
Forensic Triage Kit

Bachelor Thesis

Department of Computer Science

University of Applied Sciences Rapperswil

Spring Term 2016

Authors: Luca Tännler, Mathias Vetsch
Advisor: Cyrill Brunschwiler
Project Partner: Compass Security Schweiz AG
External Co-Examiner: Dr. Benjamin Fehrensen
Internal Co-Examiner: Dr. Daniel Keller

Contents

1. Abstract 5

2. Management Summary 6
2.1. Introduction . 6
2.2. Approach / Technologies . 6
2.3. Results . 6
2.4. Outlook . 7

I. Technical report 8

3. Introduction 9
3.1. Problem statement . 9
3.2. Project . 9

4. Standard Forensic Procedure 10
4.1. Introduction . 10
4.2. Forensic procedure . 11
4.3. Context . 12

5. Analysis of existing forensic tool kits 13
5.1. Triage techniques . 13
5.2. Evaluation of the framework . 15
5.3. Conclusion . 18

6. Requirements 19
6.1. Introduction . 19
6.2. Uses Case Diagram . 19
6.3. Actors . 20
6.4. Functional Requirements . 20
6.5. Non-Functional Requirements . 23
6.6. Conclusion . 25

7. Autopsy Architecture 26
7.1. System context . 26
7.2. Architectural Targets and Decisions . 27
7.3. Logical Architecture . 28

2

7.4. Specific Procedures and Decisions . 31
7.5. Libaries / Frameworks . 39
7.6. Deployment . 40
7.7. Data Management . 41
7.8. Collaboration between Autopsy and Sleuth Kit . 41

8. Results 43
8.1. Introduction . 43
8.2. Bitlocker Decryption Provider . 44
8.3. Automatic HashSet update . 46
8.4. Virustotal Online Checker . 46
8.5. Golden Image Module . 48
8.6. AuthentiCode verification . 53
8.7. Tag Filter Module . 57
8.8. Repositories . 62
8.9. Conclusion . 63

9. Benchmarking 64
9.1. Benchmarking setup . 64
9.2. AuthentiCode on raw Windows 8 . 65
9.3. GoldenImage Reboot check . 66
9.4. HashSet check . 67
9.5. Bitlocker Efficiency . 68

10.Conclusion 69
10.1.Assessment of the results . 69
10.2.Outlook . 69

II. Appendices 71

A. Aufgabenstellung 72
A.1. Einführung . 72
A.2. Aufgabe . 72
A.3. Vorgehen . 73
A.4. Randbedingungen . 73
A.5. Infrastruktur . 74
A.6. Erwartete Resultate . 74
A.7. Termine . 75
A.8. Betreuung . 76
A.9. Referenzen . 76
A.10.Unterschriften . 77

B. Golden Image Documents 78
B.1. Module: Golden Image - Options . 78

3

B.2. Module: Golden Image - Planning . 82

C. Installation Guide 91
C.1. Plugin installation . 91

D. User Guide 92
D.1. Add a Bitlocker Data Source to Autopsy . 92
D.2. Update Hash Sets . 94
D.3. Verify AuthentiCode Signatures . 97
D.4. VirusTotal Online Checker . 99
D.5. Golden Image . 100
D.6. Tag Filter . 101

E. Analysis of Forensic Tool-kits 105
E.1. Open Source Forensic Frameworks . 105
E.2. Tools and Scripts . 110
E.3. White- and Blacklists . 111

F. Glossar 113

G. Bibliography 114

4

1. Abstract

The forensic analysis of Windows systems is usually extremely time consuming. Therefore,
in computer forensics, it is important to automatically mark known files whenever possible.
This automated process is called forensic triage. The base for forensic triage is a framework,
that starts different triage techniques and aggregates all relevant results.

The aim of this project was to create a solution for such a forensic triage kit with a set of
standard triage technique features.

In the evaluation phase, different analysis techniques and frameworks were examined. This
lead to the use of the Autopsy project as a basis. Autopsy is an open source digital forensics
platform already containing a set of forensic triage features.

The implementation was done in a way of contribution to Autopsy itself and the development
of several modules. For example, a module performs a check against an uninfected copy of a
system, while another module verifies code signing certificates.

The result of the project is a significant improvement of efficiency in the analysis of Windows
images when using Autopsy. A huge part of standard Windows images can be automatically
marked as known-good with minimal user interaction.

5

2. Management Summary

2.1. Introduction

Nowadays, it is a daily routine of a digital forensics analyst or a Computer Incident Response
Team (CIRT) to analyse potentially infected workstations or server systems. The main task of
a digital forensics analyst is the investigation of hard disks from such systems and to find out,
if they contain any malware, spyware or other indicators of compromise. In most cases, this
kind of triage is very time consuming. The main goal of this project is the automation of as
many triage steps as possible and merge out known good data and deliver hints on possible
malicious data. This way, the analyst can put his focus on relevant data and safe a lot of
valuable time.

2.2. Approach / Technologies

In the first step, existing triage techniques and existing open source forensic triage projects
were evaluated. Based on the initial research, a list was created, with possible features which
could be implemented within this project. The list contained the most important features
which would optimize a forensic triage process. A decision was made, to build upon the
existing open source project Autopsy. It provides a variety of fundamental features which
were required to achieve the projects goal. Also, the project has a modular architecture, which
makes it easy to implement additional features.

2.3. Results

The results of the development phase helped, to significantly improve the Autopsy platform.

The Bitlocker module allows adding volumes from encrypted Windows workstations into Au-
topsy. The module is designed in a way, which makes it simple, to implement further disk
encryption providers.

6

The following modules were developed to automate detection of known-good and known-
bad files.

• The Golden Image module excludes known-good files from a reference data source and
gives hints on files which were changed or deleted on the suspicious data source.

• The AuthentiCode verification module allows to identify the publisher of a software
through code signing certificates.

• The hash-database update feature automates the import of white- and blacklists from
the internet.

• The VirusTotal online check module performs a hash lookup to a free online database.

The above listed modules mark files on the evidence image with tags. To visualise the re-
sults, the Tag Filter module was implemented. This extension provides a generic filter for the
tagged files. It allows the analyst to focus his work on interesting content.

2.4. Outlook

The results of this project enables for an automated analysis of Windows systems. But, the
modules still have potential to be developed further. Some ideas for further improvements
on the developed modules are documented in this report.

To bring the forensic analysis with Autopsy to the next level, further modules are required,
which look into unknown files for bad indicators. For example, there is a software which
scans for viruses or observes the behaviour of files within a sandbox. It would be a powerful
and useful extension for Autopsy, if it would be embedded as a module.

Another approach to reach this target is the development of a scanner which uses multiple
indicators of compromise to find malicious software. Indicators of compromise can be rep-
resented by descriptive languages which can characterize malware much better than a file
hash. An intermediate scanner can improve the identification of more advanced and dy-
namic threats.

7

Part I.

Technical report

8

3. Introduction

3.1. Problem statement

In a computer forensic case the analyst has a nearly unmanageable amount of data of the
affected system to be investigated. There are many tools for the analysis of data. The problem
is, these tools are being used separately and all of them have their own specific output. It can
be very time consuming for the analyst to run all these tools and aggregate the results. There
are plenty of standard methods for this triage. One possibility is to compare the data against
a non-infected system. The analyst then only has to focus on the delta of these two systems.
Another possibility is to use white- and blacklists to automatically exclude known files.

The aim of the project is to develop a framework for this triage. The framework should be
extensible and already provide a set of standard triage functions. The main goal is to auto-
mate as many steps of the triage as possible. In the end, the analyst should get a dramatically
reduced data set which he then can analyse further. More details about the assignment are
attached in Appendix-A.

3.2. Project

The project’s initial assignment was to do research on triage procedures. A part of this as-
signment was to find existing open source forensic tools and tool kits. This research also
provided some information about triage methods. An additional research was conducted on
how standard forensic procedures are done and what steps they contain.

The implementation is built upon the open source forensic platform Autopsy. Autopsy pro-
vides a framework for forensic triage and comes with a set of triage features. Furthermore, it
provides a modular architecture which makes it easy to add additional forensic features to the
tool kit. The results of the project are several triage techniques implemented as an Autopsy
module. This report contains sections with research that is relevant for this project, such as
the evaluation of the framework, the implementation of the features and an overview about
the efficiency of these features.

9

4. Standard Forensic Procedure

4.1. Introduction

The goal of this section is to give a short introduction into the procedure of digital forensics.
What is digital forensics? In digital forensics, the objective is to get insight on digital incidents.
It deals with the analysis of data which could bring up a suspicion. Such examinations are
usually made after an incident occured or if there is a suspicion of an incident. In order
to classify an incident, the so called CERT-Taxonomy is used. This taxonomy classifies the
incident in three parts: Incident, attack and event.

Figure 4.1.: CERT-Taxonomy, Source: [18]

Figure 4.1 illustrates that an IT forensic incident only exists, if there is an attacker with an
intention. In between there is the event which contains an action with a target. The CERT-
Taxonomy serves as a basis for the documentation.

10

4.2. Forensic procedure

Basically a forensic procedure is split up in three main parts:

1. Secure Data
2. Analysis
3. Documentation

4.2.1. Secure Data

In this step, the goal is to save the current state of the machine, more specific, secure all
relevant data. This leads to the important question: Is it necessary to shut down the IT-System
due to the hazard situation? If not, it might be necessary to safe volatile data such as RAM,
network connections or open files. While securing the hard disk, it is very common to use a
write blocker. A write blocker is a physical device which prevents write operations to a hard
disk and ensures the integrity of the data.

4.2.2. Analysis

After all relevant data is saved, a first analysis will be performed. The main goal is to investi-
gate the data and find out, if a suspicion can be confirmed or disproved. Usually this analysis
is not done on the original system, that is why the analyst has to look very carefully not to
miss anything relevant.

4.2.3. Documentation

In this phase, the analyst documents the results from the analysis and their conclusion. Usu-
ally this report is very detailed and points out to all suspicious things. Often, the documenta-
tion also contains some of the following information:

• Identity of the offender
• Time frame of the act
• Scope of the act
• Motivation of the act
• Reason of the act

Although, in many cases a lot or sometimes even none of the above listed information can be
provided.

11

4.3. Context

This chapter gave an overview of how a forensic procedure is done. This project only deals
with the two last phases "Analysis" and "Documentation". The following chapter points to
existing analysis methods, tools and tool kits.

12

5. Analysis of existing forensic tool kits

To identify possible triage techniques, multiple open source forensic tool kits were examined.
Also, this step allowed to evaluate a possible framework to build upon. The characteristics of
the examined tool kits are documented in Appendix-E.

5.1. Triage techniques

This section describes different techniques to identify known-good or known-bad files on a
system.

5.1.1. Hash look-up

A Windows system consists of a lot of files which exist on every Windows system. These files
are not interesting for the forensic analysis. It is possible to tag these files as known-good us-
ing a set of known hashes. Hashes are cryptographic fingerprints of files. This fingerprint can
be used to compare a file on an evidence with another file fingerprint to prove their equal-
ity.

This method requires a hash set. The following hash sets can be used for forensic triage.

