</VERSION>

</params>
</getmap>
<!-- http url and parameters that will be used when making WMS requests -->
<http>

<!-- url of the wms service, without any parameters -->
<url>http:// 152.96.56.43/wms/swiss_map</url>
<!-- http headers added here will take precedence over any default headers added to the
request. Typical headers that can be added here are User-Agent and Referer. -->

<headers>
<User-Agent>mod-mapcache</User-Agent>

</headers>
<!-- timeout in seconds before bailing out from a request -->
<connection_timeout>60</connection_timeout>

</http>
</source>

<!--here will be configured the directory where the tiles will be stored. The cache could be a
sqlite database and also a MBTiles file; that would be specified as the type -->

<cache name="maps" type="disk">
<!-- directory where the tile structure will be stored. It needs to be readable and writable by

the user -->
<base>/mapserver/cache</base>
<!—when this appears it indicates that blank tiles will be detected at creation time and

linked to a single blank tile on disk not to use disk space -->
<symlink_blank/>
<!—you can use a template to indicate how to map a tile (by tileset, grid name, dimension,

format, x, y, and z) to a filename on the filesystem.
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile's dimension
- {ext} : the filename extension for the tile's image format

34 of 105

- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1). This

is mainly used to support grids where one axis is inverted (e.g. the google schema)
and you want to create on offline cache -->

<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>
</cache>

<!-- the image format used in the tiles: PNG, JPEG or both mixed -->
<format name="particular_png" type ="PNG">

<!-- png compression: best or fast
"best" compression is cpu intensive for little gain over the default compression, that is
obtained by leving out this tag -->

<compression>fast</compression>
<!-- if supplied, this enables png quantization which reduces the number of colors in an
image to atain higher compression. the number of colors can be between 2 and 256 -->
<colors>256</colors>

</format>

<!-- the set of tiles coming from a source, stored in a cache, and returned to the client in a
given format -->

<tileset>
<!-- the "name" attribute of a preconfigured <source> -->
<source>swiss_map</source>
<!-- the "name" attribute of a preconfigured <cache> -->
<cache>map</cache>
<!-- the "name" attribute of a preconfigured <grid> -->

<grid>grid_4326</grid>
<!-- format to use when storing a tile. this should be a format with high
compression, eg. png with compression "best", as the compression operation is only
done once at creation time -->

<format>PNG</format>
<!--number of columns and rows to use for metatiling, see

http://geowebcache.org/docs/current/concepts/metatiles.html -->
<metatile>5 5</metatile>
<!-- area around the tile or metatile that will be cut off to prevent some edge artifacts -->
<metabuffer>10</metabuffer>
<!-- this is expressed in a number of seconds after the creation date of the tile that the tile
should expire -->
<expires>3600</expires>

</tileset>

<!-- indicate the type of request that it has to respond to; the options are: wms, wmts, tms,
kml, gmaps, ve, demo -->

<service type="wms" enabled="true">
<!-- configure response to wms requests that are not aligned to a tileset's grids.

34 of 105

- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1). This

is mainly used to support grids where one axis is inverted (e.g. the google schema)
and you want to create on offline cache -->

<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>
</cache>

<!-- the image format used in the tiles: PNG, JPEG or both mixed -->
<format name="particular_png" type ="PNG">

<!-- png compression: best or fast
"best" compression is cpu intensive for little gain over the default compression, that is
obtained by leving out this tag -->

<compression>fast</compression>
<!-- if supplied, this enables png quantization which reduces the number of colors in an
image to atain higher compression. the number of colors can be between 2 and 256 -->
<colors>256</colors>

</format>

<!-- the set of tiles coming from a source, stored in a cache, and returned to the client in a
given format -->

<tileset>
<!-- the "name" attribute of a preconfigured <source> -->
<source>swiss_map</source>
<!-- the "name" attribute of a preconfigured <cache> -->
<cache>map</cache>
<!-- the "name" attribute of a preconfigured <grid> -->

<grid>grid_4326</grid>
<!-- format to use when storing a tile. this should be a format with high
compression, eg. png with compression "best", as the compression operation is only
done once at creation time -->

<format>PNG</format>
<!--number of columns and rows to use for metatiling, see

http://geowebcache.org/docs/current/concepts/metatiles.html -->
<metatile>5 5</metatile>
<!-- area around the tile or metatile that will be cut off to prevent some edge artifacts -->
<metabuffer>10</metabuffer>
<!-- this is expressed in a number of seconds after the creation date of the tile that the tile
should expire -->
<expires>3600</expires>

</tileset>

<!-- indicate the type of request that it has to respond to; the options are: wms, wmts, tms,
kml, gmaps, ve, demo -->

<service type="wms" enabled="true">
<!-- configure response to wms requests that are not aligned to a tileset's grids.

34 of 105

- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1). This

is mainly used to support grids where one axis is inverted (e.g. the google schema)
and you want to create on offline cache -->

<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>
</cache>

<!-- the image format used in the tiles: PNG, JPEG or both mixed -->
<format name="particular_png" type ="PNG">

<!-- png compression: best or fast
"best" compression is cpu intensive for little gain over the default compression, that is
obtained by leving out this tag -->

<compression>fast</compression>
<!-- if supplied, this enables png quantization which reduces the number of colors in an
image to atain higher compression. the number of colors can be between 2 and 256 -->
<colors>256</colors>

</format>

<!-- the set of tiles coming from a source, stored in a cache, and returned to the client in a
given format -->

<tileset>
<!-- the "name" attribute of a preconfigured <source> -->
<source>swiss_map</source>
<!-- the "name" attribute of a preconfigured <cache> -->
<cache>map</cache>
<!-- the "name" attribute of a preconfigured <grid> -->

<grid>grid_4326</grid>
<!-- format to use when storing a tile. this should be a format with high
compression, eg. png with compression "best", as the compression operation is only
done once at creation time -->

<format>PNG</format>
<!--number of columns and rows to use for metatiling, see

http://geowebcache.org/docs/current/concepts/metatiles.html -->
<metatile>5 5</metatile>
<!-- area around the tile or metatile that will be cut off to prevent some edge artifacts -->
<metabuffer>10</metabuffer>
<!-- this is expressed in a number of seconds after the creation date of the tile that the tile
should expire -->
<expires>3600</expires>

</tileset>

<!-- indicate the type of request that it has to respond to; the options are: wms, wmts, tms,
kml, gmaps, ve, demo -->

<service type="wms" enabled="true">
<!-- configure response to wms requests that are not aligned to a tileset's grids.

35 of 105

responding to requests that are not in the SRS of a configured grid is not supported, but
this should never happen as only the supported SRSs are in the capabilities document.
allowed values are:
- error: return a 404 error (default)
- assemble: build the full image by assembling the tiles from the cache
- forward: forward the request to the configured source -->

<full_wms>assemble</full_wms>
<!-- filter applied when resampling tiles for full wms requests. It could be nearest (fastest
but poor quality) or bilinear (slower with higher quality) -->

<resample_mode>bilinear</resample_mode>
<!-- image format to use when assembling tiles -->
<format>myjpeg</format>

</services>
</mapcache>

2.3. Further development

The next step in the word of maps consists in changing tiles for vector tiles. In this case,
instead of tiling raster images, vector data is tiling into tiles. They would be used as normal
tiles we used before, but now we can attach JavaScript behavior to the vectors. So when the
map is zoomed and panned, the JavaScript code fetches the tiled data on demand and they
will display the corresponding shapes.
MapBox has developed an open source vector format to power the future of our web maps.
Vector tiles rethink web maps from the ground up, providing a single efficient format to power
raster tiles, interactive features, GeoJSON streams, mobile renderers, and much more.
Vector tiles are the idea for making efficient maps. A lot of geographic data is in fact vector
oriented, like lines and polygons. Vector tiles are quite simple. Only instead of serving a png
image the URL serves a GeoJSON file describing the geometry inside the tile's bounding box.

A vector tile can consist of one or more layers which are identified by its name and that
contain one or more features. A feature can contain attributes and geometries: like a point, a
linestring, or a polygon. Features expect single geometries, that is why multipolygons or
multilinestrings are represented as multiple features, each storing a single geometry part.
Geometries are stored indicating its x, y position.
Feature attributes are encoded as key:value pairs which are dictionaries inside the layer level
for compact storage of any repeated keys or values. Values use variant type encoding
supporting both unicode strings, boolean values, and various integer and floating point types.
Many map servers render vector data into raster images that are then served to clients. But
serving the vector data directly to the user's browser for rendering on the client can make
maps that are more flexible and more efficient.

One tricky thing about vector tiles is what to do about features that cross tiles. There are three
possibilities: you can cut the geometry to the tile boundary and rely on the overlapping lines
being drawn to make a seamless map. It is also possible not to cut, which results in redundant

35 of 105

responding to requests that are not in the SRS of a configured grid is not supported, but
this should never happen as only the supported SRSs are in the capabilities document.
allowed values are:
- error: return a 404 error (default)
- assemble: build the full image by assembling the tiles from the cache
- forward: forward the request to the configured source -->

<full_wms>assemble</full_wms>
<!-- filter applied when resampling tiles for full wms requests. It could be nearest (fastest
but poor quality) or bilinear (slower with higher quality) -->

<resample_mode>bilinear</resample_mode>
<!-- image format to use when assembling tiles -->
<format>myjpeg</format>

</services>
</mapcache>

2.3. Further development

The next step in the word of maps consists in changing tiles for vector tiles. In this case,
instead of tiling raster images, vector data is tiling into tiles. They would be used as normal
tiles we used before, but now we can attach JavaScript behavior to the vectors. So when the
map is zoomed and panned, the JavaScript code fetches the tiled data on demand and they
will display the corresponding shapes.
MapBox has developed an open source vector format to power the future of our web maps.
Vector tiles rethink web maps from the ground up, providing a single efficient format to power
raster tiles, interactive features, GeoJSON streams, mobile renderers, and much more.
Vector tiles are the idea for making efficient maps. A lot of geographic data is in fact vector
oriented, like lines and polygons. Vector tiles are quite simple. Only instead of serving a png
image the URL serves a GeoJSON file describing the geometry inside the tile's bounding box.

A vector tile can consist of one or more layers which are identified by its name and that
contain one or more features. A feature can contain attributes and geometries: like a point, a
linestring, or a polygon. Features expect single geometries, that is why multipolygons or
multilinestrings are represented as multiple features, each storing a single geometry part.
Geometries are stored indicating its x, y position.
Feature attributes are encoded as key:value pairs which are dictionaries inside the layer level
for compact storage of any repeated keys or values. Values use variant type encoding
supporting both unicode strings, boolean values, and various integer and floating point types.
Many map servers render vector data into raster images that are then served to clients. But
serving the vector data directly to the user's browser for rendering on the client can make
maps that are more flexible and more efficient.

One tricky thing about vector tiles is what to do about features that cross tiles. There are three
possibilities: you can cut the geometry to the tile boundary and rely on the overlapping lines
being drawn to make a seamless map. It is also possible not to cut, which results in redundant

35 of 105

responding to requests that are not in the SRS of a configured grid is not supported, but
this should never happen as only the supported SRSs are in the capabilities document.
allowed values are:
- error: return a 404 error (default)
- assemble: build the full image by assembling the tiles from the cache
- forward: forward the request to the configured source -->

<full_wms>assemble</full_wms>
<!-- filter applied when resampling tiles for full wms requests. It could be nearest (fastest
but poor quality) or bilinear (slower with higher quality) -->

<resample_mode>bilinear</resample_mode>
<!-- image format to use when assembling tiles -->
<format>myjpeg</format>

</services>
</mapcache>

2.3. Further development

The next step in the word of maps consists in changing tiles for vector tiles. In this case,
instead of tiling raster images, vector data is tiling into tiles. They would be used as normal
tiles we used before, but now we can attach JavaScript behavior to the vectors. So when the
map is zoomed and panned, the JavaScript code fetches the tiled data on demand and they
will display the corresponding shapes.
MapBox has developed an open source vector format to power the future of our web maps.
Vector tiles rethink web maps from the ground up, providing a single efficient format to power
raster tiles, interactive features, GeoJSON streams, mobile renderers, and much more.
Vector tiles are the idea for making efficient maps. A lot of geographic data is in fact vector
oriented, like lines and polygons. Vector tiles are quite simple. Only instead of serving a png
image the URL serves a GeoJSON file describing the geometry inside the tile's bounding box.

A vector tile can consist of one or more layers which are identified by its name and that
contain one or more features. A feature can contain attributes and geometries: like a point, a
linestring, or a polygon. Features expect single geometries, that is why multipolygons or
multilinestrings are represented as multiple features, each storing a single geometry part.
Geometries are stored indicating its x, y position.
Feature attributes are encoded as key:value pairs which are dictionaries inside the layer level
for compact storage of any repeated keys or values. Values use variant type encoding
supporting both unicode strings, boolean values, and various integer and floating point types.
Many map servers render vector data into raster images that are then served to clients. But
serving the vector data directly to the user's browser for rendering on the client can make
maps that are more flexible and more efficient.

One tricky thing about vector tiles is what to do about features that cross tiles. There are three
possibilities: you can cut the geometry to the tile boundary and rely on the overlapping lines
being drawn to make a seamless map. It is also possible not to cut, which results in redundant

36 of 105

data but keeps features intact. A third option can be to cut geometry and re-unify it on the
client before rendering.

Vector tiles have the advantages of image tiles, and also add the flexibility of source vectors.
But mainly it tries to solve the problem of the size. Complex geometries can need a huge
amount of space, which means too much time to load all the data. Even considering that the
request are only done for the tiles that are visible on the screen and some around them.

36 of 105

data but keeps features intact. A third option can be to cut geometry and re-unify it on the
client before rendering.

Vector tiles have the advantages of image tiles, and also add the flexibility of source vectors.
But mainly it tries to solve the problem of the size. Complex geometries can need a huge
amount of space, which means too much time to load all the data. Even considering that the
request are only done for the tiles that are visible on the screen and some around them.

36 of 105

data but keeps features intact. A third option can be to cut geometry and re-unify it on the
client before rendering.

Vector tiles have the advantages of image tiles, and also add the flexibility of source vectors.
But mainly it tries to solve the problem of the size. Complex geometries can need a huge
amount of space, which means too much time to load all the data. Even considering that the
request are only done for the tiles that are visible on the screen and some around them.

37 of 105

3. Review

3.1. Criteria

A lot of people who are not in the technological world think that computer science is
complicated to understand, normally, because it is in another language. And it is true, it is
written in a programming language. So in order that everyone could understand, I tried to
make an effort in making enough comments of my code and in explaining things in detail.
There are a lot of programs with really good documentation. But there are also others great
tools with no documentation at all. And I think that is a mistake, because if we do something
good, we should also try to make it accessible for most people.

The first part of this project, how to create interactive maps, is focus in help anyone who
wants to create a map, no matter if he knows or not about programming. The tutorials start
from the beginning, so everyone could follow. TileMill is an easy to use and well documented
develop environment. Maybe the most complicated part is how to apply the style using
CartoCSS to the map, because it is really powerful, but for a user with no programming
knowledge it might be difficult to get the exact result he is waiting for.
Also the templates for clients, in Leaflet or OpenLayers, are enough commented so the user
can know exactly what is doing every line of code. The templates are simple, with only the
necessary information on them. If the user want to do any change, like remove the zoom slider
or the scale in the map, he will only have to delete the requires lines of code. In the opposite
case, if he wants to add some new functionality, he will need to look into the tutorial of the
corresponding library. The important part, where the reference to the user map is done, it is
clearly specified so he knows how the path for its map has to be.

The second part, the Python code to server our local maps on the internet, is also to be used
for any kind of user. But the difference is that this is only to be used, not modified. But still, I
have commented it enough so in case somebody need to make something different, he could
modify it, instead of start its own code for the beginning.
Tiny Tile Server meets the objectives regarding displaying a map with UTFGrid information. But
it can be extended, for example, by supporting more access protocols to the tiles. The server is
well prepared for the change, so no modifications would be need in the existing code. Just
adding the necessary code for the new protocol.

3.2. Conclusions

Creation of interactive maps is a current issue. There are so many possibilities and so many
interesting ideas, that anyone could have a brilliant thought and wanted to carry it out. So it is
necessary that the people who develop tools to create maps keep in mind all the potential
users, and not only the ones related with computer science.

37 of 105

3. Review

3.1. Criteria

A lot of people who are not in the technological world think that computer science is
complicated to understand, normally, because it is in another language. And it is true, it is
written in a programming language. So in order that everyone could understand, I tried to
make an effort in making enough comments of my code and in explaining things in detail.
There are a lot of programs with really good documentation. But there are also others great
tools with no documentation at all. And I think that is a mistake, because if we do something
good, we should also try to make it accessible for most people.

The first part of this project, how to create interactive maps, is focus in help anyone who
wants to create a map, no matter if he knows or not about programming. The tutorials start
from the beginning, so everyone could follow. TileMill is an easy to use and well documented
develop environment. Maybe the most complicated part is how to apply the style using
CartoCSS to the map, because it is really powerful, but for a user with no programming
knowledge it might be difficult to get the exact result he is waiting for.
Also the templates for clients, in Leaflet or OpenLayers, are enough commented so the user
can know exactly what is doing every line of code. The templates are simple, with only the
necessary information on them. If the user want to do any change, like remove the zoom slider
or the scale in the map, he will only have to delete the requires lines of code. In the opposite
case, if he wants to add some new functionality, he will need to look into the tutorial of the
corresponding library. The important part, where the reference to the user map is done, it is
clearly specified so he knows how the path for its map has to be.

The second part, the Python code to server our local maps on the internet, is also to be used
for any kind of user. But the difference is that this is only to be used, not modified. But still, I
have commented it enough so in case somebody need to make something different, he could
modify it, instead of start its own code for the beginning.
Tiny Tile Server meets the objectives regarding displaying a map with UTFGrid information. But
it can be extended, for example, by supporting more access protocols to the tiles. The server is
well prepared for the change, so no modifications would be need in the existing code. Just
adding the necessary code for the new protocol.

3.2. Conclusions

Creation of interactive maps is a current issue. There are so many possibilities and so many
interesting ideas, that anyone could have a brilliant thought and wanted to carry it out. So it is
necessary that the people who develop tools to create maps keep in mind all the potential
users, and not only the ones related with computer science.

37 of 105

3. Review

3.1. Criteria

A lot of people who are not in the technological world think that computer science is
complicated to understand, normally, because it is in another language. And it is true, it is
written in a programming language. So in order that everyone could understand, I tried to
make an effort in making enough comments of my code and in explaining things in detail.
There are a lot of programs with really good documentation. But there are also others great
tools with no documentation at all. And I think that is a mistake, because if we do something
good, we should also try to make it accessible for most people.

The first part of this project, how to create interactive maps, is focus in help anyone who
wants to create a map, no matter if he knows or not about programming. The tutorials start
from the beginning, so everyone could follow. TileMill is an easy to use and well documented
develop environment. Maybe the most complicated part is how to apply the style using
CartoCSS to the map, because it is really powerful, but for a user with no programming
knowledge it might be difficult to get the exact result he is waiting for.
Also the templates for clients, in Leaflet or OpenLayers, are enough commented so the user
can know exactly what is doing every line of code. The templates are simple, with only the
necessary information on them. If the user want to do any change, like remove the zoom slider
or the scale in the map, he will only have to delete the requires lines of code. In the opposite
case, if he wants to add some new functionality, he will need to look into the tutorial of the
corresponding library. The important part, where the reference to the user map is done, it is
clearly specified so he knows how the path for its map has to be.

The second part, the Python code to server our local maps on the internet, is also to be used
for any kind of user. But the difference is that this is only to be used, not modified. But still, I
have commented it enough so in case somebody need to make something different, he could
modify it, instead of start its own code for the beginning.
Tiny Tile Server meets the objectives regarding displaying a map with UTFGrid information. But
it can be extended, for example, by supporting more access protocols to the tiles. The server is
well prepared for the change, so no modifications would be need in the existing code. Just
adding the necessary code for the new protocol.

3.2. Conclusions

Creation of interactive maps is a current issue. There are so many possibilities and so many
interesting ideas, that anyone could have a brilliant thought and wanted to carry it out. So it is
necessary that the people who develop tools to create maps keep in mind all the potential
users, and not only the ones related with computer science.

38 of 105

A common problem is that most of the projects are focused in provide a specific functionality
and be integrated with other tools to solve the whole problem. That is good, and the normal
way of acting, but at the end the user ends up with a lot of references and trying to get
everything together to work fine.
In this case, the website is completely, and all the necessary tools are already integrated or are
referenced. The necessary change, of course, is for the user to add his maps and modify the
path where it is called for the name of its map.

38 of 105

A common problem is that most of the projects are focused in provide a specific functionality
and be integrated with other tools to solve the whole problem. That is good, and the normal
way of acting, but at the end the user ends up with a lot of references and trying to get
everything together to work fine.
In this case, the website is completely, and all the necessary tools are already integrated or are
referenced. The necessary change, of course, is for the user to add his maps and modify the
path where it is called for the name of its map.

38 of 105

A common problem is that most of the projects are focused in provide a specific functionality
and be integrated with other tools to solve the whole problem. That is good, and the normal
way of acting, but at the end the user ends up with a lot of references and trying to get
everything together to work fine.
In this case, the website is completely, and all the necessary tools are already integrated or are
referenced. The necessary change, of course, is for the user to add his maps and modify the
path where it is called for the name of its map.

39 of 105

4. Implementation plan

4.1. Rough outline of my own solution concept

Tiny Tile Server permits to extract a map from a MBTiles database using two distinct protocols:
direct XYZ access to the tiles or Web Map Tile Service. These protocols do not consider the
same origin for the tiles because they use different access to them.

XYZ origin is in bottom left.

WMTS origin is in top left.

But apart from that, there is no other difference when accessing tiles. So we can use the same
function in both cases, just checking if it is a WMTS access to transform the y coordinate value.
The access to the database consists in select the tile for the corresponding zoom level, tile
column and tile row.
Regarding the grids extraction, this is the same in both cases, because it depends on the
UTFGrid specification, which states that the origin is on top left corner. In this case, the access
is more complex, because there is not one table containing the whole information, this is
distributed. And the tricky part is that the information is in JSON format, so before we can

39 of 105

4. Implementation plan

4.1. Rough outline of my own solution concept

Tiny Tile Server permits to extract a map from a MBTiles database using two distinct protocols:
direct XYZ access to the tiles or Web Map Tile Service. These protocols do not consider the
same origin for the tiles because they use different access to them.

XYZ origin is in bottom left.

WMTS origin is in top left.

But apart from that, there is no other difference when accessing tiles. So we can use the same
function in both cases, just checking if it is a WMTS access to transform the y coordinate value.
The access to the database consists in select the tile for the corresponding zoom level, tile
column and tile row.
Regarding the grids extraction, this is the same in both cases, because it depends on the
UTFGrid specification, which states that the origin is on top left corner. In this case, the access
is more complex, because there is not one table containing the whole information, this is
distributed. And the tricky part is that the information is in JSON format, so before we can

39 of 105

4. Implementation plan

4.1. Rough outline of my own solution concept

Tiny Tile Server permits to extract a map from a MBTiles database using two distinct protocols:
direct XYZ access to the tiles or Web Map Tile Service. These protocols do not consider the
same origin for the tiles because they use different access to them.

XYZ origin is in bottom left.

WMTS origin is in top left.

But apart from that, there is no other difference when accessing tiles. So we can use the same
function in both cases, just checking if it is a WMTS access to transform the y coordinate value.
The access to the database consists in select the tile for the corresponding zoom level, tile
column and tile row.
Regarding the grids extraction, this is the same in both cases, because it depends on the
UTFGrid specification, which states that the origin is on top left corner. In this case, the access
is more complex, because there is not one table containing the whole information, this is
distributed. And the tricky part is that the information is in JSON format, so before we can

40 of 105

display it, or just use it, we need to convert it.
To generate the whole Web Map Tile Service functionality, it is also needed to provide the XML
file with the getCapabilities information. In order to do that we need to extract the
information from the metadata table in the database, and we need to transform the
coordinates presented in latitude longitude in WGS84 ellipsoid to Mercator Map projection on
the sphere.
The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

4.2. Restrictions to consider

Currently there are some restrictions when using this server.
This server is prepared to extract the map from a MBTiles database, and when using that we
have to consider:

 All tiles must be 256x256 pixels. UTFGrid uses JSON as a container format, and it is
exclusively oriented towards square 256x256 pixel tiles.

 Only the Spherical Mercator projection is supported for presentation, when displaying
the tiles.

 Only latitude-longitude coordinates are supported for metadata, such as bounds and
centers.

Tiny Tile Server is configured to work with maps with only one layer.

It is also important to remember:
 MBTiles database expects origin in bottom left corner when extracting tiles.
 Web Map Tile Service expects origin in top left corner when extracting tiles.
 In any case, the UTFGrid origin would be in top left corner.

40 of 105

display it, or just use it, we need to convert it.
To generate the whole Web Map Tile Service functionality, it is also needed to provide the XML
file with the getCapabilities information. In order to do that we need to extract the
information from the metadata table in the database, and we need to transform the
coordinates presented in latitude longitude in WGS84 ellipsoid to Mercator Map projection on
the sphere.
The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

4.2. Restrictions to consider

Currently there are some restrictions when using this server.
This server is prepared to extract the map from a MBTiles database, and when using that we
have to consider:

 All tiles must be 256x256 pixels. UTFGrid uses JSON as a container format, and it is
exclusively oriented towards square 256x256 pixel tiles.

 Only the Spherical Mercator projection is supported for presentation, when displaying
the tiles.

 Only latitude-longitude coordinates are supported for metadata, such as bounds and
centers.

Tiny Tile Server is configured to work with maps with only one layer.

It is also important to remember:
 MBTiles database expects origin in bottom left corner when extracting tiles.
 Web Map Tile Service expects origin in top left corner when extracting tiles.
 In any case, the UTFGrid origin would be in top left corner.

40 of 105

display it, or just use it, we need to convert it.
To generate the whole Web Map Tile Service functionality, it is also needed to provide the XML
file with the getCapabilities information. In order to do that we need to extract the
information from the metadata table in the database, and we need to transform the
coordinates presented in latitude longitude in WGS84 ellipsoid to Mercator Map projection on
the sphere.
The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

4.2. Restrictions to consider

Currently there are some restrictions when using this server.
This server is prepared to extract the map from a MBTiles database, and when using that we
have to consider:

 All tiles must be 256x256 pixels. UTFGrid uses JSON as a container format, and it is
exclusively oriented towards square 256x256 pixel tiles.

 Only the Spherical Mercator projection is supported for presentation, when displaying
the tiles.

 Only latitude-longitude coordinates are supported for metadata, such as bounds and
centers.

Tiny Tile Server is configured to work with maps with only one layer.

It is also important to remember:
 MBTiles database expects origin in bottom left corner when extracting tiles.
 Web Map Tile Service expects origin in top left corner when extracting tiles.
 In any case, the UTFGrid origin would be in top left corner.

41 of 105

5. Results, evaluation and outlook

5.1. Achievement of objectives

Not all the initial objectives have been accomplished. Tiny Tile Server was supposed to serve
tiles, UTFGrid and metadata from a MBTiles database. But the UTFGrid part, displaying textual
information needed for infobox, does not work completely.

 When UTFGrid is displayed:
1. At the beginning when the map is loaded.
2. After zoom-in or zoom-out.
3. After doing double click in a point to zoom-in.
4. After doing shift + select a zone to show it.
5. After zoom by using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

The point is that it also does not work when using Wax with a map hosted in MapBox, so it is
clear that Tiny Tile Server is working fine. It could be that the client part with Leaflet or
OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

5.2. Outlook: further development

There are two possibilities that would be interesting to develop in the future, because they are
related with Tiny Tile Server, so it would mean to add it more functionality, and because there
are not too many options already developed.

The first is to generate Wax functionality regarding how to display infoboxes with the UTFGrid
information on a map. Tiny Tile Server can extract the UTFGrid information and it can be
display on a file, but not as a part of the map. Recreating all the Wax functionalities would be
too complex and that is not the idea. Just the part regarding how to extract the value of the
data associated to a pixel. There are several possibilities around how and where to show the
value. One easy option is to select a position, for example In the top right corner, and write the
value there.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

41 of 105

5. Results, evaluation and outlook

5.1. Achievement of objectives

Not all the initial objectives have been accomplished. Tiny Tile Server was supposed to serve
tiles, UTFGrid and metadata from a MBTiles database. But the UTFGrid part, displaying textual
information needed for infobox, does not work completely.

 When UTFGrid is displayed:
1. At the beginning when the map is loaded.
2. After zoom-in or zoom-out.
3. After doing double click in a point to zoom-in.
4. After doing shift + select a zone to show it.
5. After zoom by using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

The point is that it also does not work when using Wax with a map hosted in MapBox, so it is
clear that Tiny Tile Server is working fine. It could be that the client part with Leaflet or
OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

5.2. Outlook: further development

There are two possibilities that would be interesting to develop in the future, because they are
related with Tiny Tile Server, so it would mean to add it more functionality, and because there
are not too many options already developed.

