
TERM PROJECT, FALL TERM 2013

POINTERMINATOR
Rid C++ code of unnecessary pointers

AUTHORS
Toni Suter & Fabian Gonzalez

SUPERVISOR
Prof. Peter Sommerlad

Term Project

Pointerminator
Rid C++ code of unnecessary pointers

Fabian Gonzalez, Toni Suter

Fall Term 2013

Supervised by Prof. Peter Sommerlad

Abstract

Pointers and Arrays as inherited from C are still in heavy use in C++
programs. They are used to represent strings, arrays, objects on the
heap or they appear in function signatures to do call-by-reference.
However, issues like resource responsibility, degradation of an array to
a pointer loosing its dimension or zerotermination of byte sequences
lead to poor quality and potential security problems.

Modern C++ and its standard library provide a lot of functionality to
avoid the use of raw pointers and arrays. If those concepts are applied
correctly, they can lead to much better and more maintainable code.
The goal of our term project is to write a plug-in for Eclipse CDT
that allows a programmer to find and automatically refactor pieces of
code, that use pointers in an unfavorable way.

We started with an analysis of the various roles pointers can have.
Based on that analysis we decided that the plug-in should be able
to refactor C strings, C arrays and pointer parameters. Then we
implemented the plug-in and documented its architecture. Finally, we
tested the plug-in in the code base of an existing C++ application
called fish shell. The results of these tests allowed us to optimize the
plug-in and to fix some of the problems that we discovered during
testing.

I

Management Summary

This term project contains an analysis of the various ways pointers
can be used in C++. Additionally, it describes the development of an
Eclipse CDT plug-in that refactors and replaces pointers automatically
to improve the quality of C++ code.

Motivation

In C and C++, pointer variables are used to refer to a specific location
in memory. Pointers can be used to point to various things such as
strings, arrays, functions or objects on the heap. While this makes
them very powerful and flexible, extensive use of pointers leads to
unreadable, inefficient and often unsafe code.

Modern C++ and its standard library provide a lot of functionality,
that can be used instead of pointers. For example, objects of the
classes std::string and std::array can be used instead of C strings and
C arrays. Pointer parameters can often be replaced with reference pa-
rameters. However, programmers often don’t take advantage of these
solutions, because they don’t know about the drawbacks of pointers
or because they work with an existing code base, that already uses
pointers heavily.

Goal

The main goal of this term project is to build a tool for programmers
to improve existing C++ code by refactoring unnecessary pointers
automatically. We first study the various use cases for pointers and
define possible refactorings. To get the best results, we then analyse
the different problems and edge cases for each refactoring. This anal-
ysis is very important, because the tool will only be used in practice,
if it offers a certain degree of reliability.

II

In the implementation phase we develop the tool in the form of an
Eclipse CDT plug-in written in Java. Finally, the plug-in is tested
with an existing C++ code base. This helps us to find problems and
optimize the refactorings.

Results

The results of our term project can roughly be divided into three parts.
First, we analysed the different use cases of pointers. Based on those
use cases we decided to put the focus of our work on the following
three areas:

• Replace C strings with std::string objects
• Replace C arrays with std::array objects
• Replace pointer parameters with reference parameters

In the second phase we implemented an Eclipse plug-in that allows a
programmer to automatically refactor C++ code by replacing pointers
with a more modern solution. The Pointerminator plug-in analyzes the
code that is being written. If it finds a problem, it sets a marker in the
editor. The programmer can then trigger an appropriate refactoring
through the marker which activates the automatic refactoring of the
plug-in. The following page shows screen shots of the Pointerminator
plug-in in action:

III

Refactoring pointer parameters

IV

Finally, to optimize the plug-in, we tested it with an existing open
source C++ project called fish shell [7]. The following table shows
the final statistic of the test results:

Refactoring Markers set Solved Unsolved
std::string 18 9 (50%) 9 (50%)
std::array 154 114 (74%) 40 (26%)
pointer parameter 662 51 (42.5%) 69 (57.5%)

Further work

The Pointerminator plug-in provides useful functionality but there is
still room for improvement. Further optimization would be worth-
while. Also, there are other refactorings that could be added in addi-
tion to the existing ones such as:

• Refactor pointer return values
• Refactor function pointers
• Refactor pointers to objects on the heap
• Refactor pointers to dynamic strings

V

Contents

1 Task description 4
1.1 Problem . 4
1.2 Solution . 4

1.2.1 C strings . 5
1.2.2 C arrays . 6
1.2.3 Call-by-reference / Out-parameters 7
1.2.4 Pointers as return values 7
1.2.5 Pointers to dynamically allocated memory . . . 7
1.2.6 Function pointers 8

1.3 Our goals . 8
1.3.1 C strings to std::string 9
1.3.2 C arrays to std::array 9
1.3.3 Pointer as parameters 9
1.3.4 Additional refactorings 10

1.4 Time management . 10
1.5 Final release . 10

2 Analysis 11
2.1 The Pointerminator refactoring rules 11
2.2 Refactorings . 12

2.2.1 Replace C string with std::string 13
2.2.2 Replace C array with std::array 16
2.2.3 Replace pointer parameter with reference 18

3 Implementation 22
3.1 Tools and technologies 22

3.1.1 Parser and Abstract Syntax Tree (AST) 22
3.1.2 Bindings . 24
3.1.3 The index . 25

3.2 Techniques and algorithms 26
3.2.1 The plug-in components 26
3.2.2 Traversing the AST 27

1

Contents

3.2.3 Modifying and Rewriting the AST 28
3.2.4 Testing . 28
3.2.5 Searching across multiple files 30
3.2.6 Dealing with global variables 31
3.2.7 The std::string refactoring 31
3.2.8 The std::array refactoring 34
3.2.9 The pointer parameter refactoring 36

4 Test refactoring against real life code 37
4.1 Statistics . 37

4.1.1 Statistics of week 11 38
4.1.2 Statistics of week 13 38

4.2 Examples for std::string refactoring 38
4.2.1 Standard wchar t* variable 39
4.2.2 char string variable with size definition 39

4.3 Examples for std::array refactoring 40
4.3.1 Standard C array variables 40
4.3.2 C array with method calls 42

4.4 Examples for pointer parameter refactoring 43
4.4.1 Pointer parameter refactoring in single file . . . 44
4.4.2 Pointer parameter refactoring in multiple files . 45

5 Conclusion 46
5.1 Achievements . 46
5.2 Future Work . 46

2

1 Task description

This section contains the description of our project and our goals for
it.

1.1 Problem

Raw pointers in C++ are one of C’s legacies and can be used for var-
ious purposes. A pointer can point to a function, an array, a C string,
a variable on the stack, dynamically allocated memory on the heap
or NULL. Programmers often use pointers in function signatures to
do call-by-reference, have other out-parameters in addition to the nor-
mal return value and to pass function pointers that point to callback
functions.