• NIST National Software Reference Library (NSRL). Hash database with known-good
hashes of Windows operating system and user-software.
http://www.nsrl.nist.gov/

• VirusShare
Downloadable hash database of known-bad files.
https://virusshare.com/

• ClamAV Database
Downloadable hash database of known-bad files
https://www.clamav.net/

13

http://www.nsrl.nist.gov/
https://virusshare.com/
https://www.clamav.net/

Online hash lookup

The hash sets do not necessarily have to be downloaded. A hash set can be provided over
the network through a lookup API. This allows a software to send in hashes of files and get a
response about the status of the specific files.

Virustotal [24] offers free but limited access to a hash database through their web service.
Another free online service with limited access is the Kaspersky Whitelist project. [23]

5.1.2. Golden Image

Some forensic cases can provide a reference image of the system before the infection oc-
curred. All files of the reference image can be considered as good. This method can dramati-
cally reduce the amount of files to analyse.

5.1.3. Code Signing Verification

Microsoft recommends to sign software components with their code signing standard Au-
thentiCode. From a forensic viewpoint, this signatures can be used to authenticate the pub-
lisher of a file. The identity of a publisher does not directly help to decide if a file is good or
bad. The analyst has to decide manually which publisher he trusts. Files from these trusted
publishers can be marked as known-good.

5.1.4. Descriptive Languages for indicators of compromise

Advanced malware is often very dynamic. Their file signatures change fast over time or per
infection. Such malware can not be identified using a file hash.

OpenIOC [15] is a standard to describe a malware on a abstract level. A description usually
contains network targets, file names, process names and much more.

For a forensic triage we need two components. A database of OpenIOC descriptions and a
scanner which understands the descriptions and is able to find out if the system is infected
by such a description.

The OpenIOC project has launched the website https://www.iocbucket.com/. This is a
database of OpenIOC files.

14

https://www.iocbucket.com/

5.2. Evaluation of the framework

Among the examined software only one framework is open-source, actively developed and
has a modular architecture. This Java based framework is called the Autopsy forensic plat-
form.

The second option is to start a framework from scratch. This section compares these two
options.

5.2.1. Autopsy Forensic Platform

Autopsy is a forensic tool kit providing a graphical user interface, infrastructure to install and
run modules for forensic analysis. The framework provides functionality to add system im-
ages and run existing analysis modules. Autopsy strongly depends on the Sleuth Kit frame-
work [13].

The Sleuth Kit

The Sleuth Kit is a standalone software for forensic analysis. It provides a command line
interface consisting of several different binaries. The Sleuth Kit workflow has three phases
shown in figure 5.1. In the File Extraction phase all meta information is collected and stored
in a database. In the File Analysis phase modules are executed and their results are stored in
the case database. The Post-Processing phase provides modules which use the results from
the case database.

15

Figure 5.1.: Sleuth Kit analysis phases, Source: [13]

Autopsy extension points

Autopsy provides the following four extension points to develop third-party modules [6].

Ingest Module[9] Ingest modules provide an extension point for custom analysis tech-
niques. The modules can be executed when the data source is added or at any point after the
import. An Ingest Module can be one of the two following specialisations:

1. File Ingest Module: the module is being called for every file on the data source. This is
mainly used, if you want to process all files on a data source.
(For example hash calculation, Hash lookup and file-type identification)

2. Datasource Ingest Module: The module is passed a reference to the data source. This
type can be used when only specific parts of a data source are interesting or the analysis
requires multiple files for a result
(For example Web artifact analysis, search for file types and more)

Report Module[10] These kind of module can be used for post-analysis but mainly for
generating a report.

16

Content Viewers[5] To visualise the results of an analysis module for a specific file a con-
tent viewer module can be implemented.

Result Viewers[11] Result viewers provide a table view of a specific subset of the analysed
data.

Overview

Autopsy represents a base for a forensic triage kit. The following characteristics need to be
considered :

Advantages

• Provides basic functionality for forensic analysis
• Installable third party modules extend functionality [4]
• Extensible through the provided extension points
• Provides a graphical user interface
• Project is actively developed

Disadvantages

• No support or extension point for encrypted data sources
• The framework is developed to run on Windows. But the used technology allows to also

run the framework on Linux.
• Complicated architecture: multiple programming languages are involved
• User interface is implemented with Java Swing - leads to portability problems on some

systems.
• Tool kit does not support a fully automated procedure from analysis to report

5.2.2. Forensic Triage Kit from scratch

The development of a forensic triage tool kit provides complete freedom in architecture, tech-
nology and functionality. The design phase requires a lot of time because it is important to
provide useful extension points. The design and implementation of the basis of such a tool
kit would consume the most of the available time in this project. The analysis functional-
ity would be very limited. Further on the risk is high, that the development would not be
continued after the end of this project.

17

5.2.3. Decision

Since the option "Autopsy contribution" promises a massively better feature result we de-
cided to take this option rather than the option "Forensic Triage Kit from scratch". We accept
that development environment and architecture are given and can not be changed. Because
of this, there could be some limitations in development. We take advantage from already ex-
isting components, which can be used or extended. Further on the chance is much higher
that our work will be used from others since Autopsy is already well known in the digital
forensic industry.

5.3. Conclusion

The analysis of the existing forensic tool kits showed different analysis techniques. Further-
more, a base framework has been evaluated. Based on the existing functionality of the Au-
topsy forensic platform and the possible analysis techniques the requirements for the project
can now be defined.

18

6. Requirements

6.1. Introduction

Based on the previous research about forensic tools and tool kits, important information was
gained about what kind of standard processes are common in digital forensics. During the
research, a tool kit was found which meets most of the initial requirements from the assign-
ment and a decision was made to build upon it. This chapter describes the requirements
regarding the development with Autopsy and Sleuth Kit. The requirements described in this
chapter are partially based on the initial requirements set in the assignment of this bachelor
thesis.

Some initial requirements set in the assignment could not be met due to limitations of ex-
isting tool kits. The decision to throw some of these requirements over board is based on an
agreement between the developers and the supervisor.

More details on the initial requirements of the assignment can be found in Appendix-A.

6.2. Uses Case Diagram

Figure 6.1 describes the fundamental use cases for the forensic triage tool kit Autopsy.

Most of these functionalities are already implemented in Autopsy / Sleuth Kit. The orange
marked Use Cases are not implemented yet and will be part of this Bachelor Thesis.

More Use Cases for modules that could be developed within this project can be found below.
Detailed descriptions of the Use Cases are located in section 6.4.

19

Figure 6.1.: Autopsy: Use Case Diagram

6.3. Actors

The main actor of this project is the user of the software, referenced as ’User’. He is usually
an experienced computer user, who is skilled in scripting, programming, reversing and flow
analysis.

6.4. Functional Requirements

This chapter describes the use cases defined for this project.

Since the project is being developed in an agile method, it is possible that use cases will
change during the development process.

20

6.4.1. Add Bitlocker encrypted data source

Main Actor User
Priority MUST

The user wants to import an image to Autopsy which is encrypted with Bitlocker [26]. The
user selects the image in the file-system and enters the decryption password or key. The
program provides unencrypted access to the data source. After this process, the image can
be used and analysed in the software.

6.4.2. Unlock Image

Main Actor -
Priority MUST

During the process described in section 6.4.1, the image must be decrypted. The included
image must be forwarded to a decryption tool such as Dislocker on Linux systems. The tool
decrypts the partition, so that Autopsy and Sleuth Kit have access to its data.

6.4.3. Update NIST NSRL Database

Main Actor User
Priority HIGH

The user always wants a local up-to-date NIST-NSRL database. To maintain this, the user
can either update the database through a simple button click or the software automatically
updates the database (for example on startup). The tool checks if there are any updates and
includes the latest version locally.

6.4.4. Compare against Golden Image Data

Main Actor User
Priority MUST

The user wants to compare a Golden Image with an infected image. Then he loads both
images into Autopsy and marks the golden image. This will allow the user, to compare specific
parts of the image and exclude clean parts so the analysis scope will be reduced.

21

6.4.5. Analyse Registry Data

Main Actor User
Priority MUST

The User wants to analyse the Windows Registry. A Registry tree will be shown to the user,
so the navigation process and overview is more simple for the analyst. If a Golden Image is
used, a Registry Delta can be created which will exclude default and clean Registry entries -
this makes it much easier for the analyst to concentrate on the relevant parts.

6.4.6. Analyse Meta Information

Main Actor User
Priority MUST

The user wants general information about the included Windows system. The tool shows
various meta data such as information about the operating system, the configured users and
installed software packages

6.4.7. Virustotal Online Hash-Check

Main Actor User
Priority MUST

The user wants to search for hashes in the Virustotal online database to find out if a file is
already known as a bad file.

6.4.8. Analyse Event Log

Main Actor User
Priority MEDIUM

The user wants to examine the Windows Event Log. The tool displays the newest events based
on a graphical timeline.

22

6.4.9. Run OpenIOC scanner

Main Actor User
Priority MEDIUM

The user wants to scan a system against an OpenIOC report. So he specifies the data source
that should be scanned. The scanner then processes the input OpenIOC report and search
for indicators on the selected data source.

6.5. Non-Functional Requirements

6.5.1. Reliability

Synopsis Our software creates reproducible results. Tasks can be reverted or
repeated in case of a failure.

Relevant QA Reliability
Measurability Can be measured by manually revert a task or cancellation of a task

during runtime.
Open issues Success of this NFR strongly depends on the reliability of the underly-

ing frameworks.

6.5.2. Usability

Synopsis The program can be used by an analyst without prior experience.
The basic workflow of the software is self-explaining and easy to use.
These include for example:

• Create an Autopsy case
• Import a data source
• Select, configure and run ingest modules
• View Results

Relevant QA Usability, Comprehensibility
Measurability A user acceptance test will be performed.
Open issues The existing project already has defined the user interface. We can not

influence all parts of the interface.

23

6.5.3. Performance and Efficiency

Synopsis The tool processes big data sources which usually takes some hours.
Usage of efficient algorithms is therefore important.

Relevant QA Performance, Efficiency
Measurability The processing time of a data source must be approximately linear

to its size. We test a 100 GB and a 200 GB data source and expect a
runtime less than 210 percent of the smaller image.

Open issues Not all modules can be implemented with a runtime linear to the data
size, because some modules depend on network resources. Thus the
runtime is not really predictable nor deterministic.

6.5.4. Portability and Transferability

Synopsis The installation of the tool should be simple and the generated foren-
sic data can be reviewed on every other installation of the same soft-
ware.

Relevant QA Portability, Transferability
Measurability An autopsy project created on computer A can be opened on com-

puter B without losing functionality.
Open issues There is no existing mechanism to create a Linux package for this soft-

ware project.

6.5.5. Correctness

There are not any special requirements to the correctness of the software. Specially because
many of the processed data and results can not be declared as correct or corrupt by the soft-
ware.

24

6.5.6. Changeability / Extensibility

Synopsis Our Features often solve a specific problem. Through the definition of
general interface, implementations of other similar problems should
be simple. (e.g. different Hash Set or different disk encryption soft-
ware)

Relevant QA Changeability, Extensibility
Measurability The implementation of a second Hash Set update should be planned

and implemented.
Open issues -

6.6. Conclusion

The definition of the requirements has set a milestone in this project and enabled the tran-
sition into the next phase. With this milestone reached, the planning and beginning of the
development phase can be initiated.