The first is to generate Wax functionality regarding how to display infoboxes with the UTFGrid
information on a map. Tiny Tile Server can extract the UTFGrid information and it can be
display on a file, but not as a part of the map. Recreating all the Wax functionalities would be
too complex and that is not the idea. Just the part regarding how to extract the value of the
data associated to a pixel. There are several possibilities around how and where to show the
value. One easy option is to select a position, for example In the top right corner, and write the
value there.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

41 of 105

5. Results, evaluation and outlook

5.1. Achievement of objectives

Not all the initial objectives have been accomplished. Tiny Tile Server was supposed to serve
tiles, UTFGrid and metadata from a MBTiles database. But the UTFGrid part, displaying textual
information needed for infobox, does not work completely.

 When UTFGrid is displayed:
1. At the beginning when the map is loaded.
2. After zoom-in or zoom-out.
3. After doing double click in a point to zoom-in.
4. After doing shift + select a zone to show it.
5. After zoom by using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

The point is that it also does not work when using Wax with a map hosted in MapBox, so it is
clear that Tiny Tile Server is working fine. It could be that the client part with Leaflet or
OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

5.2. Outlook: further development

There are two possibilities that would be interesting to develop in the future, because they are
related with Tiny Tile Server, so it would mean to add it more functionality, and because there
are not too many options already developed.

The first is to generate Wax functionality regarding how to display infoboxes with the UTFGrid
information on a map. Tiny Tile Server can extract the UTFGrid information and it can be
display on a file, but not as a part of the map. Recreating all the Wax functionalities would be
too complex and that is not the idea. Just the part regarding how to extract the value of the
data associated to a pixel. There are several possibilities around how and where to show the
value. One easy option is to select a position, for example In the top right corner, and write the
value there.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

42 of 105

Software
project

documentation

42 of 105

Software
project

documentation

42 of 105

Software
project

documentation

43 of 105

1. Vision

Once we have created our map, we want to display it on the internet. And in this case we are
going to use the Python code in order to do that. And what do we need?

 Of course, we need to have a map in a MBTiles file.
 Because of the server code is written in Python, we have to install Python.
 Apart from Python, we also need to install Bottle. Bottle is a fast, simple and

lightweight WSGI micro web-framework for Python. It is distributed as a single file
module and has no dependencies other than the Python Standard Library.

And now we have already finished installing things. The next step will be to adapt the
templates to our case. I am also using Bootstrap in my website, but that is not necessary, it is
just to make a good and clear division of the code.

 We have to change the URL where we are calling the map in the clients(Leaflet or
OpenLayers), to adapt it to the path where our map is located.

 We have to change the config_url and the title of our website.
 Optionally, we may want to change the HTML or some extra characteristics of the

map.

MBTiles database
Tiles in MBTiles are assumed to be in Spherical Mercator as Coordinates Reference System.
This projection treats the Earth as a sphere, instead of as a ellipsoid, like the World Geodetic
System does.
The database consists in 9 tables: grid_data, grid_key, grid_utfgrid, grids, images, keymap,
map, metadata and tiles. Some of them are views: virtual tables as a result from a select
statement from other tables, normally doing a join.

map this table contains five columns: zoom_level, which is the zoom number in which a
particular tile or grid would be displayed; tile_column, which is the x coordinate where the tile
would displayed on the map; tile_row, which is the y coordinate where the tile would
displayed on the map; tile_id, which is the id of the tile that would be displayed and it is stored
in the images table; grid_id, which is the id of the grid that would be displayed and it is stored
in the grid_utfgrid table. This table has a unique index generated by a zoom_level, a
tile_column and a tile_row, we need the three of them in order to get only one tile or one grid.

metadata this table contains two columns: name and value. It is used two make a formal
definition about the map, specified as a key/value pair. The user can decide which keys wants
to define, what there are five that are required: name, whose value is the name of the tileset;
type, whose value can be “baselayer” or “overlay” (it is displayed on top of another layer);
version, whose value is the version of the tileset; description, whose value is a descript about
the map; format, whose value is “png” or “jpg” and indicates the file format of the tiles.
Some others possible keys are: bounds, whose value is the maximum extent of the rendered
map area. Bounds are represented in WGS:84, latitude and longitude values, in the
OpenLayers Bounds format, left, bottom, right, top. Example of the full earth: -180.0,-

43 of 105

1. Vision

Once we have created our map, we want to display it on the internet. And in this case we are
going to use the Python code in order to do that. And what do we need?

 Of course, we need to have a map in a MBTiles file.
 Because of the server code is written in Python, we have to install Python.
 Apart from Python, we also need to install Bottle. Bottle is a fast, simple and

lightweight WSGI micro web-framework for Python. It is distributed as a single file
module and has no dependencies other than the Python Standard Library.

And now we have already finished installing things. The next step will be to adapt the
templates to our case. I am also using Bootstrap in my website, but that is not necessary, it is
just to make a good and clear division of the code.

 We have to change the URL where we are calling the map in the clients(Leaflet or
OpenLayers), to adapt it to the path where our map is located.

 We have to change the config_url and the title of our website.
 Optionally, we may want to change the HTML or some extra characteristics of the

map.

MBTiles database
Tiles in MBTiles are assumed to be in Spherical Mercator as Coordinates Reference System.
This projection treats the Earth as a sphere, instead of as a ellipsoid, like the World Geodetic
System does.
The database consists in 9 tables: grid_data, grid_key, grid_utfgrid, grids, images, keymap,
map, metadata and tiles. Some of them are views: virtual tables as a result from a select
statement from other tables, normally doing a join.

map this table contains five columns: zoom_level, which is the zoom number in which a
particular tile or grid would be displayed; tile_column, which is the x coordinate where the tile
would displayed on the map; tile_row, which is the y coordinate where the tile would
displayed on the map; tile_id, which is the id of the tile that would be displayed and it is stored
in the images table; grid_id, which is the id of the grid that would be displayed and it is stored
in the grid_utfgrid table. This table has a unique index generated by a zoom_level, a
tile_column and a tile_row, we need the three of them in order to get only one tile or one grid.

metadata this table contains two columns: name and value. It is used two make a formal
definition about the map, specified as a key/value pair. The user can decide which keys wants
to define, what there are five that are required: name, whose value is the name of the tileset;
type, whose value can be “baselayer” or “overlay” (it is displayed on top of another layer);
version, whose value is the version of the tileset; description, whose value is a descript about
the map; format, whose value is “png” or “jpg” and indicates the file format of the tiles.
Some others possible keys are: bounds, whose value is the maximum extent of the rendered
map area. Bounds are represented in WGS:84, latitude and longitude values, in the
OpenLayers Bounds format, left, bottom, right, top. Example of the full earth: -180.0,-

43 of 105

1. Vision

Once we have created our map, we want to display it on the internet. And in this case we are
going to use the Python code in order to do that. And what do we need?

 Of course, we need to have a map in a MBTiles file.
 Because of the server code is written in Python, we have to install Python.
 Apart from Python, we also need to install Bottle. Bottle is a fast, simple and

lightweight WSGI micro web-framework for Python. It is distributed as a single file
module and has no dependencies other than the Python Standard Library.

And now we have already finished installing things. The next step will be to adapt the
templates to our case. I am also using Bootstrap in my website, but that is not necessary, it is
just to make a good and clear division of the code.

 We have to change the URL where we are calling the map in the clients(Leaflet or
OpenLayers), to adapt it to the path where our map is located.

 We have to change the config_url and the title of our website.
 Optionally, we may want to change the HTML or some extra characteristics of the

map.

MBTiles database
Tiles in MBTiles are assumed to be in Spherical Mercator as Coordinates Reference System.
This projection treats the Earth as a sphere, instead of as a ellipsoid, like the World Geodetic
System does.
The database consists in 9 tables: grid_data, grid_key, grid_utfgrid, grids, images, keymap,
map, metadata and tiles. Some of them are views: virtual tables as a result from a select
statement from other tables, normally doing a join.

map this table contains five columns: zoom_level, which is the zoom number in which a
particular tile or grid would be displayed; tile_column, which is the x coordinate where the tile
would displayed on the map; tile_row, which is the y coordinate where the tile would
displayed on the map; tile_id, which is the id of the tile that would be displayed and it is stored
in the images table; grid_id, which is the id of the grid that would be displayed and it is stored
in the grid_utfgrid table. This table has a unique index generated by a zoom_level, a
tile_column and a tile_row, we need the three of them in order to get only one tile or one grid.

metadata this table contains two columns: name and value. It is used two make a formal
definition about the map, specified as a key/value pair. The user can decide which keys wants
to define, what there are five that are required: name, whose value is the name of the tileset;
type, whose value can be “baselayer” or “overlay” (it is displayed on top of another layer);
version, whose value is the version of the tileset; description, whose value is a descript about
the map; format, whose value is “png” or “jpg” and indicates the file format of the tiles.
Some others possible keys are: bounds, whose value is the maximum extent of the rendered
map area. Bounds are represented in WGS:84, latitude and longitude values, in the
OpenLayers Bounds format, left, bottom, right, top. Example of the full earth: -180.0,-

44 of 105

85,180,85; center; whose value is the map center at the beginning; maxzoom, whose value is
the maximum zoom the map permits; minzoom, whose value is the minimum zoom the map
permits; tiles, whose value is the URL where individual tiles can be accessed; grids, whose
value is the URL where individual grids can be accessed; legend, whose value is the map
legend; formatter, whose value is the JavaScript function for formatting feature data from
UTFGrid JSON, this is required in case our map need to support interactivity.
When we export our map to MBTiles in TiliMill the metadata table does not contain the name
“tiles” neither “grids”, because they are relatives to the directory where the MBTiles would be
located. That is why the database cannot be used to extract the tiles or grids directly if we do
not modify it. In order to do that, we need to execute these SQL sentences:
>sqlite3 example.mbtiles "insert into metadata values ('tiles', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.png'’)"
>sqlite3 example.mbtiles "insert into metadata values ('grids', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.grid.json'’)"
example, in all the cases, is the name of our MBTiles database.

images this table contains two columns: tile_data, which is a individual image that would be
one map tile; tile_id, which is the image identifier.

tiles this view is generated for a join between map and images. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; tile_data is
the image stored in images table, which is obtained using the tile_id being the same in map
and images tables.

grids this view is generated for a join between map and grids. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; grid is the
grid_utfgrid stored in grid_utfgrid table, which is obtained using the grid_id being the same in
map and grid_utfgrid tables. It is not the whole information in the .grid.json file, only the
corresponding with “grid” and “key”. The related with “data” containing the key_name and
key_json are acquired from keymap

keymap this table contains two columns: key_name, which is a number that represent the
identifier; key_json, which is the UTFGrid information in json format. The key_json contains
one or more key/value pairs, as many as the number of different UTFGrid we want to display.
The key indicate the feature we are displaying, the value indicate what is that feature in every
case.
As an example we can consider a world map where we want to display the name of the
country, the language speaking there and its flag when the user hover in a specific country. In
this case we have three pairs, and the keys could be “Name”, “Language” and “Flag”. For every
country we would have a specific value for the keys, these can be the same for different keys,
like in this example “Language”: “English” would appear in a lot of countries. In this example, if
we consider Switzerland we would obtain { “Name”: “Switzerland”, “Language”: “German”,
“Flag”: text_containing_the_image_reference }
>sqlite3 example.mbtiles "select * from keymap where key_name = "1142""
1142|{"Name":"Negro"}

44 of 105

85,180,85; center; whose value is the map center at the beginning; maxzoom, whose value is
the maximum zoom the map permits; minzoom, whose value is the minimum zoom the map
permits; tiles, whose value is the URL where individual tiles can be accessed; grids, whose
value is the URL where individual grids can be accessed; legend, whose value is the map
legend; formatter, whose value is the JavaScript function for formatting feature data from
UTFGrid JSON, this is required in case our map need to support interactivity.
When we export our map to MBTiles in TiliMill the metadata table does not contain the name
“tiles” neither “grids”, because they are relatives to the directory where the MBTiles would be
located. That is why the database cannot be used to extract the tiles or grids directly if we do
not modify it. In order to do that, we need to execute these SQL sentences:
>sqlite3 example.mbtiles "insert into metadata values ('tiles', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.png'’)"
>sqlite3 example.mbtiles "insert into metadata values ('grids', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.grid.json'’)"
example, in all the cases, is the name of our MBTiles database.

images this table contains two columns: tile_data, which is a individual image that would be
one map tile; tile_id, which is the image identifier.

tiles this view is generated for a join between map and images. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; tile_data is
the image stored in images table, which is obtained using the tile_id being the same in map
and images tables.

grids this view is generated for a join between map and grids. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; grid is the
grid_utfgrid stored in grid_utfgrid table, which is obtained using the grid_id being the same in
map and grid_utfgrid tables. It is not the whole information in the .grid.json file, only the
corresponding with “grid” and “key”. The related with “data” containing the key_name and
key_json are acquired from keymap

keymap this table contains two columns: key_name, which is a number that represent the
identifier; key_json, which is the UTFGrid information in json format. The key_json contains
one or more key/value pairs, as many as the number of different UTFGrid we want to display.
The key indicate the feature we are displaying, the value indicate what is that feature in every
case.
As an example we can consider a world map where we want to display the name of the
country, the language speaking there and its flag when the user hover in a specific country. In
this case we have three pairs, and the keys could be “Name”, “Language” and “Flag”. For every
country we would have a specific value for the keys, these can be the same for different keys,
like in this example “Language”: “English” would appear in a lot of countries. In this example, if
we consider Switzerland we would obtain { “Name”: “Switzerland”, “Language”: “German”,
“Flag”: text_containing_the_image_reference }
>sqlite3 example.mbtiles "select * from keymap where key_name = "1142""
1142|{"Name":"Negro"}

44 of 105

85,180,85; center; whose value is the map center at the beginning; maxzoom, whose value is
the maximum zoom the map permits; minzoom, whose value is the minimum zoom the map
permits; tiles, whose value is the URL where individual tiles can be accessed; grids, whose
value is the URL where individual grids can be accessed; legend, whose value is the map
legend; formatter, whose value is the JavaScript function for formatting feature data from
UTFGrid JSON, this is required in case our map need to support interactivity.
When we export our map to MBTiles in TiliMill the metadata table does not contain the name
“tiles” neither “grids”, because they are relatives to the directory where the MBTiles would be
located. That is why the database cannot be used to extract the tiles or grids directly if we do
not modify it. In order to do that, we need to execute these SQL sentences:
>sqlite3 example.mbtiles "insert into metadata values ('tiles', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.png'’)"
>sqlite3 example.mbtiles "insert into metadata values ('grids', 'http://url-specific-in-the-
application /example/{z}/{x}/{y}.grid.json'’)"
example, in all the cases, is the name of our MBTiles database.

images this table contains two columns: tile_data, which is a individual image that would be
one map tile; tile_id, which is the image identifier.

tiles this view is generated for a join between map and images. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; tile_data is
the image stored in images table, which is obtained using the tile_id being the same in map
and images tables.

grids this view is generated for a join between map and grids. It contains four columns:
zoom_level, tile_column and tile_row are exactly the same as explain in map table; grid is the
grid_utfgrid stored in grid_utfgrid table, which is obtained using the grid_id being the same in
map and grid_utfgrid tables. It is not the whole information in the .grid.json file, only the
corresponding with “grid” and “key”. The related with “data” containing the key_name and
key_json are acquired from keymap

keymap this table contains two columns: key_name, which is a number that represent the
identifier; key_json, which is the UTFGrid information in json format. The key_json contains
one or more key/value pairs, as many as the number of different UTFGrid we want to display.
The key indicate the feature we are displaying, the value indicate what is that feature in every
case.
As an example we can consider a world map where we want to display the name of the
country, the language speaking there and its flag when the user hover in a specific country. In
this case we have three pairs, and the keys could be “Name”, “Language” and “Flag”. For every
country we would have a specific value for the keys, these can be the same for different keys,
like in this example “Language”: “English” would appear in a lot of countries. In this example, if
we consider Switzerland we would obtain { “Name”: “Switzerland”, “Language”: “German”,
“Flag”: text_containing_the_image_reference }
>sqlite3 example.mbtiles "select * from keymap where key_name = "1142""
1142|{"Name":"Negro"}

45 of 105

grid_data this view is generated for a join between map, grid_key and keymap. It contains
five columns: zoom_level, tile_column, tile_row are exactly the same as explain in map table;
key_name is again a number that represent the json identifier; key_json is again the key_json
contained in keymap table.
>sqlite3 example.mbtiles "select * from grid_data where zoom_level=5 and tile_column=10
and tile_row=15"
5|10|15|1142|{"Name":"Negro"}
5|10|15|1280|{"Name":"Guapor"}
5|10|15|1291|{"Name":"Madeira"}
5|10|15|463|{"Name":"Amazonas"}

grid_key this table contains two columns: grid_id, which is the identifier used to represent a
grid; key_name, which is a number that represents the identifier.

grid_utfgrid this table contains two columns: grid_id, which is the identifier used to represent
a grid; grid_utfgrid, which is value for the “grid” as it is shown in the .grid.json file.

More information can be found in the MBTiles specification
https://github.com/mapbox/mbtiles-spec and in the UTFGrid specification
https://github.com/mapbox/utfgrid-spec/.

45 of 105

grid_data this view is generated for a join between map, grid_key and keymap. It contains
five columns: zoom_level, tile_column, tile_row are exactly the same as explain in map table;
key_name is again a number that represent the json identifier; key_json is again the key_json
contained in keymap table.
>sqlite3 example.mbtiles "select * from grid_data where zoom_level=5 and tile_column=10
and tile_row=15"
5|10|15|1142|{"Name":"Negro"}
5|10|15|1280|{"Name":"Guapor"}
5|10|15|1291|{"Name":"Madeira"}
5|10|15|463|{"Name":"Amazonas"}

grid_key this table contains two columns: grid_id, which is the identifier used to represent a
grid; key_name, which is a number that represents the identifier.

grid_utfgrid this table contains two columns: grid_id, which is the identifier used to represent
a grid; grid_utfgrid, which is value for the “grid” as it is shown in the .grid.json file.

More information can be found in the MBTiles specification
https://github.com/mapbox/mbtiles-spec and in the UTFGrid specification
https://github.com/mapbox/utfgrid-spec/.

45 of 105

grid_data this view is generated for a join between map, grid_key and keymap. It contains
five columns: zoom_level, tile_column, tile_row are exactly the same as explain in map table;
key_name is again a number that represent the json identifier; key_json is again the key_json
contained in keymap table.
>sqlite3 example.mbtiles "select * from grid_data where zoom_level=5 and tile_column=10
and tile_row=15"
5|10|15|1142|{"Name":"Negro"}
5|10|15|1280|{"Name":"Guapor"}
5|10|15|1291|{"Name":"Madeira"}
5|10|15|463|{"Name":"Amazonas"}

grid_key this table contains two columns: grid_id, which is the identifier used to represent a
grid; key_name, which is a number that represents the identifier.

grid_utfgrid this table contains two columns: grid_id, which is the identifier used to represent
a grid; grid_utfgrid, which is value for the “grid” as it is shown in the .grid.json file.

More information can be found in the MBTiles specification
https://github.com/mapbox/mbtiles-spec and in the UTFGrid specification
https://github.com/mapbox/utfgrid-spec/.

46 of 105

2. Analysis and requirements specification

2.1. Functional requirements

Functional requirements describe the internal behave of the software: calculations, technical
details, data manipulations…

The main objective of the Tiny Tile Server is to display a map on a website. Here we have to
consider some sub objectives:

 Display the tiles. This is the main and first part, because consists in showing the images
that are put together to form the map.

 Display the UTFGrid. This is the main part when adding interactivity, and consists in
showing infobox with information about specific data related to every individual point
in the map that have some information attached to it. This is optional in a map, not all
the maps needs to provide it.

 Display the metadata. This is particular important in the Web Map Tile Service,
because it is used to be shown in the Capabilities XML file.

 Add extra features. There are some functionalities that the user normally expects in a
map: zoom slider, scale or a legend.

The following protocols are provided:
 Direct access with XYZ tile requests to existing tiles in a MBTiles file.
 Web Map Tile Service implementation standard created by Open Geospatial

Consortium.
 TileJSON for metadata structure.

2.2. Use cases

A use case describes a way in which a real-world actor interacts with the system. What you
can do with this application, how to use it: which steps you have to follow in order to get the
result you are waiting for, and which are the possible errors you could find in case you make a
mistake.

Previously, you should have a map in a MBTiles file. In case you want to create your own map
using TileMill, you could follow this tutorial. If you already know how to use TileMill and you
want to create something more advanced, you could follow this tutorial.

Actor Description

User Person who wants to show a map on a website

Use Case Show simple map on the internet

46 of 105

2. Analysis and requirements specification

2.1. Functional requirements

Functional requirements describe the internal behave of the software: calculations, technical
details, data manipulations…

The main objective of the Tiny Tile Server is to display a map on a website. Here we have to
consider some sub objectives:

 Display the tiles. This is the main and first part, because consists in showing the images
that are put together to form the map.

 Display the UTFGrid. This is the main part when adding interactivity, and consists in
showing infobox with information about specific data related to every individual point
in the map that have some information attached to it. This is optional in a map, not all
the maps needs to provide it.

 Display the metadata. This is particular important in the Web Map Tile Service,
because it is used to be shown in the Capabilities XML file.

 Add extra features. There are some functionalities that the user normally expects in a
map: zoom slider, scale or a legend.

The following protocols are provided:
 Direct access with XYZ tile requests to existing tiles in a MBTiles file.
 Web Map Tile Service implementation standard created by Open Geospatial

Consortium.
 TileJSON for metadata structure.

2.2. Use cases

A use case describes a way in which a real-world actor interacts with the system. What you
can do with this application, how to use it: which steps you have to follow in order to get the
result you are waiting for, and which are the possible errors you could find in case you make a
mistake.

Previously, you should have a map in a MBTiles file. In case you want to create your own map
using TileMill, you could follow this tutorial. If you already know how to use TileMill and you
want to create something more advanced, you could follow this tutorial.

Actor Description

User Person who wants to show a map on a website

Use Case Show simple map on the internet

46 of 105

2. Analysis and requirements specification

2.1. Functional requirements

Functional requirements describe the internal behave of the software: calculations, technical
details, data manipulations…

The main objective of the Tiny Tile Server is to display a map on a website. Here we have to
consider some sub objectives:

 Display the tiles. This is the main and first part, because consists in showing the images
that are put together to form the map.

 Display the UTFGrid. This is the main part when adding interactivity, and consists in
showing infobox with information about specific data related to every individual point
in the map that have some information attached to it. This is optional in a map, not all
the maps needs to provide it.

 Display the metadata. This is particular important in the Web Map Tile Service,
because it is used to be shown in the Capabilities XML file.

 Add extra features. There are some functionalities that the user normally expects in a
map: zoom slider, scale or a legend.

The following protocols are provided:
 Direct access with XYZ tile requests to existing tiles in a MBTiles file.
 Web Map Tile Service implementation standard created by Open Geospatial

Consortium.
 TileJSON for metadata structure.

2.2. Use cases

A use case describes a way in which a real-world actor interacts with the system. What you
can do with this application, how to use it: which steps you have to follow in order to get the
result you are waiting for, and which are the possible errors you could find in case you make a
mistake.

Previously, you should have a map in a MBTiles file. In case you want to create your own map
using TileMill, you could follow this tutorial. If you already know how to use TileMill and you
want to create something more advanced, you could follow this tutorial.

Actor Description

User Person who wants to show a map on a website

Use Case Show simple map on the internet

47 of 105

Dependencies None

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds the code to create a map, which div attribute has to exist

in the html file.
3. If User wants to add optional controls to the map, the use case Add

control is performed.

Postcondition User`s map will be accessible from your website.

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

2. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Show map with UTFGrid interaction on the internet

Dependencies

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds a tilejson object which url be the path to the local MBTiles

file.
3. User adds the code to create a map.
4. User adds a control to show the UTFGrid information on the map.
5. If User wants to add optional controls to the map, the use case Add

control is performed

Postcondition User`s map will be accessible from your website

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

47 of 105

Dependencies None

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds the code to create a map, which div attribute has to exist

in the html file.
3. If User wants to add optional controls to the map, the use case Add

control is performed.

Postcondition User`s map will be accessible from your website.

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

2. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Show map with UTFGrid interaction on the internet

Dependencies

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds a tilejson object which url be the path to the local MBTiles

file.
3. User adds the code to create a map.
4. User adds a control to show the UTFGrid information on the map.
5. If User wants to add optional controls to the map, the use case Add

control is performed

Postcondition User`s map will be accessible from your website

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

47 of 105

Dependencies None

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds the code to create a map, which div attribute has to exist

in the html file.
3. If User wants to add optional controls to the map, the use case Add

control is performed.

Postcondition User`s map will be accessible from your website.

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

2. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Show map with UTFGrid interaction on the internet

Dependencies

Description The system should behaved as described in the following use case when an
user wants to show a previously created map in a MBTiles file on a website.

Precondition User needs to have a map in a MBTiles file.
 User needs to have Python and Bottle installed in the website.

Ordinary
sequence

1. User adds a tile which url will be the path to the local MBTiles file.
2. User adds a tilejson object which url be the path to the local MBTiles

file.
3. User adds the code to create a map.
4. User adds a control to show the UTFGrid information on the map.
5. If User wants to add optional controls to the map, the use case Add

control is performed

Postcondition User`s map will be accessible from your website

Exceptions 1. If the layer is wrong, the system will show the Error: 500 Internal
Server Error, then this use case end.

1. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

48 of 105

2. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

3. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Add control

Dependencies Show simple map on the internet and Show map with UTFGrid interactionon
the internet

Description The system shall behave as described in the following abstract use case
during the performance of the following use cases: Show simple map on the
internet or Show map with UTFGrid interactionon the internet.

Precondition None

Ordinary
sequence

1. User adds a specific control:
 LayerSwitcher
 ZoomBar
 ScaleLine
 Navigation

Postcondition Your map will have the chosen controls.

Exceptions

2.3. System sequence diagrams

A system sequence diagrams (SDD) is a sequence of iterations which determine system events
and operations, and identify system functionality (operations) to be designed. In a system
sequence diagram will be showed the events generated by an actor, in which order they
occurred and possible interaction with the system for a particular scenario of an use case

Here is showed the positive scenario of every of the use cases previously described. A positive
scenario is when no exceptions occurred and the user gain the postcondition.

48 of 105

2. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

3. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Add control

Dependencies Show simple map on the internet and Show map with UTFGrid interactionon
the internet

Description The system shall behave as described in the following abstract use case
during the performance of the following use cases: Show simple map on the
internet or Show map with UTFGrid interactionon the internet.

Precondition None

Ordinary
sequence

1. User adds a specific control:
 LayerSwitcher
 ZoomBar
 ScaleLine
 Navigation

Postcondition Your map will have the chosen controls.

Exceptions

2.3. System sequence diagrams

A system sequence diagrams (SDD) is a sequence of iterations which determine system events
and operations, and identify system functionality (operations) to be designed. In a system
sequence diagram will be showed the events generated by an actor, in which order they
occurred and possible interaction with the system for a particular scenario of an use case

Here is showed the positive scenario of every of the use cases previously described. A positive
scenario is when no exceptions occurred and the user gain the postcondition.

48 of 105

2. If the url is wrong, the system will show the Error: 404 Not found,
then this use case end.

3. If the div is wrong or there is no div, the system will not show the
map, then this use case end.

Use Case Add control

Dependencies Show simple map on the internet and Show map with UTFGrid interactionon
the internet

Description The system shall behave as described in the following abstract use case
during the performance of the following use cases: Show simple map on the
internet or Show map with UTFGrid interactionon the internet.

Precondition None

Ordinary
sequence

1. User adds a specific control:
 LayerSwitcher
 ZoomBar
 ScaleLine
 Navigation

Postcondition Your map will have the chosen controls.

Exceptions

2.3. System sequence diagrams

A system sequence diagrams (SDD) is a sequence of iterations which determine system events
and operations, and identify system functionality (operations) to be designed. In a system
sequence diagram will be showed the events generated by an actor, in which order they
occurred and possible interaction with the system for a particular scenario of an use case

Here is showed the positive scenario of every of the use cases previously described. A positive
scenario is when no exceptions occurred and the user gain the postcondition.

49 of 10549 of 10549 of 105

50 of 10550 of 10550 of 105

51 of 105

2.4. Non-functional requirements

A non-functional requirement or quality attribute is a criteria that can be analyzed in order to
decide if the system operations are appropriate. They can be divided into two main categories:
execution qualities, such as security and usability, which are observable at run time; evolution
qualities, such as testability, maintainability, extensibility and scalability, which are embodied
in the static structure of the software system.