Although pointers are a very powerful means to write software, the
resulting code often becomes nearly unreadable. Additionally, the use
of pointers can lead to some very unsafe code. For example, arrays can
be accessed out of bounds or invalid pointers (e.g., a dangling pointer
or a NULL pointer) can be dereferenced. Those bugs are not caught
by the compiler but lead to undefined behaviour during runtime. The
biggest issue when pointing to dynamically allocated memory is mem-
ory management. Careless programming can quickly lead to memory
leaks or dangling pointers. Often it’s also hard to quickly figure out
who owns a certain resource and is therefore responsible for releasing
it.

1.2 Solution

Modern C++ offers a lot of new classes and functionality which can
be used to replace raw pointers. This section describes how code with
raw pointers can be improved.

3

1 Task description

1.2.1 C strings

C strings should be changed to objects of the class std::string. This
class has methods to do easy iteration, get the size and modify the
string. That’s a much cleaner and more object oriented way of dealing
with strings. Listings 1.1 and 1.2 serve as an example.

Listing 1.1: Before refactoring
int main() {

char str[] = "Hello";

str[1] = ’a’;

std::cout << "Size = "

<< strlen(str)

<< std::endl;

for(

int i = 0;

i < strlen(str);

++i

) {

std::cout << str[i];

std::cout << std::endl;

}

}

Listing 1.2: After refactoring
int main() {

std:: string str = "Hello";

str[1] = ’a’;

std::cout << "Size = "

<< str.size()

<< std::endl;

for(

auto it = str.cbegin ();

it != str.cend();

++it

) {

std::cout << *it;

std::cout << std::endl;

}

}

4

1 Task description

1.2.2 C arrays

C arrays can be replaced with abstract data types such as std::array.
These types provide better safety because they offer iterators and ac-
cess methods, that throw exceptions when someone tries to access the
array at an index that is out of bounds. When passed to a func-
tion, conventional arrays often require an additional parameter that
specifies the length of the array, since this information is not stored
in the array itself. Using templates, C++11 can deduce the size of
a std::array at compile time. Listings 1.3 and 1.4 show a possible
refactoring.

Listing 1.3: Before refactoring
void print_array(int arr[],

int length) {

std::cout << "[";

for(

int i = 0;

i < length;

++i

) {

std::cout << arr[i];

std::cout << " ";

}

std::cout << "]";

std::cout << std::endl;

}

int main() {

int arr[] =

{1, 2, 3, 4};

arr[2] = 8;

print_array(arr , 4);

}

Listing 1.4: After refactoring
template <std:: size_t SIZE >

void print_array(std::array <

int , SIZE > &arr){

std::cout << "[";

for(

auto it = arr.cbegin ();

it != arr.cend();

++it

) {

std::cout << *it;

std::cout << " ";

}

std::cout << "]";

std::cout << std::endl;

}

int main() {

std::array <int , 4> arr =

{ {1, 2, 3, 4} };

arr[2] = 8;

print_array(arr);

}

5

1 Task description

1.2.3 Call-by-reference / Out-parameters

Instead of using raw pointers to do call-by-reference, C++ references
should be considered. References provide more safety, since the ad-
dress they point to, can not be directly manipulated or reassigned.
It’s also possible to define constant references, in order to pass large
objects or data structures to a function without having to do an ex-
pensive copy. Listings 1.5 and 1.6 show a possible refactoring.

Listing 1.5: Before refactoring
void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

int main() {

int a = 1;

int b = 2;

swap(&a, &b);

}

Listing 1.6: After refactoring
void swap(int &x, int &y) {

int t = x;

x = y;

y = t;

}

int main() {

int a = 1;

int b = 2;

swap(a, b);

}

1.2.4 Pointers as return values

Factory functions often return raw pointers to the newly allocated
objects. The caller is therefore the owner of this memory and is re-
sponsible for deallocating it. In such cases raw pointers should be
replaced by a smart pointer such as std::unique ptr. This makes it
more obvious who is the owner of the object.

1.2.5 Pointers to dynamically allocated memory

To avoid memory management issues, smart pointers such as std::unique ptr
or std::shared ptr should be used. Smart pointers can take on the re-
sponsibility to release the memory once it is no longer used. They
can also make the code more readable because it becomes clear which
pointers owns a resource and which doesn’t.

6

1 Task description

1.2.6 Function pointers

Function pointers can be used to pass callbacks to a function. How-
ever, it is better to use a template parameter instead, because this al-
lows to not only pass normal functions, but also lambdas or std::function
variables as arguments. Listings 1.7 and 1.8 show an example.

Listing 1.7: Before refactoring
void print(int n) {

std::cout << n;

std::cout << std::endl;

}

void load(void (*cb)(int)) {

int i = ... //load number

cb(i);

}

int main() {

load(&print);

}

Listing 1.8: After refactoring
void print(int n) {

std::cout << n;

std::cout << std::endl;

}

template <typename F>

void load(F cb) {

int i = ... //load number

cb(i);

}

int main() {

load(print);

}

1.3 Our goals

In our term project we will first look at common situations in which
raw pointers are unnecessarily used in C++ code bases. We then try
to define refactorings that improve the code by replacing the pointers
with a more modern solution. After that we implement an Eclipse
CDT plug-in that suggests an appropriate refactoring where necessary
and lets the developer apply that refactoring automatically. In the
final stage we test the plug-in with a well-known C++ open source
project and try to optimize its heuristics and functions as much as
possible. Since there is not enough time for us to do everything, we
will concentrate on the following three areas:

• C strings
• C arrays
• Pointers as parameters (Call-by-reference, Out-parameters)

7

1 Task description

1.3.1 C strings to std::string

This refactoring will change C strings to objects of the class std::string.

Features
• Replace C string definition with std::string definition
• Replace calls to strlen() with a call to the size() member function

Conditions
• C string can not be dynamic (i.e., change its size)

1.3.2 C arrays to std::array

This refactoring will change C arrays to objects of the class std::array.

Features
• Replace array definition with std::array definition

Conditions
• Refactoring doesn’t handle arrays defined as function parameters
• Arrays can not be dynamic (i.e., change its size)

1.3.3 Pointer as parameters

This refactoring will replace pointer parameters with reference param-
eters.

Features
• Replace pointer parameters with references in declaration and

definition of the function
• Find calls of the function and adapt them accordingly
• Inside the function, replace the dereference-operators

Conditions
• Parameters can’t be optional (i.e., can’t be null)
• Pointer can’t be repointed inside function body

8

1 Task description

1.3.4 Additional refactorings

If everything has been done and we have enough time, we will extend
our plug-in to support more generic cases. Here are some additional
refactorings that could be implemented:

• Replace dynamic strings with std::string
• Replace dynamic arrays with std::vector
• Replace function pointers with template parameter
• Replace pointers as return values (e.g., in factory function) with

smart pointer

1.4 Time management

Our project started on the 16th of September, 2013. It will take 14
weeks and end on December the 20th, 2013 at 12:00 p.m. which is
when the final release has to be submitted completely.

1.5 Final release

The following items will be included in the final release of the project:

• 2 printed exemplars of the documentation
• Poster for presentation
• Management Summary and Abstract
• CD/DVD with update site that contains the plugin, project re-

sources, documentation

9

2 Analysis

In this section, we analyze each refactoring and try to find problems
and challenges that could complicate its development. Later, in the
Implementation section, we will describe how those problems have
been solved. The plug-in will only be useful if the programmers trust
it enough, to actually apply the refactorings in a real code base. There-
fore, we have to define rules according to which the refactorings will
work and look at all the edge cases that can occur in day-to-day use.