The next chapter gives a detailed introduction into Autopsy and its architecture. Further-
more, it introduces into specific procedures and decisions of the features implemented within
this project.

25

7. Autopsy Architecture

This chapter gives an overview on how the Autopsy forensic platform is designed. It also in-
cludes the extensions developed in this project. Furthermore, it contains information about
specific procedures and decisions of the implemented features.

7.1. System context

Autopsy is a standalone platform that runs on a single computer. A few modules communi-
cate with online services to get analysis results. The System Context Diagram illustrates the
involved components (fig. 7.1).

The client platform consists of four main parts:

Sleuth Kit is an interface to the case database and the filesystem on the data source. It is
written in C / C++ and provides a Java Native Interface for the Autopsy platform.

Autopsy is a user interface for Sleuth Kit. Additionally, it contains modules, that use the
data provided by Sleuth Kit. The modules provide analysis functionality, user interface
components or report generation types.

Dislocker provides functionality to encrypt and decrypt Bitlocker encrypted volumes. This
library is used by the Decryption provider module.

Images are the data sources to be processed by the forensic platform.

The system context diagram contains two further components outside of the client:

NIST NSRL Database The NIST NSRL database is a database containing hashes of Win-
dows components and common user software. This database can be downloaded and
used offline. In order to maintain an automated up-to-date NIST NSRL database, Au-
topsy needs to update its local copy regularly. The hash lookup module uses this hashes
to identify this known components.

26

Figure 7.1.: System Context Diagram

Virustotal Virustotal is an online hash lookup service. This service is requested by a module
to identify known-bad files.

7.2. Architectural Targets and Decisions

The software has to run on Kali Linux [32] and optionally runs on Windows.

For the analysis, it is expected, that the provided data sources are Windows systems. The
ability to analyse images of other operating systems is optional.

It is required, that the user can import encrypted data sources into the Autopsy and that it
will be decrypted within the software. To allow implementations for different disk encryption
software a general interface is essential. The reference implementation supports Microsoft’s
disk encryption software Bitlocker.

27

7.3. Logical Architecture

7.3.1. Sleuth Kit Framework

Figure 7.2.: Sleuth Kit Framework

Above diagram shows the Structure of the Sleuth Kit Core Framework. Descriptions can be
found on the official website of the Sleuth Kit project.

The logical architecture of this framework is not described in detail here since it is irrelevant
for this project.

7.3.2. Autopsy Core

The Autopsy Core is based on the Netbeans Platform [16]. This basis is a framework for Java
client applications. The modular architecture of Autopsy is based on functionality of the Net-
beans Platform.

The packages mentioned in figure 7.3 are sub-packages from org.sleuthkit.autopsy. Below
will be a description only of the most important packages which are relevant for this project.

28

Figure 7.3.: Autopsy Logical View

7.3.3. Module

The Module-package contains all third-party modules.

29

7.3.4. Data model

The package "datamodel" contains important classes for working with images, files, file types
etc.

7.3.5. Ingest

The Ingest-package contains relevant classes which are important for Ingest-Modules. This
are actions which are executed after the image has been added to Autopsy and is being scanned.

7.3.6. Report

The Report-package contains important features for the Report generation. These are fea-
tures like creating HTML-Reports, PDF-Reports or other forms of reports. But also function-
ality to merge results and prepare them for a report.

30

7.4. Specific Procedures and Decisions

7.4.1. Sleuth Kit - General Work Flow

Figure 7.4.: Sleuth Kit- General Work Flow

The Sleuth Kits basic workflow 7.4 can be divided into three phases:

1. File Extraction Phase
Analyse disk images and identify files. Metadata about each file will be added to a cen-
tral database.

2. File Analysis Phase
Each file will be analysed by running it through a series of modules. Each module has
its specific task such as hash-value-lookup, calculating entropy etc. All of the results
will also be saved in the database.

3. Post Processing / Reporting Phase
After the files have been analysed, some other modules are run. These modules may
merge results, prepare them or make final reports.

For more detailed information about Sleuth Kit workflow, visit the official Website [13]

31

7.4.2. Module: Golden Image

The Golden Image feature is packed within a Netbeans Module package which can be im-
ported and installed in Autopsy while its running.

Classes

Figure 7.5.: Golden Image - Class Diagram

GoldenImageIngestModuleFactory
extends IngestModuleFactoryAdapter

This class is the core controller of this module. It is being called by Autopsy when it loads
all the modules. The module factory is responsible for creating instances of all important
module classes such as settings and the ingest module.

GoldenImageIngestModuleIngestJobSettingsPanel
extends IngestModuleIngestJobSettingsPanel

32

This class contains a panel with settings for the module. It is being showed when the user
configures the ingest modules before running them in Autopsy. The instance of this class is
being created from the module factory.

DataSourceCBWrapper

This class is a simple wrapper for a Content (data source). It is needed within the class Gold-
enImageIngestModuleIngestJobSettingsPanel as an object passed to the JComboBox. This is
necessary since the toString() method of the Content isn’t satisfying enough to display in a
combo box.

GoldenImageDataSourceIngestModule
extends DataSourceIngestModule

This class is responsible for running the golden image process. It compares, hashes and tags
the files. The instance of this class is being created by the module factory.

GoldenImageModuleIngestJobSettings
extends IngestModuleIngestJobSettings

This class contains all the settings for this module. The only main settings this class is about,
is the reference to the golden image data source. Autopsy saves these settings so they will still
be there after a restart.

Multi-threading

This module supports multi-threading for the process of hashing, comparing and tagging
files. The multi-threading happens within the class GoldenImageDataSourceIngestModule.
For the handling of the threads, an ExecutorService is used - more specifically a FixedThread-
Pool. The maximum concurrent threads that will be used is calculated by following equation:
amount of available processors * 25. The minimum is 25 threads.
There is an inner class FileWorkerThread implements Runnable which is used as worker thread.
Each worker threads processes one file.

File processing and Tag

The file processing happens within a worker thread. The sequence looks as following:

1. Find file on dirty image

33

2. Hashing: Hash both files
3. Comparison: Compare the hashes of both files
4. Tag File

There are 3 different tags:

• Good
• Changed
• Deleted

The Good-tag is set on files contained in the dirty image which haven’t changed compared to
the one in the golden image. This tag is defined in the class GoldenImageIngestModuleFactory
as "DI_Good".
The Changed-tag is also set on files contained in the dirty image which have changed com-
pared to the one in the golden image.This tag is defined in the class GoldenImageIngestMod-
uleFactory as "DI_Changed".
The Deleted-tag is set on file contained in the golden image which weren’t found on the
dirty image. This tag is defined in the class GoldenImageDataSourceIngestModule since it
has its tag name defined by the name of dirty image. The tag name has following structure:
DI_DELETED_[NAME OF DIRTY IMAGE]. This makes sure the analyst knows on which dirty
image the file doesn’t exists. This can be very helpful if you have several dirty images within
one Autopsy case.

New files, which are not on the golden image but on the dirty image can be viewed by us-
ing the Tag Filter module in Autopsy.

Known Issues

The Golden Image module takes a long time to process. One of the major reasons is the
findFile-method in the class GoldenImageDataSourceIngestModule. For each file on the golden
image this method is called. The method searches a file on another image by its file name and
path through the FileManager from Autopsy. This method can take plenty of time to process
under certain circumstances until it returns the wanted file. It often slows down when it is
called too often in a short amount of time (For example if you iterate through a data source
and call the method for each file). This is the main factor what makes the process very slow.
Currently this can’t be easily fixed. There might be a fix in the future when the Autopsy devel-
opers update their FileManager. Important: Making an own SQL-query to find the file won’t
help. It won’t run faster and it might crash. Further on you still have to you the FileManager
to get the AbstractFile-object from the file.

34

7.4.3. Module: Tag Filter

The module Tag Filter is wrapped in a Netbeans Module which can be imported and installed
in Autopsy while it is running.

Autopsy Toolbar

To open the tag filter, there is a button in the toolbar in the upper right corner of Autopsy as
seen in the screen shot beneath.

Figure 7.6.: Tag Filter -Toolbar

In order to add a section in the Autopsy toolbar within a Netbeans Module, you need follow-
ing:

• JPanel with the contents of the toolbar section

• AbstractAction-class

• An entry in the layer.xml-file from the Netbeans Module

JPanel
The JPanel is implemented in the class TagFilterToolbar.java. It simply contains a button with
an action (Open a new JFrame and display the tag filter [TagFilterConfiguration.java]).

AbstractAction
The AbstractAction is implemented in the class TagFilterToolbarAction.java. It extends Ab-
stractAction and implements Presenter.Toolbar. This class contains two methods: actionPer-

35

formed and getToolbarPresenter which returns an instance of TagFilterToolbar.java.

layer.xml
In the layer.xml of the module, you have to add following two entries:
Definition of the tool:

1 <folder name=" Actions ">
2 <folder name=" Tools ">
3 < f i l e name="org−s leuthkit−autopsy−modules−t a g f i l t e r −TagFilterConfigurationAction

. instance " />
4 < f i l e name="org−s leuthkit−autopsy−modules−t a g f i l t e r −TagFilterToolbarAction .

instance ">
5 < a t t r name=" delegate " newvalue=" org . s l e u t h k i t . autopsy . modules . t a g f i l t e r .

TagFilterToolbarAction " />
6 < a t t r name="displayName" bundlevalue=" org . s l e u t h k i t . autopsy . modules .

t a g f i l t e r . Bundle#CTL_TagFilterToolbar . t i t l e " />
7 </ f i l e >
8 </ folder>
9 </ folder>

Listing 7.1: Definition of the tool

Definition for the toolbar:

1 <folder name=" Toolbars ">
2 <folder name=" TagFi l ter ">
3 < a t t r name=" position " intvalue="200" />
4 < f i l e name="org−s leuthkit−autopsy−modules−t a g f i l t e r −TagFilterToolbarAction .

shadow">
5 < a t t r name=" o r i g i n a l F i l e " str ingvalue=" Actions / Tools /org−s leuthkit−autopsy−

modules−t a g f i l t e r −TagFilterToolbarAction . instance " />
6 </ f i l e >
7 </ folder>
8 </ folder>

Listing 7.2: Definition for the toolbar

Tag Filter Configuration Panel

The tag filter configuration panel will open in a new window after the user clicked on the tag
filter button in the Autopsy toolbar in the upper right corner. In this panel the user defines
the filters. Following classes and (sub-)panels are used to create the filter panel:

• TagFilterConfiguration.java
This is the main panel that is shown in the filter window.

• TagFilterConfigurationFilter.java
This is a sub-panel which contains one filter entry for the list in the main panel. This
class extends the TagFilterConfigurationFilterComp.java

36

• TagFilterConfigurationFilterGroup.java
This is a sub-panel which contains one filter group entry for the list in the main panel.
This class extends the TagFilterConfigurationFilterComp.java. A filter-group panel has
a list which can contain filter-panels.

• TagFilterConfigurationFilterComp.java
This is the base class for the filter- and filter-group sub-panel. This is needed to have a
unique type within the filters-list in the main panel.