 Functionality: Tiny Tile Server provides the user well explained options, indicating
which operations can be performed. The different options are presented to the user
who can choose which one to carry out. There are tutorials in the website and the Tiny
Tile Server has a well documented code.

 Easy to use: because of the kind of structure of the application, all the calls to internal
functions are listed in the same file (api.py), so when an user wants to utilize Tiny Tile
Server just need to look at that file to know how to make the calls. Templates are also
provided, what make even easier to use the application. The user interface of the
website is also easy to use and intuitive.

 Maintainability: the different modules in the website are completely independent,
they can be replaced or tested without other dependences. Tiny Tile Server has the
minimum dependences necessary in each classes. And that is because of same
methods that can be used in different classes.

 Portability: the website has been tested in different operating systems: Macintosh,
Windows and Linux; and different browsers: Google Chrome, Mozilla Firefox, Safari
and Internet Explorer. Tiny Tile Server has no dependences apart from Python, and it is
easy to install, you just need to put all the files together and reference the directory in
the files where you want to use the functionality.

51 of 105

2.4. Non-functional requirements

A non-functional requirement or quality attribute is a criteria that can be analyzed in order to
decide if the system operations are appropriate. They can be divided into two main categories:
execution qualities, such as security and usability, which are observable at run time; evolution
qualities, such as testability, maintainability, extensibility and scalability, which are embodied
in the static structure of the software system.

 Functionality: Tiny Tile Server provides the user well explained options, indicating
which operations can be performed. The different options are presented to the user
who can choose which one to carry out. There are tutorials in the website and the Tiny
Tile Server has a well documented code.

 Easy to use: because of the kind of structure of the application, all the calls to internal
functions are listed in the same file (api.py), so when an user wants to utilize Tiny Tile
Server just need to look at that file to know how to make the calls. Templates are also
provided, what make even easier to use the application. The user interface of the
website is also easy to use and intuitive.

 Maintainability: the different modules in the website are completely independent,
they can be replaced or tested without other dependences. Tiny Tile Server has the
minimum dependences necessary in each classes. And that is because of same
methods that can be used in different classes.

 Portability: the website has been tested in different operating systems: Macintosh,
Windows and Linux; and different browsers: Google Chrome, Mozilla Firefox, Safari
and Internet Explorer. Tiny Tile Server has no dependences apart from Python, and it is
easy to install, you just need to put all the files together and reference the directory in
the files where you want to use the functionality.

51 of 105

2.4. Non-functional requirements

A non-functional requirement or quality attribute is a criteria that can be analyzed in order to
decide if the system operations are appropriate. They can be divided into two main categories:
execution qualities, such as security and usability, which are observable at run time; evolution
qualities, such as testability, maintainability, extensibility and scalability, which are embodied
in the static structure of the software system.

 Functionality: Tiny Tile Server provides the user well explained options, indicating
which operations can be performed. The different options are presented to the user
who can choose which one to carry out. There are tutorials in the website and the Tiny
Tile Server has a well documented code.

 Easy to use: because of the kind of structure of the application, all the calls to internal
functions are listed in the same file (api.py), so when an user wants to utilize Tiny Tile
Server just need to look at that file to know how to make the calls. Templates are also
provided, what make even easier to use the application. The user interface of the
website is also easy to use and intuitive.

 Maintainability: the different modules in the website are completely independent,
they can be replaced or tested without other dependences. Tiny Tile Server has the
minimum dependences necessary in each classes. And that is because of same
methods that can be used in different classes.

 Portability: the website has been tested in different operating systems: Macintosh,
Windows and Linux; and different browsers: Google Chrome, Mozilla Firefox, Safari
and Internet Explorer. Tiny Tile Server has no dependences apart from Python, and it is
easy to install, you just need to put all the files together and reference the directory in
the files where you want to use the functionality.

52 of 105

3. Design

3.1. Architecture

I have developed Tiny Tile Server, which is a server in Python to serve local maps in MBTiles
format to a website. But that is only a part of this project. There are also templates to use
OpenLayers or Leaflet as a client to display the maps. And maps created with TileMill as
examples. And the website in general.

The website has been developed using Bootstrap, which is a Framework developed by Twitter
design to simplify the process of web design. It is offer some CSS by default and some
JavaScript files that provide us a basic layout that we can change later.

 Theses interfaces work perfectly well in the new browser and well enough in the older
ones.

 The design can be visualized in different devices, using different scales or resolutions.
 There is a better integration with the libraries that are used normally.
 It is a good design based in current tools and standards, like CSS3 and HTML5.

We have a HTML file that will act as layout for the whole website. In it, we will define the
header, the footer, the navigation bar… And also we will include all the CCS and JavaScript
common for all the files. We cannot forget to include the CCS necessary to use Bootstrap. For
every single html file we will reuse the layout and we will add their specific CSS and JavaScript.
A really good advantage is the use of Grid system, to divide the screen in a certain number of
columns. In this case, it allows 12 columns by default which are configurable. They can be
static or fluid. The columns can be combined to generate tables or be a different number
depending on the device using to visualize the website.
It is Object Oriented CSS: everything is organized by modules, which are independent and they
can be reutilize in each project. Classes are used to name the objects, so you can apply the CSS
to them instead of the HTML directly. The visual effects are defined separately, so you can
reuse them in different projects, or use several together. The objects have to look the same
independent on where they are located, you have to use classes to describe them.
The templates for the client side are done in OpenLayers or in Leaflet, which are open source
JavaScript libraries to create interactive maps.

The website is programmed is Python, a script language, that can be used for lineal, structured
or object oriented programming, which is the most used. Python is multi-platform and can be
utilize to develop web or desktop applications.
The server uses WSGI: mod_wsgi implements a simple to use Apache module which can host
any Python application which supports the Python WSGI interface, it permits us to attach our
application to an Apache server. In order for that to work, we will need to specify in our
Apache configuration that we are using a VirtualHost that enables WSGIDaemonProcess and
WSGIScriptAlias. And we must indicate the WSGIProcessGroup and WSGIApplicationGroup. As
mod_wsgi supports the WSGI interface specification, any Python web framework or

52 of 105

3. Design

3.1. Architecture

I have developed Tiny Tile Server, which is a server in Python to serve local maps in MBTiles
format to a website. But that is only a part of this project. There are also templates to use
OpenLayers or Leaflet as a client to display the maps. And maps created with TileMill as
examples. And the website in general.

The website has been developed using Bootstrap, which is a Framework developed by Twitter
design to simplify the process of web design. It is offer some CSS by default and some
JavaScript files that provide us a basic layout that we can change later.

 Theses interfaces work perfectly well in the new browser and well enough in the older
ones.

 The design can be visualized in different devices, using different scales or resolutions.
 There is a better integration with the libraries that are used normally.
 It is a good design based in current tools and standards, like CSS3 and HTML5.

We have a HTML file that will act as layout for the whole website. In it, we will define the
header, the footer, the navigation bar… And also we will include all the CCS and JavaScript
common for all the files. We cannot forget to include the CCS necessary to use Bootstrap. For
every single html file we will reuse the layout and we will add their specific CSS and JavaScript.
A really good advantage is the use of Grid system, to divide the screen in a certain number of
columns. In this case, it allows 12 columns by default which are configurable. They can be
static or fluid. The columns can be combined to generate tables or be a different number
depending on the device using to visualize the website.
It is Object Oriented CSS: everything is organized by modules, which are independent and they
can be reutilize in each project. Classes are used to name the objects, so you can apply the CSS
to them instead of the HTML directly. The visual effects are defined separately, so you can
reuse them in different projects, or use several together. The objects have to look the same
independent on where they are located, you have to use classes to describe them.
The templates for the client side are done in OpenLayers or in Leaflet, which are open source
JavaScript libraries to create interactive maps.

The website is programmed is Python, a script language, that can be used for lineal, structured
or object oriented programming, which is the most used. Python is multi-platform and can be
utilize to develop web or desktop applications.
The server uses WSGI: mod_wsgi implements a simple to use Apache module which can host
any Python application which supports the Python WSGI interface, it permits us to attach our
application to an Apache server. In order for that to work, we will need to specify in our
Apache configuration that we are using a VirtualHost that enables WSGIDaemonProcess and
WSGIScriptAlias. And we must indicate the WSGIProcessGroup and WSGIApplicationGroup. As
mod_wsgi supports the WSGI interface specification, any Python web framework or

52 of 105

3. Design

3.1. Architecture

I have developed Tiny Tile Server, which is a server in Python to serve local maps in MBTiles
format to a website. But that is only a part of this project. There are also templates to use
OpenLayers or Leaflet as a client to display the maps. And maps created with TileMill as
examples. And the website in general.

The website has been developed using Bootstrap, which is a Framework developed by Twitter
design to simplify the process of web design. It is offer some CSS by default and some
JavaScript files that provide us a basic layout that we can change later.

 Theses interfaces work perfectly well in the new browser and well enough in the older
ones.

 The design can be visualized in different devices, using different scales or resolutions.
 There is a better integration with the libraries that are used normally.
 It is a good design based in current tools and standards, like CSS3 and HTML5.

We have a HTML file that will act as layout for the whole website. In it, we will define the
header, the footer, the navigation bar… And also we will include all the CCS and JavaScript
common for all the files. We cannot forget to include the CCS necessary to use Bootstrap. For
every single html file we will reuse the layout and we will add their specific CSS and JavaScript.
A really good advantage is the use of Grid system, to divide the screen in a certain number of
columns. In this case, it allows 12 columns by default which are configurable. They can be
static or fluid. The columns can be combined to generate tables or be a different number
depending on the device using to visualize the website.
It is Object Oriented CSS: everything is organized by modules, which are independent and they
can be reutilize in each project. Classes are used to name the objects, so you can apply the CSS
to them instead of the HTML directly. The visual effects are defined separately, so you can
reuse them in different projects, or use several together. The objects have to look the same
independent on where they are located, you have to use classes to describe them.
The templates for the client side are done in OpenLayers or in Leaflet, which are open source
JavaScript libraries to create interactive maps.

The website is programmed is Python, a script language, that can be used for lineal, structured
or object oriented programming, which is the most used. Python is multi-platform and can be
utilize to develop web or desktop applications.
The server uses WSGI: mod_wsgi implements a simple to use Apache module which can host
any Python application which supports the Python WSGI interface, it permits us to attach our
application to an Apache server. In order for that to work, we will need to specify in our
Apache configuration that we are using a VirtualHost that enables WSGIDaemonProcess and
WSGIScriptAlias. And we must indicate the WSGIProcessGroup and WSGIApplicationGroup. As
mod_wsgi supports the WSGI interface specification, any Python web framework or

53 of 105

application which is compatible with the WSGI interface specification should be able to be
hosted on top of mod_wsgi.

Along with Python is used Bottle, a simple web framework for web development. With Bottle
are handled most of the functionalities related with the server.
The entry point to start the application is a .py file which load the main application and the
other modules, o sub-applications. And it must contain the Bottle run() function, that when it
is called without parameters, starts a local development server on port 8080. If you run it by
command line, it will inform you that you can access your application in http://localhost:8080/.
There are some options you can select, like run on debug mode, or change the host or the port
by default. If you want your application available on the internet, you need to indicate the IP of
the interface where the server should be listening to, in this case run(host=’ 152.96.56.43’).
The default server in Bottle is based on WSGIServer, which is single-threaded. When the load
in the server is increased, it should be change to a Multi-threaded or asynchronous one, and
add Multi-processing.

The routing in the application is handled by the Bottle route() function. It allows static or
dynamic routing in a nice and easy way. The static routes are only valid for one URL that will
match it completely. The dynamic routes contain one or more variables, and will accept any
URL that fixes on that pattern at the same time.
To define more specific wildcards, filters can be used, like indicating that the wildcards must be
an integer or a float, or that it has to pattern a specific regular expression. Each wildcard
matches one or more characters, but stops at the first slash (/).
Every wildcard is used later as value of a parameter in the function that is called and will be
executed once the URL is matched with a route.
Also routing can be used only to redirect to another HTML. In this case, we utilize the Bottle
view() function to indicate the HTML we want to load. As we are using two functions: one to
recognize the URL written in the browser and another to select the HTML file where the code
is, we do not need to reference in the website the same name of our file.

Before sending a response, we can use response.content_type to indicate the header that
should be used in the document and how to encode the Unicode strings. The header by
defaults is “text/html; charset=UTF8”. Some used in this application are "image/png” to display
the tiles, or "application/json" to show the UTFGrid or the metadata information, or
"application/xml" in the case of WMTS.
Bottle permits to check the response.status attribute to know if everything is working
correctly: “200 OK”, which is the status by default. If that is not the case, we can use the Bottle
abort() function or return an HTTPResponse instance with the appropriate error status code.

3.2. Object Browser

This is the project structur, as we can see is divided into packages that intended to have the
less possible relation between them, so they can be reused without many modifications.

53 of 105

application which is compatible with the WSGI interface specification should be able to be
hosted on top of mod_wsgi.

Along with Python is used Bottle, a simple web framework for web development. With Bottle
are handled most of the functionalities related with the server.
The entry point to start the application is a .py file which load the main application and the
other modules, o sub-applications. And it must contain the Bottle run() function, that when it
is called without parameters, starts a local development server on port 8080. If you run it by
command line, it will inform you that you can access your application in http://localhost:8080/.
There are some options you can select, like run on debug mode, or change the host or the port
by default. If you want your application available on the internet, you need to indicate the IP of
the interface where the server should be listening to, in this case run(host=’ 152.96.56.43’).
The default server in Bottle is based on WSGIServer, which is single-threaded. When the load
in the server is increased, it should be change to a Multi-threaded or asynchronous one, and
add Multi-processing.

The routing in the application is handled by the Bottle route() function. It allows static or
dynamic routing in a nice and easy way. The static routes are only valid for one URL that will
match it completely. The dynamic routes contain one or more variables, and will accept any
URL that fixes on that pattern at the same time.
To define more specific wildcards, filters can be used, like indicating that the wildcards must be
an integer or a float, or that it has to pattern a specific regular expression. Each wildcard
matches one or more characters, but stops at the first slash (/).
Every wildcard is used later as value of a parameter in the function that is called and will be
executed once the URL is matched with a route.
Also routing can be used only to redirect to another HTML. In this case, we utilize the Bottle
view() function to indicate the HTML we want to load. As we are using two functions: one to
recognize the URL written in the browser and another to select the HTML file where the code
is, we do not need to reference in the website the same name of our file.

Before sending a response, we can use response.content_type to indicate the header that
should be used in the document and how to encode the Unicode strings. The header by
defaults is “text/html; charset=UTF8”. Some used in this application are "image/png” to display
the tiles, or "application/json" to show the UTFGrid or the metadata information, or
"application/xml" in the case of WMTS.
Bottle permits to check the response.status attribute to know if everything is working
correctly: “200 OK”, which is the status by default. If that is not the case, we can use the Bottle
abort() function or return an HTTPResponse instance with the appropriate error status code.

3.2. Object Browser

This is the project structur, as we can see is divided into packages that intended to have the
less possible relation between them, so they can be reused without many modifications.

53 of 105

application which is compatible with the WSGI interface specification should be able to be
hosted on top of mod_wsgi.

Along with Python is used Bottle, a simple web framework for web development. With Bottle
are handled most of the functionalities related with the server.
The entry point to start the application is a .py file which load the main application and the
other modules, o sub-applications. And it must contain the Bottle run() function, that when it
is called without parameters, starts a local development server on port 8080. If you run it by
command line, it will inform you that you can access your application in http://localhost:8080/.
There are some options you can select, like run on debug mode, or change the host or the port
by default. If you want your application available on the internet, you need to indicate the IP of
the interface where the server should be listening to, in this case run(host=’ 152.96.56.43’).
The default server in Bottle is based on WSGIServer, which is single-threaded. When the load
in the server is increased, it should be change to a Multi-threaded or asynchronous one, and
add Multi-processing.

The routing in the application is handled by the Bottle route() function. It allows static or
dynamic routing in a nice and easy way. The static routes are only valid for one URL that will
match it completely. The dynamic routes contain one or more variables, and will accept any
URL that fixes on that pattern at the same time.
To define more specific wildcards, filters can be used, like indicating that the wildcards must be
an integer or a float, or that it has to pattern a specific regular expression. Each wildcard
matches one or more characters, but stops at the first slash (/).
Every wildcard is used later as value of a parameter in the function that is called and will be
executed once the URL is matched with a route.
Also routing can be used only to redirect to another HTML. In this case, we utilize the Bottle
view() function to indicate the HTML we want to load. As we are using two functions: one to
recognize the URL written in the browser and another to select the HTML file where the code
is, we do not need to reference in the website the same name of our file.

Before sending a response, we can use response.content_type to indicate the header that
should be used in the document and how to encode the Unicode strings. The header by
defaults is “text/html; charset=UTF8”. Some used in this application are "image/png” to display
the tiles, or "application/json" to show the UTFGrid or the metadata information, or
"application/xml" in the case of WMTS.
Bottle permits to check the response.status attribute to know if everything is working
correctly: “200 OK”, which is the status by default. If that is not the case, we can use the Bottle
abort() function or return an HTTPResponse instance with the appropriate error status code.

3.2. Object Browser

This is the project structur, as we can see is divided into packages that intended to have the
less possible relation between them, so they can be reused without many modifications.

54 of 105

Now I will explain how the packages are internally structured and later I will specify the
different functions of every object.

3.3. Package and class diagrams

Here are showed the dependencies between the different packages. As can be seen, we are
following the low coupling evaluative pattern. There is a lower dependency between the
packages, so in case the is a change in one package, the impact in the others is lower. And
exists a higher reuse potential.

54 of 105

Now I will explain how the packages are internally structured and later I will specify the
different functions of every object.

3.3. Package and class diagrams

Here are showed the dependencies between the different packages. As can be seen, we are
following the low coupling evaluative pattern. There is a lower dependency between the
packages, so in case the is a change in one package, the impact in the others is lower. And
exists a higher reuse potential.

54 of 105

Now I will explain how the packages are internally structured and later I will specify the
different functions of every object.

3.3. Package and class diagrams

Here are showed the dependencies between the different packages. As can be seen, we are
following the low coupling evaluative pattern. There is a lower dependency between the
packages, so in case the is a change in one package, the impact in the others is lower. And
exists a higher reuse potential.

55 of 105

Now we are going to examine the packages.

The templates package contains the HTML of the application, here are all the pages in the
website. But only the HTML part, the scripts are in its appropriate package and in the HTML file
is a reference to it.

The assets package contains the CSS, the JavaScript and the images required in the
applications. There are two groups:

 The external code: the code that is used to configure and design the application, like
Bootstrap. And the code that adds some functionality like Wax.

 The internal code: the one that I have developed, so it is specific of my application.
Here is included the CSS code and the JavaScript necessary to create the maps.

In the “package” package is included the Bottle file.

In the data package we will only include ours maps in MBTiles format.

55 of 105

Now we are going to examine the packages.

The templates package contains the HTML of the application, here are all the pages in the
website. But only the HTML part, the scripts are in its appropriate package and in the HTML file
is a reference to it.

The assets package contains the CSS, the JavaScript and the images required in the
applications. There are two groups:

 The external code: the code that is used to configure and design the application, like
Bootstrap. And the code that adds some functionality like Wax.

 The internal code: the one that I have developed, so it is specific of my application.
Here is included the CSS code and the JavaScript necessary to create the maps.

In the “package” package is included the Bottle file.

In the data package we will only include ours maps in MBTiles format.

55 of 105

Now we are going to examine the packages.

The templates package contains the HTML of the application, here are all the pages in the
website. But only the HTML part, the scripts are in its appropriate package and in the HTML file
is a reference to it.

The assets package contains the CSS, the JavaScript and the images required in the
applications. There are two groups:

 The external code: the code that is used to configure and design the application, like
Bootstrap. And the code that adds some functionality like Wax.

 The internal code: the one that I have developed, so it is specific of my application.
Here is included the CSS code and the JavaScript necessary to create the maps.

In the “package” package is included the Bottle file.

In the data package we will only include ours maps in MBTiles format.

56 of 10556 of 10556 of 105

57 of 105

In the tiny_tile_server package are the necessary files to display a map on the internet. This
would be explain in detail later.

57 of 105

In the tiny_tile_server package are the necessary files to display a map on the internet. This
would be explain in detail later.

57 of 105

In the tiny_tile_server package are the necessary files to display a map on the internet. This
would be explain in detail later.

58 of 105

In the webapp package are the files that handle the routing in the application. This would also
be explained in detail in the next chapter.

As we can see, there is a high cohesion in every package because the responsibilities of a given
element are strongly related and highly focused. Breaking programs into classes and
subsystems increase the cohesive properties of a system. High cohesion make the system easy
to use and maintain, and it is prepared for the change.

58 of 105

In the webapp package are the files that handle the routing in the application. This would also
be explained in detail in the next chapter.

As we can see, there is a high cohesion in every package because the responsibilities of a given
element are strongly related and highly focused. Breaking programs into classes and
subsystems increase the cohesive properties of a system. High cohesion make the system easy
to use and maintain, and it is prepared for the change.

58 of 105

In the webapp package are the files that handle the routing in the application. This would also
be explained in detail in the next chapter.

As we can see, there is a high cohesion in every package because the responsibilities of a given
element are strongly related and highly focused. Breaking programs into classes and
subsystems increase the cohesive properties of a system. High cohesion make the system easy
to use and maintain, and it is prepared for the change.

59 of 105

4. Development

4.1. Implementation

Tiny Tile Server

This is the main part of the application: the server. Here is handled all the functionality related
with extracting the map inside our MBTiles database and returning the information so the
client part can display it. This part has been divided according with the tables inside the
database that are accessed. In the base.py file is the necessary code to extract the information
out of the MBTiles database.

The tiles table has four attributes: the zoom, the x coordinate, the y coordinate and the png
image associated with those values. To extract the tiles I have defined the get_tile() function,
that receives the name of the database to connect to, the x, y, and zoom; and return the tile in
that position.

The grids table has four attributes: the zoom, the x coordinate, the y coordinate and the
UTFGrid information associated with those values. To extract the grids I have defined the
get_grid() function, that receives the name of the database to connect to, the x, y, and zoom;
and return the UTFGrid in that position.
This is divided into two steps. First, we get only the grid part, that for every pixel shows the
character associated to it. And then we get the data: every character is represented by its
number, that is the key, and the value is the data that will appear on the map when we hover
or click in that pixel. The data is stored in others two different tables, so we need to make a
join selecting by ids.

The metadata table has two attributes: name and value. And there is stored different
information about the map: the bounds, the legend, a description, the URL to access to the
tiles… To extract the metadata information I have defined the get_metadata() function, that
recives the name of the database to connect to, and return the whole metadata associated to
the map.
To only print the metadata there is def_metadata() function that displays the metadata
information about the map whose name is indicated. This function is just provided in case the
user wants to analyze it MBTiles database, and it does not return anything, it just displays it on
the command line.

We have to consider two different approach depending of the kind of access we are doing to
the database because of the two protocols used, direct access to XYZ tiles and Web Map Tile
Service, have a different origin.

59 of 105

4. Development

4.1. Implementation

Tiny Tile Server

This is the main part of the application: the server. Here is handled all the functionality related
with extracting the map inside our MBTiles database and returning the information so the
client part can display it. This part has been divided according with the tables inside the
database that are accessed. In the base.py file is the necessary code to extract the information
out of the MBTiles database.

The tiles table has four attributes: the zoom, the x coordinate, the y coordinate and the png
image associated with those values. To extract the tiles I have defined the get_tile() function,
that receives the name of the database to connect to, the x, y, and zoom; and return the tile in
that position.

The grids table has four attributes: the zoom, the x coordinate, the y coordinate and the
UTFGrid information associated with those values. To extract the grids I have defined the
get_grid() function, that receives the name of the database to connect to, the x, y, and zoom;
and return the UTFGrid in that position.
This is divided into two steps. First, we get only the grid part, that for every pixel shows the
character associated to it. And then we get the data: every character is represented by its
number, that is the key, and the value is the data that will appear on the map when we hover
or click in that pixel. The data is stored in others two different tables, so we need to make a
join selecting by ids.

The metadata table has two attributes: name and value. And there is stored different
information about the map: the bounds, the legend, a description, the URL to access to the
tiles… To extract the metadata information I have defined the get_metadata() function, that
recives the name of the database to connect to, and return the whole metadata associated to
the map.
To only print the metadata there is def_metadata() function that displays the metadata
information about the map whose name is indicated. This function is just provided in case the
user wants to analyze it MBTiles database, and it does not return anything, it just displays it on
the command line.

We have to consider two different approach depending of the kind of access we are doing to
the database because of the two protocols used, direct access to XYZ tiles and Web Map Tile
Service, have a different origin.

59 of 105

4. Development

4.1. Implementation

Tiny Tile Server

This is the main part of the application: the server. Here is handled all the functionality related
with extracting the map inside our MBTiles database and returning the information so the
client part can display it. This part has been divided according with the tables inside the
database that are accessed. In the base.py file is the necessary code to extract the information
out of the MBTiles database.

The tiles table has four attributes: the zoom, the x coordinate, the y coordinate and the png
image associated with those values. To extract the tiles I have defined the get_tile() function,
that receives the name of the database to connect to, the x, y, and zoom; and return the tile in
that position.

The grids table has four attributes: the zoom, the x coordinate, the y coordinate and the
UTFGrid information associated with those values. To extract the grids I have defined the
get_grid() function, that receives the name of the database to connect to, the x, y, and zoom;
and return the UTFGrid in that position.
This is divided into two steps. First, we get only the grid part, that for every pixel shows the
character associated to it. And then we get the data: every character is represented by its
number, that is the key, and the value is the data that will appear on the map when we hover
or click in that pixel. The data is stored in others two different tables, so we need to make a
join selecting by ids.

The metadata table has two attributes: name and value. And there is stored different
information about the map: the bounds, the legend, a description, the URL to access to the
tiles… To extract the metadata information I have defined the get_metadata() function, that
recives the name of the database to connect to, and return the whole metadata associated to
the map.
To only print the metadata there is def_metadata() function that displays the metadata
information about the map whose name is indicated. This function is just provided in case the
user wants to analyze it MBTiles database, and it does not return anything, it just displays it on
the command line.

We have to consider two different approach depending of the kind of access we are doing to
the database because of the two protocols used, direct access to XYZ tiles and Web Map Tile
Service, have a different origin.

60 of 105

XYZ origin is on left-bottom.

WMTS origin is on left-top

In the python_wmts.py file is the code to work with the Web Map Tile Service protocol. The
purpose is to display a ServiceMetadata document as a result of a GetCapabilities operation.
This document contain service metadata about the server, including specific information about
the tiles of the layers that are available to be requested. In the document is explained how to
perform valid requests for tiles. More information can be found here
http://www.opengeospatial.org/standards/wmts/
The get_tile_wmts() function receive the name of the name, the value for the row in the tile (x
coordinate), the column in the tile (y coordinate) and the matrix in the tile (zoom); and return
the XML document with the whole information about our map. This function has two
purposes.

60 of 105

XYZ origin is on left-bottom.

WMTS origin is on left-top

In the python_wmts.py file is the code to work with the Web Map Tile Service protocol. The
purpose is to display a ServiceMetadata document as a result of a GetCapabilities operation.
This document contain service metadata about the server, including specific information about
the tiles of the layers that are available to be requested. In the document is explained how to
perform valid requests for tiles. More information can be found here
http://www.opengeospatial.org/standards/wmts/
The get_tile_wmts() function receive the name of the name, the value for the row in the tile (x
coordinate), the column in the tile (y coordinate) and the matrix in the tile (zoom); and return
the XML document with the whole information about our map. This function has two
purposes.

60 of 105

XYZ origin is on left-bottom.

WMTS origin is on left-top

In the python_wmts.py file is the code to work with the Web Map Tile Service protocol. The
purpose is to display a ServiceMetadata document as a result of a GetCapabilities operation.
This document contain service metadata about the server, including specific information about
the tiles of the layers that are available to be requested. In the document is explained how to
perform valid requests for tiles. More information can be found here
http://www.opengeospatial.org/standards/wmts/
The get_tile_wmts() function receive the name of the name, the value for the row in the tile (x
coordinate), the column in the tile (y coordinate) and the matrix in the tile (zoom); and return
the XML document with the whole information about our map. This function has two
purposes.

61 of 105

First, to obtain the values from the metadata of our map and to make the operations in order
to calculate all the results that will be showed. This is perform by some functions that will be
explained later.
Second, to display the XML document about our map showing the previous obtained values
following the WMTS specification.