2.1 The Pointerminator refactoring rules

Refactoring means to improve the design of existing code without
changing its behaviour. Therefore, the Pointerminator plug-in will
adhere to the following rules:

Lifetime

The lifetime of a variable should not be extended by a refactoring.

Visibility

The visibility of a variable should not be extended by a refactoring.

Memory location

Objects that are allocated on the heap may be moved to the stack by
the refactoring if it makes sense in this particular context.

Constness

Generally, the constness of a variable should be preserved by the refac-
toring. If a variable is defined to be non-const before the refactoring
but could also be defined const, multiple quick fixes may be proposed.
For example:

• Replace pointer parameter with reference
• Replace pointer parameter with const reference

10

2 Analysis

2.2 Refactorings

To implement its functionality, the Pointerminator plug-in relies heav-
ily on Codan[1]. Codan is a C/C++ Static Analysis Framework for
Eclipse CDT. It provides basic components to build and test a plug-in
that does static analysis.

As shown in the task description, the Pointerminator plug-in consists
of 3 refactorings. Each refactoring, in turn, consists of a checker and
a quick-fix. Figure 2.1 illustrates the typical refactoring cycle.

Figure 2.1: Refactoring cycle

1. The programmer modifies the source code.
2. Codan detects those changes and notifies all active checkers.
3. Each checker is responsible for a specific problem (e.g, unused

variables). After a checker is notified by Codan, it analyzes the
code. If it finds an occurrence of its problem, the checker reports
it back to Codan. Codan, in turn, sets a marker in the editor to
make the programmer aware of the problem.

11

2 Analysis

4. The programmer can then select the marker and trigger the cor-
responding quick-fix.

5. Finally, the triggered quick-fix modifies the code in order to fix
the problem. Codan writes those changes back to the editor.

The following section describes possible problems and challenges for
each refactoring:

2.2.1 Replace C string with std::string

In C, strings are just char pointers to a ‘\0’-terminated array of char-
acters. Those strings are often used in C++ programs even though
they are inefficient and unsafe. For example, if someone wants to find
out the length of a string in C, the person normally calls the strlen()-
function. Since the string does not store its own size, this function
then has to count the characters until it reaches ‘\0’. That is ineffi-
cient (O(n)). The string refactoring of the Pointerminator plug-in can
automatically replace a C string with an object of the more efficient
and safer class std::string. Objects of this class store the size of the
string (O(1)).

Problem 1: Recognizing C strings
In order to set the markers, the checker of the string refactoring has
to be able to identify C strings. This can be difficult under certain
circumstances. Consider the possibilities in listing 2.1.

Listing 2.1: Possible cases
1: char *x; //we don’t know

2: char *str1 = "Hello"; //set a marker

3: char str2[] = "World"; //set a marker

4: char a = ’a’; //no marker

5: char *ptr = &a; //we don’t know

6: char arr[] = {’a’, ’b’}; //no marker

Case 1:

It could be that x eventually will point to a C string. However, x could
also be pointed to a single character or to an array of characters. To be
sure, what x is used for, further static analysis would be necessary.

12

2 Analysis

Case 2:

In this case, a marker can be set, because the char pointer points to a
C string.

Case 3:

Here a marker can be set as well, because a ‘\0’-terminated array of
characters is effectively a C string.

Case 4:

The variable “a” is a single character (not a pointer). It can’t be
refactored with the string refactoring of the Pointerminator plug-in.

Case 5:

The char pointer “ptr” points to the variable “a”. In order to find out
whether this variable is a C string, further static analysis would be
necessary.

Case 6:

In this case, “arr” is an array of characters. Because it is not ‘\0’-
terminated, this is not the same as a C string. Therefore, no marker
can be set.

Problem 2: Multiple declarations in a single statement
In C++ it is possible to declare multiple variables in a single state-
ment. This can cause some complications. For example, consider the
following code in listing 2.2.

Listing 2.2: Multiple variable declarations
char *x = "Hello", y[] = "World", z = 42;

While x and y are both strings, z is just a single char. This means that
the checker should only mark single variable names and not complete
statements, because there could be additional variable declarations in
the same statement, that can not be refactored.

13

2 Analysis

Problem 3: Variable shadowing
After a C string definition has been replaced with a std::string def-
inition, the string refactoring quick-fix needs to find all subsequent
occurrences of the string variable in order to do additional modifica-
tions if necessary. One approach could be to search for variables with
the same name. However, consider the code in listing 2.3.

Listing 2.3: Variable shadowing
int main() {

char str[] = "Hello!";

std::cout << str << std::endl; // -> Hello!

for(int i = 0; i < 5; ++i) {

std::cout << str << std::endl; // -> Hello!

char str[] = "Goodbye!";

std::cout << str << std::endl; // -> Goodbye!

}

std::cout << str << std::endl; // -> Hello!

}

If the refactoring was applied to the “Hello!”-string, this approach
would cause problems, due to the “Goodbye!”-string in the nested
for-loop. Because both string variables have the same name, the
“Goodbye!”-string “hides” the outer “Hello!”-string. This is called
variable shadowing [2]. Therefore, a simple comparison of the variable
names is not enough to guarantee that only occurrences of the same
variable are found by the string refactoring.

Problem 4: Include handling
The use of the std::string datatype requires that the string header
be included with a preprocessor directive. If the string header is not
already included, the string refactoring has to take care of that too.

Problem 5: Memory management
When a char array is initialized with a string literal, it is possible to
specify an array size that is bigger than the string size. To ensure that
the refactored program behaves exactly the same, the string refactor-
ing has to reserve the same amount of memory for the std::string. This

14

2 Analysis

can be done with a call to the reserve()-member function. Listings 2.4
and 2.5 show an example.

Listing 2.4: Before refactoring
int main() {

char s[42] = "Hello";

}

Listing 2.5: After refactoring
int main() {

std:: string s = "Hello";

s.reserve (42);

}

2.2.2 Replace C array with std::array

When an array is defined in C, the required space is allocated in
memory and initialized with the contents of the array. The array
variable itself is just a pointer to the first element in the array. The size
of the array is not stored anywhere. This means that the programmer
needs to keep track of the size of the array. Such arrays are often
used in C++ programs but they can lead to inefficient or unsafe code.
For example, if an array is passed to a function as a parameter, there
needs to be a second parameter, that specifies the size of the array.
The array refactoring of the Pointerminator plug-in can automatically
replace a C array with an object of the more efficient and safer class
std::array.

Problem 1: Recognizing C arrays
In order to set the markers, the checker of the array refactoring has to
be able to identify C arrays. Therefore, it has to differentiate between
the following cases shown in listing 2.6:

Listing 2.6: Possible cases
1: int numbers [] = {1, 2, 3, 4, 5}; //set a marker

2: char arr[] = {’a’, ’b’}; //set a marker

3: char str[] = "Hello!"; //no marker

Case 1:

In this case, a marker can be set, because the array “numbers” is
initialized with an array of integers.