Display Results

When the tag filter is executed and the search is done, a new result-viewer tab is created in the
Autopsy main window which contains a table with all matching files. This action is created
in the class TagFilterSearch.java in the method createTopComponentPanel() which is called
after the search is done. The creation and filling of the result-table is implemented upon
the OpenIDE framework with Nodes and ChildFactories. Below listing shows the method
createTopComponentPanel() from the class TagFilterSearch.java:

1 private void createTopComponentPanel () {
2 DataResultTopComponent searchResultWin = DataResultTopComponent . createInstance ("Tag

F i l t e r ") ;
3

4 Node rootNode ;
5 i f (r e s u l t s . s i z e () > 0) {
6 TagFilterResultFactory t f r F a c t o r y = new TagFilterResultFactory (r e s u l t s) ;
7 Children childNodes
8 = Children . create (t frFactory , true) ;
9

10 rootNode = new AbstractNode (childNodes) ;
11 } e lse {
12 rootNode = Node .EMPTY;
13 }
14

15 DataResultTopComponent . ini t Instance (" F i l t e r : "+createPathText () , rootNode , 10 ,
searchResultWin) ;

16 }

Listing 7.3: TagFilter: Display Results

The DataResultTopComponent.class is a class from the Autopsy core. It can be used to create
tables with files as content.

In order to fill the table with elements, you need a child factory which creates nodes for the
listing. The child factory class is called TagFilterResultFactory.class and extends ChildFac-
tory<AbstractFile>.

37

7.4.4. Decryption Provider

The interface DecryptionProvider is designed to allow implementations for multiple disk en-
cryption software. To implement a Decryption Provider, all methods visible in figure 7.7 have
to be implemented:

getInstance Factory method
start The instance must enable access to unencrypted data
stop The instance can deactivate the access to unencrypted data
matchesVolume Decides if the given volume is encrypted with the specific implementation
getPanel Provide a JPanel to configure key material for the given volume
run initiate AddImageTask to load file metadata into case db

In addition, a DecryptionProvider must persist the key material. It must be able to unlock the
disk after the case was closed and reopened.

Figure 7.7.: Simplified Class Digramm of Decryption Module

38

Detecting volumes

During the “Add Data Source” process Decryption Provider instances are assigned to vol-
umes. This requires the software to know the existing volumes on a disk. The Sleuth Kit is
able to read the partition table. During this process it adds the relevant information to the
case database.

To assign decryption provider instances to volumes, we need the partition table before the
process is started. Therefore, a method on the SleuthkitJNI interface was implemented to get
the offset to the partition start.

7.5. Libaries / Frameworks

7.5.1. Sleuth Kit

Sleuth Kit is a Forensic Triage Framework which provides several basic features such as load-
ing and reading images, volume and file-system analysis and creating a meta-data database
of all files on the image.

This Framework is the Basis of our project and provides the basic functionality which is
needed for analysing images and file-systems.

For more information regarding Sleuth Kit, visit the official website http://www.sleuthkit.org

7.5.2. Dislocker

Dislocker is a library to use Bitlocker encrypted volumes on a Linux system. The library sup-
ports all version of Bitlocker including the current implementation for Windows 10. [1]

7.5.3. Jsign

This Java based implementation is able to create AuthentiCode signatures for Windows ex-
ecutables. The library was extended to perform signature verification in the AuthentiCode
verification module. [2]

39

http://www.sleuthkit.org

7.6. Deployment

Figure 7.8.: Deployment diagram

The software will be run on a local machine. All frameworks, libraries and external tools are
on the same local machine.

The database is automatically created by the Sleuth Kit during the case creation process.

Some modules might need an Internet connection in order to access online resources.

40

7.7. Data Management

7.7.1. Case related data

Sleuth Kit uses a case directory for each project. The directory contains the following ele-
ments:

• case.aut Stores meta information for the case
• case.db The case database
• Cache Directory
• Export Directory The target directory for exported files
• Log Directory Case related log files
• ModuleOutput Directory A place where modules can store data
• Reports Directory Location for all generated reports
• Temp Directory

Files from the data source are not copied into the case database, but all meta information
about the files and folders are stored in the case database. The case database also handles
results of the standard modules.

7.7.2. Configuration

Autopsy stores all user specific configuration in the users home directory in a sub directory
“.autopsy”. This options are accessible over different Autopsy cases.

7.8. Collaboration between Autopsy and Sleuth Kit

The Sleuth Kit project is mainly written in C and C++ and native compiled. Autopsy is a
Java software. To make these two components work together, an additional component is
required. This interface is built on the Sleuth Kit project as Java Native Interface (JNI) [30].
JNI allows Java applications to load and use native compiled libraries.

7.8.1. Sleuth Kit JNI Interface

The Sleuth Kit JNI interface has two main tasks:

41

• provide access to the data source
• provide access to the case database

The interface also provides some modules which are used by autopsy.

Figure 7.9 illustrates the call hierarchy. As we can see, there is no direct access from Autopsy
to the data source or the case database possible.

Figure 7.9.: Collaboration between Autopsy and Sleuth Kit

42

8. Results

8.1. Introduction

This chapter contains the documentation of the features which were implemented in this
project. The primary goal is, to present the achieved results and explain their use. Besides
the implemented results, the conclusion of this chapter will also talk about features that were
not implemented although they were planned and the reason for their dismissal.

43

8.2. Bitlocker Decryption Provider

Autopsy currently supports three types of data sources. Image files, local disks and Files and
Folders. Image files and local disks of enterprise computers often contain encrypted volumes.
To allow autopsy to analyse such volumes, we have designed a generic extension for autopsy,
which allows to implement multiple decryption providers.

For the most widespread encryption tools exists a Linux implementation which allows to
mount an encrypted volume to an unencrypted volume. If we want to reuse this functional-
ity, we only have to provide a start and a stop method for unlocking and locking encrypted
volumes.

There is already functionality to add a raw image to an autopsy case, searching for deleted
files and run ingest modules against the new Content. We can reuse this functionality through
instantiate an AddImageTask which only knows the dislocked image location.

8.2.1. Recognize encrypted volumes

To minimize the user-interaction, we automatically recognize encrypted Volumes. The data
source wizard creates an VolumeMetaData object for each volume on the data source. This
object contains name, volume number, size and the first sector of the volume. Every Decryp-
tionProvider has to implement the method matchesVolume which takes an VolumeMetaData
object and decides if it can unlock this volume.

For the Bitlocker implementation, we can simply look for a magic string at the beginning of
the volume [17] (fig. 8.1).

Figure 8.1.: Bitlocker volume identification

44

Dislocker

The autopsy implementation to decrypt Microsoft Bitlocker volumes uses the dislocker li-
brary. Dislocker is an open-source fuse driver for Microsoft Bitlocker volumes.[1]

User interface

An encrypted volume normally requires some kind of key. A key can be any kind of data or
device (String, File, SmartCard). Therefore every DecryptionProvider must implement the
getPanel Method which returns an instance of a graphical configuration element. Our Bit-
lockerDecryptionProvider allows three different Key Types (fig. 8.2).

Figure 8.2.: Bitlocker key configuration options

Successfully added volumes through BitlockerDecryptionProvider appear in the list of data
sources with the name dislocker. Autopsy extracts the name of a data source from the image-
name. In case of dislocker, this name is a constant and cannot be manipulated.

45

8.3. Automatic HashSet update

An existing Autopsy feature allows to import MD5-Hash-databases. Every imported database
must be marked as known-good or known-bad. The database can be provided in differ-
ent formats. The simplest format is list of hex encoded MD5-hashes which are newline-
separated.

The hashset lookup ingest module allows to compute hashes for files on a data source and
find them in the imported hash-databases. The module sets the “Knwon” flag to files found
in a known-good database or a content tag for known-bad files.

Many manual preparation steps are required to use this feature. The automatic hashset up-
date extension automates this steps.

The wizard asks the user which hashsets he want to download, after pressing the start-button,
the hashsets are downloaded, extracted and indexed automatically.

The following table displays the hashsets you can import into autopsy through this module:

Name Type Size
NIST NSRL Known Good 5.3 GB
VirusShare.com Knwon Bad 779 MB
ClamAV DB Known Bad 355 MB

8.4. Virustotal Online Checker

Virustotal is a free online service that takes a file or a file hash and delivers a report if the hash
is known.

The Virustotal module is implemented as file ingest module. For each file of a data source
the hash is calculated. This file hash is used to request a report from Virustotal. If the file is
reported as known-bad, the module creates a "Virustotal" file tag. The full Virustotal report
is linked in the comment field of the file tag.

8.4.1. Limitations

The public API is limited to four requests per minute. This means it can only be applied to
small data sources or single directories. To run this module over an entire workstation image
takes a lot of time.

46

Virustotal offers unlimited requests for premium users. The prices for premium users can be
requested inquired from Virustotal.

8.4.2. Obtaining an API key

The usage of this module requires an API key. An API key can be obtained on http://
www.virustotal.com after successful registration with an username and a mail address.

47

http://www.virustotal.com
http://www.virustotal.com

8.5. Golden Image Module

8.5.1. Introduction

This document describes the Module "Golden Image". Several parts will be described such
as the workflow, design decisions and process descriptions.

The Golden Image

The golden image is a regular image, like any other. It does not contain any special features
or characteristics. The reason why it is called "golden image" is, because it is a fresh instal-
lation of the operating system (in our project it will be a fresh Windows installation). That
means, the image will not contain any malware and also no user-installed software. Now
imagine you have an image of a Windows-partition which might be contaminated. In the
real world, such an image can easily have a size of 200GB, 500GB, 1TB or even more. The
larger the partition is and the more files and software is saved on it, the longer it takes to
analyse it. What we want to achieve with the golden image module is, to reduce the scope
of the potentially contaminated image which the analyst has to analyse. The golden image
will compare its "good" files, hashes and more with the equivalents from the other image and
exclude all known good parts from the contaminated image. This will reduce the workload
of parts which the analyst or software has to scan for malware and can save a lot of time. Be-
fore this documentation, several ideas and options on how to implement the "Golden Image"
feature were created and described in the Appendix-B. We decided to do the implementation
based on Option 2 which is described in the before mentioned document, although, some
features had to be discarded from the original idea due to architectural blockades of Autopsy.
For detailed information about the original idea, see the before mentioned documents or the
chapter "Discarded Features".

8.5.2. General Workflow

Following is a workflow-description of the use of the "Golden Image" module:

1. The user adds the golden image:
He adds the golden image as a normal image, like any other.

2. The user adds the dirty image or wants to re-run the ingest-modules on an existing
dirty image.

48

3. In the selection of the ingest modules that the user wants to run, he selects the module
"Golden Image". In the configuration box, the user selects the golden image (There will
be a dropdown menu in which all images which were added to the case are listed - the
user needs to know, which of them the golden image is.)

4. After the configuration, the Golden Image module will be run. First it compares and
tags the files against the dirty image.

5. After the comparison and tagging is done, the analyst can view in a filtered list, all files
with either the "Good" or "Changed" tag and additionally, the "Deleted Files" will also
be listed.

8.5.3. Module Type

The module is a "Data-source-level Ingest Module" according to the official description of
the Autopsy documentation. More information can be found on following URL:

http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html

The reason for this decision is, because in this module type a reference to the dirty image will
be passed. This allows us to search the meta-data database of the dirty image, for the files
on the golden image. Further information about this process can be found in the following
chapters.