In python_server.py are the functions to use the WMTS protocol. This functions are common
for several protocol and can be reuse. Also in that file the user has to specify some details
about its configuration: config_url is the URL where the application is going to run, and title is
the name of the application.

 layer(mylayer): check is the metadata information will be extracted from the
metadata.json file or from the metadata table in the MBTiles database.

 metadataFromMetadataJson(jsonFileName): open and read the metadata from the file
that receive as parameter, check that it is right and add in metadata the basename
with the value of that file.

 metadataFromMbtiles(): connect to the MBTiles database and extract all the metadata
information from the metadata table, check that it is right and add in metadata the
basename with the value of the layer name.

 metadataValidation(metadata): check and correct the metadata; split the values from
the bounds so we get an array with the four values, assign ‘mercator’ as the value by
default for profile in case this is missing, if there is not minzoom it should be 0, if there
is it specifies that should be an integer, if there is not maxzoom it should be 18, if there
is it specifies that should be an integer, , assign ‘png’ as the value by default for format
in case this is missing.

 metadataTileJson(metadata): add some more values to the metadata information: the
‘tilejson’, the kind of the ’scheme’ and the URL for the ‘tiles’.

The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

Webapp

Here is handled all the routing in the application. This is mainly done using Bottle, and it was
the most important reason for deciding in using Bottle. It really simplifies the access to another
file, the content type for the response and the variables that are requested. And it is done in a
nicely and readable way.

In web.py are performed the calls for the different pages in the website, there is a function to
redirect for every page. In @app.route('/name_browser') is specified the name the user write
in the browser to request to the page. In @bottle.view('name_file') is specified the name of
the html file that must be loaded as a response of the user’s request.

In api.py are performed the calls for the functions in tiny_tile_server to get the maps
information.

61 of 105

First, to obtain the values from the metadata of our map and to make the operations in order
to calculate all the results that will be showed. This is perform by some functions that will be
explained later.
Second, to display the XML document about our map showing the previous obtained values
following the WMTS specification.

In python_server.py are the functions to use the WMTS protocol. This functions are common
for several protocol and can be reuse. Also in that file the user has to specify some details
about its configuration: config_url is the URL where the application is going to run, and title is
the name of the application.

 layer(mylayer): check is the metadata information will be extracted from the
metadata.json file or from the metadata table in the MBTiles database.

 metadataFromMetadataJson(jsonFileName): open and read the metadata from the file
that receive as parameter, check that it is right and add in metadata the basename
with the value of that file.

 metadataFromMbtiles(): connect to the MBTiles database and extract all the metadata
information from the metadata table, check that it is right and add in metadata the
basename with the value of the layer name.

 metadataValidation(metadata): check and correct the metadata; split the values from
the bounds so we get an array with the four values, assign ‘mercator’ as the value by
default for profile in case this is missing, if there is not minzoom it should be 0, if there
is it specifies that should be an integer, if there is not maxzoom it should be 18, if there
is it specifies that should be an integer, , assign ‘png’ as the value by default for format
in case this is missing.

 metadataTileJson(metadata): add some more values to the metadata information: the
‘tilejson’, the kind of the ’scheme’ and the URL for the ‘tiles’.

The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

Webapp

Here is handled all the routing in the application. This is mainly done using Bottle, and it was
the most important reason for deciding in using Bottle. It really simplifies the access to another
file, the content type for the response and the variables that are requested. And it is done in a
nicely and readable way.

In web.py are performed the calls for the different pages in the website, there is a function to
redirect for every page. In @app.route('/name_browser') is specified the name the user write
in the browser to request to the page. In @bottle.view('name_file') is specified the name of
the html file that must be loaded as a response of the user’s request.

In api.py are performed the calls for the functions in tiny_tile_server to get the maps
information.

61 of 105

First, to obtain the values from the metadata of our map and to make the operations in order
to calculate all the results that will be showed. This is perform by some functions that will be
explained later.
Second, to display the XML document about our map showing the previous obtained values
following the WMTS specification.

In python_server.py are the functions to use the WMTS protocol. This functions are common
for several protocol and can be reuse. Also in that file the user has to specify some details
about its configuration: config_url is the URL where the application is going to run, and title is
the name of the application.

 layer(mylayer): check is the metadata information will be extracted from the
metadata.json file or from the metadata table in the MBTiles database.

 metadataFromMetadataJson(jsonFileName): open and read the metadata from the file
that receive as parameter, check that it is right and add in metadata the basename
with the value of that file.

 metadataFromMbtiles(): connect to the MBTiles database and extract all the metadata
information from the metadata table, check that it is right and add in metadata the
basename with the value of the layer name.

 metadataValidation(metadata): check and correct the metadata; split the values from
the bounds so we get an array with the four values, assign ‘mercator’ as the value by
default for profile in case this is missing, if there is not minzoom it should be 0, if there
is it specifies that should be an integer, if there is not maxzoom it should be 18, if there
is it specifies that should be an integer, , assign ‘png’ as the value by default for format
in case this is missing.

 metadataTileJson(metadata): add some more values to the metadata information: the
‘tilejson’, the kind of the ’scheme’ and the URL for the ‘tiles’.

The Global Mercator class has been developed by Klokan Petr Pridal and can be found here
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

Webapp

Here is handled all the routing in the application. This is mainly done using Bottle, and it was
the most important reason for deciding in using Bottle. It really simplifies the access to another
file, the content type for the response and the variables that are requested. And it is done in a
nicely and readable way.

In web.py are performed the calls for the different pages in the website, there is a function to
redirect for every page. In @app.route('/name_browser') is specified the name the user write
in the browser to request to the page. In @bottle.view('name_file') is specified the name of
the html file that must be loaded as a response of the user’s request.

In api.py are performed the calls for the functions in tiny_tile_server to get the maps
information.

62 of 105

 api_tile will match with a URL that starts with “tile” and it will receive 5 variables: the
name of the map, the x coordinate, the y coordinate, the zoom and the image
extension; and it will call the get_tile() function in base.py

 api_grid will match with a URL that starts with “grid” and it will receive 4 variables: the
name of the map, the x coordinate, the y coordinate, and the zoom; and it will call the
get_grid() function in base.py

 api_metadata will match with a URL that starts with “metadata” and finish like
“metadata.json”. It will receive only 1 variable: the name of the map; and it will call
the get_metadata() function in base.py

 api_def_metadata will match with a URL that starts with “metadata_info” and finish
like “metadata.json”. It will receive only 1 variable: the name of the map; and it will
call the def_metadata() function in base.py

 api_tilewmts will match with a URL that starts with “tilewmts” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the get_tile() function in base.py

 api_wmts will match with a URL that starts with “wmtstile” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the init_data() function in python_server.py to obtain
the getCapabilities of the map.

JavaScript files

Here is the important part of the client side: the templates using Leaflet and OpenLayers to
display the map, and Wax to add interactivity. There are different kind of examples, according
with which of the following characteristics they own.

 It is in Leaflet.
 It is in OpenLayers.
 XYZ direct access.
 WMTS protocol.
 MBTiles local, using Tiny Tile Server.
 MBTiles hosted in MapBox. A small example in case the user wants to see the

difference when using a external server.
 Extracting tiles URL and UTFGrid URL from metadata.
 Creating a TileJSON variable with the tiles URL and the UTFGrid URL. This example is

shown because the metadata of the MBTiles database generated by TileMill does not
contain the tiles URL nor the UTFGrid URL, so unless the user modify it to add those
values, he would need to create the TileJSON variable.

62 of 105

 api_tile will match with a URL that starts with “tile” and it will receive 5 variables: the
name of the map, the x coordinate, the y coordinate, the zoom and the image
extension; and it will call the get_tile() function in base.py

 api_grid will match with a URL that starts with “grid” and it will receive 4 variables: the
name of the map, the x coordinate, the y coordinate, and the zoom; and it will call the
get_grid() function in base.py

 api_metadata will match with a URL that starts with “metadata” and finish like
“metadata.json”. It will receive only 1 variable: the name of the map; and it will call
the get_metadata() function in base.py

 api_def_metadata will match with a URL that starts with “metadata_info” and finish
like “metadata.json”. It will receive only 1 variable: the name of the map; and it will
call the def_metadata() function in base.py

 api_tilewmts will match with a URL that starts with “tilewmts” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the get_tile() function in base.py

 api_wmts will match with a URL that starts with “wmtstile” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the init_data() function in python_server.py to obtain
the getCapabilities of the map.

JavaScript files

Here is the important part of the client side: the templates using Leaflet and OpenLayers to
display the map, and Wax to add interactivity. There are different kind of examples, according
with which of the following characteristics they own.

 It is in Leaflet.
 It is in OpenLayers.
 XYZ direct access.
 WMTS protocol.
 MBTiles local, using Tiny Tile Server.
 MBTiles hosted in MapBox. A small example in case the user wants to see the

difference when using a external server.
 Extracting tiles URL and UTFGrid URL from metadata.
 Creating a TileJSON variable with the tiles URL and the UTFGrid URL. This example is

shown because the metadata of the MBTiles database generated by TileMill does not
contain the tiles URL nor the UTFGrid URL, so unless the user modify it to add those
values, he would need to create the TileJSON variable.

62 of 105

 api_tile will match with a URL that starts with “tile” and it will receive 5 variables: the
name of the map, the x coordinate, the y coordinate, the zoom and the image
extension; and it will call the get_tile() function in base.py

 api_grid will match with a URL that starts with “grid” and it will receive 4 variables: the
name of the map, the x coordinate, the y coordinate, and the zoom; and it will call the
get_grid() function in base.py

 api_metadata will match with a URL that starts with “metadata” and finish like
“metadata.json”. It will receive only 1 variable: the name of the map; and it will call
the get_metadata() function in base.py

 api_def_metadata will match with a URL that starts with “metadata_info” and finish
like “metadata.json”. It will receive only 1 variable: the name of the map; and it will
call the def_metadata() function in base.py

 api_tilewmts will match with a URL that starts with “tilewmts” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the get_tile() function in base.py

 api_wmts will match with a URL that starts with “wmtstile” and it will receive 5
variables: the name of the map, the x coordinate, the y coordinate, the zoom and the
tiles extension; and it will call the init_data() function in python_server.py to obtain
the getCapabilities of the map.

JavaScript files

Here is the important part of the client side: the templates using Leaflet and OpenLayers to
display the map, and Wax to add interactivity. There are different kind of examples, according
with which of the following characteristics they own.

 It is in Leaflet.
 It is in OpenLayers.
 XYZ direct access.
 WMTS protocol.
 MBTiles local, using Tiny Tile Server.
 MBTiles hosted in MapBox. A small example in case the user wants to see the

difference when using a external server.
 Extracting tiles URL and UTFGrid URL from metadata.
 Creating a TileJSON variable with the tiles URL and the UTFGrid URL. This example is

shown because the metadata of the MBTiles database generated by TileMill does not
contain the tiles URL nor the UTFGrid URL, so unless the user modify it to add those
values, he would need to create the TileJSON variable.

63 of 105

5. Test

5.1. Automatic test procedures

unittest is the Python unit testing framework, which is a version of JUnit written in Python. And
it is the one I have used for automatic testing.
In our test class we would write all the test cases that would be executed all together at once.
The individual tests are defined with methods whose names start with the word "test". This
naming convention informs the test runner about which methods represent tests. There are
several elements in our test class:

 runTest() method: it is the one that execute the test for our code. It should test only a
fraction of code. Before every runTest() method setUp() would be called to create the
necessary objects, and after every runTest() method tearDown() would be called for
garbage collection.

 setUp() method: initialize the objects that will be used during the execution of the test
case. If it raises an exception while is running, the framework will consider the test to
have suffered an error, and the runTest() method will not be executed. It can be
redefined by the user.

 tearDown() method: in general it is used to reclaim the memory. In this case, it would
kill the objects used and close the connection with databases. If setUp() succeeded,
the tearDown() method will be run whether runTest() succeeded or not. Because in
any case, the object have been already created. It can be redefined by the user.
doCleanups() is called unconditionally after tearDown() (or
after setUp() if setUp() raises an exception), and it would call all the clean up functions
defined.

 expectedFailure() decorator would have to be indicated when our test is a “negative
test”, when we are in fact waiting for a fail to happened.

In our tests we want to assert that our function fulfill a property. Normally, that it is True or
False, or that it is equal or different from another value. Mainly these are the ones used when
testing.
To check if the zoom, the coordinate x and the coordinate y are the expected when accessing
the MBTiles database; both for tiles and for UTFGrid. About the metadata we can check that
the name, descriptions, bounds, center, minzoom, maxzoom, scheme kind, filesize, URL where
the tiles are, URL where the UTFGrid is, template for the infobox and legend extracted have
the corresponding value.

Assert first checks if the returned valued and the expected value are the exact same: list, tuple,
dict, set, frozenset or Unicode. And we can also add any type and register it
with addTypeEqualityFunc(). This function registers a type-specific method called
by assertEqual() to check if two objects of exactly the same typeobj are the same.
That is really useful to check the UTFGrid in .json format. First, to verify that the output follows
the appropriate pattern. And then that the UTFGrid was the one that we wanted to extract.

63 of 105

5. Test

5.1. Automatic test procedures

unittest is the Python unit testing framework, which is a version of JUnit written in Python. And
it is the one I have used for automatic testing.
In our test class we would write all the test cases that would be executed all together at once.
The individual tests are defined with methods whose names start with the word "test". This
naming convention informs the test runner about which methods represent tests. There are
several elements in our test class:

 runTest() method: it is the one that execute the test for our code. It should test only a
fraction of code. Before every runTest() method setUp() would be called to create the
necessary objects, and after every runTest() method tearDown() would be called for
garbage collection.

 setUp() method: initialize the objects that will be used during the execution of the test
case. If it raises an exception while is running, the framework will consider the test to
have suffered an error, and the runTest() method will not be executed. It can be
redefined by the user.

 tearDown() method: in general it is used to reclaim the memory. In this case, it would
kill the objects used and close the connection with databases. If setUp() succeeded,
the tearDown() method will be run whether runTest() succeeded or not. Because in
any case, the object have been already created. It can be redefined by the user.
doCleanups() is called unconditionally after tearDown() (or
after setUp() if setUp() raises an exception), and it would call all the clean up functions
defined.

 expectedFailure() decorator would have to be indicated when our test is a “negative
test”, when we are in fact waiting for a fail to happened.

In our tests we want to assert that our function fulfill a property. Normally, that it is True or
False, or that it is equal or different from another value. Mainly these are the ones used when
testing.
To check if the zoom, the coordinate x and the coordinate y are the expected when accessing
the MBTiles database; both for tiles and for UTFGrid. About the metadata we can check that
the name, descriptions, bounds, center, minzoom, maxzoom, scheme kind, filesize, URL where
the tiles are, URL where the UTFGrid is, template for the infobox and legend extracted have
the corresponding value.

Assert first checks if the returned valued and the expected value are the exact same: list, tuple,
dict, set, frozenset or Unicode. And we can also add any type and register it
with addTypeEqualityFunc(). This function registers a type-specific method called
by assertEqual() to check if two objects of exactly the same typeobj are the same.
That is really useful to check the UTFGrid in .json format. First, to verify that the output follows
the appropriate pattern. And then that the UTFGrid was the one that we wanted to extract.

63 of 105

5. Test

5.1. Automatic test procedures

unittest is the Python unit testing framework, which is a version of JUnit written in Python. And
it is the one I have used for automatic testing.
In our test class we would write all the test cases that would be executed all together at once.
The individual tests are defined with methods whose names start with the word "test". This
naming convention informs the test runner about which methods represent tests. There are
several elements in our test class:

 runTest() method: it is the one that execute the test for our code. It should test only a
fraction of code. Before every runTest() method setUp() would be called to create the
necessary objects, and after every runTest() method tearDown() would be called for
garbage collection.

 setUp() method: initialize the objects that will be used during the execution of the test
case. If it raises an exception while is running, the framework will consider the test to
have suffered an error, and the runTest() method will not be executed. It can be
redefined by the user.

 tearDown() method: in general it is used to reclaim the memory. In this case, it would
kill the objects used and close the connection with databases. If setUp() succeeded,
the tearDown() method will be run whether runTest() succeeded or not. Because in
any case, the object have been already created. It can be redefined by the user.
doCleanups() is called unconditionally after tearDown() (or
after setUp() if setUp() raises an exception), and it would call all the clean up functions
defined.

 expectedFailure() decorator would have to be indicated when our test is a “negative
test”, when we are in fact waiting for a fail to happened.

In our tests we want to assert that our function fulfill a property. Normally, that it is True or
False, or that it is equal or different from another value. Mainly these are the ones used when
testing.
To check if the zoom, the coordinate x and the coordinate y are the expected when accessing
the MBTiles database; both for tiles and for UTFGrid. About the metadata we can check that
the name, descriptions, bounds, center, minzoom, maxzoom, scheme kind, filesize, URL where
the tiles are, URL where the UTFGrid is, template for the infobox and legend extracted have
the corresponding value.

Assert first checks if the returned valued and the expected value are the exact same: list, tuple,
dict, set, frozenset or Unicode. And we can also add any type and register it
with addTypeEqualityFunc(). This function registers a type-specific method called
by assertEqual() to check if two objects of exactly the same typeobj are the same.
That is really useful to check the UTFGrid in .json format. First, to verify that the output follows
the appropriate pattern. And then that the UTFGrid was the one that we wanted to extract.

64 of 105

All the assert methods (except assertRaises() and assertRaisesRegexp(), whose purpose is to
check that exceptions and warnings are raised) accept a message argument that, if specified, is
used as the error message on failure. By default, message = None

The last part in our test class would be a way to run the tests. unittest.main() provides a
command-line program that loads a set of tests from module and runs them; this is primarily
for making test modules conveniently executable. The simplest use for this function is to
include the following line at the end of a test script:
if __name__ == '__main__':

unittest.main()
Tests have 3 possible outcomes:
ok The test passes.
FAIL The test does not pass, and raises an AssertionError exception.
ERROR The test raises an exception other than AssertionError.

5.2. Manual test procedures

This section is dividing into two parts:

1. Testing with sqlite3.

Sqlite3 is a command-line utility included in the SQLite library that allows the user to manually
enter and execute SQL commands in a SQLite database. Sqlite3 has been really useful to know
the internal structure of the MBTiles database.

Command Result Comment
sqlite3 example.mbtiles To connect to the

database
.tables grid_data grid_key grid_utfgrid

grids images keymap map
metadata tiles

To know what table are
inside the database

.schema tiles CREATE VIEW tiles AS
SELECT

map.zoom_level AS zoom_level,
map.tile_column AS

tile_column,
map.tile_row AS tile_row,
images.tile_data AS tile_data

FROM map
JOIN images ON images.tile_id =

map.tile_id;

To display the SQL
statement to create the
table

Once I came to understand how the MBTiles database works, I started to create test to check
that my MBTiles map follows the structure that it was supposed to. The tests were based on
checking that the values were stored correctly.

64 of 105

All the assert methods (except assertRaises() and assertRaisesRegexp(), whose purpose is to
check that exceptions and warnings are raised) accept a message argument that, if specified, is
used as the error message on failure. By default, message = None

The last part in our test class would be a way to run the tests. unittest.main() provides a
command-line program that loads a set of tests from module and runs them; this is primarily
for making test modules conveniently executable. The simplest use for this function is to
include the following line at the end of a test script:
if __name__ == '__main__':

unittest.main()
Tests have 3 possible outcomes:
ok The test passes.
FAIL The test does not pass, and raises an AssertionError exception.
ERROR The test raises an exception other than AssertionError.

5.2. Manual test procedures

This section is dividing into two parts:

1. Testing with sqlite3.

Sqlite3 is a command-line utility included in the SQLite library that allows the user to manually
enter and execute SQL commands in a SQLite database. Sqlite3 has been really useful to know
the internal structure of the MBTiles database.

Command Result Comment
sqlite3 example.mbtiles To connect to the

database
.tables grid_data grid_key grid_utfgrid

grids images keymap map
metadata tiles

To know what table are
inside the database

.schema tiles CREATE VIEW tiles AS
SELECT

map.zoom_level AS zoom_level,
map.tile_column AS

tile_column,
map.tile_row AS tile_row,
images.tile_data AS tile_data

FROM map
JOIN images ON images.tile_id =

map.tile_id;

To display the SQL
statement to create the
table

Once I came to understand how the MBTiles database works, I started to create test to check
that my MBTiles map follows the structure that it was supposed to. The tests were based on
checking that the values were stored correctly.

64 of 105

All the assert methods (except assertRaises() and assertRaisesRegexp(), whose purpose is to
check that exceptions and warnings are raised) accept a message argument that, if specified, is
used as the error message on failure. By default, message = None

The last part in our test class would be a way to run the tests. unittest.main() provides a
command-line program that loads a set of tests from module and runs them; this is primarily
for making test modules conveniently executable. The simplest use for this function is to
include the following line at the end of a test script:
if __name__ == '__main__':

unittest.main()
Tests have 3 possible outcomes:
ok The test passes.
FAIL The test does not pass, and raises an AssertionError exception.
ERROR The test raises an exception other than AssertionError.

5.2. Manual test procedures

This section is dividing into two parts:

1. Testing with sqlite3.

Sqlite3 is a command-line utility included in the SQLite library that allows the user to manually
enter and execute SQL commands in a SQLite database. Sqlite3 has been really useful to know
the internal structure of the MBTiles database.

Command Result Comment
sqlite3 example.mbtiles To connect to the

database
.tables grid_data grid_key grid_utfgrid

grids images keymap map
metadata tiles

To know what table are
inside the database

.schema tiles CREATE VIEW tiles AS
SELECT

map.zoom_level AS zoom_level,
map.tile_column AS

tile_column,
map.tile_row AS tile_row,
images.tile_data AS tile_data

FROM map
JOIN images ON images.tile_id =

map.tile_id;

To display the SQL
statement to create the
table

Once I came to understand how the MBTiles database works, I started to create test to check
that my MBTiles map follows the structure that it was supposed to. The tests were based on
checking that the values were stored correctly.

65 of 105

 About zoom_level, tile_row, tile_column: the maximum and minimum value, the value
in any case depending on the others parameters
>sqlite3 example.mbtiles "select distinct zoom_level from tiles"

 About UTFGrid: how they were organized between the different tables, how to extract
them to get appropriate format for the .grid.json files
>sqlite3 example.mbtiles "select * from keymap order by key_name"

2. Direct access on the website.

Before accessing to the whole map, it was necessary to know that each particular tile and grid
was in the position (regarding zoom level, tile row and tile column) that I was expecting. And
these individual calls help to ascertain that.
That was especially important when dealing with different protocols: XYZ direct access, which
origin is on left-bottom, like TMS, and the same that MapBox considers; and WMTS protocol,
which origin is on left-top. That was easily to adapt with this formula y_wmts = (2**int(z) - 1) -
int(y)

 To get one tile

/api/tile/example/5/10/16.png

In the UTFGrid case, they are stored starting on top-left. And this does not need to be changed
depending on the kind of protocol used.

 To get a UTFGrid file

/api/grid/example/5/10/16.grid.json

65 of 105

 About zoom_level, tile_row, tile_column: the maximum and minimum value, the value
in any case depending on the others parameters
>sqlite3 example.mbtiles "select distinct zoom_level from tiles"

 About UTFGrid: how they were organized between the different tables, how to extract
them to get appropriate format for the .grid.json files
>sqlite3 example.mbtiles "select * from keymap order by key_name"

2. Direct access on the website.

Before accessing to the whole map, it was necessary to know that each particular tile and grid
was in the position (regarding zoom level, tile row and tile column) that I was expecting. And
these individual calls help to ascertain that.
That was especially important when dealing with different protocols: XYZ direct access, which
origin is on left-bottom, like TMS, and the same that MapBox considers; and WMTS protocol,
which origin is on left-top. That was easily to adapt with this formula y_wmts = (2**int(z) - 1) -
int(y)

 To get one tile

/api/tile/example/5/10/16.png

In the UTFGrid case, they are stored starting on top-left. And this does not need to be changed
depending on the kind of protocol used.

 To get a UTFGrid file

/api/grid/example/5/10/16.grid.json

65 of 105

 About zoom_level, tile_row, tile_column: the maximum and minimum value, the value
in any case depending on the others parameters
>sqlite3 example.mbtiles "select distinct zoom_level from tiles"

 About UTFGrid: how they were organized between the different tables, how to extract
them to get appropriate format for the .grid.json files
>sqlite3 example.mbtiles "select * from keymap order by key_name"

2. Direct access on the website.

Before accessing to the whole map, it was necessary to know that each particular tile and grid
was in the position (regarding zoom level, tile row and tile column) that I was expecting. And
these individual calls help to ascertain that.
That was especially important when dealing with different protocols: XYZ direct access, which
origin is on left-bottom, like TMS, and the same that MapBox considers; and WMTS protocol,
which origin is on left-top. That was easily to adapt with this formula y_wmts = (2**int(z) - 1) -
int(y)

 To get one tile

/api/tile/example/5/10/16.png

In the UTFGrid case, they are stored starting on top-left. And this does not need to be changed
depending on the kind of protocol used.

 To get a UTFGrid file

/api/grid/example/5/10/16.grid.json

66 of 10566 of 10566 of 105

67 of 105

Once the unit test were finished, I did some integration test to be sure that all together was
working correctly.

 To get all the tiles forming a part of the map

/switzerlandLLlocal

 Once the UTFGrid part was working, to add that information on the map

/switzerlandLLlocal

67 of 105

Once the unit test were finished, I did some integration test to be sure that all together was
working correctly.

 To get all the tiles forming a part of the map

/switzerlandLLlocal

 Once the UTFGrid part was working, to add that information on the map

/switzerlandLLlocal

67 of 105

Once the unit test were finished, I did some integration test to be sure that all together was
working correctly.

 To get all the tiles forming a part of the map

/switzerlandLLlocal

 Once the UTFGrid part was working, to add that information on the map

/switzerlandLLlocal

68 of 105

6. Further development

6.1. Results

Tiny Tile Server is a small server to extract tiles (map images smaller than screen for better
performance), UTFGrid (textual information in JSON for each tile needed for infobox) and
metadata (map description, indicating name, bounds, center, minzoom, maxzoom, scheme
kind, filesize, tiles URL, UTFGrid URL, template for the infobox and legend) from a MBTiles
database to display the corresponding map on the internet.

All the individual access to a tile, the UTFGrid for a tile or the metadata information works
correctly. Also putting together the different tiles to display the part of the map the user wants
to see works perfectly fine. But the UTFGrid part does not work fine in all the possible
scenarios.

 When UTFGrid works normally and is displayed:
1. At the beginning when the map is loaded for the first time.
2. After zoom-in or zoom-out using the zoom slider.
3. After doing double click in a point to zoom-in to that point.
4. After doing shift + select a zone to show it.
5. After zoom-in or zoom-out using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

In all this cases, the UTFgrid works as it is supposed to: when the user hover over a pixel with
UTFGrid information associated to it, this information appears in an infobox following the
template defined by the user.

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

In this case, the UTFGrid corresponding to the previous position keep being displayed, like if
the map has not been moved. Internally, the connection with the database is done, and the
UTFGrid is extracted, but not displayed. Or it could be that it is displayed, but the previous
UTFGrid is displayed on top of it.

Because all the positives scenarios, in my opinion is clear that Tiny Tile Server is working
correctly, and the problem is on the client side, when using the JavaScript library and Wax to
display the map. It could be that the template is wrong and I need to add some more
information to make that part works. The point is that it also does not work when using Wax
with a map hosted in MapBox, so that makes clear that Tiny Tile Server is working fine. It could
be that the client side with Leaflet or OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

68 of 105

6. Further development

6.1. Results

Tiny Tile Server is a small server to extract tiles (map images smaller than screen for better
performance), UTFGrid (textual information in JSON for each tile needed for infobox) and
metadata (map description, indicating name, bounds, center, minzoom, maxzoom, scheme
kind, filesize, tiles URL, UTFGrid URL, template for the infobox and legend) from a MBTiles
database to display the corresponding map on the internet.

All the individual access to a tile, the UTFGrid for a tile or the metadata information works
correctly. Also putting together the different tiles to display the part of the map the user wants
to see works perfectly fine. But the UTFGrid part does not work fine in all the possible
scenarios.

 When UTFGrid works normally and is displayed:
1. At the beginning when the map is loaded for the first time.
2. After zoom-in or zoom-out using the zoom slider.
3. After doing double click in a point to zoom-in to that point.
4. After doing shift + select a zone to show it.
5. After zoom-in or zoom-out using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

In all this cases, the UTFgrid works as it is supposed to: when the user hover over a pixel with
UTFGrid information associated to it, this information appears in an infobox following the
template defined by the user.

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

In this case, the UTFGrid corresponding to the previous position keep being displayed, like if
the map has not been moved. Internally, the connection with the database is done, and the
UTFGrid is extracted, but not displayed. Or it could be that it is displayed, but the previous
UTFGrid is displayed on top of it.