15

2 Analysis

Case 2:

The array “arr” is initialized with an array of characters, which is not
the same as a string. Therefore, a marker can be set.

Case 3:

The char array “str” is initialized with a string literal. In this case,
the marker should be set by the checker of the string refactoring.

Problem 2: Multidimensional arrays
The array refactoring should also be able to handle multidimensional
arrays. For that, the quick-fix needs to create a std::array of std::arrays.
The nested std::array specifies the type of the elements in the multidi-
mensional array. Listings 2.7 and 2.8 show an example refactoring.

Listing 2.7: Before refactoring
int b[2][2] =

{{1, 2}, {3, 4}};

Listing 2.8: After refactoring
std::array <

std::array <int , 2>, 2> b =

{{{1, 2}, {3, 4}}};

Problem 3: Arrays as arguments
After a C array definition has been replaced with a std::array defini-
tion, the array refactoring quick-fix needs to find all subsequent oc-
currences of the array variable in order to do additional modifications
if necessary. Often, no modification is required. For example, array
subscript expressions such as “arr[5] = 2;” don’t have to be altered,
because the std::array class implements the corresponding operator
overloads. But if an array is passed to a function as an argument, the
array refactoring quick-fix needs to adapt the argument by calling the
std::array::data member function. This is shown in listings 2.9 and
2.10.

16

2 Analysis

Listing 2.9: Before refactoring
int main() {

int a[] =

{1, 2, 3};

a[0] = 4;

printArray(a, 3);

}

Listing 2.10: After refactoring
int main() {

std::array <int , 3> a =

{{1, 2, 3}};

a[0] = 4;

printArray(a.data(), 3);

}

A better solution would be to adapt the signature of the “printAr-
ray()” function so that it only takes one std::array parameter. How-
ever, this is outside the scope of this project.

Problem 4: Include handling
The use of the std::array datatype requires that the array header be
included with a preprocessor directive. If the array header is not
already included, the array refactoring has to take care of that too.

2.2.3 Replace pointer parameter with reference

In C and C++, pointer parameters are often used to either do call-
by-reference or to pass a large object or data structure to a function
without copying it. In both cases it is usually better to use C++
references instead. References provide better safety, since the address
they point to can not be directly manipulated or reassigned. Addi-
tionally, a reference always points to something (i.e., is never NULL).
The pointer parameter refactoring of the Pointerminator plug-in can
automatically replace a pointer parameter with a reference parame-
ter.

17

2 Analysis

Problem 1: Recognizing pointer parameters
In order to set the markers, the checker of the pointer parameter
refactoring has to be able to find pointer parameters. However, not all
pointer parameters can be changed to reference parameters. Consider
the different possibilities in listing 2.11.

Listing 2.11: Possible cases
1: void double1(int *x) { //set a marker

*x = *x * 2;

}

2: void double2(int *x) { //no marker

if(x) {

*x = *x * 2;

}

}

3: void print1(char *str) { //no marker

std::cout << str << std::endl;

}

4: void print2(int *arr , int len) { //no marker

for(int i = 0; i < len; ++i) {

std::cout << arr[i] << std::endl;

}

}

Case 1:

In this case, the pointer parameter can safely be converted into a
reference parameter.

Case 2:

The if-statement in the function body checks, whether x is not NULL.
This implies that the function can be called with a NULL-pointer.
Since references can not be NULL, this parameter can not be con-
verted.

Case 3:

In this case, the function takes a C string paramter. Therefore, it
would be more appropriate to apply the string refactoring here.

18

2 Analysis

Case 4:

This function takes a pointer to an array and a second parameter that
specifies the length of the array. Instead of converting the array pointer
to a reference, it would be more suitable to replace both parameters
with single std::array parameter.

Problem 2: Dealing with overloaded functions
In C++, functions can be overloaded. This means that there can be
multiple functions with the same name as long as they have a different
function signature. Listing 2.12 shows an example.

Listing 2.12: Overloaded functions
void print(int i) {

std::cout << "Integer: " << i << std::endl;

}

void print(double d) {

std::cout << "Double: " << d << std::endl;

}

void print(char* c) {

std::cout << "String: " << c << std::endl;

}

int main() {

print (10);

print (10.10);

print("ten");

}

When a programmer triggers the pointer parameter refactoring, the
pointer parameter quick-fix has to adapt all occurrences of the function
(i.e., function definition, function declarations, function calls). Be-
cause the function could be overloaded, the quick-fix can not just look
for occurrences of a function with the same name. Further analysis is
required to differentiate between the various overloaded functions.

19

2 Analysis

Problem 3: Adapting all occurrences of the function
Normally, a C++ project consists of multiple header and cpp files.
This means that the occurrences of a function often will be spread
across multiple files. Therefore, the pointer parameter refactoring has
to search all files of the project which could have negative impacts on
the performance of the refactoring. Listing 2.13 and 2.14 show how a
complete refactoring could look like.

Listing 2.13: Before refactoring
//mul.h

class Mul {

public:

Mul();

void triple(int *x);

};

//mul.cpp

#include "mul.h"

Mul::Mul() {}

void Mul:: triple(int* x) {

*x = *x * 3;

}

//main.cpp

#include "mul.h"

int main() {

int x = 5;

int y = 10;

int *z = &y;

Mul *m = new Mul();

m->triple (&x);

m->triple(z);

}

Listing 2.14: After refactoring
//mul.h

class Mul {

public:

Mul();

void triple(int &x);

};

//mul.cpp

#include "mul.h"

Mul::Mul() {}

void Mul:: triple(int& x) {

x = x * 3;

}

//main.cpp

#include "mul.h"

int main() {

int x = 5;

int y = 10;

int *z = &y;

Mul *m = new Mul();

m->triple(x);

m->triple (*z);

}

20

3 Implementation

In this section we describe how we created our plug-in, how it works
and how we handled the problems that we described in the Analysis
section.

3.1 Tools and technologies

The following subsections explain some tools and technologies that
were used to create and test the Pointerminator plug-in.

3.1.1 Parser and Abstract Syntax Tree (AST)

When a cpp-file is opened in an Eclipse CDT editor, the parser cre-
ates a tree-representation of the code, which is called the Abstract
Syntax Tree (AST). The AST consists of nodes that all implement
the IASTNode interface. Each node has one parent node and an ar-
ray of child nodes. The AST can be used by static analysis tools such
as the Pointerminator plug-in to traverse the code and find problems.
Most refactorings can be done by simply modifying and rewriting the
AST. Listing 3.1 and figure 3.1 show an example of what the AST
looks like for a short program.

Listing 3.1: AST example
int main() {

int side = 2;

int area = side * side;

}

21

3 Implementation

Figure 3.1: AST tree of listing 3.1

22

3 Implementation

3.1.2 Bindings

Every C++ identifier (e.g., variable, function, class) is represented
as a node of type “IASTName” in the Abstract Syntax Tree. Each
such node has a reference to its binding object. Each occurrence of
that identifier references the same binding object. For example, if
a program has a function called func() then there will be a single
binding object that represents func(). This binding object stores all
the information about the func identifier, including the locations of
the declaration, the definition and all the places where the function is
called. The algorithm used to compute the bindings is called “Binding
Resolution”. Binding resolution is performed on the AST after the
code has been parsed.