8.5.4. Initial Workflow Steps

In order to compare a dirty image with a golden image, the user has to import a golden image
as a regular data source in Autopsy. The user does not have to run any ingest modules over
this image (unless he wants to). After he added the golden image, he either has to import the
dirty image to Autopsy, or open the panel where he can re-run ingest modules over the dirty
image if he already added a data source. In the following chapter "Module Settings" we will
talk about the settings of the "Golden Image" module which the user has to/can set before
running the module.

8.5.5. Module Settings

The "Golden Image" module will enable the user to set following settings:

49

http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html

• The Golden Image: The user has to specify the golden image. There will be a dropdown
in which the user can select the golden image out of all images which were imported to
the current Autopsy-case. MUST-Setting.

The selection of the Golden Image will be placed in the general settings panel of the Golden
Image. (See following wireframe "Wireframe: Ingest Module Selection").

Wireframe: Ingest Module Selection

Following wireframe shows the ingest module selection which is shown when adding a new
data source or when re-running ingest modules of already imported data sources. This panel
already exists in the Autopsy core. The interesting part is on the right side where the general
settings of the "Golden Image" module is displayed. When the "Golden Image" module entry
is focused, the general settings panel of this module is shown. It provides a short description
about module and also a Dropdown-menu from which the user can select a golden image.

Figure 8.3.: Wireframe - Ingest Module Selection

50

8.5.6. File Tagging and "Deleted Files"

During the comparison process in this module, files will be tagged. All file-tagging will hap-
pen on the dirty image. There are 4 types of files:

• Untagged files
• Changed files
• Good files
• Deleted files

Untagged Files are files which were not found on the golden image. They will not be tagged.
Changed Files are files which are found on the golden image but differ from the one on the
dirty image. These files will be marked on the dirty image as "Changed". Good Files are files
which are found on the golden image and were not changed. These files will be marked on
the dirty image as "Good". Deleted Files are files which are found on the golden image but
were not found on the dirty image. These files will be tagged on the golden image with a
special tag for the dirty image data source.

8.5.7. Golden Image Workflow

This chapter describes the workflow of the "Golden Image" module when it is run. There is
one main-steps in this process:

• Comparison and Tagging

Comparison and Tagging

In this step, the module runs through all files in the golden image. Each file will be checked
against the dirty image. It will be checked if it exists, got changed or is the same. Following
flow chart describes the process of each file.

8.5.8. Discarded Features

The "Golden Image" module was originally planned with more features than it comes with
now. Following Features have been discarded from the Project.

51

DataSet Filter / Run Ingest Modules

In order to run an Ingest Module on a filtered dataset, a lot of changes have to be done in the
Autopsy core. Since we planned to create this feature as a 3rd-party module, we discarded this
feature. This feature can be implemented in the future, when the Autopsy core is extended
with this functionality.

Golden Image View

Originally it was planned to also implement a view for the tagged files with an easy-to-use
filter. We have decided to not implement this feature in the "Golden Image" module, but
instead, to implement a new, generic filtering-module which can then be used also for other
tagged files.

8.5.9. Features: Outlook

The golden image has potential to be extended with further features. Following are some
ideas:

• File comparison regardless of path and file name
• Meta-data comparison
• Data set filter: Exclude files from the whole comparison and tagging process

Some of the above mentioned features may require updates in the Autopsy Core.

52

8.6. AuthentiCode verification

Microsoft developed AuthentiCode technology for code signing and verification on Windows
operating systems. The goal of code signing is to provide trust into software packages. Cryp-
tographically signed code ensures that the code was not altered from the time the publisher
signed the code until it gets executed on a user’s computer. The second purpose is to authen-
ticate the publisher. But the existence of a valid AuthentiCode signature is not a proof that
the file has not a bad intention. Neither the signature provides quality information.

8.6.1. Module

The Autopsy AuthentiCode Module uses signatures to identify the publisher of software on
the system. The module creates a view which groups files by its publisher.

The analyst must decide which publishers are trustworthy and which are not. The main part
of signed software usually is code from the operating system vendor or from installed 3rd
party software. If there is an unknown publisher in the list, the analyst can investigate into
this files.

8.6.2. Types of signatures

AuthentiCode supports two different types of cryptographic signatures (fig. 8.4). Embedded
signatures are self contained, that means the signature is a part of the executable file. The file
format for executable files is the “protable executable” [27] which provides an optional field
for the signature [29].

Detached signatures are stored in catalog files. Catalog files are PKCS # 7 files, which is a
format to store certificates, signatures and signed content. [19]

A detached signature is a signed collection of file hashes. The signature is valid for the files
the hashes are computed from.

53

Figure 8.4.: different types of AuthentiCode signatures

8.6.3. Existing AuthentiCode tools

Microsoft offers a bunch tools [28] to create and verify signatures. This tools use the Windows
CryptoAPI and run exclusively on Windows.

Another tool provided by Windows Sysinternals is sigcheck.exe [31]. This tool is developed
for forensic investigation. It verifies the signature

Jsign

Jsign is an open java project which allows to sign Windows executables on a non-Windows
build server. The tool contains classes which understand the PE File format and the Authen-
tiCode signatures. There is no built in support to verify such a signature.

8.6.4. Implementation

Through the implementation of some additional features on the existing Jsign library (sec-
tion 8.6.3), the module can use this library to perform signature verification for Windows
software.

The module verifies the signature, and creates a file tag with the subject of the signer certifi-
cate.

54

Verification of embedded signatures

Embedded signatures ca be verified file by file. This can be implemented as file ingest mod-
ule. The pseudo code 8.1 illustrates the process.

1 @Override
2 public ProcessResult proces (AbstractFi l e f i l e) {
3 i f (! fileHasPEHeader (f i l e)) {
4 return ProcessResult .OK
5 }
6

7 i f (f i leHasValidSignature (f i l e)) {
8 C e r t i f i c a t e c e r t i f i c a t e = getSignature (f i l e) ;
9 createContentTag (c e r t i f i c a t e . getSubject , f i l e) ;

10 return ProcessResult .OK
11 }
12 }

Listing 8.1: AutheniCode File Ingest Module Pseudo Code

Verification of detached signatures

It is not possible to verify detached signatures by just looking at a single file. The verification
requires an analysis of the entire data source. This requires a data source ingest module.

The module performs the following steps over a whole data source:

1. Find all Catalog Files on the data source
2. Validate the signature of the catalog files.
3. Collect all correctly signed hashes from this catalog files
4. Create file hashes for each file on the disk
5. Look for the file hashes in the list of correctly signed hashes.
6. Create a content Tag for all matches from the previous step.

The hashes in the catalog files are computed by different digest algorithms. Because we do
not have a link between a potentially signed file and the catalog file, we are forced to compute
every hash type for each file.

The Ingest job settings allow a user to select which digest algorithms he want to compute.
The default settings have SHA-1 and SHA-256 enabled.

55

8.6.5. AuthentiCode Data Content Viewer

The AuthentiCode Data Content Viewer displays the result of the AutheniCode Ingest Module
for a single File. The limited view in fig. 8.5 displays where the according signature was found
and some information about the publisher certificate.

Figure 8.5.: AuthentiCode Data Viewer Content

8.6.6. Outlook

The data content viewer displays just a few lines of meta information. This view can be ex-
tended to show the full certificate chain with all certificate flags.

To fully validate the AuthentiCode signatures, it is required to check the time stamping signa-
ture too. The result of the additional verification step should be integrated into the Authenti-
Code data content viewer.

56

8.7. Tag Filter Module

8.7.1. Introduction

Problem

In Autopsy, each tag has its own view with a table containing all files which are tagged by
this specific tag. Since there are many different modules with their own tag, some tags might
specify a file for the same reason. For example, the Golden Image module has its "Safe" tag
while the HashSet comparison module also has its own tag for safe files. An analyst might
want a list with all files that are safe, no matter which module tagged it as safe - or more likely
a list containing all files, which were not tagged as safe. Autopsy only comes with limited filter
options offering only a few, hard-coded tags to filter with. The module "Tag Filter" enables
the user to create custom filters with all available tags contained in the Autopsy case.

8.7.2. Features

• Tag Filter
• Content Viewer: Tags

Tag Filter

The user can specify an unlimited amount of filters to generate a list of files as he desires. The
filter is based on the idea of the SQL where-statements.
Example: SELECT file WHERE file contains TAG_X AND file does not contain TAG_Y

For each filter the user can specify:

• The combination-operator: AND / OR

– This defines, how the filter should be combined with the previously defined filter.

• The negation-operator: Contains / Does not contain

– This part defines, if the file contains the specified tag or not

• The tag which is an elementary part of the filter

Further on, the user has the possibility, to create filter groups. This enables the user to create
more specific filters. Each filter group, contains one or more filters.
Example: SELECT file WHERE file contains TAG_X AND (file contains TAG_Y OR file contains TAG_Z)

57

Content Viewer: Tags

The Content Viewer for tags, adds a content viewer to Autopsy to view all assigned tags of a
file.

8.7.3. Screenshots

Opening The Tag Filter

In the upper right corner, there will be a button called "Tag Filter". By clicking on it, a new
window will open with the filter configuration panel.

Figure 8.6.: How to open the Tag Filter

Tag Filter Configuration Panel

Following shows a screenshot of the Tag Filter configuration panel. The filters / filter groups
are meant to be read top-down. The combination-operator (AND / OR) is connected to the
previous filter in the list.

• Button "Add Filter": By clicking on this button, a new filter will be added to the end of
the list.

• Button "Add Filter Group": By clicking on this button, a new filter group will be added

to the end of the list. By clicking on the plus-icon () on the right side of the filter

58

group, a new filter can be added to this filter group.

• Dropdown Datasource: The user can specify, if he only wants to search for files on a
specific datasource. If none is selected, the filter will search for files in all datasources
contained in the current Autopsy case.

• Button "Filter": By clicking on this button, the filter will be applied and matching files
are being searched. The Tag Filter configuration window will close and a list with the
matched files will be displayed to the user.

Figure 8.7.: Tag Filter Configuration Panel

Filter Entry

Following screenshot shows a filter entry within the Tag Filter configuration panel:

Figure 8.8.: Filter Entry

• Dropdown "Combination-operator": In the first dropdown on the left, the user can
specify the combination-operator AND / OR.

• Dropdown "Negation-operator": In the second dropdown on the left, the user can
specify the negation-operator Contains / Does not contain.

• Dropdown "Tag": In the third dropdown on the left, the user can specify the tag of

59

which this filter is about. This dropdown dynamically shows all tags contained in the
current Autopsy case.

• This button enables the user to move the filter down in the list.

• This button enables the user to move the filter up in the list.

• This button enables the user to delete the filter from the list.

Tag Filter File List

After creating and applying a filter, all matched files will be displayed to the user within a
table as following screenshot shows:

Figure 8.9.: Tag Filter File List

Content Viewer: Tags

The Content Viewer Tags is a tab which is shown in the lower area of Autopsy. This view is
not only available for the Tag Filter results list. It is also available for any other file-list within
Autopsy. The Content viewer for tags shows all tags which are assigned to the selected file.

60

H]

Figure 8.10.: Content Viewer for Tags

8.7.4. Features: Outlook

This module has potential to be extended with some additional functionality. Following are
some ideas:

• Advanced filter possibilities: Add the possibility to also filter files by dates, owner etc.