Because all the positives scenarios, in my opinion is clear that Tiny Tile Server is working
correctly, and the problem is on the client side, when using the JavaScript library and Wax to
display the map. It could be that the template is wrong and I need to add some more
information to make that part works. The point is that it also does not work when using Wax
with a map hosted in MapBox, so that makes clear that Tiny Tile Server is working fine. It could
be that the client side with Leaflet or OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

68 of 105

6. Further development

6.1. Results

Tiny Tile Server is a small server to extract tiles (map images smaller than screen for better
performance), UTFGrid (textual information in JSON for each tile needed for infobox) and
metadata (map description, indicating name, bounds, center, minzoom, maxzoom, scheme
kind, filesize, tiles URL, UTFGrid URL, template for the infobox and legend) from a MBTiles
database to display the corresponding map on the internet.

All the individual access to a tile, the UTFGrid for a tile or the metadata information works
correctly. Also putting together the different tiles to display the part of the map the user wants
to see works perfectly fine. But the UTFGrid part does not work fine in all the possible
scenarios.

 When UTFGrid works normally and is displayed:
1. At the beginning when the map is loaded for the first time.
2. After zoom-in or zoom-out using the zoom slider.
3. After doing double click in a point to zoom-in to that point.
4. After doing shift + select a zone to show it.
5. After zoom-in or zoom-out using the mouse wheel.
6. After reloading the page.
7. Writing in the URL the new location, like /exampleLLlocal#5/51.124/39.155

In all this cases, the UTFgrid works as it is supposed to: when the user hover over a pixel with
UTFGrid information associated to it, this information appears in an infobox following the
template defined by the user.

 When UTFGrid does not work:
1. After doing single click and dragging the map to a new position.

In this case, the UTFGrid corresponding to the previous position keep being displayed, like if
the map has not been moved. Internally, the connection with the database is done, and the
UTFGrid is extracted, but not displayed. Or it could be that it is displayed, but the previous
UTFGrid is displayed on top of it.

Because all the positives scenarios, in my opinion is clear that Tiny Tile Server is working
correctly, and the problem is on the client side, when using the JavaScript library and Wax to
display the map. It could be that the template is wrong and I need to add some more
information to make that part works. The point is that it also does not work when using Wax
with a map hosted in MapBox, so that makes clear that Tiny Tile Server is working fine. It could
be that the client side with Leaflet or OpenLayers is not well done, but observing this example
http://www.mapbox.com/wax/interaction-leaf.html, that also does not work like it is
supposed to, makes me think that the problem could be inside Wax and not in my templates.

69 of 105

6.2. Possibilities of development

To serve our maps on the internet it is clear that we need more tools apart from a server. The
first step is, of course, to create our MBTiles database, but there are already a lot of tools to
create it or to generate it having the map in another format. And the last part is to form the
whole map collecting the individual tiles; again in this case there enough good libraries that
already do it perfectly well.

But there is something that has not been completely developed, and it is how to deal with
interactivity. Here I have been using Wax: it is a good option because it is simple to use and
easy to integrate, apart that it is available for different libraries; but it is mainly focused to be
use with ModestMaps, so most of the examples and well documented tutorial are for that
library. With Leaflet it works well enough, but with OpenLayers there are several compatibility
problems, and even they recommended not to use it, at least for first projects.
Wax is not the only option regarding UTFGrid. Since recently OpenLayers allows to add a
UTFGrid layer to the map, and the user just needs to specify the callback function. Also Leaflet
count with a plugin that enables the interactivity.

The first interesting improvement that could be added to Tiny Tile Server would be to develop
the part related with displaying the UTFGrid information on the map. This should be done in
two phases.

1. To define a UTFGrid layer. Not needed in OpenLayers because it already exists. This part
could be more complicated because it would be necessary to know well enough how the
library is designed. But it could be similar to adding another kind of layer that are already
added. So the part left would be to decode the UTFGrid and get the corresponding name.

2. To display the data obtained and already decoded in an infobox. This could be more or
less straight forward if we are satisfied with a simple design like showing the data just in a div
under the map. But there much more interesting possibilities. The infobox could appear near
where the mouse is located. The infobox could be static and do not disappear until the user
click in its closing button. The infobox could appear when hovering or when clicking, and also
show different information.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

 TMS request individual tiles, like WMTS, so it is faster. But its origin is on left-bottom,
not like WMTS’s which is on left-top. So it would need to be adapted.

 WMS request a map with a particular bounding box with specific information, so that
makes it more powerful, but slower.

The TMS implementation should be similar to WMTS. The functions to get the metadata
information and to transform the latitude longitude system is already done for WMTS and it is
the same. It would be needed to generate the XML template. But again the operation mode is
similar, the difference is just the XML structure.

69 of 105

6.2. Possibilities of development

To serve our maps on the internet it is clear that we need more tools apart from a server. The
first step is, of course, to create our MBTiles database, but there are already a lot of tools to
create it or to generate it having the map in another format. And the last part is to form the
whole map collecting the individual tiles; again in this case there enough good libraries that
already do it perfectly well.

But there is something that has not been completely developed, and it is how to deal with
interactivity. Here I have been using Wax: it is a good option because it is simple to use and
easy to integrate, apart that it is available for different libraries; but it is mainly focused to be
use with ModestMaps, so most of the examples and well documented tutorial are for that
library. With Leaflet it works well enough, but with OpenLayers there are several compatibility
problems, and even they recommended not to use it, at least for first projects.
Wax is not the only option regarding UTFGrid. Since recently OpenLayers allows to add a
UTFGrid layer to the map, and the user just needs to specify the callback function. Also Leaflet
count with a plugin that enables the interactivity.

The first interesting improvement that could be added to Tiny Tile Server would be to develop
the part related with displaying the UTFGrid information on the map. This should be done in
two phases.

1. To define a UTFGrid layer. Not needed in OpenLayers because it already exists. This part
could be more complicated because it would be necessary to know well enough how the
library is designed. But it could be similar to adding another kind of layer that are already
added. So the part left would be to decode the UTFGrid and get the corresponding name.

2. To display the data obtained and already decoded in an infobox. This could be more or
less straight forward if we are satisfied with a simple design like showing the data just in a div
under the map. But there much more interesting possibilities. The infobox could appear near
where the mouse is located. The infobox could be static and do not disappear until the user
click in its closing button. The infobox could appear when hovering or when clicking, and also
show different information.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

 TMS request individual tiles, like WMTS, so it is faster. But its origin is on left-bottom,
not like WMTS’s which is on left-top. So it would need to be adapted.

 WMS request a map with a particular bounding box with specific information, so that
makes it more powerful, but slower.

The TMS implementation should be similar to WMTS. The functions to get the metadata
information and to transform the latitude longitude system is already done for WMTS and it is
the same. It would be needed to generate the XML template. But again the operation mode is
similar, the difference is just the XML structure.

69 of 105

6.2. Possibilities of development

To serve our maps on the internet it is clear that we need more tools apart from a server. The
first step is, of course, to create our MBTiles database, but there are already a lot of tools to
create it or to generate it having the map in another format. And the last part is to form the
whole map collecting the individual tiles; again in this case there enough good libraries that
already do it perfectly well.

But there is something that has not been completely developed, and it is how to deal with
interactivity. Here I have been using Wax: it is a good option because it is simple to use and
easy to integrate, apart that it is available for different libraries; but it is mainly focused to be
use with ModestMaps, so most of the examples and well documented tutorial are for that
library. With Leaflet it works well enough, but with OpenLayers there are several compatibility
problems, and even they recommended not to use it, at least for first projects.
Wax is not the only option regarding UTFGrid. Since recently OpenLayers allows to add a
UTFGrid layer to the map, and the user just needs to specify the callback function. Also Leaflet
count with a plugin that enables the interactivity.

The first interesting improvement that could be added to Tiny Tile Server would be to develop
the part related with displaying the UTFGrid information on the map. This should be done in
two phases.

1. To define a UTFGrid layer. Not needed in OpenLayers because it already exists. This part
could be more complicated because it would be necessary to know well enough how the
library is designed. But it could be similar to adding another kind of layer that are already
added. So the part left would be to decode the UTFGrid and get the corresponding name.

2. To display the data obtained and already decoded in an infobox. This could be more or
less straight forward if we are satisfied with a simple design like showing the data just in a div
under the map. But there much more interesting possibilities. The infobox could appear near
where the mouse is located. The infobox could be static and do not disappear until the user
click in its closing button. The infobox could appear when hovering or when clicking, and also
show different information.

Another possible development is to support more protocols to serve maps apart from direct
access in XYZ and Web Map Tile Service. Two possibilities are Tile Map Service and Web Map
Service.

 TMS request individual tiles, like WMTS, so it is faster. But its origin is on left-bottom,
not like WMTS’s which is on left-top. So it would need to be adapted.

 WMS request a map with a particular bounding box with specific information, so that
makes it more powerful, but slower.

The TMS implementation should be similar to WMTS. The functions to get the metadata
information and to transform the latitude longitude system is already done for WMTS and it is
the same. It would be needed to generate the XML template. But again the operation mode is
similar, the difference is just the XML structure.

70 of 105

TMS provides access to different resources, like rendered tiles. Each resource contains the
descriptive information and links to further resources. We can get the different versions of the
Tile Map Service, the metadata information, the tile maps that can be accessed, the whole
map formed by all the tiles.
The WMS implementation would need a greater effort. Because it does not extract tiles, but a
whole part of the map. In any case, the Capabilities in XML format template would only differ
in the structure.

Another interesting improvement could be HTTP caching. Once we have access to the tiles in
the server, we could provide a cache functionality, so the tiles would be cached and stored and
there is no need to request them from the server the next time they are accessed.

70 of 105

TMS provides access to different resources, like rendered tiles. Each resource contains the
descriptive information and links to further resources. We can get the different versions of the
Tile Map Service, the metadata information, the tile maps that can be accessed, the whole
map formed by all the tiles.
The WMS implementation would need a greater effort. Because it does not extract tiles, but a
whole part of the map. In any case, the Capabilities in XML format template would only differ
in the structure.

Another interesting improvement could be HTTP caching. Once we have access to the tiles in
the server, we could provide a cache functionality, so the tiles would be cached and stored and
there is no need to request them from the server the next time they are accessed.

70 of 105

TMS provides access to different resources, like rendered tiles. Each resource contains the
descriptive information and links to further resources. We can get the different versions of the
Tile Map Service, the metadata information, the tile maps that can be accessed, the whole
map formed by all the tiles.
The WMS implementation would need a greater effort. Because it does not extract tiles, but a
whole part of the map. In any case, the Capabilities in XML format template would only differ
in the structure.

Another interesting improvement could be HTTP caching. Once we have access to the tiles in
the server, we could provide a cache functionality, so the tiles would be cached and stored and
there is no need to request them from the server the next time they are accessed.

71 of 105

Project
management

71 of 105

Project
management

71 of 105

Project
management

72 of 105

1. Project management

I have used the Scrum agile project methodology and worked there for 16 weeks. The duration
of a sprint I have determined to be 2 weeks.
Scrum is a way to work to develop a product. Product development, using Scrum, occurs in
small pieces, with each piece building upon previously created pieces. Building products one
small piece at a time encourages creativity and enables us to respond to feedback and change,
to build exactly and only what is needed.
More specifically, Scrum is a simple framework for effective collaboration on complex projects.
Scrum provides a small set of rules that create just enough structure for us to be able to focus
our innovation on solving what might otherwise be an insurmountable challenge.
However, Scrum is much more than a simple framework. Scrum supports our need to be
human at work: to belong, to learn, to do, to create and be creative, to grow, to improve, and
to interact with other people. In other words, Scrum leverages the innate traits and
characteristics in people to allow them to do great things.

Sprint 1
18th February 2013 to 3rd March 2013

Main tasks / focus in the sprint

 Setting up the infrastructure (repository, project management, development
environment)

 Project setup
- GitHub as repository
- Website with show case and a gallery
- Scrum methodology

 Familiarization with the subject
- OpenStreetMap
- OpenLayers
- Leaflet
- TileMill
- MapTiler
- MapBox

 Scenarios
- Using TileMill
- Using MapTiler

Goals

 Get to know OpenStreetMap (data structure, API)
 Use OpenLayers and Leaflet as clients to read MBTiles
 Learn how TileMill and MapTiler work from the users point of view

Delivery / Deliverables

72 of 105

1. Project management

I have used the Scrum agile project methodology and worked there for 16 weeks. The duration
of a sprint I have determined to be 2 weeks.
Scrum is a way to work to develop a product. Product development, using Scrum, occurs in
small pieces, with each piece building upon previously created pieces. Building products one
small piece at a time encourages creativity and enables us to respond to feedback and change,
to build exactly and only what is needed.
More specifically, Scrum is a simple framework for effective collaboration on complex projects.
Scrum provides a small set of rules that create just enough structure for us to be able to focus
our innovation on solving what might otherwise be an insurmountable challenge.
However, Scrum is much more than a simple framework. Scrum supports our need to be
human at work: to belong, to learn, to do, to create and be creative, to grow, to improve, and
to interact with other people. In other words, Scrum leverages the innate traits and
characteristics in people to allow them to do great things.

Sprint 1
18th February 2013 to 3rd March 2013

Main tasks / focus in the sprint

 Setting up the infrastructure (repository, project management, development
environment)

 Project setup
- GitHub as repository
- Website with show case and a gallery
- Scrum methodology

 Familiarization with the subject
- OpenStreetMap
- OpenLayers
- Leaflet
- TileMill
- MapTiler
- MapBox

 Scenarios
- Using TileMill
- Using MapTiler

Goals

 Get to know OpenStreetMap (data structure, API)
 Use OpenLayers and Leaflet as clients to read MBTiles
 Learn how TileMill and MapTiler work from the users point of view

Delivery / Deliverables

72 of 105

1. Project management

I have used the Scrum agile project methodology and worked there for 16 weeks. The duration
of a sprint I have determined to be 2 weeks.
Scrum is a way to work to develop a product. Product development, using Scrum, occurs in
small pieces, with each piece building upon previously created pieces. Building products one
small piece at a time encourages creativity and enables us to respond to feedback and change,
to build exactly and only what is needed.
More specifically, Scrum is a simple framework for effective collaboration on complex projects.
Scrum provides a small set of rules that create just enough structure for us to be able to focus
our innovation on solving what might otherwise be an insurmountable challenge.
However, Scrum is much more than a simple framework. Scrum supports our need to be
human at work: to belong, to learn, to do, to create and be creative, to grow, to improve, and
to interact with other people. In other words, Scrum leverages the innate traits and
characteristics in people to allow them to do great things.

Sprint 1
18th February 2013 to 3rd March 2013

Main tasks / focus in the sprint

 Setting up the infrastructure (repository, project management, development
environment)

 Project setup
- GitHub as repository
- Website with show case and a gallery
- Scrum methodology

 Familiarization with the subject
- OpenStreetMap
- OpenLayers
- Leaflet
- TileMill
- MapTiler
- MapBox

 Scenarios
- Using TileMill
- Using MapTiler

Goals

 Get to know OpenStreetMap (data structure, API)
 Use OpenLayers and Leaflet as clients to read MBTiles
 Learn how TileMill and MapTiler work from the users point of view

Delivery / Deliverables

73 of 105

 Project setup with GitHub
 Document containing exercises using TileMill and MapTiler
 Website with these exercises

Completed works

How to use TileMill: little example with layers and CartoCSS, hosted the map in MapBox,
export the map as MBTiles and read it using Leaflet and OpenLayers. Another map with
thematic data (Towns, Rivers, Areas… from Switzerland).

How to use MapTiler: example using a GeoTIFF image and publish the tiles using OpenLayers.

Sprint 2
4th March 2013 to 17th March 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- GDAL2Tiles
- Python

 Scenarios
- Using MapProxy

Goals

 Learn how to use MapProxy as a server.
 Use OpenLayers and Leaflet with Wax to show legends/tooltips in maps

Delivery / Deliverables

 Document containing exercises using MapProxy and GDAL2Tiles.
 Website with these exercises

Completed works

Read maps generated by TileMill using Leaflet and OpenLayers with Wax. Wax is needed to
show the legends and the tooltips that we aggregated to our map.

How to use GDAL2Tiles: example using a GeoTIFF image and publish the tiles using
OpenLayers.

Problems

Unfortunately I did not manage to learn enough about MapProxy to be able to finish these
exercises.

Sprint 3
18th March 2013 to 31st March 2013

73 of 105

 Project setup with GitHub
 Document containing exercises using TileMill and MapTiler
 Website with these exercises

Completed works

How to use TileMill: little example with layers and CartoCSS, hosted the map in MapBox,
export the map as MBTiles and read it using Leaflet and OpenLayers. Another map with
thematic data (Towns, Rivers, Areas… from Switzerland).

How to use MapTiler: example using a GeoTIFF image and publish the tiles using OpenLayers.

Sprint 2
4th March 2013 to 17th March 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- GDAL2Tiles
- Python

 Scenarios
- Using MapProxy

Goals

 Learn how to use MapProxy as a server.
 Use OpenLayers and Leaflet with Wax to show legends/tooltips in maps

Delivery / Deliverables

 Document containing exercises using MapProxy and GDAL2Tiles.
 Website with these exercises

Completed works

Read maps generated by TileMill using Leaflet and OpenLayers with Wax. Wax is needed to
show the legends and the tooltips that we aggregated to our map.

How to use GDAL2Tiles: example using a GeoTIFF image and publish the tiles using
OpenLayers.

Problems

Unfortunately I did not manage to learn enough about MapProxy to be able to finish these
exercises.

Sprint 3
18th March 2013 to 31st March 2013

73 of 105

 Project setup with GitHub
 Document containing exercises using TileMill and MapTiler
 Website with these exercises

Completed works

How to use TileMill: little example with layers and CartoCSS, hosted the map in MapBox,
export the map as MBTiles and read it using Leaflet and OpenLayers. Another map with
thematic data (Towns, Rivers, Areas… from Switzerland).

How to use MapTiler: example using a GeoTIFF image and publish the tiles using OpenLayers.

Sprint 2
4th March 2013 to 17th March 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- GDAL2Tiles
- Python

 Scenarios
- Using MapProxy

Goals

 Learn how to use MapProxy as a server.
 Use OpenLayers and Leaflet with Wax to show legends/tooltips in maps

Delivery / Deliverables

 Document containing exercises using MapProxy and GDAL2Tiles.
 Website with these exercises

Completed works

Read maps generated by TileMill using Leaflet and OpenLayers with Wax. Wax is needed to
show the legends and the tooltips that we aggregated to our map.

How to use GDAL2Tiles: example using a GeoTIFF image and publish the tiles using
OpenLayers.

Problems

Unfortunately I did not manage to learn enough about MapProxy to be able to finish these
exercises.

Sprint 3
18th March 2013 to 31st March 2013

74 of 105

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- QuantumGIS
- SQLite

 Scenarios
- Using MapProxy
- Using QuantumGIS and TileMill

Goals

 Learn how to create a SQLite database using Quantum
 Learn how to configure MapProxy

Delivery / Deliverables

 Documentation containing example exercise using SQLite file in TileMill
 Documentation about reprojecting, resolutions and seeds in MapProxy

Completed works

How to use QuantumGIS: creating a SQLite database with QuantumGIS using a shapefile

How to use TileMill: increasing the tutorials in TileMill with documentation about how to use a
SQLite database as a source for a layer.

Configuration in MapProxy

Problems

The documentation about MapProxy is not finished yet.

Sprint 4
1st April 2013 to 14th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- raster2mb
- mbutil

 Scenarios
- Python

Goals

74 of 105

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- QuantumGIS
- SQLite

 Scenarios
- Using MapProxy
- Using QuantumGIS and TileMill

Goals

 Learn how to create a SQLite database using Quantum
 Learn how to configure MapProxy

Delivery / Deliverables

 Documentation containing example exercise using SQLite file in TileMill
 Documentation about reprojecting, resolutions and seeds in MapProxy

Completed works

How to use QuantumGIS: creating a SQLite database with QuantumGIS using a shapefile

How to use TileMill: increasing the tutorials in TileMill with documentation about how to use a
SQLite database as a source for a layer.

Configuration in MapProxy

Problems

The documentation about MapProxy is not finished yet.

Sprint 4
1st April 2013 to 14th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- raster2mb
- mbutil

 Scenarios
- Python

Goals

74 of 105

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- QuantumGIS
- SQLite

 Scenarios
- Using MapProxy
- Using QuantumGIS and TileMill

Goals

 Learn how to create a SQLite database using Quantum
 Learn how to configure MapProxy

Delivery / Deliverables

 Documentation containing example exercise using SQLite file in TileMill
 Documentation about reprojecting, resolutions and seeds in MapProxy

Completed works

How to use QuantumGIS: creating a SQLite database with QuantumGIS using a shapefile

How to use TileMill: increasing the tutorials in TileMill with documentation about how to use a
SQLite database as a source for a layer.

Configuration in MapProxy

Problems

The documentation about MapProxy is not finished yet.

Sprint 4
1st April 2013 to 14th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- MapProxy
- Python
- PostGIS
- raster2mb
- mbutil

 Scenarios
- Python

Goals

75 of 105

 Program .php files in Python
 Using MapProxy to reproject a local TMS directory by doing MapProxy (TMS in/WMS

out) > MapProxy(WMS in/reproject/cache/WMTS out)

Delivery / Deliverables

 Documentaion about raster2mb and mbutil

Completed works

How to use raster2mb and mbutil to generate .mbtiles

Problems

I was not able to do the reprojection using MapProxy

Sprint 5
15th April 2013 to 28th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python
- PostGIS
- MapTiler Pro
- MapProxy

 Scenarios
- Python

Goals

 Program Python code
 Learn how MapTiler Pro works from the users point of view

Delivery / Deliverables

 Tests and documentation using MapTiler Pro
 Tutorial about MapProxy: how to use it.

Completed works

Changes in the website.

MapTiler Pro tests.

MapProxy tutorial.

Problems

Trouble with Python code: how to read the info data.

75 of 105

 Program .php files in Python
 Using MapProxy to reproject a local TMS directory by doing MapProxy (TMS in/WMS

out) > MapProxy(WMS in/reproject/cache/WMTS out)

Delivery / Deliverables

 Documentaion about raster2mb and mbutil

Completed works

How to use raster2mb and mbutil to generate .mbtiles

Problems

I was not able to do the reprojection using MapProxy

Sprint 5
15th April 2013 to 28th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python
- PostGIS
- MapTiler Pro
- MapProxy

 Scenarios
- Python

Goals

 Program Python code
 Learn how MapTiler Pro works from the users point of view

Delivery / Deliverables

 Tests and documentation using MapTiler Pro
 Tutorial about MapProxy: how to use it.

Completed works

Changes in the website.

MapTiler Pro tests.

MapProxy tutorial.

Problems

Trouble with Python code: how to read the info data.

75 of 105

 Program .php files in Python
 Using MapProxy to reproject a local TMS directory by doing MapProxy (TMS in/WMS

out) > MapProxy(WMS in/reproject/cache/WMTS out)

Delivery / Deliverables

 Documentaion about raster2mb and mbutil

Completed works

How to use raster2mb and mbutil to generate .mbtiles

Problems

I was not able to do the reprojection using MapProxy

Sprint 5
15th April 2013 to 28th April 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python
- PostGIS
- MapTiler Pro
- MapProxy

 Scenarios
- Python

Goals

 Program Python code
 Learn how MapTiler Pro works from the users point of view

Delivery / Deliverables

 Tests and documentation using MapTiler Pro
 Tutorial about MapProxy: how to use it.

Completed works

Changes in the website.

MapTiler Pro tests.

MapProxy tutorial.

Problems

Trouble with Python code: how to read the info data.

76 of 105

Sprint 6
29th April 2013 to 12th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code

Delivery / Deliverables

 Python code manual tests

Completed works

Reading images from MBTiles using Python code.

Reading UTFGrid from MBTiles using Python code.

Testing Python code for getting tiles and UTFGrid.

Problems

How to show the UTFGrid on the map; I can read it using the Python code and I can see it on
the browser, but I cannot show it on top of the map when accessing it.

Sprint 7
13th May 2013 to 26th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish Web Map Tile Service protocol: GetCapabilities

Delivery / Deliverables

 Python code manual tests documentation

Completed works

76 of 105

Sprint 6
29th April 2013 to 12th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code

Delivery / Deliverables

 Python code manual tests

Completed works

Reading images from MBTiles using Python code.

Reading UTFGrid from MBTiles using Python code.

Testing Python code for getting tiles and UTFGrid.

Problems

How to show the UTFGrid on the map; I can read it using the Python code and I can see it on
the browser, but I cannot show it on top of the map when accessing it.

Sprint 7
13th May 2013 to 26th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish Web Map Tile Service protocol: GetCapabilities

Delivery / Deliverables

 Python code manual tests documentation

Completed works

76 of 105

Sprint 6
29th April 2013 to 12th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code

Delivery / Deliverables

 Python code manual tests

Completed works

Reading images from MBTiles using Python code.

Reading UTFGrid from MBTiles using Python code.

Testing Python code for getting tiles and UTFGrid.

Problems

How to show the UTFGrid on the map; I can read it using the Python code and I can see it on
the browser, but I cannot show it on top of the map when accessing it.

Sprint 7
13th May 2013 to 26th May 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish Web Map Tile Service protocol: GetCapabilities

Delivery / Deliverables

 Python code manual tests documentation

Completed works

77 of 105

Changes in the website.

Reading the ServiceMetadata document from MBTiles using Python code.

Testing Python code for displaying the XML document following the Web Map Tile Service
protocol.

Problems

It is only working for Leaflet and not for OpenLayers.

Sprint 8
27th May 2013 to 9th June 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish displaying UTFGrid information on the map

Delivery / Deliverables

 Python code automatic tests documentation
 Results and further development documentation

Completed works

Web Map Tile Service protocol working completely for Leaflet and Openalyers. Also including
GetCapabilities request and response.

Extracting UTFGrid working fine with Leaflet.

Problems

UTFGrid does not work with OpenLayers. And there are also problems with Wax when using it
with a hosted file in MapBox.

77 of 105

Changes in the website.

Reading the ServiceMetadata document from MBTiles using Python code.

Testing Python code for displaying the XML document following the Web Map Tile Service
protocol.

Problems

It is only working for Leaflet and not for OpenLayers.

Sprint 8
27th May 2013 to 9th June 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish displaying UTFGrid information on the map

Delivery / Deliverables

 Python code automatic tests documentation
 Results and further development documentation

Completed works

Web Map Tile Service protocol working completely for Leaflet and Openalyers. Also including
GetCapabilities request and response.

Extracting UTFGrid working fine with Leaflet.

Problems

UTFGrid does not work with OpenLayers. And there are also problems with Wax when using it
with a hosted file in MapBox.

77 of 105

Changes in the website.

Reading the ServiceMetadata document from MBTiles using Python code.

Testing Python code for displaying the XML document following the Web Map Tile Service
protocol.

Problems

It is only working for Leaflet and not for OpenLayers.

Sprint 8
27th May 2013 to 9th June 2013

Main tasks / focus in the sprint

 Familiarization with the subject
- Python

 Scenarios
- Python

Goals

 Program Python code
 Finish displaying UTFGrid information on the map

Delivery / Deliverables

 Python code automatic tests documentation
 Results and further development documentation

Completed works

Web Map Tile Service protocol working completely for Leaflet and Openalyers. Also including
GetCapabilities request and response.

Extracting UTFGrid working fine with Leaflet.

Problems

UTFGrid does not work with OpenLayers. And there are also problems with Wax when using it
with a hosted file in MapBox.

78 of 105

2. Project monitoring

2.1. Target-time comparison

I consider that I did have not enough time to develop the whole project and to write the thesis.
The bachelor thesis was supposed to be realized in 360 hours. I have invested 415 hours and
still I am not completely satisfied with the project.

I guess I should have previously known more about the technologies I was going to employ.
Like Python, that I have to learn from the basics. I also did not know enough about map related
topics, like Geographic Information System or projections, and that was a complicate part to
research.
Looking backward, I think I have dedicated too much time to make some research that were
not so important, some of them I did not even use. But at that time I did not know what would
be useful or necessary.

Regarding the software product, Tiny Tile Server and the website in general, I think I have
dedicated to it all the time possible. And I am satisfied with it because Tiny Tile Server works
perfectly fine. So the extra time would have been only to make necessary changes in the
website.

I wish I had had more time to write the thesis, maybe to organize some matters differently and
to explain some topics better.

2.2. Code statistics

Tiny Tile Server

File Number of lines Number of comments

app.py 35 4

webapp/web.py 118 4

webapp/api.py 42 6

tiny_tile_server/base.py 133 25

tiny_tile_server/python_server.py 176 29

tiny_tile_server/python_wmts.py 470 3

Total 974 71

78 of 105

2. Project monitoring

2.1. Target-time comparison

I consider that I did have not enough time to develop the whole project and to write the thesis.
The bachelor thesis was supposed to be realized in 360 hours. I have invested 415 hours and
still I am not completely satisfied with the project.

I guess I should have previously known more about the technologies I was going to employ.
Like Python, that I have to learn from the basics. I also did not know enough about map related
topics, like Geographic Information System or projections, and that was a complicate part to
research.
Looking backward, I think I have dedicated too much time to make some research that were
not so important, some of them I did not even use. But at that time I did not know what would
be useful or necessary.