23

3 Implementation

3.1.3 The index

Parsing and binding resolution is a slow process. Therefore, Eclipse
CDT stores the binding information in an on-disk cache called “the
index”. To build the index, all the code has to be parsed and all the
bindings have to be resolved. The index is then updated every time
the programmer edits a file.

Figure 3.2 shows how everything fits together [3].

Figure 3.2: How everything fits together

24

3 Implementation

3.2 Techniques and algorithms

The following subsections explains some general techniques as well as
specific algorithms that were used to solve the problems described in
the section “Analysis”.

3.2.1 The plug-in components

The Pointerminator plug-in consists of a set of checkers and quick-
fixes. Each time a file is changed by the programmer, Codan starts
the checkers. Each checker traverses through the AST and searches
for a specific problem. For example, there is a CharPointerChecker,
that searches for C strings that could be refactored to std::string. If
a checker reports a problem, a marker is placed in the editor. When
the programmer hovers over the marker with the mouse, a description
of the problem appears.

Figure 3.3: Plug-in components

The programmer can choose to apply the refactoring or ignore it. If the
programmer applies the refactoring, Codan triggers the corresponding
quick-fix in the Pointerminator plug-in. The quick-fix is then respon-
sible to solve the problem by modifying and rewriting the AST. After
the refactoring is done, the quick-fix deletes the marker and returns.

25

3 Implementation

3.2.2 Traversing the AST

Checkers need to be able to traverse the AST in order to find prob-
lems in the code. Similarly, quick-fixes traverse the AST to find all
occurrences of the refactored variable to do additional adjustments.

The AST is built to be easily traversable using the Visitor pattern
[4]. Eclipse CDT comes with a few predefined visitors that can be
sub-classed to override the visit methods. Only the visit methods that
differ from the subclass need to be overridden. Here is an example of
a simple checker that uses a visitor to find variables with the name
“test” and marks them with a marker. When the user edits a file,
Codan automatically calls the checker’s processAst()-method, which
starts the traversal of the AST using the visitor implemented as an
inner class. For more details see the example in listing 3.2:

Listing 3.2: Visitor example
class MyChecker extends AbstractIndexAstChecker {

public final static String PROBLEM_ID =

"ch.hsr.pointerminator.problems.ExanpleProblem";

@Override

public void processAst(IASTTranslationUnit ast) {

ast.accept(new ExampleVisitor ());

}

class ExampleVisitor extends ASTVisitor {

public ExampleVisitor () {

shouldVisitNames = true;

}

@Override

public int visit(IASTName name) {

if(name.toString ().equals("test")) {

reportProblem(PROBLEM_ID , name);

}

return PROCESS_CONTINUE;

}

}

}

26

3 Implementation

3.2.3 Modifying and Rewriting the AST

Eclipse CDT comes with a set of classes that build the infrastructure
for modifying code by describing changes to AST nodes. The AST
rewriter collects descriptions of modifications to nodes and translates
these descriptions into text edits that can then be applied to the origi-
nal source. It is important to note, that this does not actually modify
the original AST. That allows to, for example, show the programmer
the changes that will be made by a quick-fix. Listing 3.3 shows a bit of
sample code, that replaces a node in the AST, collects the description
of the changes in a Change-object and finally performs the change on
the original AST [5].

Listing 3.3: AST rewrite example
ASTRewrite rewrite = ASTRewrite.create(ast);

rewrite.replace(oldNode , newNode , null);

Change c = rewrite.rewriteAST ();

try {

c.perform(new NullProgressMonitor ());

marker.delete ();

} catch (CoreException e) {

e.printStackTrace ();

}

3.2.4 Testing

The Codan framework contains testing infrastructure classes (e.g.,
CheckerTestCase, QuickFixTestCase) that provide the basic tools to
test a plug-in that does static analysis with Codan. Testing checker
classes is pretty easy and involves the following steps:

• Get some test code that the checker should check.
• Load the test code and run Codan.
• Check that there is an error (i.e., a marker set by the checker)

on a certain line.

To make the unit tests more readable it is possible to write the test
code as a comment on top of the unit test and then dynamically load

27

3 Implementation

it with the helper function getAboveComment(). Listing 3.4 shows a
unit test for the string refactoring checker:

Listing 3.4: A unit test for a checker
//int main() {

// const char *str = "Hi";

//}

public void testStringChecker () {

String testCode = getAboveComment ();

loadCodeAndRunCpp(testCode);

checkErrorLine (2);

}

Testing quick-fix classes is bit more complicated and involves the fol-
lowing steps:

• Get some test code that contains a problem to be fixed by the
quick-fix.
• Load the test code.
• Run the quick-fix and get the resulting code.
• Compare the resulting code with the expected code.

Because the resulting code string that is returned from the method
“runQuickFixOneFile()” does not always have a consistent format, it
is difficult to compare the entire string. Therefore, there’s a method
“assertContainedIn()” that checks whether a certain code snippet ex-
ists in the result.

Listing 3.5 shows a unit test for the string refactoring quick-fix:

Listing 3.5: A unit test for a quick-fix
//int main() {

// const char *str = "Hi";

//}

public void testStringQuickfix () throws Exception {

String testCode = getAboveComment ();

loadcode(testCode);

String r = runQuickFixOneFile ();

assertContainedIn("std:: string str = \"Hi\";", r);

}

28

3 Implementation

We had problems with running the tests on the build server. Some-
times the refactoring just doesn’t run during the test what led to a
failing test. Even when we didn’t change the code some tests just
failed randomly. This seems to happen due to race conditions in the
Codan testing infrastructure.

3.2.5 Searching across multiple files

Sometimes it is necessary to be able to search across multiple files.
For example, for the pointer parameter refactoring the Pointerminator
plug-in needs to find all calls of the function in order to adjust the
corresponding argument. Since each file has its own AST, the visitor-
approach described above is not well-suited. A better solution is to
search for occurrences of the function using the index provided by
Eclipse CDT. Listing 3.6 contains an example.

Listing 3.6: Using the index to search across files
IBinding b = declarator.getName ().resolveBinding ();

IIndexName [] in;

in = index.findNames(b,IIndex.FIND_ALL_OCCURRENCES);

for(IIndexName n : in) {

ITranslationUnit tu;

ASTRewrite rewrite;

IASTTranslationUnit ast;

IASTNode node;

tu=CxxAstUtils.getTranslationUnitFromIndexName(n);

ast = tu.getAST(

index ,

ITranslationUnit.AST_SKIP_INDEXED_HEADERS

);

rewrite = ASTRewrite.create(ast);

int o = n.getNodeOffset ();

int l = n.getNodeLength ();

node = ast.getNodeSelector(null).findNode(o, l);

// modify and rewrite AST

}

29

3 Implementation

Since the index uses bindings to search for the given IASTName, a few
other potential problems are solved as well. For example, overloaded
functions won’t be found by the index, because they have a different
binding object.

3.2.6 Dealing with global variables

The string and the array refactoring both have to be able to deal
with global variables. Those do have a node structure in the Abstract
Syntax Tree that is different from the node structure of local vari-
ables. A local variable is defined as a DeclarationStatement node in
the AST. Inside this DeclarationStatement is a nested SimpleDecla-
ration node.