• Export: Add functionality to export the filtered file list. Either as a table list such as
Excel or save the list within Autopsy so the user can call it again in the future without
having to use the filter again.

• Save Filters: Add the option to save filters

61

8.8. Repositories

The listing below contains the links to the GitHub repositories for each feature. The reposito-
ries are publicly available for everyone.

• Sleuth Kit
https://github.com/mvetsch/sleuthkit

• Autopsy
https://github.com/mvetsch/autopsy

• VirusTotal Online Checker
https://github.com/mvetsch/VirusTotalOnlineChecker

• Golden Image Module
https://github.com/colapse/Autopsy-GoldenImage

• AuthentiCode verification
https://github.com/mvetsch/Autopsy-AuthentiCodeVerification

• Tag Filter Module
https://github.com/colapse/Autopsy-TagFilter

62

https://github.com/mvetsch/sleuthkit
https://github.com/mvetsch/autopsy
https://github.com/mvetsch/VirusTotalOnlineChecker
https://github.com/colapse/Autopsy-GoldenImage
https://github.com/mvetsch/Autopsy-AuthentiCodeVerification
https://github.com/colapse/Autopsy-TagFilter

8.9. Conclusion

8.9.1. Results

The results of the implemented features within this project are powerful extensions for Au-
topsy. They bring great benefits to digital forensic analysts and can make them safe a lot of
valuable time by partially automating analysis steps.

8.9.2. Dismissed Features

Some of the initially planned features, were not implemented within this project due to dif-
ferent reasons. Following listing presents the planned features that got dismissed.

• Analyse Registry Data (See 6.4.5)

• Analyse Meta Information (See 6.4.6)

• Analyse Event Log (See 6.4.8)

• OpenIoC Scanner (See 6.4.9)

Some of the implemented features took more time than expected. Further on, due to the agile
implementation method, the decision to implement the feature "AuthentiCode verification"
was made in the middle of the development phase. Due to the above mentioned reasons,
some of the other planned features had to be dismissed, because there was not enough time
to implement everything.

The feature "Analyse Registry Data" (See 6.4.5) was dismissed, because the library contained
in Autopsy, which enables access to the registry data of a windows image is faulty and throws
a lot of exceptions. This made it impossible to implement this feature without exceptional
high effort.

63

9. Benchmarking

The benchmarking was performed to test the practical suitability of the developed features.
On one hand the consumed time per feature was measured, on the other hand the results,
for example the amount of hits per module. The goal is to make a statement about the time
consumption, the efficiency and the quality of the results.

9.1. Benchmarking setup

The specific tests measure the runtime of a specific module. They do not measure the import
of the data source into autopsy or other modules which may have been executed on the data
source.

9.1.1. Hardware

All tests have been performed on the same Hardware. Table 9.1 shows the hardware specifi-
cation of the used computers in this benchmarking.

Manufacturer Lenovo
Model T410 Notebook
RAM 8 GB
Solid State Disk Samsung SSD 256 GB
CPU Intel Core i5 CPU M520 2,4 GHz

Table 9.1.: Benchmarking: Hardware

9.1.2. Data sources

The benchmarking was accomplished with four different images. All images have Windows 8
installed with the latest patches (28th May 2016).

64

Table 9.2 shows a list of the images and describes their characteristics.

1 win8-GoldenImage_Bitlocker Golden Image, a lot of 3rd party software in-
stalled, size is 60GB

2 win8-GoldenImage_Reboot_Bitlocker Golden Image after a single reboot, size is
60GB

3 win8-GoldenImage_No_Bitlocker Golden Image without Bitlocker enabled, size
is 60GB

4 win8_Raw_Bitlocker Windows 8 installed without any third party
software, size is 25 GB

Table 9.2.: Benchmarking: Images

The images have been copied to the SSD on the benchmarking device before the test was
started.

9.2. AuthentiCode on raw Windows 8

This test measures the AuthentiCode module on a Windows 8 installation without additional
software installed (Image No. 4 as listed in table 9.2).

Analysed Image 4
Duration 19 minutes 46 seconds
Embedded Signatures found 8’250
Amount of catalog files 23’010
Amount of files signed through detached files 125’829
Amount of different Publishers 27

Table 9.3.: Benchmarking: AuthentiCode on raw Windows 8

9.2.1. Conclusion

This test displays, that about four out of five files on a raw Windows 8 installation are signed
with an AuthentiCode Signature. (fig. 9.1). The majority of the content of the installation
has a detached signature. The majority of the signatures have been issued by Microsoft. The
remaining five percent are drivers signed by the hardware manufacturer.

65

Signature Type Publisher

Embedded Signatures

Detached Signatures

Files without Signature

Microsoft

3rd Party (Drivers)

4.81%

73.37%

21.81%

5%

95%

Figure 9.1.: Signature information of a raw Windows 8 Image

9.3. GoldenImage Reboot check

In this test the golden image module was run over two nearly equal system images. The dif-
ference between the two images is simply a restart of one of the images to see what happened
on the system during a restart of the system.

Table 9.4 shows the results of this benchmarking.

Analysed Image 1 and 2
Duration 22 hours 17 minutes
Good files 246857
Changed files 3587
Deleted files 3459
New files 429

Table 9.4.: Benchmarking: Golden Image - reboot

9.3.1. Conclusion

The runtime of the module is unexpected high. The expected duration is about 10 percent
of the actual consumed time. The difference is caused by a Java method which is looking for

66

a file on the dirty image by using the path and file name. This method takes a lot of time to
deliver a result. Since this method is part of the Autopsy core (connected with functionality
in Sleuth Kit), this issue cannot be resolved within the module.

9.4. HashSet check

The following hash sets have been downloaded and indexed to the Autopsy forensic plat-
form.

• NIST NSRL 2.51
• VirusShare.com (accessed at 5th June 2016)
• ClamAV Database (accessed at 5th June 2016)

The selected image is a fresh and untouched Windows 8 installation. The image is considered
to be uninfected. All matches on a Known Bad hash set are considered to be false positives.

Table 9.5 shows the results of this benchmarking.

Analysed Image 4
Duration 28 minutes 54 seconds
NIST NSRL matches 18968
VirusShare false positives 91
ClamAV DB false positives 2
False positives through empty files 22685
Unidentified Files 137 052

Table 9.5.: Benchmarking: HashSet check

NIST NSRL Hits

NIST NSRL Hits

Unidentified Files

10.6%

89.4%

Figure 9.2.: Signature information of a raw Windows 8 Image

67

9.4.1. Conclusion

The above mentioned results of this benchmarking (Table 9.5 and figure 9.2) clearly show,
that this feature is not very effective since it delivers a load of false positives and a large
amount of the files on a fresh Windows 8 installation are not recognized. The NIST NSRL
database only identified 10.6% of all the files on the image which is a very low amount.

9.5. Bitlocker Efficiency

In order to test the efficiency of the Bitlocker feature, we have tested two similar scenarios.
In one of the scenarios we tested some modules on a Bitlocker encrypted image and in an-
other scenario one without. This test indicates the additional overhead by using Bitlocker
encrypted partitions.

This test is meaningful when running a module over the content with a high reading rate. The
benchmarking test from section 9.4 has been performed on the same image without Bitlocker
encryption.

Image 1, Bitlocker enabled 28 minutes 54 seconds
Image 3, Bitlocker disabled 12 minutes 7 seconds

9.5.1. Conclusion

This test illustrates a performance overhead for encrypted data sources. This specific test
took a factor of 2.39 longer on the encrypted data source. In cases with a lot of different
modules running through a large amount of files, it could save a lot of time if the data source
would be decrypted in a first step and then import the decrypted data source into Autopsy.

68

10. Conclusion

10.1. Assessment of the results

The result of the project is a feasible Forensic Triage Kit. The strength of the tool kit lies in the
separation of known-good files. Nevertheless, due to the troubles occurred with understand-
ing the Autopsy forensic platform, not all planned features could be implemented during the
project.

10.1.1. Summary of the implemented Features

We enhanced the forensic triage with Autopsy with the following features:

• Support for Bitlocker encrypted volumes
• Automated download for a several hash-sets
• Golden Image module
• AuthentiCode verification module
• VirusTotal online hash check module
• Tag Filter module

The features allow a forensic triage, targeting Windows systems, although some modules can
also be used for other operating systems. More analysis modules can be used in the same
projects using Autopsy or third party modules [4].

10.2. Outlook

In order to allow further development on our features for everyone, the code is publicly pub-
lished on GitHub. (See chapter 8.8 for further information)

We are convinced that our features will be successfully applied in practice. The industry

69

partner of this Bachelor Thesis already planned to use the Forensic Triage Kit in a customer
project.

This test run will decide whether it is useful in the industry and if it is worth to start further
development and implement new features.

To get feedback from the Autopsy community, we will participate in the Autopsy module con-
test this year. The response from the community will give us besides the test run in the in-
dustry if our features are useful and if it makes sense to extend the existing features.

The possibilities for forensic triage are way not exhausted yet. Based on Autopsy and our
contribution, it is possible to implement more analysis techniques. Most of our implemented
features have potential to be extended with additional functionality to improve analysis and
output. Further on there a lot more forensic methods which have not been implemented yet
for Autopsy, so there is a lot more that can be done to improve digital forensic processes with
this tool kit.

70

Part II.

Appendices

71

A. Aufgabenstellung

A.1. Einführung

Je länger je mehr wird die Untersuchung von potentiell verseuchten Workstations und Server-
systemen zur täglichen Routine eines IT Forensikers resp. Mitarbeitenden in Computer In-
cident Response Teams (CIRTs). Bei der Triage von potentiell verseuchten Inhalten werden
typischerweise Blacklists von Malware und Whitelists von bekannten Softwarekomponen-
ten herangezogen. Im Enterprise-Umfeld können in der Regel sogar Festplattenabbilder von
Neuinstallationen als Referenz verwendet werden.

A.2. Aufgabe

Im Rahmen dieser Arbeit sollen ein Framework sowie eine Hand voll Basis-Plug-Ins erstellt
werden, welche die Triage automatisieren und bekannte Dateien aus der Verarbeitung auss-
cheiden. Zudem soll eine Zusammenstellung der Resultate präsentiert werden. Die übrigen
Dateien gilt es mit weiteren Plug-Ins zu analysieren.

Es sollen Mechanismen für die Anbindung von Listen und Abbildern bereitgestellt werden.
Zudem muss für spezifische Dateitypen die nachgelagerte Detailanalyse mittels Plug-In möglich
sein.

Als Basis dient auch eine Master-Thesis in Forensik, welche unter Anderem den Vergleich von
virtuellen Datenträgern beleuchtet.

Es geht im Rahmen dieser Arbeit weder um die formal korrekte Behandlung von Daten-
trägern (chain of custody) noch geht es um die Analyse von Malware oder das wiederher-
stellen von gelöschten Daten.

A.2.1. Mögliche Tätigkeiten

• Studium der verfügbaren Tools und White- resp. Blacklists

72

• Studium vorhandener Unterlagen zu Triage-Prozessen und Vergleich von VM-Disks
• Erarbeitung einerÜbersicht und Erklärung von bekannten Vorgehensweisen für Unter-

suchungen
• Übersicht von möglichen Infektionsarten und wie man diese detektieren könnte
• Erarbeitung von Visuals für mögliche Reports und Teilreports
• Design eines offenen Frameworks für die Untersuchung und Vergleich von Disks evt.