Regarding the software product, Tiny Tile Server and the website in general, I think I have
dedicated to it all the time possible. And I am satisfied with it because Tiny Tile Server works
perfectly fine. So the extra time would have been only to make necessary changes in the
website.

I wish I had had more time to write the thesis, maybe to organize some matters differently and
to explain some topics better.

2.2. Code statistics

Tiny Tile Server

File Number of lines Number of comments

app.py 35 4

webapp/web.py 118 4

webapp/api.py 42 6

tiny_tile_server/base.py 133 25

tiny_tile_server/python_server.py 176 29

tiny_tile_server/python_wmts.py 470 3

Total 974 71

78 of 105

2. Project monitoring

2.1. Target-time comparison

I consider that I did have not enough time to develop the whole project and to write the thesis.
The bachelor thesis was supposed to be realized in 360 hours. I have invested 415 hours and
still I am not completely satisfied with the project.

I guess I should have previously known more about the technologies I was going to employ.
Like Python, that I have to learn from the basics. I also did not know enough about map related
topics, like Geographic Information System or projections, and that was a complicate part to
research.
Looking backward, I think I have dedicated too much time to make some research that were
not so important, some of them I did not even use. But at that time I did not know what would
be useful or necessary.

Regarding the software product, Tiny Tile Server and the website in general, I think I have
dedicated to it all the time possible. And I am satisfied with it because Tiny Tile Server works
perfectly fine. So the extra time would have been only to make necessary changes in the
website.

I wish I had had more time to write the thesis, maybe to organize some matters differently and
to explain some topics better.

2.2. Code statistics

Tiny Tile Server

File Number of lines Number of comments

app.py 35 4

webapp/web.py 118 4

webapp/api.py 42 6

tiny_tile_server/base.py 133 25

tiny_tile_server/python_server.py 176 29

tiny_tile_server/python_wmts.py 470 3

Total 974 71

79 of 105

Website

File Number of lines Number of comments

templates/layout.html 70 8

templates/main.html 42 0

templates/tutorials.html 17 0

templates/protocol.html 35 0

templates/planning.html 27 0

templates/tileMillExample.html 136 0

templates/tileMillSwitzerland.html 46 0

templates/{Leaflet}.html 27 3

templates/{OpenLayers}.html 35 3

assets/js/switzerlandLL.js 75 23

assets/js/exampleLLlocal.js 86 22

assets/js/switzerlandLLlocal.js 82 24

assets/js/exampleOLlocal.js 86 20

assets/js/switzerlandOLlocal.js 80 21

assets/js/exampleOLwmts.js 80 17

assets/js/switzerlandLLwmts.js 78 21

79 of 105

Website

File Number of lines Number of comments

templates/layout.html 70 8

templates/main.html 42 0

templates/tutorials.html 17 0

templates/protocol.html 35 0

templates/planning.html 27 0

templates/tileMillExample.html 136 0

templates/tileMillSwitzerland.html 46 0

templates/{Leaflet}.html 27 3

templates/{OpenLayers}.html 35 3

assets/js/switzerlandLL.js 75 23

assets/js/exampleLLlocal.js 86 22

assets/js/switzerlandLLlocal.js 82 24

assets/js/exampleOLlocal.js 86 20

assets/js/switzerlandOLlocal.js 80 21

assets/js/exampleOLwmts.js 80 17

assets/js/switzerlandLLwmts.js 78 21

79 of 105

Website

File Number of lines Number of comments

templates/layout.html 70 8

templates/main.html 42 0

templates/tutorials.html 17 0

templates/protocol.html 35 0

templates/planning.html 27 0

templates/tileMillExample.html 136 0

templates/tileMillSwitzerland.html 46 0

templates/{Leaflet}.html 27 3

templates/{OpenLayers}.html 35 3

assets/js/switzerlandLL.js 75 23

assets/js/exampleLLlocal.js 86 22

assets/js/switzerlandLLlocal.js 82 24

assets/js/exampleOLlocal.js 86 20

assets/js/switzerlandOLlocal.js 80 21

assets/js/exampleOLwmts.js 80 17

assets/js/switzerlandLLwmts.js 78 21

80 of 105

Appendix

80 of 105

Appendix

80 of 105

Appendix

81 of 105

1. Contents of the CD

Path Description

TinyTileServer.pdf Thesis documentation in PDF format

software_project/ Software project web application

software_project/readme.txt How to install and run the application

software_project/app.py Application init file

software_project/assets/
bootstrap

Bootstrap files

software_project/assets/css Application CSS files

software_project/assets/img Application images

software_project/assets/js Application JS files. In particular the JavaScript files for
creating the maps

software_project/assets/leaflet
_hash

Plugin for Leaflet to add the actual location in the URL

software_project/assets/leaflet
_slider

Puglin for Leaflet to add a zoom with slider

software_project/assets/openla
yers

OpenLayers files

software_project/assets/wax Wax files

software_project/data Maps in MBTiles format

software_project/packages Bottle file

software_project/templates Application HTML files

software_project/tiny_tile_serv
er

Python scripts to extract a map from a MBTiles database

software_project/tiny_tile_serv
er/python_server.py

To indicate the URL and title application

software_project/webapp Files to handled routing, variables requesting and response
content type

81 of 105

1. Contents of the CD

Path Description

TinyTileServer.pdf Thesis documentation in PDF format

software_project/ Software project web application

software_project/readme.txt How to install and run the application

software_project/app.py Application init file

software_project/assets/
bootstrap

Bootstrap files

software_project/assets/css Application CSS files

software_project/assets/img Application images

software_project/assets/js Application JS files. In particular the JavaScript files for
creating the maps

software_project/assets/leaflet
_hash

Plugin for Leaflet to add the actual location in the URL

software_project/assets/leaflet
_slider

Puglin for Leaflet to add a zoom with slider

software_project/assets/openla
yers

OpenLayers files

software_project/assets/wax Wax files

software_project/data Maps in MBTiles format

software_project/packages Bottle file

software_project/templates Application HTML files

software_project/tiny_tile_serv
er

Python scripts to extract a map from a MBTiles database

software_project/tiny_tile_serv
er/python_server.py

To indicate the URL and title application

software_project/webapp Files to handled routing, variables requesting and response
content type

81 of 105

1. Contents of the CD

Path Description

TinyTileServer.pdf Thesis documentation in PDF format

software_project/ Software project web application

software_project/readme.txt How to install and run the application

software_project/app.py Application init file

software_project/assets/
bootstrap

Bootstrap files

software_project/assets/css Application CSS files

software_project/assets/img Application images

software_project/assets/js Application JS files. In particular the JavaScript files for
creating the maps

software_project/assets/leaflet
_hash

Plugin for Leaflet to add the actual location in the URL

software_project/assets/leaflet
_slider

Puglin for Leaflet to add a zoom with slider

software_project/assets/openla
yers

OpenLayers files

software_project/assets/wax Wax files

software_project/data Maps in MBTiles format

software_project/packages Bottle file

software_project/templates Application HTML files

software_project/tiny_tile_serv
er

Python scripts to extract a map from a MBTiles database

software_project/tiny_tile_serv
er/python_server.py

To indicate the URL and title application

software_project/webapp Files to handled routing, variables requesting and response
content type

82 of 105

2. Glossary and abbreviations

Amazon CloudFront is a web service for content delivery. It integrates with other Amazon Web
Services to give developers and businesses an easy way to distribute content to end users with
low latency, high data transfer speeds, and no commitments.

Amazon S3 is storage for the Internet. It is designed to make web-scale computing easier for
developers. Amazon S3 provides a simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives any developer
access to the same highly scalable, reliable, secure, fast, inexpensive infrastructure that
Amazon uses to run its own global network of web sites. The service aims to maximize benefits
of scale and to pass those benefits on to developers.

ArcGIS is a geographic information system (GIS) for working with maps and geographic
information. It is used for: creating and using maps; compiling geographic data; analyzing
mapped information; sharing and discovering geographic information; using maps and
geographic information in a range of applications; and managing geographic information in a
database. The system provides an infrastructure for making maps and geographic information
available throughout an organization, across a community, and openly on the Web.

CartoCSS is a stylesheet renderer for Mapnik. It's an evolution of the Cascadenik idea and
language, with an emphasis on speed and flexibility. You can find an online reference here
http://www.mapbox.com/carto/api/2.1.0/.

Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed
as a single file module and has no dependencies other than the Python Standard Library. It can
be found here http://bottlepy.org/docs/dev/.

GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.

Geographic data describe our world allows for city planning, flood prediction and relief,
emergency service routing, environmental assessments, wind pattern monitoring and many
other applications. Geographic data is processed with geographic information system (GIS)
software which can, as one aspect of its functioning, produce maps.

GeoJSON is a format for encoding a variety of geographic data structures. A GeoJSON object
may represent a geometry, a feature, or a collection of features. GeoJSON supports the
following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon, and GeometryCollection. Features in GeoJSON contain a geometry object and
additional properties, and a feature collection represents a list of features.

GeoTIFF is a public domain metadata standard which allows georeferencing information to be
embedded within a TIFF file. The potential additional information includes map
projection, coordinate systems, ellipsoids, datums, and everything else necessary to establish
the exact spatial reference for the file.

82 of 105

2. Glossary and abbreviations

Amazon CloudFront is a web service for content delivery. It integrates with other Amazon Web
Services to give developers and businesses an easy way to distribute content to end users with
low latency, high data transfer speeds, and no commitments.

Amazon S3 is storage for the Internet. It is designed to make web-scale computing easier for
developers. Amazon S3 provides a simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives any developer
access to the same highly scalable, reliable, secure, fast, inexpensive infrastructure that
Amazon uses to run its own global network of web sites. The service aims to maximize benefits
of scale and to pass those benefits on to developers.

ArcGIS is a geographic information system (GIS) for working with maps and geographic
information. It is used for: creating and using maps; compiling geographic data; analyzing
mapped information; sharing and discovering geographic information; using maps and
geographic information in a range of applications; and managing geographic information in a
database. The system provides an infrastructure for making maps and geographic information
available throughout an organization, across a community, and openly on the Web.

CartoCSS is a stylesheet renderer for Mapnik. It's an evolution of the Cascadenik idea and
language, with an emphasis on speed and flexibility. You can find an online reference here
http://www.mapbox.com/carto/api/2.1.0/.

Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed
as a single file module and has no dependencies other than the Python Standard Library. It can
be found here http://bottlepy.org/docs/dev/.

GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.

Geographic data describe our world allows for city planning, flood prediction and relief,
emergency service routing, environmental assessments, wind pattern monitoring and many
other applications. Geographic data is processed with geographic information system (GIS)
software which can, as one aspect of its functioning, produce maps.

GeoJSON is a format for encoding a variety of geographic data structures. A GeoJSON object
may represent a geometry, a feature, or a collection of features. GeoJSON supports the
following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon, and GeometryCollection. Features in GeoJSON contain a geometry object and
additional properties, and a feature collection represents a list of features.

GeoTIFF is a public domain metadata standard which allows georeferencing information to be
embedded within a TIFF file. The potential additional information includes map
projection, coordinate systems, ellipsoids, datums, and everything else necessary to establish
the exact spatial reference for the file.

82 of 105

2. Glossary and abbreviations

Amazon CloudFront is a web service for content delivery. It integrates with other Amazon Web
Services to give developers and businesses an easy way to distribute content to end users with
low latency, high data transfer speeds, and no commitments.

Amazon S3 is storage for the Internet. It is designed to make web-scale computing easier for
developers. Amazon S3 provides a simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives any developer
access to the same highly scalable, reliable, secure, fast, inexpensive infrastructure that
Amazon uses to run its own global network of web sites. The service aims to maximize benefits
of scale and to pass those benefits on to developers.

ArcGIS is a geographic information system (GIS) for working with maps and geographic
information. It is used for: creating and using maps; compiling geographic data; analyzing
mapped information; sharing and discovering geographic information; using maps and
geographic information in a range of applications; and managing geographic information in a
database. The system provides an infrastructure for making maps and geographic information
available throughout an organization, across a community, and openly on the Web.

CartoCSS is a stylesheet renderer for Mapnik. It's an evolution of the Cascadenik idea and
language, with an emphasis on speed and flexibility. You can find an online reference here
http://www.mapbox.com/carto/api/2.1.0/.

Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed
as a single file module and has no dependencies other than the Python Standard Library. It can
be found here http://bottlepy.org/docs/dev/.

GDAL2Tiles is a command line tool that allows easy publishing of raster maps on the Internet.
The raster image is converted into a directory structure of small tiles which you can copy to
your webserver.

Geographic data describe our world allows for city planning, flood prediction and relief,
emergency service routing, environmental assessments, wind pattern monitoring and many
other applications. Geographic data is processed with geographic information system (GIS)
software which can, as one aspect of its functioning, produce maps.

GeoJSON is a format for encoding a variety of geographic data structures. A GeoJSON object
may represent a geometry, a feature, or a collection of features. GeoJSON supports the
following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon, and GeometryCollection. Features in GeoJSON contain a geometry object and
additional properties, and a feature collection represents a list of features.

GeoTIFF is a public domain metadata standard which allows georeferencing information to be
embedded within a TIFF file. The potential additional information includes map
projection, coordinate systems, ellipsoids, datums, and everything else necessary to establish
the exact spatial reference for the file.

83 of 105

Geographic information system, GIS, is a system designed to capture, store, manipulate,
analyze, manage, and present all types of geographical data.

JSON or JavaScript Object Notation, is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for representing
simple data structures and associative arrays (objects). Despite its relationship to JavaScript, it
is language-independent, with parsers available for many languages. The JSON format is often
used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative
to XML.

JSONP or "JSON with padding" is a communication technique used in JavaScript programs
which run in Web browsers. It provides a method to request data from a server in a different
domain.

Latitude is a geographic coordinate that specifies the north-south position of a point on the
Earth's surface . It is an angular measurement, usually expressed in degrees and denoted by φ.

Layer is an object on the map that consist of one or more separate items, but are manipulated
as a single unit. Layers generally reflect collections of objects that you add on top of the map
to designate a common association. The Maps API manages the presentation of objects within
layers by rendering their constituent items into one object (typically a tile overlay) and
displaying them as the map's viewport changes.

Leaflet is a modern open-source JavaScript library for mobile-friendly interactive maps. Leaflet
is designed with simplicity, performance and usability in mind. It works efficiently across all
major desktop and mobile platforms out of the box, taking advantage of HTML5 and CSS3 on
modern browsers while still being accessible on older ones. It can be extended with
many plugins, has a beautiful, easy to use and well documented API and a simple,
readable source code that is a joy to contribute to. You can find it here
http://leafletjs.com/reference.html

Longitude is a geographic coordinate that specifies the east-west position of a point on the
Earth's surface. It is an angular measurement, usually expressed in degrees and denoted by λ.

MapBox is a company that creates different tools for styling and deploying maps as well as
providing services for hosting maps. Many of these tools use OpenStreetMap data and involve
large open-source efforts and MapBox is also a main contributor to the Mapnik renderer
project.

Mapnik is an open source toolkit for rendering maps. Among other things, it is used to render
the four main Slippy Map layers on the OpenStreetMap website. It supports a variety of
geospatial data formats and provides flexible styling options for designing many different kinds
of maps. It can read ESRI shapefiles, PostGIS, TIFF rasters, .osm files, and any GDAL or OGR
supported formats.

MapProxy is an open source geospatial tile proxy that supports reprojection. Mapproxy is a
Python proxy server for geospatial images. It can read data from WMS, tiles, mapserver and

83 of 105

Geographic information system, GIS, is a system designed to capture, store, manipulate,
analyze, manage, and present all types of geographical data.

JSON or JavaScript Object Notation, is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for representing
simple data structures and associative arrays (objects). Despite its relationship to JavaScript, it
is language-independent, with parsers available for many languages. The JSON format is often
used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative
to XML.

JSONP or "JSON with padding" is a communication technique used in JavaScript programs
which run in Web browsers. It provides a method to request data from a server in a different
domain.

Latitude is a geographic coordinate that specifies the north-south position of a point on the
Earth's surface . It is an angular measurement, usually expressed in degrees and denoted by φ.

Layer is an object on the map that consist of one or more separate items, but are manipulated
as a single unit. Layers generally reflect collections of objects that you add on top of the map
to designate a common association. The Maps API manages the presentation of objects within
layers by rendering their constituent items into one object (typically a tile overlay) and
displaying them as the map's viewport changes.

Leaflet is a modern open-source JavaScript library for mobile-friendly interactive maps. Leaflet
is designed with simplicity, performance and usability in mind. It works efficiently across all
major desktop and mobile platforms out of the box, taking advantage of HTML5 and CSS3 on
modern browsers while still being accessible on older ones. It can be extended with
many plugins, has a beautiful, easy to use and well documented API and a simple,
readable source code that is a joy to contribute to. You can find it here
http://leafletjs.com/reference.html

Longitude is a geographic coordinate that specifies the east-west position of a point on the
Earth's surface. It is an angular measurement, usually expressed in degrees and denoted by λ.

MapBox is a company that creates different tools for styling and deploying maps as well as
providing services for hosting maps. Many of these tools use OpenStreetMap data and involve
large open-source efforts and MapBox is also a main contributor to the Mapnik renderer
project.

Mapnik is an open source toolkit for rendering maps. Among other things, it is used to render
the four main Slippy Map layers on the OpenStreetMap website. It supports a variety of
geospatial data formats and provides flexible styling options for designing many different kinds
of maps. It can read ESRI shapefiles, PostGIS, TIFF rasters, .osm files, and any GDAL or OGR
supported formats.

MapProxy is an open source geospatial tile proxy that supports reprojection. Mapproxy is a
Python proxy server for geospatial images. It can read data from WMS, tiles, mapserver and

83 of 105

Geographic information system, GIS, is a system designed to capture, store, manipulate,
analyze, manage, and present all types of geographical data.

JSON or JavaScript Object Notation, is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for representing
simple data structures and associative arrays (objects). Despite its relationship to JavaScript, it
is language-independent, with parsers available for many languages. The JSON format is often
used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative
to XML.

JSONP or "JSON with padding" is a communication technique used in JavaScript programs
which run in Web browsers. It provides a method to request data from a server in a different
domain.

Latitude is a geographic coordinate that specifies the north-south position of a point on the
Earth's surface . It is an angular measurement, usually expressed in degrees and denoted by φ.

Layer is an object on the map that consist of one or more separate items, but are manipulated
as a single unit. Layers generally reflect collections of objects that you add on top of the map
to designate a common association. The Maps API manages the presentation of objects within
layers by rendering their constituent items into one object (typically a tile overlay) and
displaying them as the map's viewport changes.

Leaflet is a modern open-source JavaScript library for mobile-friendly interactive maps. Leaflet
is designed with simplicity, performance and usability in mind. It works efficiently across all
major desktop and mobile platforms out of the box, taking advantage of HTML5 and CSS3 on
modern browsers while still being accessible on older ones. It can be extended with
many plugins, has a beautiful, easy to use and well documented API and a simple,
readable source code that is a joy to contribute to. You can find it here
http://leafletjs.com/reference.html

Longitude is a geographic coordinate that specifies the east-west position of a point on the
Earth's surface. It is an angular measurement, usually expressed in degrees and denoted by λ.

MapBox is a company that creates different tools for styling and deploying maps as well as
providing services for hosting maps. Many of these tools use OpenStreetMap data and involve
large open-source efforts and MapBox is also a main contributor to the Mapnik renderer
project.

Mapnik is an open source toolkit for rendering maps. Among other things, it is used to render
the four main Slippy Map layers on the OpenStreetMap website. It supports a variety of
geospatial data formats and provides flexible styling options for designing many different kinds
of maps. It can read ESRI shapefiles, PostGIS, TIFF rasters, .osm files, and any GDAL or OGR
supported formats.

MapProxy is an open source geospatial tile proxy that supports reprojection. Mapproxy is a
Python proxy server for geospatial images. It can read data from WMS, tiles, mapserver and

84 of 105

mapnik, and cache and serve that data as WMS, WMTS, TMS and KML. It can also do
reprojections between different coordinate reference systems.

MapTiler is graphical application for online map publishing. Your map can create overlay of
standard maps like Google Maps, Yahoo Maps, Microsoft VirtualEarth or OpenStreetMap and
can be also visualized in 3D form by Google Earth. Only thing you have to do for publishing the
map is to upload the automatically generated directory with tiles into your webserver.

MBTiles provides a way of storing millions of tiles in a single SQLite database making it possible
to store and transfer web maps in a single file. And because SQLite is available on so many
platforms, MBTiles is an ideal format for reading tiles directly for serving on the web or
displaying on mobile devices.

Metadata is the description of the map regarding its characteristics. Normally: name, bounds,
center, minzoom, maxzoom, scheme kind, filesize, tiles URL, UTFGrid URL, template for the
infobox and legend

OpenLayers is an open source JavaScript library for displaying map data in web browsers. It
provides an API for building rich web-based geographic applications similar to Google
Maps and Bing Maps. The library was originally based on the Prototype JavaScript Framework.
OpenLayers is used by the OpenStreeMap project for its "Slippy Map" map interface. You can
find the documentation here http://docs.openlayers.org/

Open Source Software (OSS) is computer software with its source code made available and
licensed with an open source license in which the copyright holder provides the rights to study,
change and distribute the software for free to anyone and for any purpose. Open source
software is very often developed in a public, collaborative manner. Open source software is
the most prominent example of open source development and often compared to (technically
defined) user-generated content or (legally defined) open content movements.

OpenStreetMap, OSM, is a collaborative project to create a free editable map of the world.

PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds
support for geographic objects allowing location queries to be run in SQL.

Python is a general-purpose, high-level programming language whose design philosophy
emphasizes code readability. Python's syntax allows programmers to express concepts in
fewer lines of code than would be possible in languages such as C, and the language provides
constructs intended to enable clear programs on both a small and large scale. Python supports
multiple programming paradigms, including object-oriented, imperative and functional
programming styles. It features a fully dynamic type system and automatic memory
management.

Quantum GIS, QGIS, is a user friendly Open Source Geographic Information System (GIS)
licensed under the GNU General Public License. QGIS is an official project of the Open Source
Geospatial Foundation (OSGeo). Provides data viewing, editing, and analysis capabilities, and
supports numerous vector, raster, and database formats and functionalities.

84 of 105

mapnik, and cache and serve that data as WMS, WMTS, TMS and KML. It can also do
reprojections between different coordinate reference systems.

MapTiler is graphical application for online map publishing. Your map can create overlay of
standard maps like Google Maps, Yahoo Maps, Microsoft VirtualEarth or OpenStreetMap and
can be also visualized in 3D form by Google Earth. Only thing you have to do for publishing the
map is to upload the automatically generated directory with tiles into your webserver.

MBTiles provides a way of storing millions of tiles in a single SQLite database making it possible
to store and transfer web maps in a single file. And because SQLite is available on so many
platforms, MBTiles is an ideal format for reading tiles directly for serving on the web or
displaying on mobile devices.

Metadata is the description of the map regarding its characteristics. Normally: name, bounds,
center, minzoom, maxzoom, scheme kind, filesize, tiles URL, UTFGrid URL, template for the
infobox and legend

OpenLayers is an open source JavaScript library for displaying map data in web browsers. It
provides an API for building rich web-based geographic applications similar to Google
Maps and Bing Maps. The library was originally based on the Prototype JavaScript Framework.
OpenLayers is used by the OpenStreeMap project for its "Slippy Map" map interface. You can
find the documentation here http://docs.openlayers.org/

Open Source Software (OSS) is computer software with its source code made available and
licensed with an open source license in which the copyright holder provides the rights to study,
change and distribute the software for free to anyone and for any purpose. Open source
software is very often developed in a public, collaborative manner. Open source software is
the most prominent example of open source development and often compared to (technically
defined) user-generated content or (legally defined) open content movements.

OpenStreetMap, OSM, is a collaborative project to create a free editable map of the world.

PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds
support for geographic objects allowing location queries to be run in SQL.

Python is a general-purpose, high-level programming language whose design philosophy
emphasizes code readability. Python's syntax allows programmers to express concepts in
fewer lines of code than would be possible in languages such as C, and the language provides
constructs intended to enable clear programs on both a small and large scale. Python supports
multiple programming paradigms, including object-oriented, imperative and functional
programming styles. It features a fully dynamic type system and automatic memory
management.

Quantum GIS, QGIS, is a user friendly Open Source Geographic Information System (GIS)
licensed under the GNU General Public License. QGIS is an official project of the Open Source
Geospatial Foundation (OSGeo). Provides data viewing, editing, and analysis capabilities, and
supports numerous vector, raster, and database formats and functionalities.

84 of 105

mapnik, and cache and serve that data as WMS, WMTS, TMS and KML. It can also do
reprojections between different coordinate reference systems.

MapTiler is graphical application for online map publishing. Your map can create overlay of
standard maps like Google Maps, Yahoo Maps, Microsoft VirtualEarth or OpenStreetMap and
can be also visualized in 3D form by Google Earth. Only thing you have to do for publishing the
map is to upload the automatically generated directory with tiles into your webserver.

MBTiles provides a way of storing millions of tiles in a single SQLite database making it possible
to store and transfer web maps in a single file. And because SQLite is available on so many
platforms, MBTiles is an ideal format for reading tiles directly for serving on the web or
displaying on mobile devices.

Metadata is the description of the map regarding its characteristics. Normally: name, bounds,
center, minzoom, maxzoom, scheme kind, filesize, tiles URL, UTFGrid URL, template for the
infobox and legend

OpenLayers is an open source JavaScript library for displaying map data in web browsers. It
provides an API for building rich web-based geographic applications similar to Google
Maps and Bing Maps. The library was originally based on the Prototype JavaScript Framework.
OpenLayers is used by the OpenStreeMap project for its "Slippy Map" map interface. You can
find the documentation here http://docs.openlayers.org/

Open Source Software (OSS) is computer software with its source code made available and
licensed with an open source license in which the copyright holder provides the rights to study,
change and distribute the software for free to anyone and for any purpose. Open source
software is very often developed in a public, collaborative manner. Open source software is
the most prominent example of open source development and often compared to (technically
defined) user-generated content or (legally defined) open content movements.

OpenStreetMap, OSM, is a collaborative project to create a free editable map of the world.

PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds
support for geographic objects allowing location queries to be run in SQL.

Python is a general-purpose, high-level programming language whose design philosophy
emphasizes code readability. Python's syntax allows programmers to express concepts in
fewer lines of code than would be possible in languages such as C, and the language provides
constructs intended to enable clear programs on both a small and large scale. Python supports
multiple programming paradigms, including object-oriented, imperative and functional
programming styles. It features a fully dynamic type system and automatic memory
management.

Quantum GIS, QGIS, is a user friendly Open Source Geographic Information System (GIS)
licensed under the GNU General Public License. QGIS is an official project of the Open Source
Geospatial Foundation (OSGeo). Provides data viewing, editing, and analysis capabilities, and
supports numerous vector, raster, and database formats and functionalities.

85 of 105

Rackspace is a global web host known for their high end managed hosting and dedicated
services. The company delivers enterprise-level managed services to businesses of all sizes and
kinds around the world.

Shapefile, is a popular geospatial vector data format for geographic information system
software. It is developed and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other software products. Shapefiles spatially describe
features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes.
Each item usually has attributes that describe it, such as name or temperature.

SpatiaLite is an open source library intended to extend the SQLite core to support fully fledged
Spatial SQL capabilities.

SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is the most widely deployed SQL
database engine in the world. The source code for SQLite is in the public domain.

TIFF (originally standing for Tagged Image File Format) is a file format for storing images,
popular among graphic artists, the publishing industry, and both amateur and professional
photographers in general.

Tile is a small image, and contains the topographic information of a rectangular map area as
pixel-based graphic. Each tile normally consists of 256 × 256 pixels. This tile-based approach is
done to manage maps at higher zoom levels.

Tiled rendering is a technique for subdividing (or tilling) large images in pieces (tiles).

TileJSON is a consistent way of describing a map: zoom levels, center point, legend contents,
and more, and in turn provides an easy way to load and display a map the way it is meant to
be seen.

TileMill is a design environment developed by MapBox for cartography, constituting Mapnik as
a renderer, Carto as a stylesheet language, and a locally-served web interface with node.js as a
server and based on Backbone.js for the client. TileMill can load shapefiles or connect to a
PostGIS database for rendering. Raster data such as GeoTIFFs can also be rendered. By default
TileMill renders to an MBTiles file, an SQLite bundle of tile images that enables compression
and faster transfers. PNG and PDF output is also supported for static maps.

UTFGrid is a standard, scalable way of encoding data for hundreds or thousands of features
alongside your map tiles. The UTFGrids are invisible “ASCII Art” and attribute data embedded
in json. They sit “behind” your map tiles (they are not rendered visually) and allows quick
attribute lookups without going back to the server. This allows a high degree of real-time map
interactivity in an HTML web map - something that has typically been the strong point of
plugin-based maps.