Global variables do not have a DeclarationStatement node. Their
SimpleDeclaration node is a direct child of the root node (Translatio-
nUnit). See figure 3.4 for an example.

Figure 3.4: AST structure - Global vs. local variable

3.2.7 The std::string refactoring

The following subsection describes the algorithms that were used to
solve the problems related to the std::string refactoring.

Problem 1: Recognizing C strings
Figure 3.5 shows the AST node structure of a C string definition. The
names for the nodes (DeclSpecifier, Declarator, etc.) are defined in

30

3 Implementation

the C++ standard [6] and Codan uses those names in the interfaces
that are implemented by the nodes in the AST.

Figure 3.5: AST node structure for a string

To determine whether a variable is a string or not, the std::string
refactoring has to inspect the AST node structure and check if all of
the following conditions are met:

1. DeclSpecifier contains char, wchar t, char32 t or char16 t.
2. Declarator contains * or [] sign.
3. The right side of the assignment is a LiteralExpression.

Problem 2: Multiple declaration handling
As described in the problem description, multiple variables can be de-
clared within a single declaration statement. Therefore, the checker of
the string refactoring should mark individual declarator nodes instead
of the whole declaration statement node. This allows the programmer
to refactor variables individually. Also, it is important to maintain
the order in which the variables are declared, because there could be
dependencies between them. To do that, the refactoring needs to take
apart the declaration statement and put each declarator in its own
statement. Listings 3.7 and 3.8 show an example.

Listing 3.7: Before refactoring
int main() {

char c = ’a’,

*str = "hello",

i = 12;

}

Listing 3.8: After refactoring
int main() {

char c = ’a’;

std:: string str = "hello";

char i = 12;

}

If the declarator is longer than one line there are some graphical
glitches, so the whole line will be marked. This is because the size
of the marker is not correctly calculated by Codan.

31

3 Implementation

Problem 3: Variable shadowing
The variable shadowing problem can be solved by using the index to
search for subsequent occurrences of a variable. Because each variable
has its own distinct binding object, the index only finds occurrences of
that exact variable. The sections “3.1.2 Bindings” and “3.2.5 Search-
ing across multiple files” contain more information on this topic.

Problem 4: Include handling
The std::string class is defined in the string header of the C++ stan-
dard library. This means, that the string refactoring of the Pointer-
minator plug-in has to include the string header automatically if it
isn’t already included. However, preprocessor statements can not be
added to the AST with an ASTRewrite. Therefore, the algorithm
needs to add the include statement as plain text to the document.
The structure of the preprocessor statements in the AST is flat so to
place the new include correctly it is needed to create a tree out of the
statement. As this require future analysis of the code it’s not imple-
mented. There are cases where the include statement is misplaced and
need to be manually placed correctly. Listing 3.9 shows how this can
be done in code.

Listing 3.9: How to add an #include statement
String includeText = "\n#include <string >\n";

// location after the last include statement

int lastIncludeStatement = ...;

try {

IDocument doc = getDocument ();

doc.replace(lastIncludeStatement , 0, includeText);

}

catch(BadLocationException e) {

e.printStackTrace ();

}

Problem 5: Memory management
To ensure that the refactored program behaves the same as before, the
std::string refactoring needs to reserve the same amount of memory for
the string. This will be done with the reserve() member function (See

32

3 Implementation

Analysis). It is called directly after the declaration of the std::string
variable.

If the variable is global, the reserve() member function can not be
called, because no code can run in global scope.

3.2.8 The std::array refactoring

The following subsection describes the algorithms that were used to
solve the problems related to the std::array refactoring.

Problem 1: Recognizing C arrays
Figure 3.6 shows the AST node structure of a C array definition. The
names for the nodes (SimpleDeclaration, ArrayDeclarator, etc.) are
defined in the C++ standard [6].

Figure 3.6: AST node structure of an array

To determine whether a variable is an array or not, the std::array
refactoring has to inspect the AST node structure and check if all of
the following conditions are met:

1. SimpleDeclaration contains an ArrayDeclarator.
2. SimpleDeclaration doesn’t contains only one LiteralExpression

that represents a string.

33

3 Implementation

Problem 2: Multidimensional arrays
Figure 3.7 shows the AST node structure of a multidimensional std::array.
The names for the nodes (NamedTypeSpecifier, etc.) are defined in
the C++ standard [6].

Figure 3.7: NamedTypeSpecifier

The data type of the array elements is defined in the innermost Named-
TypeSpecifier. The factory class “ICPPNodeFactory” can’t be used
to create a more specific object than an ICPPASTQualifiedName that
represents the whole data type of the variable. It takes as argument
an IASTName that can be created out of a char array. So we needed
to create a string that represents the whole data type and convert it
to a char array to create the correct IASTName that can then be used
for the creation of the ICPPASTQualifiedName.

Problem 3: Arrays as arguments
By default, occurrences of the array are replaced with a call to the
std::array::data member function. This ensures that existing func-
tion signatures, that have array parameters don’t have to be changed.
There are a few exceptions though. For example, an ArraySubscript-
Expression such as “arr[5] = 2;” should not be modified, because the
class std::array overloads this operator.

Problem 4: Include handling
If the array header is not already included the array refactoring will
add it. More details about the realization of this feature can be found
in the section “Problem 4: Include handling”.

34

3 Implementation

3.2.9 The pointer parameter refactoring

The following subsection describes the algorithms that were used to
solve the problems related to the pointer parameter refactoring.

Problem 1: Recognizing pointer parameters
As described in the Analysis section, pointer parameters can not al-
ways be refactored to reference parameters. If all of the following
conditions are met, the refactoring is possible:

1. The Declarator of the parameter contains a * sign.
2. The DeclSpecifier of the parameter does not contain char, wchar t,

char32 t or char16 t.
3. There is no NULL-check of the parameter in the function body.

This does not exclude array parameters as shown in the problem de-
scription. However, a lot of additional static analysis would be re-
quired to decide whether the parameter is really an array or just a
normal pointer parameter. Therefore, it is outside the scope of this
project.

Problem 2: Dealing with overloaded functions
The problem of dealing with overloaded functions can be solved ele-
gantly by using the index to search for occurrences of the same func-
tion using its binding object. Because each overloaded function has its
own binding object, the search results will only contain function calls
and function declarations of exactly that function. This was described
above in the section “3.2.5 Searching across multiple files”.

Problem 3: Adapting all occurrences of the function
Similarly, the index finds all occurrences, no matter in which file they
appear. This solves “Problem 3” as well. It is important to note, that
each file has its own AST and therefore needs its own ASTRewrite
object in order to modify the file. Section “3.2.5 Searching across
multiple files” contains more information on this topic.

35

4 Test refactoring against real
life code

In this section we used an existing C++ application called fish shell
[7] to test our Pointerminator plug-in. We took a snapshot of the
application’s source code (in November 2013) from Github [8] and tried
to apply as many of the refactorings as possible. More information
about fish shell can be found under fishshell.com.