Memory
• Definition des Mindestumfang im Rahmen der Arbeit
• Programmierung eines Frameworks/Toolkit

A.2.2. Benötigtes Skillset

• Linux Kenntnisse (Kali Distribution, mount, fdisk, dd, libguestfs, dmesg)
• Kenntnis über Dateisysteme (physisch und virtuell, NTFS, HFS+, LVM, RAID, NFS, CIFS)
• Kenntnis zu Festplattenverschlüsselung
• Python Kenntnisse, Software Engineering Prozesse und Patterns, RUP, SCRUM, GIT
• Malware Analyse (clamav, ICAP, volatility, yara, IOCs)
• Blacklist, Whitelist verfahren

A.3. Vorgehen

Im Rahmen der allgemeinen Richtlinien zur Durchführung von Studien- und Bachelorar-
beiten gemäss eigenem Projektmanagementplan. Dieser Projektmanagementplan ist als Er-
stes von den Studenten zu erstellen und enthält insbesondere:

• Die Beschreibung des dem Projektcharakter angepassten Vorgehensmodells.
• Eine erste Aufteilung der Aufgabe in gemeinsam und einzeln zu bearbeitende Teile

unter Berücksichtigung der vorgegebenen Teilaspekte. Die genaue Aufteilung muss
spätestens nach der Technologiestudie erfolgen.

• Den Projektplan (Zeitplan) und die Meilensteine.

A.4. Randbedingungen

• Wo möglich sollten Open Source Produkte eingesetzt werden
• Als Betriebssystem soll die Kali Linux Distribution zum Einsatz kommen.
• Das Framework muss in Python geschrieben werden.
• Der Einsatz des Toolkit muss offline (ohne Netzwerkverbindung) möglich sein

73

• Black und Whitelists sollten mit einem Updatemechanismus aktualisiert werden kön-
nen

• Die Dokumentation wird in Englisch erwartet.

A.5. Infrastruktur

Die Arbeiten werden auf den Rechnern der Studenten durchgeführt. Zusätzlich benötigte
Software oder Hardware wird bei Bedarf und nach Rücksprache mit Compass Security zur
Verfügung gestellt.

A.6. Erwartete Resultate

A.6.1. In elektronischer Form

• Installationskit (alle Dateien für eine Installation und Installationsanweisung)
• kompletter Source Code
• komplette Software Dokumentation (Use Cases, Klassenmodell, Sequenzdiagramme

usw. in UML)
• komplettes Use Cases und Success Scenarien resp. Musterlösungen
• alle Dokumente
• alle Protokolle

A.6.2. Auf Papier

Gemäss der Anleitung der HSR:
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html

Es muss aus den abgegebenen Dokumenten klar hervorgehen, wer für welchen Teil der Arbeit
und der Dokumentation verantwortlich war (detaillierte Zeiterfassung).

74

https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html

A.7. Termine

A.7.1. Start / Ende

Gemäss Vorgabe der HSR:
https://www.hsr.ch/Termine-Bachelor-und-Studiena.5142.0.html

22.2.16 Beginn der Bachelorarbeit, Ausgabe der Aufgabenstellung durch die Be-
treuer.

xx.5.16 Fotoshooting. Genauere Angaben erteilt die Kommunikationsstelle
rechtzeitig.

08.6.16 Die Studierenden geben den Abstract fÃijr die DiplomarbeitsbroschÃijre zur
Kontrolle an ihren Betreuer/Examinator frei. Die Studierenden erhalten
vorgängig vom Studiengangsekretariat die Aufforderung und die Zugangs-
daten zur Online-Erfassung des Abstracts für die Broschüre.
Die Studierenden senden per Email das A0-Poster zur Prüfung an ihren Ex-
aminator/Betreuer.
Vorlagen sowie eine ausführliche Anleitung betreffend Dokumentation ste-
hen unter den allgemeinen Infos Diplom-, Bachelor- und Studienarbeiten
zur Verfügung.

15.6.16 Der Betreuer/Examinator gibt das Dokument mit dem korrekten und voll-
ständigen Abstract für die Broschüre zur Weiterverarbeitung an das Studi-
engangsekretariat frei.
Fertigstellung des A0-Posters bis 10.00 Uhr und Weiterleitung als PDF-
Dokument an das Studiengangsekretariat.

17.6.16 Abgabe des Berichtes an den Betreuer bis 12.00 Uhr.
17.6.16 Präsentation der Bachelorarbeiten, 16 bis 20 Uhr
08. - 26.8.16 Mündliche BA-Prüfung
30.9.16 Bachelorfeier und Ausstellung der Bachelorarbeiten, ab 09.00 Uhr

A.7.2. Zeitplan und Meilensteine

Zeitplan und Meilensteine für das Projekt sind von den Studenten selber zu erarbeiten und
zusammen mit dem Projektmanagementplan abzuliefern. Die Meilensteine sind bindend.
Der erste Meilenstein ist vorgegeben. Mit den Betreuern werden regelmässige Sitzungen zur
Fortschrittskontrolle durchgeführt.

Abgabetermin Projektmanagementplan in der Woche vom 7. März 2015

75

https://www.hsr.ch/Termine-Bachelor-und-Studiena.5142.0.html

A.8. Betreuung

Die Arbeiten werden durch Cyrill Brunschwiler betreut. Der Gegenleser ist noch nicht bes-
timmt.

A.8.1. Kontakt

Cyrill Brunschwiler, Managing Director, Compass Security Schweiz AG Werkstrasse 20, 8645
Jona, Switzerland Tel: +41 55 214 41 73 http://www.csnc.ch/

Please submit files securely using Filebox
https://secure.csnc.ch/inbox/DshpdeDVVP68Pp

A.9. Referenzen

• Vorgaben HSR
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html

• Computer Forensics Field Triage Process Model
http://www.digitalforensics-conference.org/CFFTPM/CDFSL-proceedings2006-
CFFTPM.pdf

• Forensic Tools List
http://forensicswiki.org/wiki/Tools

• YARA - the pattern matching swiss knife for malware researchers
https://plusvic.github.io/yara/

• LOKI - Indicators Of Compromise Scanner
http://www.darknet.org.uk/2016/01/loki-indicators-compromise-scanner/

• THOR Scanner (LOKI License Version)
https://www.bsk-consulting.de/apt-scanner-thor/

• The OpenIOC (Open Indicators of Compromise)
http://www.openioc.org/

• Using IOC (Indicators of Compromise) in Malware Forensics
https://www.sans.org/reading-room/whitepapers/forensics/ioc-indicators-
compromise-malware-forensics-34200

• Forensic Triage for Mobile Phones with DEC0DE
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Walls.pdf

• Windows Sysinternals Sigcheck
https://technet.microsoft.com/de-ch/sysinternals/bb897441.aspx

• SANS Blog on Triage
https://digital-forensics.sans.org/blog/2011/05/26/digital-forensics-case-
leads-triage-live-incident-response-memory-forensics

76

https://secure.csnc.ch/inbox/DshpdeDVVP68Pp
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html
http://www.digitalforensics-conference.org/CFFTPM/CDFSL-proceedings2006-CFFTPM.pdf
http://www.digitalforensics-conference.org/CFFTPM/CDFSL-proceedings2006-CFFTPM.pdf
http://forensicswiki.org/wiki/Tools
https://plusvic.github.io/yara/
http://www.darknet.org.uk/2016/01/loki-indicators-compromise-scanner/
https://www.bsk-consulting.de/apt-scanner-thor/
 http://www.openioc.org/
https://www.sans.org/reading-room/whitepapers/forensics/ioc-indicators-compromise-malware-forensics-34200
https://www.sans.org/reading-room/whitepapers/forensics/ioc-indicators-compromise-malware-forensics-34200
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Walls.pdf
https://technet.microsoft.com/de-ch/sysinternals/bb897441.aspx
https://digital-forensics.sans.org/blog/2011/05/26/digital-forensics-case-leads-triage-live-incident-response-memory-forensics
https://digital-forensics.sans.org/blog/2011/05/26/digital-forensics-case-leads-triage-live-incident-response-memory-forensics

A.10. Unterschriften

77

B. Golden Image Documents

B.1. Module: Golden Image - Options

B.1.1. Introduction

This document shows the research about possible options on how to implement the "Golden
Image"-Feature in Autopsy. In the end there will be a conclusion with the best option from
the view of the Author.

The Golden Image

In this chapter I will give you a short introduction about the golden image: What is it? Why
do we need it? What benefits will it bring? The golden image is a regular image, like any other.
It doesn’t contain any special features or characteristics. The reason why it’s called "golden
image" is, because it is a fresh installation of the operating system (in our project it will be a
fresh Windows installation). That means, the image won’t contain any malware and also no
user-installed software. Now imagine you have an image of a Windows-partition which might
be contaminated. In the real world, such an image can easily have a size of 200GB, 500GB,
1TB or even more. The larger the partition is and the more files and software is saved on it,
the longer it takes to analyse it. What we want to achieve with the golden image module is,
to reduce the scope of the potentially contaminated image which the analyst has to analyse.
The golden image will compare its "safe" files, hashes and more with the equivalents from the
other image and exclude all known safe parts from the contaminated image. This will reduce
the workload of parts which the analyst or software has to scan for malware and can save a
lot of time.

B.1.2. Workflow: The Idea

The workflow in Autopsy looks basically like this:

1. Create a case

78

2. Select Image(s)
3. Run Ingest modules
4. Run analysis modules
5. Run post-processing / reporting modules

Now the initial idea is, that the analyst can add the golden image during Step 2 and somehow
"mark" it as golden image (so the software knows, which of the images the clean one is). Now
in step 3 and step 4, the modules can make use of the golden image.

B.1.3. Option 1

One option for the implementation of the Golden-Image feature is, that while the user adds a
new data source, he has the possibility to also add a golden image. The golden image will be
tagged as golden image and has its own data source type. In the selection and configuration
of the ingest modules, there will be a module called "Golden Image". The module "Golden
Image" will run through all files of the golden image, compare them with the normal image
and tag them as "changed" or as "safe". Additionally a list will be created with all the missing
files - files which are on the golden image, but not on the normal image. This module must be
run before the others so they either have access to the tags or that a data-filter can be applied.
Pros:

• The user can add the golden image while adding the dirty image - all in one step

Cons:

• Changes in the Autopsy Core must be done
• The user needs an Autopsy version with the changes in the core
• It’s only possible to add a golden image while importing a dirty image
• File-Hash generation must be done with every import (for the golden image)

B.1.4. Option 2

Another option on how to implement the Golden-Image feature is following. The following
enumeration describes the workflow:

1. The user adds the golden image:
He adds the golden image as a normal image, like any other.

2. The user adds the dirty image OR wants to re-run the ingest-modules on an existing
dirty image.

79

3. In the selection of the ingest modules that the user wants to run, he selects the module
"Golden Image". In the configuration box, the user can select the golden image (There
will be a dropdown menu in which all other images which were added to the case are
listed - the user needs to know, which of them the golden image is.) There also will be a
button called "Advanced.." which will open a new panel with advanced configurations
for the module (See Step 3.a for further information).

a) A list with all ingest-modules is shown. The user selects the modules which he
wants to run over the filtered data after the comparison and tagging between
golden image and dirty image is done. Further on, the user can also select, which
files should be used for the ingest modules. He has following options: "untagged
files", "changed files" and "safe files".