Web Map Tile Service, WMTS, is a standard protocol for serving pre-
rendered georeferenced map tiles over the Internet.

85 of 105

Rackspace is a global web host known for their high end managed hosting and dedicated
services. The company delivers enterprise-level managed services to businesses of all sizes and
kinds around the world.

Shapefile, is a popular geospatial vector data format for geographic information system
software. It is developed and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other software products. Shapefiles spatially describe
features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes.
Each item usually has attributes that describe it, such as name or temperature.

SpatiaLite is an open source library intended to extend the SQLite core to support fully fledged
Spatial SQL capabilities.

SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is the most widely deployed SQL
database engine in the world. The source code for SQLite is in the public domain.

TIFF (originally standing for Tagged Image File Format) is a file format for storing images,
popular among graphic artists, the publishing industry, and both amateur and professional
photographers in general.

Tile is a small image, and contains the topographic information of a rectangular map area as
pixel-based graphic. Each tile normally consists of 256 × 256 pixels. This tile-based approach is
done to manage maps at higher zoom levels.

Tiled rendering is a technique for subdividing (or tilling) large images in pieces (tiles).

TileJSON is a consistent way of describing a map: zoom levels, center point, legend contents,
and more, and in turn provides an easy way to load and display a map the way it is meant to
be seen.

TileMill is a design environment developed by MapBox for cartography, constituting Mapnik as
a renderer, Carto as a stylesheet language, and a locally-served web interface with node.js as a
server and based on Backbone.js for the client. TileMill can load shapefiles or connect to a
PostGIS database for rendering. Raster data such as GeoTIFFs can also be rendered. By default
TileMill renders to an MBTiles file, an SQLite bundle of tile images that enables compression
and faster transfers. PNG and PDF output is also supported for static maps.

UTFGrid is a standard, scalable way of encoding data for hundreds or thousands of features
alongside your map tiles. The UTFGrids are invisible “ASCII Art” and attribute data embedded
in json. They sit “behind” your map tiles (they are not rendered visually) and allows quick
attribute lookups without going back to the server. This allows a high degree of real-time map
interactivity in an HTML web map - something that has typically been the strong point of
plugin-based maps.

Web Map Tile Service, WMTS, is a standard protocol for serving pre-
rendered georeferenced map tiles over the Internet.

85 of 105

Rackspace is a global web host known for their high end managed hosting and dedicated
services. The company delivers enterprise-level managed services to businesses of all sizes and
kinds around the world.

Shapefile, is a popular geospatial vector data format for geographic information system
software. It is developed and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other software products. Shapefiles spatially describe
features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes.
Each item usually has attributes that describe it, such as name or temperature.

SpatiaLite is an open source library intended to extend the SQLite core to support fully fledged
Spatial SQL capabilities.

SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is the most widely deployed SQL
database engine in the world. The source code for SQLite is in the public domain.

TIFF (originally standing for Tagged Image File Format) is a file format for storing images,
popular among graphic artists, the publishing industry, and both amateur and professional
photographers in general.

Tile is a small image, and contains the topographic information of a rectangular map area as
pixel-based graphic. Each tile normally consists of 256 × 256 pixels. This tile-based approach is
done to manage maps at higher zoom levels.

Tiled rendering is a technique for subdividing (or tilling) large images in pieces (tiles).

TileJSON is a consistent way of describing a map: zoom levels, center point, legend contents,
and more, and in turn provides an easy way to load and display a map the way it is meant to
be seen.

TileMill is a design environment developed by MapBox for cartography, constituting Mapnik as
a renderer, Carto as a stylesheet language, and a locally-served web interface with node.js as a
server and based on Backbone.js for the client. TileMill can load shapefiles or connect to a
PostGIS database for rendering. Raster data such as GeoTIFFs can also be rendered. By default
TileMill renders to an MBTiles file, an SQLite bundle of tile images that enables compression
and faster transfers. PNG and PDF output is also supported for static maps.

UTFGrid is a standard, scalable way of encoding data for hundreds or thousands of features
alongside your map tiles. The UTFGrids are invisible “ASCII Art” and attribute data embedded
in json. They sit “behind” your map tiles (they are not rendered visually) and allows quick
attribute lookups without going back to the server. This allows a high degree of real-time map
interactivity in an HTML web map - something that has typically been the strong point of
plugin-based maps.

Web Map Tile Service, WMTS, is a standard protocol for serving pre-
rendered georeferenced map tiles over the Internet.

86 of 105

Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. And It makes it easier to use APIs
like Modest Maps and Leaflet. It provides zoom controls and other stuff that people already
expect, functionalities that can be found in some portals, but that our map does not show by
default when we use our own server.

86 of 105

Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. And It makes it easier to use APIs
like Modest Maps and Leaflet. It provides zoom controls and other stuff that people already
expect, functionalities that can be found in some portals, but that our map does not show by
default when we use our own server.

86 of 105

Wax is a library that adds common utilities to minimal mapping libraries and aims to give
developers and designers ultimate control and flexibility. And It makes it easier to use APIs
like Modest Maps and Leaflet. It provides zoom controls and other stuff that people already
expect, functionalities that can be found in some portals, but that our map does not show by
default when we use our own server.

87 of 105

3. TileMill tutorials

3.1 TileMill: initial example

Using TileMill is easy once you have done your first project because everything is intuitive.
Once we have open the program, to start creating a map, we have to press the button “New
project”.

We need to provide some information about the project. The only require data is the name of
the file. But we can also add a name for the project, a description and the image format.
There is an option “Default data” to indicate that we want an initial world layer to appear in
our project with an style:

 background-color: #b8dee6; background color.
 line-color: #85c5d3; color of the line that separates the countries.
 line-width: 2; width of the line that separate the countries.
 line-join: round; kind of line that separate the countries.
 polygon-fill: #fff; color to fill the countries.

Then we press “Add”.

It returns to the main page in TileMill, and we can observe that our project has been created
there. To open it, we have to click in its image.

87 of 105

3. TileMill tutorials

3.1 TileMill: initial example

Using TileMill is easy once you have done your first project because everything is intuitive.
Once we have open the program, to start creating a map, we have to press the button “New
project”.

We need to provide some information about the project. The only require data is the name of
the file. But we can also add a name for the project, a description and the image format.
There is an option “Default data” to indicate that we want an initial world layer to appear in
our project with an style:

 background-color: #b8dee6; background color.
 line-color: #85c5d3; color of the line that separates the countries.
 line-width: 2; width of the line that separate the countries.
 line-join: round; kind of line that separate the countries.
 polygon-fill: #fff; color to fill the countries.

Then we press “Add”.

It returns to the main page in TileMill, and we can observe that our project has been created
there. To open it, we have to click in its image.

87 of 105

3. TileMill tutorials

3.1 TileMill: initial example

Using TileMill is easy once you have done your first project because everything is intuitive.
Once we have open the program, to start creating a map, we have to press the button “New
project”.

We need to provide some information about the project. The only require data is the name of
the file. But we can also add a name for the project, a description and the image format.
There is an option “Default data” to indicate that we want an initial world layer to appear in
our project with an style:

 background-color: #b8dee6; background color.
 line-color: #85c5d3; color of the line that separates the countries.
 line-width: 2; width of the line that separate the countries.
 line-join: round; kind of line that separate the countries.
 polygon-fill: #fff; color to fill the countries.

Then we press “Add”.

It returns to the main page in TileMill, and we can observe that our project has been created
there. To open it, we have to click in its image.

88 of 105

Layers
To begin with, we should add a layer. To do that, we have to select the appropriate image
down on the left and press the button “Add layer”.

As we can see, there are other options for every layer:
1. To see the features of the layer. This features can be used, for example in this case, to

consider only a specific country, or a group of them which satisfy a concrete property;
to show the value of a concrete feature in the map.

2. To zoom in the map.
3. To not consider the layer. It is like if we delete the layer. But it is still there, in case we

need to consider it again, we do not have to import it.
4. To edit the layer.
5. To delete the layer.

When we add a layer, we have to indicate the datasource address where the file is located; it
could be a file in our computer or be located in MapBox. When can also select the file as
“favorite”, so when we do another project, we do not need to look for the file.
We could assign an ID and a class for the layer, so we can apply a css style to the layer. The ID
is necessary, so in the we do not choose any, one will be automatically assigned.

88 of 105

Layers
To begin with, we should add a layer. To do that, we have to select the appropriate image
down on the left and press the button “Add layer”.

As we can see, there are other options for every layer:
1. To see the features of the layer. This features can be used, for example in this case, to

consider only a specific country, or a group of them which satisfy a concrete property;
to show the value of a concrete feature in the map.

2. To zoom in the map.
3. To not consider the layer. It is like if we delete the layer. But it is still there, in case we

need to consider it again, we do not have to import it.
4. To edit the layer.
5. To delete the layer.

When we add a layer, we have to indicate the datasource address where the file is located; it
could be a file in our computer or be located in MapBox. When can also select the file as
“favorite”, so when we do another project, we do not need to look for the file.
We could assign an ID and a class for the layer, so we can apply a css style to the layer. The ID
is necessary, so in the we do not choose any, one will be automatically assigned.

88 of 105

Layers
To begin with, we should add a layer. To do that, we have to select the appropriate image
down on the left and press the button “Add layer”.

As we can see, there are other options for every layer:
1. To see the features of the layer. This features can be used, for example in this case, to

consider only a specific country, or a group of them which satisfy a concrete property;
to show the value of a concrete feature in the map.

2. To zoom in the map.
3. To not consider the layer. It is like if we delete the layer. But it is still there, in case we

need to consider it again, we do not have to import it.
4. To edit the layer.
5. To delete the layer.

When we add a layer, we have to indicate the datasource address where the file is located; it
could be a file in our computer or be located in MapBox. When can also select the file as
“favorite”, so when we do another project, we do not need to look for the file.
We could assign an ID and a class for the layer, so we can apply a css style to the layer. The ID
is necessary, so in the we do not choose any, one will be automatically assigned.

89 of 105

We just have to look for the different layers we want to add. Some options are:
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-

populated-places-simple.zip show the different cities.
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-

0-country-points.zip show the names of the countries.
We could add the lakes in the world, which datasource is http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-lakes.zip, with the ID lake and
apply a style:

 @sans_bold:"Droid Sans Bold","Arial Bold","DejaVu Sans Bold"; select the kind of
letter, we can only put a name, or several, in case one of the options is not available.

 @water: #40E0D0; we can define a name for an specific color, in case we want to use
the same several times. Of course, we could also write the code of the color every time

 #lake[zoom>=0][ScaleRank<=2], depending on the zoom we are applying, we will only
show determinate lakes. We can see the ScaleRank of every element in the layers
image.

 line-color: @water; line of the lake color
 polygon-fill: @water; color inside the line

We could also add the oceans and the rivers, which are respectively in:
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-ocean.zip
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-rivers-lake-
centerlines.zip

89 of 105

We just have to look for the different layers we want to add. Some options are:
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-

populated-places-simple.zip show the different cities.
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-

0-country-points.zip show the names of the countries.
We could add the lakes in the world, which datasource is http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-lakes.zip, with the ID lake and
apply a style:

 @sans_bold:"Droid Sans Bold","Arial Bold","DejaVu Sans Bold"; select the kind of
letter, we can only put a name, or several, in case one of the options is not available.

 @water: #40E0D0; we can define a name for an specific color, in case we want to use
the same several times. Of course, we could also write the code of the color every time

 #lake[zoom>=0][ScaleRank<=2], depending on the zoom we are applying, we will only
show determinate lakes. We can see the ScaleRank of every element in the layers
image.

 line-color: @water; line of the lake color
 polygon-fill: @water; color inside the line

We could also add the oceans and the rivers, which are respectively in:
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-ocean.zip
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-rivers-lake-
centerlines.zip

89 of 105

We just have to look for the different layers we want to add. Some options are:
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-

populated-places-simple.zip show the different cities.
 http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-

0-country-points.zip show the names of the countries.
We could add the lakes in the world, which datasource is http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-lakes.zip, with the ID lake and
apply a style:

 @sans_bold:"Droid Sans Bold","Arial Bold","DejaVu Sans Bold"; select the kind of
letter, we can only put a name, or several, in case one of the options is not available.

 @water: #40E0D0; we can define a name for an specific color, in case we want to use
the same several times. Of course, we could also write the code of the color every time

 #lake[zoom>=0][ScaleRank<=2], depending on the zoom we are applying, we will only
show determinate lakes. We can see the ScaleRank of every element in the layers
image.

 line-color: @water; line of the lake color
 polygon-fill: @water; color inside the line

We could also add the oceans and the rivers, which are respectively in:
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-ocean.zip
http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.3.0/physical/10m-rivers-lake-
centerlines.zip

90 of 105

In order to show the names of the cities, we need to add this layer http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-0-country-points.zip

 text-name:'[NAMEASCII]'; the name of the city, we could have used NAME,
NAME_ALT, LS_NAME… In every particular case, we can choose one or another, and
we can consult what we are going to show in the features of the layer.

 text-face-name:@sans_bold; type of letter.
 text-fill:#000; text color inside borders.
 text-size:9; size of the letter.
 [zoom=10] {

[SCALERANK<3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=4] { text-size: 15; text-character-spacing:1; }
[SCALERANK=5] { text-size: 15; text-character-spacing:1; }
[SCALERANK=6] { text-size: 15; text-character-spacing:1; }
[SCALERANK=7] { text-size: 14; }
[SCALERANK=8] { text-size: 14; }
[SCALERANK=9] { text-size: 13; }
[SCALERANK=10] { text-size: 13; }

} depending on zoom level, we choose the size of the text and the space between
characters

90 of 105

In order to show the names of the cities, we need to add this layer http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-0-country-points.zip

 text-name:'[NAMEASCII]'; the name of the city, we could have used NAME,
NAME_ALT, LS_NAME… In every particular case, we can choose one or another, and
we can consult what we are going to show in the features of the layer.

 text-face-name:@sans_bold; type of letter.
 text-fill:#000; text color inside borders.
 text-size:9; size of the letter.
 [zoom=10] {

[SCALERANK<3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=4] { text-size: 15; text-character-spacing:1; }
[SCALERANK=5] { text-size: 15; text-character-spacing:1; }
[SCALERANK=6] { text-size: 15; text-character-spacing:1; }
[SCALERANK=7] { text-size: 14; }
[SCALERANK=8] { text-size: 14; }
[SCALERANK=9] { text-size: 13; }
[SCALERANK=10] { text-size: 13; }

} depending on zoom level, we choose the size of the text and the space between
characters

90 of 105

In order to show the names of the cities, we need to add this layer http://mapbox-
geodata.s3.amazonaws.com/natural-earth-1.4.0/cultural/10m-admin-0-country-points.zip

 text-name:'[NAMEASCII]'; the name of the city, we could have used NAME,
NAME_ALT, LS_NAME… In every particular case, we can choose one or another, and
we can consult what we are going to show in the features of the layer.

 text-face-name:@sans_bold; type of letter.
 text-fill:#000; text color inside borders.
 text-size:9; size of the letter.
 [zoom=10] {

[SCALERANK<3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=3] { text-size: 16; text-character-spacing:2; }
[SCALERANK=4] { text-size: 15; text-character-spacing:1; }
[SCALERANK=5] { text-size: 15; text-character-spacing:1; }
[SCALERANK=6] { text-size: 15; text-character-spacing:1; }
[SCALERANK=7] { text-size: 14; }
[SCALERANK=8] { text-size: 14; }
[SCALERANK=9] { text-size: 13; }
[SCALERANK=10] { text-size: 13; }

} depending on zoom level, we choose the size of the text and the space between
characters

91 of 105

If we want a layer to be on top of another, for example the names, so they are not half cover,
we just have to select it and move it to the position where we want it.

To add a teaser, we press the image and we choose “teaser” in the templates. In the combox,
we have to choose for what layer we want to do the teaser.

91 of 105

If we want a layer to be on top of another, for example the names, so they are not half cover,
we just have to select it and move it to the position where we want it.

To add a teaser, we press the image and we choose “teaser” in the templates. In the combox,
we have to choose for what layer we want to do the teaser.

91 of 105

If we want a layer to be on top of another, for example the names, so they are not half cover,
we just have to select it and move it to the position where we want it.

To add a teaser, we press the image and we choose “teaser” in the templates. In the combox,
we have to choose for what layer we want to do the teaser.

92 of 105

Once we select one, the different attributes we can use appear in the second text area. And in
the first one, we can write the text we want to show in the map when the mouse rolls a
concrete element. We can show one or more element, and a normal sentence.

To create a legend for the map, we press the image and we choose “legend” in the templates.
We can add normal text or html formatted text. Te legend will appear down in the right.

92 of 105

Once we select one, the different attributes we can use appear in the second text area. And in
the first one, we can write the text we want to show in the map when the mouse rolls a
concrete element. We can show one or more element, and a normal sentence.

To create a legend for the map, we press the image and we choose “legend” in the templates.
We can add normal text or html formatted text. Te legend will appear down in the right.

92 of 105

Once we select one, the different attributes we can use appear in the second text area. And in
the first one, we can write the text we want to show in the map when the mouse rolls a
concrete element. We can show one or more element, and a normal sentence.

To create a legend for the map, we press the image and we choose “legend” in the templates.
We can add normal text or html formatted text. Te legend will appear down in the right.

93 of 105

Export as MBTiles
To export the map, we press the button and select the kind of file we want to get. In this case,
MBTiles.

We can choose a name, a description, the attribution and the version. And the filename is the
one we set at the beginning. An important thing here is the zoom. By default, the zoom is the
complete range of values, which could take years in generate the map. We can change the
minimum and the maximum, and we can observe how many tiles will be generated and how
much space will be needed. We can also change the part of the map we want to generate,
maybe we are only interested in a country or a city. Of course, this would also minimize the
number of tiles that will be generated. And we can select which point we want to see when we
open the map. Then we press “Export”.

93 of 105

Export as MBTiles
To export the map, we press the button and select the kind of file we want to get. In this case,
MBTiles.

We can choose a name, a description, the attribution and the version. And the filename is the
one we set at the beginning. An important thing here is the zoom. By default, the zoom is the
complete range of values, which could take years in generate the map. We can change the
minimum and the maximum, and we can observe how many tiles will be generated and how
much space will be needed. We can also change the part of the map we want to generate,
maybe we are only interested in a country or a city. Of course, this would also minimize the
number of tiles that will be generated. And we can select which point we want to see when we
open the map. Then we press “Export”.

93 of 105

Export as MBTiles
To export the map, we press the button and select the kind of file we want to get. In this case,
MBTiles.

We can choose a name, a description, the attribution and the version. And the filename is the
one we set at the beginning. An important thing here is the zoom. By default, the zoom is the
complete range of values, which could take years in generate the map. We can change the
minimum and the maximum, and we can observe how many tiles will be generated and how
much space will be needed. We can also change the part of the map we want to generate,
maybe we are only interested in a country or a city. Of course, this would also minimize the
number of tiles that will be generated. And we can select which point we want to see when we
open the map. Then we press “Export”.

94 of 105

Once it is finish, we press the button “Save MBTiles”.

94 of 105

Once it is finish, we press the button “Save MBTiles”.

94 of 105

Once it is finish, we press the button “Save MBTiles”.

95 of 105

Publish to Mapbox
To publish our map in Mapbox (http://mapbox.com/) we need to create an account and to log
in.

We have to press the tool image and select “Update layer” option.

Then we just select a file in our computer and press “Upload file” button. The file size must be
less than 5GB, but also less than the capacity we have available in our account.

95 of 105

Publish to Mapbox
To publish our map in Mapbox (http://mapbox.com/) we need to create an account and to log
in.

We have to press the tool image and select “Update layer” option.

Then we just select a file in our computer and press “Upload file” button. The file size must be
less than 5GB, but also less than the capacity we have available in our account.

95 of 105

Publish to Mapbox
To publish our map in Mapbox (http://mapbox.com/) we need to create an account and to log
in.

We have to press the tool image and select “Update layer” option.

Then we just select a file in our computer and press “Upload file” button. The file size must be
less than 5GB, but also less than the capacity we have available in our account.

96 of 105

Publish map using leaflet
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this foldel.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we have to write something like this:

To show the layer using the map hosted in mapbox.
In general would be http://{s}.tiles.mapbox.com/v3/{user}.{name-of-the-map}/{z}/{x}/{y}.png
var hostedTiles = new
L.tileLayer('http://{s}.tiles.mapbox.com/v3/carmencampos.example/{z}/{x}/{y}.png'

To show the layer using the local map.
In general would be {name-of-the-file-to-extract-the-map}.php?db={name-of-the-
map}.mbtiles&z={z}&x={x}&y={y}
var mbTiles = new L.tileLayer('mbtiles.php?db=example.mbtiles&z={z}&x={x}&y={y}'

Publish map using openlayers
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this folder.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we write something like this:

To show the layer using the map hosted in mapbox
In general would behttp://a.tiles.mapbox.com/v3/{user}.{name-of-the-map}/${z}/${x}/${y}.png
var hostedTiles = new OpenLayers.Layer.XYZ("Hosted Tiles",

["http://a.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://b.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://c.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://d.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png"],

Create TMS layer using MBTiles sqlite database
To show the layer using the local map
var mbTiles = new OpenLayers.Layer.TMS("Local MBTiles File", "mbtiles.php",

96 of 105

Publish map using leaflet
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this foldel.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we have to write something like this:

To show the layer using the map hosted in mapbox.
In general would be http://{s}.tiles.mapbox.com/v3/{user}.{name-of-the-map}/{z}/{x}/{y}.png
var hostedTiles = new
L.tileLayer('http://{s}.tiles.mapbox.com/v3/carmencampos.example/{z}/{x}/{y}.png'

To show the layer using the local map.
In general would be {name-of-the-file-to-extract-the-map}.php?db={name-of-the-
map}.mbtiles&z={z}&x={x}&y={y}
var mbTiles = new L.tileLayer('mbtiles.php?db=example.mbtiles&z={z}&x={x}&y={y}'

Publish map using openlayers
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this folder.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we write something like this:

To show the layer using the map hosted in mapbox
In general would behttp://a.tiles.mapbox.com/v3/{user}.{name-of-the-map}/${z}/${x}/${y}.png
var hostedTiles = new OpenLayers.Layer.XYZ("Hosted Tiles",

["http://a.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://b.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://c.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://d.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png"],

Create TMS layer using MBTiles sqlite database
To show the layer using the local map
var mbTiles = new OpenLayers.Layer.TMS("Local MBTiles File", "mbtiles.php",

96 of 105

Publish map using leaflet
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this foldel.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we have to write something like this:

To show the layer using the map hosted in mapbox.
In general would be http://{s}.tiles.mapbox.com/v3/{user}.{name-of-the-map}/{z}/{x}/{y}.png
var hostedTiles = new
L.tileLayer('http://{s}.tiles.mapbox.com/v3/carmencampos.example/{z}/{x}/{y}.png'

To show the layer using the local map.
In general would be {name-of-the-file-to-extract-the-map}.php?db={name-of-the-
map}.mbtiles&z={z}&x={x}&y={y}
var mbTiles = new L.tileLayer('mbtiles.php?db=example.mbtiles&z={z}&x={x}&y={y}'

Publish map using openlayers
1. We need to have a server installed in our system.
2. We create a folder to work with leaflet in the appropriate folder in the server, the one

where the server accesses to show the files.
3. We add the server code to read MBTiles to this folder.
4. We add our index.html page to this folder.
5. We add our {name-of-the-map}.mbtiles to this folder.
6. We run the server.
7. We go to localhost/{name-of-the-folder}

In our index.html page we write something like this:

To show the layer using the map hosted in mapbox
In general would behttp://a.tiles.mapbox.com/v3/{user}.{name-of-the-map}/${z}/${x}/${y}.png
var hostedTiles = new OpenLayers.Layer.XYZ("Hosted Tiles",

["http://a.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://b.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://c.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png",
"http://d.tiles.mapbox.com/v3/carmencampos.example/${z}/${x}/${y}.png"],

Create TMS layer using MBTiles sqlite database
To show the layer using the local map
var mbTiles = new OpenLayers.Layer.TMS("Local MBTiles File", "mbtiles.php",

97 of 105

example.mbtiles name of the file where our map is stored
function mbtilesURL (bounds) {

var db = "example.mbtiles";
var res = this.map.getResolution();
var x = Math.round ((bounds.left - this.maxExtent.left) / (res * this.tileSize.w));
var y = Math.round ((this.maxExtent.top - bounds.top) / (res * this.tileSize.h));
var z = this.map.getZoom();
return this.url+"?db="+db+"&z="+z+"&x="+x+"&y="+((1 << z) - y - 1);

}

97 of 105

example.mbtiles name of the file where our map is stored
function mbtilesURL (bounds) {

var db = "example.mbtiles";
var res = this.map.getResolution();
var x = Math.round ((bounds.left - this.maxExtent.left) / (res * this.tileSize.w));
var y = Math.round ((this.maxExtent.top - bounds.top) / (res * this.tileSize.h));
var z = this.map.getZoom();
return this.url+"?db="+db+"&z="+z+"&x="+x+"&y="+((1 << z) - y - 1);

}

97 of 105

example.mbtiles name of the file where our map is stored
function mbtilesURL (bounds) {

var db = "example.mbtiles";
var res = this.map.getResolution();
var x = Math.round ((bounds.left - this.maxExtent.left) / (res * this.tileSize.w));
var y = Math.round ((this.maxExtent.top - bounds.top) / (res * this.tileSize.h));
var z = this.map.getZoom();
return this.url+"?db="+db+"&z="+z+"&x="+x+"&y="+((1 << z) - y - 1);

}

98 of 105

3.2 TileMill: Points of Interest in Switzerland

In this document is showed how to use TileMill to create a base layer with real information
about Switzerland. The first steps about how to create the project and start the map are the
same as in the initial example.

It will be useful to take a look to TileMill CartoCSS reference. It is accessible by clicking
the {} button, and there is an online CartoCSS reference by MapBox.

Once we have the map, we add the layers. As it is explained in the initial example, we click in
the “Add Layer” button and we select the datasource path. We could change the id that
appears by default and we can add a class, to write the css.

Once we have added the datasource of the layer, we can choose if we want a style file to be
generated by default. In this case, the style will be the necessary to show the data of the layer
in the map. To do that, we press the “Save & Style” button.

If we prefer to generate our own style, we just press the “Save” button.

There are different kinds of layers, which will we treated differently when we write the
necessary css. Once we have added the layers, we can know the type of every layer. In this
case, #pois will be an example of point.

A point is a single 'spot' in space. It has no dimension, i.e. no length, width, or height. Points
are typically defined by a set of coordinates, also known as a coordinate tuple.

A line is built of points. A sequence of points will form a line, or linestring.

A polygon is similar to a line, except that its start and end points are the same. In effect,
polygons are closed loops. Polygons form an area, and can have loops cut out of them.

 linestring: the only css code we need is the color in which we want to show it
o ::outline { line-color: #800080; }

 polygon: the css code we need is the color in which we want to show the border and
the inside

o ::outline { line-color: #00CED1; }
o ::fill { polygon-fill: #00CED1; }

98 of 105

3.2 TileMill: Points of Interest in Switzerland

In this document is showed how to use TileMill to create a base layer with real information
about Switzerland. The first steps about how to create the project and start the map are the
same as in the initial example.

It will be useful to take a look to TileMill CartoCSS reference. It is accessible by clicking
the {} button, and there is an online CartoCSS reference by MapBox.

Once we have the map, we add the layers. As it is explained in the initial example, we click in
the “Add Layer” button and we select the datasource path. We could change the id that
appears by default and we can add a class, to write the css.

Once we have added the datasource of the layer, we can choose if we want a style file to be
generated by default. In this case, the style will be the necessary to show the data of the layer
in the map. To do that, we press the “Save & Style” button.

If we prefer to generate our own style, we just press the “Save” button.

There are different kinds of layers, which will we treated differently when we write the
necessary css. Once we have added the layers, we can know the type of every layer. In this
case, #pois will be an example of point.

A point is a single 'spot' in space. It has no dimension, i.e. no length, width, or height. Points
are typically defined by a set of coordinates, also known as a coordinate tuple.

A line is built of points. A sequence of points will form a line, or linestring.

A polygon is similar to a line, except that its start and end points are the same. In effect,
polygons are closed loops. Polygons form an area, and can have loops cut out of them.

 linestring: the only css code we need is the color in which we want to show it
o ::outline { line-color: #800080; }

 polygon: the css code we need is the color in which we want to show the border and
the inside

o ::outline { line-color: #00CED1; }
o ::fill { polygon-fill: #00CED1; }

98 of 105

3.2 TileMill: Points of Interest in Switzerland

In this document is showed how to use TileMill to create a base layer with real information
about Switzerland. The first steps about how to create the project and start the map are the
same as in the initial example.