4.1 Statistics

In week eleven we tested the Pointerminator plug-in and created a
statistic of the results. After that we fixed some bugs and implemented
some of the special cases that caused the refactorings to fail. Finally,
we tested it again and created another statistic at the end of the term
project in week thirteen.

36

4 Test refactoring against real life code

4.1.1 Statistics of week 11

The plug-in added 18 std::string markers, 154 std::array markers and
about 660 pointer parameter markers to the fish shell code base. The
plug-in was able to successfully refactor half of the std::string markers,
about 2/3 of the std::array markers. 29 of the unresolved std::array
markers are struct arrays. Because the plug-in found a lot of pointer
parameters we only tested the first 120 markers. 51 pointer parameters
could be refactored successfully. The others led to compilation errors.
Table 4.1 shows the results:

Table 4.1: Refactoring statistics

Refactoring Markers set Solved Unsolved
std::string 18 9 (50%) 9 (50%)
std::array 154 111 (72%) 43 (27%)
pointer parameter 662 51 (42.5%) 69 (57.5%)

4.1.2 Statistics of week 13

Most changes we have done were for the std::array refactoring. While
for the other two refactorings the successful and unsuccessful count
hasn’t changed, the amount of successful refactored arrays has im-
proved. Table 4.2 shows the results:

Table 4.2: Refactoring statistics

Refactoring Markers set Solved Unsolved
std::string 18 9 (50%) 9 (50%)
std::array 154 114 (74%) 40 (26%)
pointer parameter 662 51 (42.5%) 69 (57.5%)

4.2 Examples for std::string refactoring

Here we show some code examples that were found in the fish shell
code base that can be refactored with the string refactoring of the

37

4 Test refactoring against real life code

Pointerminator plug-in. More information about this refactoring can
be found in section “Replace C string with std::string”.

4.2.1 Standard wchar t* variable

In the files builtin set color.cpp and builtin set.cpp the checker of the
string refactoring found some standard wchar t variables. These vari-
ables can be replaced with std::wstring variables which leads to more
efficient and safer code. Listing 4.1 shows this example:

Listing 4.1: Before refactoring
const wchar_t *short_options = L"b:hvocu";

int c = wgetopt_long(argc , argv ,

short_options , long_options , 0);

Listing 4.2: After refactoring
const std:: wstring short_options = L"b:hvocu";

int c = wgetopt_long(argc , argv ,

short_options.c_str (), long_options , 0);

4.2.2 char string variable with size definition

In another file the checker found a char buffer variable that contains
a string whose length is shorter than the actual buffer size. The
string refactoring was able to successfully refactor this buffer into a
std::string variable and reserve the right amount of memory with a
call to the std::string::reserve member function. Listings 4.3 and 4.4
show the code before and after the refactoring was applied:

Listing 4.3: Before refactoring
char buff [128] = "\x1b[";

Listing 4.4: After refactoring
std:: string buff = "\x1b[";

buff.reserve (128);

38

4 Test refactoring against real life code

4.3 Examples for std::array refactoring

Here we show some code examples that were found in the fish shell
code base that can be refactored with the array refactoring of the
Pointerminator plug-in. More information about this refactoring can
be found in section “Replace C array with std::array”.

4.3.1 Standard C array variables

2/3 of all C arrays could be refactored with the std::array refactoring.
For example, the C array that can be found in the file iothread.cpp
was refactored as shown in Listings 4.5 and4.6:

Listing 4.5: Before refactoring
int pipes [2] = {0, 0};

Listing 4.6: After refactoring
std::array <int , 2> pipes = { { 0, 0 } };

The array refactoring can also handle arrays whose modifier doesn’t
contain a size expression. It will calculate the required size by itself.
Listings 4.7 and 4.8 show how the refactoring of such a variable was
applied in the file common.cpp:

Listing 4.7: Before refactoring
const wchar_t *sz_name [] = { L"kB", L"MB", L"GB",

L"TB", L"PB", L"EB", L"ZB", L"YB", 0 };

Listing 4.8: After refactoring
std::array <const wchar_t*, 9> sz_name = { { L"kB",

L"MB", L"GB", L"TB", L"PB", L"EB", L"ZB",

L"YB", 0 } };

The InitializerList can also contain method calls that return the cor-
rect data type. Listings 4.9 and 4.10 are also from the file com-
mon.cpp:

39

4 Test refactoring against real life code

Listing 4.9: Before refactoring
char tmp [3] = { ’.’,

extract_most_significant_digit (& remainder), 0 };

Listing 4.10: After refactoring
std::array <char , 3> tmp = { { ’.’,

extract_most_significant_digit (& remainder), 0 } };

Macros inside the definition of a C array are also handled correctly by
the array refactoring. Listings 4.11 and 4.12 show such an example
from the file fish pager.cpp:

Listing 4.11: Before refactoring
int pref_width[PAGER_MAX_COLS];

Listing 4.12: After refactoring
std::array <int , PAGER_MAX_COLS > pref_width;

Also, static arrays can be refactored with the array refactoring. The
static modifier will be placed correctly before the datatype array. List-
ings 4.13 and 4.14 show an example which can be found in the env.cpp
file:

Listing 4.13: Before refactoring
static const wchar_t * const

locale_variable [] = {

L"LANG", L"LC_ALL", L"LC_COLLATE", L"LC_CTYPE", L"

LC_MESSAGES", L"LC_MONETARY", L"LC_NUMERIC", L"

LC_TIME", NULL};

Listing 4.14: After refactoring
static std::array <const wchar_t* const , 9>

locale_variable = { {

L"LANG", L"LC_ALL", L"LC_COLLATE", L"LC_CTYPE", L"

LC_MESSAGES", L"LC_MONETARY", L"LC_NUMERIC", L"

LC_TIME", NULL} };

40

4 Test refactoring against real life code

4.3.2 C array with method calls

C arrays can also be refactored when they are passed as arguments in
a function or method call. The example from listings 4.15 and 4.16
can be found in the file color.cpp:

Listing 4.15: Before refactoring
static unsigned char term8_color_for_rgb(const unsigned

char rgb [3]) {

const uint32_t kColors [] = { 0x000000 , //Black

0xFF0000 , //Red

0x00FF00 , // Green

0xFFFF00 , // Yellow

0x0000FF , //Blue

0xFF00FF , // Magenta

0x00FFFF , //Cyan

0xFFFFFF , };

return convert_color(rgb , kColors , sizeof

kColors / sizeof *kColors);}

Listing 4.16: After refactoring
static unsigned char term8_color_for_rgb(const unsigned

char rgb [3]) {

std::array <const uint32_t , 8> kColors = { {0x000000 ,

0xFF0000 ,

0x00FF00 ,

0xFFFF00 ,

0x0000FF ,

0xFF00FF ,

0x00FFFF ,

0xFFFFFF }};

return convert_color (1, rgb , kColors.data(), kColors.

size());

The array refactoring replaced the calculation of the array size with
a call to the built-in member function std::array::size. In another
step, the function signature of the convert color() function could be
adapted, so that it takes a std::array parameter instead of a C array. It
would then also be possible to get rid of the size parameter, because the
convert color() function could simply call the std::array::size member

41

4 Test refactoring against real life code

function of the std::array parameter. However, this is outside of the
scope of this refactoring.