It will be useful to take a look to TileMill CartoCSS reference. It is accessible by clicking
the {} button, and there is an online CartoCSS reference by MapBox.

Once we have the map, we add the layers. As it is explained in the initial example, we click in
the “Add Layer” button and we select the datasource path. We could change the id that
appears by default and we can add a class, to write the css.

Once we have added the datasource of the layer, we can choose if we want a style file to be
generated by default. In this case, the style will be the necessary to show the data of the layer
in the map. To do that, we press the “Save & Style” button.

If we prefer to generate our own style, we just press the “Save” button.

There are different kinds of layers, which will we treated differently when we write the
necessary css. Once we have added the layers, we can know the type of every layer. In this
case, #pois will be an example of point.

A point is a single 'spot' in space. It has no dimension, i.e. no length, width, or height. Points
are typically defined by a set of coordinates, also known as a coordinate tuple.

A line is built of points. A sequence of points will form a line, or linestring.

A polygon is similar to a line, except that its start and end points are the same. In effect,
polygons are closed loops. Polygons form an area, and can have loops cut out of them.

 linestring: the only css code we need is the color in which we want to show it
o ::outline { line-color: #800080; }

 polygon: the css code we need is the color in which we want to show the border and
the inside

o ::outline { line-color: #00CED1; }
o ::fill { polygon-fill: #00CED1; }

99 of 105

 point: the css code we need is the color in which we want to show
o marker-fill: #FFFF00;

point: and we can change the size of the point
o marker-width: 3;

We can also add a layer using a SQLite databases as geographic datasource. SQLite files can be
edited with any SQLite client, including free GIS tools like Quantum GIS.
SQLite files are an ideal alternative to shapefiles because they consist of just one file, making
them very easy to share, and just like shapefiles, SQLite databases can store geographic
features along with non-geographic attributes about those features.

To create the SQLite database using Quantum GIS we need a shapefile with our data. For
example, to create a database with the pois in Switzerland we need a folder containing the
.dbf, .prj, .shp, .xml and .shx files about the pois in Switzerland. Once we have our shapefile,
we just need to add the folder in Quantum GIS, just drag it to the Layers window.

Right-click on our layer named pois within the Layers window and click “Save As…” .
Select SQLite for the Format, and enter the name. You can browse to select the directory to
save the file.

Once in TileMill, we click “Add layer” and we change the add layer type to SQLite. In
datasource we have to add the .sqlite file we have just created.

99 of 105

 point: the css code we need is the color in which we want to show
o marker-fill: #FFFF00;

point: and we can change the size of the point
o marker-width: 3;

We can also add a layer using a SQLite databases as geographic datasource. SQLite files can be
edited with any SQLite client, including free GIS tools like Quantum GIS.
SQLite files are an ideal alternative to shapefiles because they consist of just one file, making
them very easy to share, and just like shapefiles, SQLite databases can store geographic
features along with non-geographic attributes about those features.

To create the SQLite database using Quantum GIS we need a shapefile with our data. For
example, to create a database with the pois in Switzerland we need a folder containing the
.dbf, .prj, .shp, .xml and .shx files about the pois in Switzerland. Once we have our shapefile,
we just need to add the folder in Quantum GIS, just drag it to the Layers window.

Right-click on our layer named pois within the Layers window and click “Save As…” .
Select SQLite for the Format, and enter the name. You can browse to select the directory to
save the file.

Once in TileMill, we click “Add layer” and we change the add layer type to SQLite. In
datasource we have to add the .sqlite file we have just created.

99 of 105

 point: the css code we need is the color in which we want to show
o marker-fill: #FFFF00;

point: and we can change the size of the point
o marker-width: 3;

We can also add a layer using a SQLite databases as geographic datasource. SQLite files can be
edited with any SQLite client, including free GIS tools like Quantum GIS.
SQLite files are an ideal alternative to shapefiles because they consist of just one file, making
them very easy to share, and just like shapefiles, SQLite databases can store geographic
features along with non-geographic attributes about those features.

To create the SQLite database using Quantum GIS we need a shapefile with our data. For
example, to create a database with the pois in Switzerland we need a folder containing the
.dbf, .prj, .shp, .xml and .shx files about the pois in Switzerland. Once we have our shapefile,
we just need to add the folder in Quantum GIS, just drag it to the Layers window.

Right-click on our layer named pois within the Layers window and click “Save As…” .
Select SQLite for the Format, and enter the name. You can browse to select the directory to
save the file.

Once in TileMill, we click “Add layer” and we change the add layer type to SQLite. In
datasource we have to add the .sqlite file we have just created.

100 of 105

For the Table or subquery field, enter (SELECT * from pois). This is a query to select the data
from table pois within your SQLite database. This field acts as a subquery so the information
must be entered in a subquery fashion.

Select the Spatial Reference System (SRS) for your feature. This will be the projection your data
is. TileMill can often autodetect this value. But it can also be obtained from here.

At this point, you can already click the “Save & Style” to add your layer with the default
CartoCSS settings and preview the result.

The real power of having SQLite in TileMill is the ability to join two or more SQLite databases
together. This feature allows you supplement your geographic data with data from other
sources and use it in your stylesheets and tooltips.

When joining multiple SQLite files, you will have one database that contains feature
geometries and additional database can add more attributes about those features. To
complete the join, the databases need to share a common key or ID.

We can edit the previous layer to add a join query to another database. In order to do that, in
the “Attach DB” field we write where our second .sqlite database is stored. And into the “Table
or subquery” field we could put something like this:

(SELECT * FROM pois JOIN interesting_places on pois.city = interesting_places.city &&
interesting_places.city=Bern)

100 of 105

For the Table or subquery field, enter (SELECT * from pois). This is a query to select the data
from table pois within your SQLite database. This field acts as a subquery so the information
must be entered in a subquery fashion.

Select the Spatial Reference System (SRS) for your feature. This will be the projection your data
is. TileMill can often autodetect this value. But it can also be obtained from here.

At this point, you can already click the “Save & Style” to add your layer with the default
CartoCSS settings and preview the result.

The real power of having SQLite in TileMill is the ability to join two or more SQLite databases
together. This feature allows you supplement your geographic data with data from other
sources and use it in your stylesheets and tooltips.

When joining multiple SQLite files, you will have one database that contains feature
geometries and additional database can add more attributes about those features. To
complete the join, the databases need to share a common key or ID.

We can edit the previous layer to add a join query to another database. In order to do that, in
the “Attach DB” field we write where our second .sqlite database is stored. And into the “Table
or subquery” field we could put something like this:

(SELECT * FROM pois JOIN interesting_places on pois.city = interesting_places.city &&
interesting_places.city=Bern)

100 of 105

For the Table or subquery field, enter (SELECT * from pois). This is a query to select the data
from table pois within your SQLite database. This field acts as a subquery so the information
must be entered in a subquery fashion.

Select the Spatial Reference System (SRS) for your feature. This will be the projection your data
is. TileMill can often autodetect this value. But it can also be obtained from here.

At this point, you can already click the “Save & Style” to add your layer with the default
CartoCSS settings and preview the result.

The real power of having SQLite in TileMill is the ability to join two or more SQLite databases
together. This feature allows you supplement your geographic data with data from other
sources and use it in your stylesheets and tooltips.

When joining multiple SQLite files, you will have one database that contains feature
geometries and additional database can add more attributes about those features. To
complete the join, the databases need to share a common key or ID.

We can edit the previous layer to add a join query to another database. In order to do that, in
the “Attach DB” field we write where our second .sqlite database is stored. And into the “Table
or subquery” field we could put something like this:

(SELECT * FROM pois JOIN interesting_places on pois.city = interesting_places.city &&
interesting_places.city=Bern)

101 of 105

When we have finished writing the css code for every layer, we could add a legend to show
some extra information about the layer.

We could also add a Teaser: a piece of information that will appear when we hover with the
mouse in a point. Or a Full: a piece of information that will appear when we click with the
mouse in a point. Here we can show normal text, or specific information about the particular
point.

The final step will be to export as mbtiles. Remember not to choose to many zoom levels or
the size of the map will be too big. You can also restrict the part of the world that is going to be
shown to Switzerland and a little bit around it.

101 of 105

When we have finished writing the css code for every layer, we could add a legend to show
some extra information about the layer.

We could also add a Teaser: a piece of information that will appear when we hover with the
mouse in a point. Or a Full: a piece of information that will appear when we click with the
mouse in a point. Here we can show normal text, or specific information about the particular
point.

The final step will be to export as mbtiles. Remember not to choose to many zoom levels or
the size of the map will be too big. You can also restrict the part of the world that is going to be
shown to Switzerland and a little bit around it.

101 of 105

When we have finished writing the css code for every layer, we could add a legend to show
some extra information about the layer.

We could also add a Teaser: a piece of information that will appear when we hover with the
mouse in a point. Or a Full: a piece of information that will appear when we click with the
mouse in a point. Here we can show normal text, or specific information about the particular
point.

The final step will be to export as mbtiles. Remember not to choose to many zoom levels or
the size of the map will be too big. You can also restrict the part of the world that is going to be
shown to Switzerland and a little bit around it.

102 of 105

4. Bibliography

[1] Geospatial Data Abstraction Library, translator for geospatial formats,
URL http://www.gdal.org/

[2] ArcGIS, to work with maps and geography information,
URL http://resources.arcgis.com/en/help/getting-started/

[3] CartoDB, for creating dynamic maps,
URL http://developers.cartodb.com/

[4] TileMill, how to create interactive maps,
URL http://www.mapbox.com/tilemill/docs/manual/

[5] Quantum GIS, how to use raster data in Geographical Information Systems,
URL http://www.qgis.org/en/documentation/manuals.html

[6] Geographic Information Systems,
URL http://www.esri.com/what-is-gis/overview#overview_panel

[7] GDAL2Tiles to generate tiles from a raster image,
URL https://developers.google.com/kml/articles/raster

[8] Web Map Tile Service specification,
URL http://www.opengeospatial.org/standards/wmts

[9] GeoTIFF file format specification,
URL http://www.remotesensing.org/geotiff/spec/contents.html

[10] Map projections in different coordinate systems,
URL http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

[11] MapTiler, graphical interface for GDAL2Tiles,
URL http://www.maptiler.org/

[12] Leaflet, JavaScript library to create maps,
URL http://leafletjs.com/

[13] Video tutorial: how to use TileMill,
URL http://fuzzytolerance.info/blog/screencast-11-a-quick-run-through-tilemill/

[14] Creating and serving thematic maps,
URL http://blog.thematicmapping.org/

[15] MapProxy, the part related with caching and MBTiles
URL http://mapproxy.org/docs/1.5.0/tutorial.html

[16] MapProxy configuration examples,
https://github.com/mapproxy/mapproxy/blob/master/doc/configuration_examples.rst

[17] MapProxy tutorial,
URL http://es.scribd.com/doc/102823641/Mapproxy-Tutorial

[18] Open Street Map wiki
URL http://wiki.openstreetmap.org/wiki/Main_Page

[19] Geography information about maps,
URL http://www.mapsofworld.com/

[20] MapProxy command line tool,
URL https://github.com/mapproxy/mapproxy/blob/master/doc/mapproxy_util.rst

[21] PHP server to extract tiles from MBTiles database,
URL https://github.com/bmcbride/PHP-MBTiles-Server

102 of 105

4. Bibliography

[1] Geospatial Data Abstraction Library, translator for geospatial formats,
URL http://www.gdal.org/

[2] ArcGIS, to work with maps and geography information,
URL http://resources.arcgis.com/en/help/getting-started/

[3] CartoDB, for creating dynamic maps,
URL http://developers.cartodb.com/

[4] TileMill, how to create interactive maps,
URL http://www.mapbox.com/tilemill/docs/manual/

[5] Quantum GIS, how to use raster data in Geographical Information Systems,
URL http://www.qgis.org/en/documentation/manuals.html

[6] Geographic Information Systems,
URL http://www.esri.com/what-is-gis/overview#overview_panel

[7] GDAL2Tiles to generate tiles from a raster image,
URL https://developers.google.com/kml/articles/raster

[8] Web Map Tile Service specification,
URL http://www.opengeospatial.org/standards/wmts

[9] GeoTIFF file format specification,
URL http://www.remotesensing.org/geotiff/spec/contents.html

[10] Map projections in different coordinate systems,
URL http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

[11] MapTiler, graphical interface for GDAL2Tiles,
URL http://www.maptiler.org/

[12] Leaflet, JavaScript library to create maps,
URL http://leafletjs.com/

[13] Video tutorial: how to use TileMill,
URL http://fuzzytolerance.info/blog/screencast-11-a-quick-run-through-tilemill/

[14] Creating and serving thematic maps,
URL http://blog.thematicmapping.org/

[15] MapProxy, the part related with caching and MBTiles
URL http://mapproxy.org/docs/1.5.0/tutorial.html

[16] MapProxy configuration examples,
https://github.com/mapproxy/mapproxy/blob/master/doc/configuration_examples.rst

[17] MapProxy tutorial,
URL http://es.scribd.com/doc/102823641/Mapproxy-Tutorial

[18] Open Street Map wiki
URL http://wiki.openstreetmap.org/wiki/Main_Page

[19] Geography information about maps,
URL http://www.mapsofworld.com/

[20] MapProxy command line tool,
URL https://github.com/mapproxy/mapproxy/blob/master/doc/mapproxy_util.rst

[21] PHP server to extract tiles from MBTiles database,
URL https://github.com/bmcbride/PHP-MBTiles-Server

102 of 105

4. Bibliography

[1] Geospatial Data Abstraction Library, translator for geospatial formats,
URL http://www.gdal.org/

[2] ArcGIS, to work with maps and geography information,
URL http://resources.arcgis.com/en/help/getting-started/

[3] CartoDB, for creating dynamic maps,
URL http://developers.cartodb.com/

[4] TileMill, how to create interactive maps,
URL http://www.mapbox.com/tilemill/docs/manual/

[5] Quantum GIS, how to use raster data in Geographical Information Systems,
URL http://www.qgis.org/en/documentation/manuals.html

[6] Geographic Information Systems,
URL http://www.esri.com/what-is-gis/overview#overview_panel

[7] GDAL2Tiles to generate tiles from a raster image,
URL https://developers.google.com/kml/articles/raster

[8] Web Map Tile Service specification,
URL http://www.opengeospatial.org/standards/wmts

[9] GeoTIFF file format specification,
URL http://www.remotesensing.org/geotiff/spec/contents.html

[10] Map projections in different coordinate systems,
URL http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

[11] MapTiler, graphical interface for GDAL2Tiles,
URL http://www.maptiler.org/

[12] Leaflet, JavaScript library to create maps,
URL http://leafletjs.com/

[13] Video tutorial: how to use TileMill,
URL http://fuzzytolerance.info/blog/screencast-11-a-quick-run-through-tilemill/

[14] Creating and serving thematic maps,
URL http://blog.thematicmapping.org/

[15] MapProxy, the part related with caching and MBTiles
URL http://mapproxy.org/docs/1.5.0/tutorial.html

[16] MapProxy configuration examples,
https://github.com/mapproxy/mapproxy/blob/master/doc/configuration_examples.rst

[17] MapProxy tutorial,
URL http://es.scribd.com/doc/102823641/Mapproxy-Tutorial

[18] Open Street Map wiki
URL http://wiki.openstreetmap.org/wiki/Main_Page

[19] Geography information about maps,
URL http://www.mapsofworld.com/

[20] MapProxy command line tool,
URL https://github.com/mapproxy/mapproxy/blob/master/doc/mapproxy_util.rst

[21] PHP server to extract tiles from MBTiles database,
URL https://github.com/bmcbride/PHP-MBTiles-Server

103 of 105

[22] OpenLayers, JavaScript library to create maps,
URLhttp://trac.osgeo.org/openlayers/wiki/Documentation

[23] Spherical Mercator projection,
URL http://docs.openlayers.org/library/spherical_mercator.html

[24] Map coordinate reference systems,
URL http://help.maptiler.org/coordinates/

[25] Python, programming language,
http://docs.python.org/2/tutorial/

[26] Python tutorial,
URL http://www.tutorialspoint.com/python/index.htm

[27] Differences between projections,
URL http://www.sharpgis.net/post/2007/05/05/Spatial-references2c-coordinate-
systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx

[28] SQLite database,
URL http://www.sqlite.org/

[29] Wax, to add interactivity to the map,
URL http://www.mapbox.com/wax/

[30] Spherical Mercator projection,
URL http://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-
spherical-mercator-projection/

[31] OpenLayers tutorial,
URL http://vasir.net/blog/openlayers/

[32] Zoom slider plugin for Leaflet,
URL https://github.com/kartena/Leaflet.zoomslider

[33] MBTiles specification,
URL https://github.com/mapbox/mbtiles-spec

[34] Using SQLite databases in Python,
URL http://zetcode.com/db/sqlitepythontutorial/

[35] Importing and exporting MBTiles format,
URL https://github.com/mapbox/mbutil

[36] Flask, a Python microframework,
URL http://flask.pocoo.org/

[37] TileStache, a Python server for map tiles,
URL http://tilestache.org/

[38] Quantum GIS, to work with map databases,
URL http://www.qgis.org/

[39] Tile Server in PHP,
URL https://github.com/klokantech/tileserver-php

[40] Extra features in OpenLayers,
URL https://github.com/developmentseed/openlayers_plus

[41] How to use Python in the web,
URL http://docs.python.org/2/howto/webservers.html

[42] Getting started with PostGIS
URL http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01

103 of 105

[22] OpenLayers, JavaScript library to create maps,
URLhttp://trac.osgeo.org/openlayers/wiki/Documentation

[23] Spherical Mercator projection,
URL http://docs.openlayers.org/library/spherical_mercator.html

[24] Map coordinate reference systems,
URL http://help.maptiler.org/coordinates/

[25] Python, programming language,
http://docs.python.org/2/tutorial/

[26] Python tutorial,
URL http://www.tutorialspoint.com/python/index.htm

[27] Differences between projections,
URL http://www.sharpgis.net/post/2007/05/05/Spatial-references2c-coordinate-
systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx

[28] SQLite database,
URL http://www.sqlite.org/

[29] Wax, to add interactivity to the map,
URL http://www.mapbox.com/wax/

[30] Spherical Mercator projection,
URL http://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-
spherical-mercator-projection/

[31] OpenLayers tutorial,
URL http://vasir.net/blog/openlayers/

[32] Zoom slider plugin for Leaflet,
URL https://github.com/kartena/Leaflet.zoomslider

[33] MBTiles specification,
URL https://github.com/mapbox/mbtiles-spec

[34] Using SQLite databases in Python,
URL http://zetcode.com/db/sqlitepythontutorial/

[35] Importing and exporting MBTiles format,
URL https://github.com/mapbox/mbutil

[36] Flask, a Python microframework,
URL http://flask.pocoo.org/

[37] TileStache, a Python server for map tiles,
URL http://tilestache.org/

[38] Quantum GIS, to work with map databases,
URL http://www.qgis.org/

[39] Tile Server in PHP,
URL https://github.com/klokantech/tileserver-php

[40] Extra features in OpenLayers,
URL https://github.com/developmentseed/openlayers_plus

[41] How to use Python in the web,
URL http://docs.python.org/2/howto/webservers.html

[42] Getting started with PostGIS
URL http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01

103 of 105

[22] OpenLayers, JavaScript library to create maps,
URLhttp://trac.osgeo.org/openlayers/wiki/Documentation

[23] Spherical Mercator projection,
URL http://docs.openlayers.org/library/spherical_mercator.html

[24] Map coordinate reference systems,
URL http://help.maptiler.org/coordinates/

[25] Python, programming language,
http://docs.python.org/2/tutorial/

[26] Python tutorial,
URL http://www.tutorialspoint.com/python/index.htm

[27] Differences between projections,
URL http://www.sharpgis.net/post/2007/05/05/Spatial-references2c-coordinate-
systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx

[28] SQLite database,
URL http://www.sqlite.org/

[29] Wax, to add interactivity to the map,
URL http://www.mapbox.com/wax/

[30] Spherical Mercator projection,
URL http://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-
spherical-mercator-projection/

[31] OpenLayers tutorial,
URL http://vasir.net/blog/openlayers/

[32] Zoom slider plugin for Leaflet,
URL https://github.com/kartena/Leaflet.zoomslider

[33] MBTiles specification,
URL https://github.com/mapbox/mbtiles-spec

[34] Using SQLite databases in Python,
URL http://zetcode.com/db/sqlitepythontutorial/

[35] Importing and exporting MBTiles format,
URL https://github.com/mapbox/mbutil

[36] Flask, a Python microframework,
URL http://flask.pocoo.org/

[37] TileStache, a Python server for map tiles,
URL http://tilestache.org/

[38] Quantum GIS, to work with map databases,
URL http://www.qgis.org/

[39] Tile Server in PHP,
URL https://github.com/klokantech/tileserver-php

[40] Extra features in OpenLayers,
URL https://github.com/developmentseed/openlayers_plus

[41] How to use Python in the web,
URL http://docs.python.org/2/howto/webservers.html

[42] Getting started with PostGIS
URL http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01

104 of 105

[43] Working with PostGIS layers in Quantum GIS
URL http://www.gistutor.com/quantum-gis/20-intermediate-quantum-gis-
tutorials/34-working-with-your-postgis-layers-using-quantum-gis-qgis.html

[44] Bottle: Python web framework,
URL http://bottlepy.org/docs/dev/index.html

[45] UTFGrid specification,
URL https://github.com/mapbox/utfgrid-spec/

[45] JavaScript Object Notation, UTFGrid format,
URL http://en.wikipedia.org/wiki/JSON

[46] How to use JSON in Python,
URL http://docs.python.org/2/library/json.html

[47] UTGrid process,
URL http://www.mapbox.com/demo/visiblemap/

[48] Interactivity using GeoJSON or UTFGrid,
URL http://milkator.wordpress.com/2013/03/05/interactivity-using-geojson-vs-utfgrid-
vs-mapbox/

[49] GeoJSON specification,
URL http://www.geojson.org/geojson-spec.html

[50] Shapefile format,
URL http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[51] PostGIS: spatial database extender for PostgreSQL
URL http://postgis.net/

[52] Serve MBTiles features with PHP script,
URL http://blog.carte-libre.fr/index.php?post/2012/02/12/Serve-all-MBTtile-features-
with-PHP-script

[53] Vector tile tutorial,
URL https://github.com/NelsonMinar/vector-river-map

[54] HTML inside Python,
URL http://karrigell.sourceforge.net/en/htmlinsidepython.html

[55] mod_wsgi: Apache module for hosting Python applications,
URL https://code.google.com/p/modwsgi/

[56] unittest, Unite testing framework in Python,
URL http://docs.python.org/2/library/unittest.html

[57] How to test your code in Python,
URL http://docs.python-guide.org/en/latest/writing/tests.html

[58] Tile Map Service specification,
URL http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

[59] JSON with padding,
URL http://en.wikipedia.org/wiki/JSONP

[60] JSONP calls examples,
URL http://www.onlinesolutionsdevelopment.com/blog/web-
development/javascript/jsonp-example/

[61] JSONP explained with a example,
URL http://www.jquery4u.com/json/jsonp-examples/

104 of 105

[43] Working with PostGIS layers in Quantum GIS
URL http://www.gistutor.com/quantum-gis/20-intermediate-quantum-gis-
tutorials/34-working-with-your-postgis-layers-using-quantum-gis-qgis.html

[44] Bottle: Python web framework,
URL http://bottlepy.org/docs/dev/index.html

[45] UTFGrid specification,
URL https://github.com/mapbox/utfgrid-spec/

[45] JavaScript Object Notation, UTFGrid format,
URL http://en.wikipedia.org/wiki/JSON

[46] How to use JSON in Python,
URL http://docs.python.org/2/library/json.html

[47] UTGrid process,
URL http://www.mapbox.com/demo/visiblemap/

[48] Interactivity using GeoJSON or UTFGrid,
URL http://milkator.wordpress.com/2013/03/05/interactivity-using-geojson-vs-utfgrid-
vs-mapbox/

[49] GeoJSON specification,
URL http://www.geojson.org/geojson-spec.html

[50] Shapefile format,
URL http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[51] PostGIS: spatial database extender for PostgreSQL
URL http://postgis.net/

[52] Serve MBTiles features with PHP script,
URL http://blog.carte-libre.fr/index.php?post/2012/02/12/Serve-all-MBTtile-features-
with-PHP-script

[53] Vector tile tutorial,
URL https://github.com/NelsonMinar/vector-river-map

[54] HTML inside Python,
URL http://karrigell.sourceforge.net/en/htmlinsidepython.html

[55] mod_wsgi: Apache module for hosting Python applications,
URL https://code.google.com/p/modwsgi/

[56] unittest, Unite testing framework in Python,
URL http://docs.python.org/2/library/unittest.html

[57] How to test your code in Python,
URL http://docs.python-guide.org/en/latest/writing/tests.html

[58] Tile Map Service specification,
URL http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

[59] JSON with padding,
URL http://en.wikipedia.org/wiki/JSONP

[60] JSONP calls examples,
URL http://www.onlinesolutionsdevelopment.com/blog/web-
development/javascript/jsonp-example/

[61] JSONP explained with a example,
URL http://www.jquery4u.com/json/jsonp-examples/

104 of 105

[43] Working with PostGIS layers in Quantum GIS
URL http://www.gistutor.com/quantum-gis/20-intermediate-quantum-gis-
tutorials/34-working-with-your-postgis-layers-using-quantum-gis-qgis.html

[44] Bottle: Python web framework,
URL http://bottlepy.org/docs/dev/index.html

[45] UTFGrid specification,
URL https://github.com/mapbox/utfgrid-spec/

[45] JavaScript Object Notation, UTFGrid format,
URL http://en.wikipedia.org/wiki/JSON

[46] How to use JSON in Python,
URL http://docs.python.org/2/library/json.html

[47] UTGrid process,
URL http://www.mapbox.com/demo/visiblemap/

[48] Interactivity using GeoJSON or UTFGrid,
URL http://milkator.wordpress.com/2013/03/05/interactivity-using-geojson-vs-utfgrid-
vs-mapbox/

[49] GeoJSON specification,
URL http://www.geojson.org/geojson-spec.html

[50] Shapefile format,
URL http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[51] PostGIS: spatial database extender for PostgreSQL
URL http://postgis.net/

[52] Serve MBTiles features with PHP script,
URL http://blog.carte-libre.fr/index.php?post/2012/02/12/Serve-all-MBTtile-features-
with-PHP-script

[53] Vector tile tutorial,
URL https://github.com/NelsonMinar/vector-river-map

[54] HTML inside Python,
URL http://karrigell.sourceforge.net/en/htmlinsidepython.html

[55] mod_wsgi: Apache module for hosting Python applications,
URL https://code.google.com/p/modwsgi/

[56] unittest, Unite testing framework in Python,
URL http://docs.python.org/2/library/unittest.html

[57] How to test your code in Python,
URL http://docs.python-guide.org/en/latest/writing/tests.html

[58] Tile Map Service specification,
URL http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

[59] JSON with padding,
URL http://en.wikipedia.org/wiki/JSONP

[60] JSONP calls examples,
URL http://www.onlinesolutionsdevelopment.com/blog/web-
development/javascript/jsonp-example/

[61] JSONP explained with a example,
URL http://www.jquery4u.com/json/jsonp-examples/

105 of 105

[62] Web Map Tile Service services,
http://resources.arcgis.com/en/help/main/10.1/index.html#//0154000003r6000000

[63] Coordinates, tile bounds and projections,
URL http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

[64] Web Map Service specification,
URL http://www.opengeospatial.org/standards/wms

[65] Representational state transfer,
URL http://www.peej.co.uk/articles/rest.html

[66] Tiled vectors,
URLhttp://research.microsoft.com/enus/um/people/jelson/mapcruncher/tiledvectors/
tiledvectorsdemo-1.1/description.html

105 of 105

[62] Web Map Tile Service services,
http://resources.arcgis.com/en/help/main/10.1/index.html#//0154000003r6000000

[63] Coordinates, tile bounds and projections,
URL http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

[64] Web Map Service specification,
URL http://www.opengeospatial.org/standards/wms

[65] Representational state transfer,
URL http://www.peej.co.uk/articles/rest.html

[66] Tiled vectors,
URLhttp://research.microsoft.com/enus/um/people/jelson/mapcruncher/tiledvectors/
tiledvectorsdemo-1.1/description.html

105 of 105

[62] Web Map Tile Service services,
http://resources.arcgis.com/en/help/main/10.1/index.html#//0154000003r6000000

[63] Coordinates, tile bounds and projections,
URL http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

[64] Web Map Service specification,
URL http://www.opengeospatial.org/standards/wms

[65] Representational state transfer,
URL http://www.peej.co.uk/articles/rest.html

[66] Tiled vectors,
URLhttp://research.microsoft.com/enus/um/people/jelson/mapcruncher/tiledvectors/
tiledvectorsdemo-1.1/description.html