The listings 4.17 and 4.18 show another array refactoring example:

Listing 4.17: Before refactoring
wchar_t static_buff [256];

...

while (status < 0) {

if (size == 0) {

buff = static_buff;

size = sizeof static_buff;

} else {

...

buff = (wchar_t *) realloc(

(buff == static_buff ? NULL : buff), size);

...

Listing 4.18: After refactoring
std::array <wchar_t , 256> static_buff;

...

while (status < 0) {

if (size == 0) {

buff = static_buff.data();

size = sizeof static_buff.data();

} else {

...

buff = (wchar_t *) realloc(

(buff == static_buff.data() ? NULL : buff), size);

...

4.4 Examples for pointer parameter
refactoring

Here we show some code examples that were found in the fish shell code
base that can be refactored with the pointer parameter refactoring of
the Pointerminator plug-in. More information about this refactoring
can be found in section “Replace pointer parameter with reference”.

42

4 Test refactoring against real life code

4.4.1 Pointer parameter refactoring in single file

Below in listings 4.19 and 4.20 is an example where the method taking
a pointer parameter is only used in a single file. So this method will
only be called from the builtin test.cpp file. The pointer parameter
refactoring replaces the parameter and all calls correctly:

Listing 4.19: Before refactoring
static bool parse_number(const wcstring &arg , long long *

out) {

const wchar_t *str = arg.c_str ();

wchar_t *endptr = NULL;

*out = wcstoll(str , &endptr , 10);

return endptr && *endptr == L’\0’;

}

...

return parse_number(left , &left_num) && parse_number

(right , &right_num) && left_num == right_num;

Listing 4.20: After refactoring
static bool parse_number(const wcstring &arg , long long &

out){

const wchar_t *str = arg.c_str ();

wchar_t *endptr = NULL;

out = wcstoll(str , &endptr , 10);

return endptr && *endptr == L’\0’;

}

...

return parse_number(left , left_num) && parse_number

(right , right_num) && left_num == right_num;

43

4 Test refactoring against real life code

4.4.2 Pointer parameter refactoring in multiple files

The pointer parameter refactoring can also replace parameters if the
method is used in multiple files and/or declared in a header file. The
code shown in listings 4.21 and 4.22 can be refactored by the plug-in:

Listing 4.21: Before refactoring
FILE: env_universal_common.cpp

void connection_destroy(connection_t *c) {

if (c->fd >= 0) {

if (close(c->fd)) {wperror(L"close");}}}

FILE: env_universal_common.h

void connection_destroy(connection_t *c);

FILE: env_universal.cpp

connection_destroy (& env_universal_server);

FILE: fishd.cpp

connection_destroy (&c);

connection_destroy (&* iter);

Listing 4.22: After refactoring
FILE: env_universal_common.cpp

void connection_destroy(connection_t& c){

if (c.fd >= 0){

if (close(c.fd)){wperror(L"close");}}}

FILE: env_universal_common.h

void connection_destroy(connection_t &c);

FILE: env_universal.cpp

connection_destroy(env_universal_server);

FILE: fishd.cpp

connection_destroy(c);

connection_destroy (*iter);

44

5 Conclusion

This chapter is about the results of our term project and also describes
how this project can be continued.

5.1 Achievements

During our term project we made the following achievements:

• We analysed the different use cases for pointers in C and C++
and compared them to more modern solutions that could be
used.
• A solution was implemented in the form of an Eclipse CDT plug-

in and its functionality was continuously tested with a set of unit
tests.
• The plug-in was tested with a real C++ code base and the results

were documented accordingly.

5.2 Future Work

Here are some improvements that could be done to the the existing
Pointerminator plug-in in the future:

• The string refactoring could be extended, so that it also supports
dynamically allocated strings on the heap.
• Improve array refactoring to support array parameters.
• Use index instead of visitors for string and array refactorings to

add support for member variables.
• Find a way to get more reliable unit tests for the plug-in.

45

Bibliography

[1] Static Analysis for CDT, https://wiki.eclipse.org/CDT/

designs/StaticAnalysis, 08.12.2013

[2] Variable shadowing, http://en.wikipedia.org/wiki/

Variable_shadowing, 14.12.2013

[3] Overview of Parsing, http://wiki.eclipse.org/CDT/designs/

Overview_of_Parsing, 08.12.2013

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software

[5] Class ASTRewrite, https://www.cct.lsu.edu/~rguidry/

eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/

ASTRewrite.html, 08.12.2013

[6] ISO/IEC 14882:2011.

[7] fish shell, http://fishshell.com, 12.12.2013

[8] fish shell on GitHub, https://github.com/fish-shell/

fish-shell, 12.12.2013

[9] Redmine, http://www.redmine.org, 13.12.2013

[10] Apache Maven Project, http://maven.apache.org, 13.12.2013

[11] Jenkins, http://jenkins-ci.org, 13.12.2013

[12] FindBugs, http://findbugs.sourceforge.net, 13.12.2013

[13] HSR Git, https://git.hsr.ch, 13.12.2013

[14] Git, http://git-scm.com, 13.12.2013

[15] ch.hsr.ifs.cdttesting, https://github.com/IFS-HSR/ch.hsr.

ifs.cdttesting, 13.12.2013

46

https://wiki.eclipse.org/CDT/designs/StaticAnalysis
https://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://en.wikipedia.org/wiki/Variable_shadowing
http://en.wikipedia.org/wiki/Variable_shadowing
http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing
http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing
https://www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/ASTRewrite.html
https://www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/ASTRewrite.html
https://www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/ASTRewrite.html
http://fishshell.com
https://github.com/fish-shell/fish-shell
https://github.com/fish-shell/fish-shell
http://www.redmine.org
http://maven.apache.org
http://jenkins-ci.org
http://findbugs.sourceforge.net
https://git.hsr.ch
http://git-scm.com
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting

	Task description
	Problem
	Solution
	C strings
	C arrays
	Call-by-reference / Out-parameters
	Pointers as return values
	Pointers to dynamically allocated memory
	Function pointers

	Our goals
	C strings to std::string
	C arrays to std::array
	Pointer as parameters
	Additional refactorings

	Time management
	Final release

	Analysis
	The Pointerminator refactoring rules
	Refactorings
	Replace C string with std::string
	Replace C array with std::array
	Replace pointer parameter with reference

	Implementation
	Tools and technologies
	Parser and Abstract Syntax Tree (AST)
	Bindings
	The index

	Techniques and algorithms
	The plug-in components
	Traversing the AST
	Modifying and Rewriting the AST
	Testing
	Searching across multiple files
	Dealing with global variables
	The std::string refactoring
	The std::array refactoring
	The pointer parameter refactoring

	Test refactoring against real life code
	Statistics
	Statistics of week 11
	Statistics of week 13

	Examples for std::string refactoring
	Standard wchar_t* variable
	char string variable with size definition

	Examples for std::array refactoring
	Standard C array variables
	C array with method calls

	Examples for pointer parameter refactoring
	Pointer parameter refactoring in single file
	Pointer parameter refactoring in multiple files

	Conclusion
	Achievements
	Future Work