4. After the configuration, the Golden Image module will be run. First it compares and
tags the files against the dirty image and after that’s done, the ingest module will be run
over the filtered data.

5. In Autopsy, there will be a new panel, where the user can see and filter the files by the
tags or untagged files.

Pros:

• The Golden Image feature is a simple module

– Easy to install
– No special Autopsy version required

• The imported golden image can be used with several dirty images
• The golden image feature can be used with already imported dirty images
• File-Hashes must be created only once for the golden image

Cons:

• This process requires multiple steps:

– Import golden image
– Import dirty image / Configure golden image module

B.1.5. Option 3

Option 3 has similarities to option 2 regarding the first steps:

1. The user adds a golden image as data source in Autopsy

80

2. The user adds an image which he would like to analyse.

Now in the step where the user selects the ingest modules which he likes to run over the
image. In the selection, he selects the module "Golden Image" and in the settings, he selects
the golden image from a list. Further on, he selects all the other ingest modules from the
module-list which he would like to run over the reduced dataset from after the golden-image
comparison. At first, the golden image module will be run, which will tag the files in the other
image. After the execution, all the other selected ingest modules will be run, but only on the
reduced dataset.

Pros:

• The imported golden image can be used with several dirty images
• The golden image feature can be used with already imported dirty images
• File-Hashes must be created only once for the golden image

Cons:

• This process requires multiple steps:

– Import golden image
– Import dirty image / Configure golden image module

• Changes in the Autopsy core need to be done
• The user requires a special version of Autopsy with the golden image features

B.1.6. Conclusion

We have decided, that Option 2 is the best option. It has several benefits such as:

• The data source / run-ingest-modules wizard must not be changed
• The golden image feature will be an ingest module, no changes in the core need to be

made
• It’s not necessary to implement a special data source type for golden images
• Compared to the other options it has the most pros and the fewest cons

Option 3 is very similar to option 2, but the reason why we decided not to take option 3
is, because we would have to make changes in the integration wizard (a core-component of
Autopsy) while in option 2 we only have to implement a simple-to-integrate module. That is
a clear benefit of option 2 against option 3.

Option 1 is the most time consuming option and also there we would have to make changes
in the Autopsy-core. Additionally we would have to add 2 data sources at the same time. Fur-

81

ther on it could also increase the overall processing time if the user wants to run the golden
image feature over several dirty images (Because of the repeating hash calculation).

B.2. Module: Golden Image - Planning

B.2.1. Introduction

This document describes, how the module "Golden Image" will be implemented. Several
parts will be described such as the workflow, design decisions and process descriptions.

The Golden Image

The golden image is a regular image, like any other. It doesn’t contain any special features or
characteristics. The reason why it’s called "golden image" is, because it is a fresh installation
of the operating system (in our project it will be a fresh Windows installation). That means,
the image won’t contain any malware and also no user-installed software. Now imagine you
have an image of a Windows-partition which might be contaminated. In the real world, such
an image can easily have a size of 200GB, 500GB, 1TB or even more. The larger the partition is
and the more files and software is saved on it, the longer it takes to analyse it. What we want to
achieve with the golden image module is, to reduce the scope of the potentially contaminated
image which the analyst has to analyse. The golden image will compare its "safe" files, hashes
and more with the equivalents from the other image and exclude all known safe parts from
the contaminated image. This will reduce the workload of parts which the analyst or software
has to scan for malware and can save a lot of time. Before this documentation, several ideas
and options on how to implement the "Golden Image" feature were created an described
in the document "GoldenImageOptions_EN.docx". We decided to do the implementation
based on Option 2 which is described in the before mentioned document.

B.2.2. General Workflow

Following is a superficial workflow-description of the use of the "Golden Image" module:

1. The user adds the golden image:
He adds the golden image as a normal image, like any other.

2. The user adds the dirty image OR wants to re-run the ingest-modules on an existing
dirty image.

82

3. In the selection of the ingest modules that the user wants to run, he selects the module
"Golden Image". In the configuration box, the user selects the golden image (There
will be a dropdown menu in which all other images which were added to the case are
listed - the user needs to know, which of them the golden image is.) There also will be a
button called "Advanced.." which will open a new panel with advanced configurations
for the module (See Step 3.a for further information).

a) A list with all ingest-modules is shown. The user selects the modules which he
wants to run over the filtered data after the comparison and tagging between
golden image and dirty image is done. Further on, the user can also select, which
files should be used for the ingest modules. He has following options: "untagged
files", "changed files" and "safe files".

4. After the configuration, the Golden Image module will be run. First it compares and
tags the files against the dirty image and after that’s done, the selected ingest modules
will be run over the filtered data.

5. In Autopsy, there will be a new panel, where the user can see and filter the files by
the tags or untagged files. All ingest module results will be displayed according to the
modules implementation. This module won’t have any influence on these results.

B.2.3. Module Type

The module will mainly be a "Data-source-level Ingest Module" according to the official de-
scription of the Autopsy documentation. More information can be found on following URL:

http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html

The reason for this decision is, because in this module type a reference to the dirty image will
be passed. This allows us to search the meta-data database of the dirty image, for the files
on the golden image. Further information about this process can be found in the following
chapters. Additionally the "Golden Image" module will contain a result-viewer module and
a data-viewer module. More information about these Autopsy module types can be found
on following URL:

http://sleuthkit.org/autopsy/docs/api-docs/4.0/index.html

83

http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/index.html

Initial Workflow Steps

In order to compare a dirty image with a golden image, the user has to import a golden image
as a regular data source in Autopsy. The user doesn’t have to run any ingest modules over
this image (unless he wants to). After he added the golden image, he either has to import the
dirty image to Autopsy, or open the panel where he can re-run ingest modules over the dirty
image if he already added a data source. In the following chapter "Module Settings" we will
talk about the settings of the "Golden Image" module which the user has to/can set before
running the module.

B.2.4. File Tagging and "Deleted Files"

During the comparison process in this module, files will be tagged. All file-tagging will hap-
pen on the dirty image. There are 4 types of files:

• Untagged files
• Changed files
• Safe files
• Deleted files

Untagged Files are files which weren’t found on the golden image. Changed Files are files
which are found on the golden image but differ from the one on the dirty image. These files
will be marked on the dirty image as "Changed". Safe Files are files which are found on the
golden image and weren’t changed. These files will be marked on the dirty image as "Safe".
Deleted Files are files which are found on the golden image but weren’t found on the dirty
image. These files will be added to the list "Deleted Files".

B.2.5. Module Settings

The "Golden Image" module will enable the user to set following settings. Some of the set-
tings are optional, others are required to be set by the user.

• The Golden Image: The user has to specify the golden image. There will be a dropdown
in which the user can select the golden image out of all images which were imported
to the current Autopsy-case. The dirty image won’t be in the list to make sure that the
dirty image won’t be compared with itself. MUST-Setting.

• Ingest Modules: The user can select out of a list the ingest modules that he wants to be
run on the resulting dataset after the comparison and tagging. The module "Golden
Image" won’t be shown in the selection to avoid loops. OPTIONAL-Setting.

84

• Dataset Filter: The user can select, which data he wants to be scanned/processed by
the Ingest Modules. He will have the following options:

– "Untagged Files": These are all files, which are not existing on the golden image.

– "Changed Files": These are all files, which are existing on the golden image, but
which were changed.

– "Safe Files": These are all files, which are existing on the golden image and weren’t
changed. (Usually these files don’t have to be analysed since they should be safe)

The selection of the Golden Image will be placed in the general settings panel of the Golden
Image. (See following wireframe "Wireframe: Ingest Module Selection"). The settings for
the Ingest Modules and Dataset Filter will be in a separate panel which is callable through
opening the advanced-setting panel. (See following wireframe "Wireframe: Advanced Set-
tings").

Wireframe: Ingest Module Selection

Following wireframe shows the ingest module selection which is shown when adding a new
data source or when re-running ingest modules of already imported data sources. This panel
already exists in the Autopsy core, the interesting part is on the right side where the general
settings of the "Golden Image" module is displayed. When the "Golden Image" module entry
is focused, the general settings panel of this module is shown. It provides a short description
about module and also a Dropdown-menu from which the user can select a golden image.
On the lower right side there is a button called "Advanced". This will open a new panel with
advanced settings for the "Golden Image" module. See the following chapter "Wireframe:
Advanced Settings" for more information.

85

Figure B.1.: Wireframe - Ingest Module Selection

Wireframe: Advanced Settings

Following is a wireframe from the panel with advanced settings for the "Golden Image" mod-
ule. Ingest Modules: The user can select the ingest modules which he wants to be run when
the comparison and tagging process is done. Dataset Filter: The user can select which files
he wants to be analysed by the ingest modules.

86

Figure B.2.: Wireframe - Advanced Settings

B.2.6. Golden Image View

There will be a new view in Autopsy for the Golden Image module. In this view, the user can
search for the filtered files. The user can filter the files by the tags "safe", "changed" and also
display the untagged files. Additionally there will be a list of the deleted files.

B.2.7. Golden Image Workflow

This chapter describes the workflow of the "Golden Image" module when it’s run. There are
two main-steps in this process:

• Comparison and Tagging

• Run Ingest Modules

87

Comparison and Tagging

In this step, the module runs through all files in the golden image. Each file will be checked
against the dirty image. It will be checked if it exists, got changed or is the same. Following
flow chart describes the process of each file.

88

Figure B.3.: Golden Image - Flow Chart

89

Run Ingest Modules

After the golden image comparison and file tagging is done, the initially selected and config-
ured ingest modules will be run. The dataset which will be processed by the ingest modules,
depends on the initial configuration made by the user.

90

C. Installation Guide

The target platform is Kali Linux. You have to install Oracle JDK 8 before you can use au-
topsy properly. If you run autopsy with the preinstalled OpenJDK, the software will not work
properly.

To install autopsy on Kali Linux, the delivered Debian package can be used. This package
contains all features including the developed Modules. Autopsy can be installed and started
with the following commands:

1 $ apt−get i n s t a l l −y . / autopsy4 . deb
2 $ # run autopsy :
3 $ autopsy4

Listing C.1: Installation of autopsy on Kali linux

C.1. Plugin installation

To install the Autopsy plugins on a different Installation, you have to open Autopsy. In Op-
tions -> Plugins -> Downloaded you can select the *.nbm files on your disk.

Select all plugins you want to install, and press install. Now you can use the selected plugins
in your Autopsy projects.

91

D. User Guide

D.1. Add a Bitlocker Data Source to Autopsy

To add a Bitlocker encrypted volume to an autopsy case use the standard add data source wiz-
ard. Select a disk image or a local disk containing a Bitlocker encrypted volume (fig. D.1).

Figure D.1.: Screenshot of add data source wizard

The decryption module detects all Bitlocker encrypted volumes and adds a configuration
panel to the wizard. Choose one of the three key types and enter the key. Press next (fig. D.2).

92

Figure D.2.: Configure key for encrypted volume in Data Source Wizard

The wizard requires some time to add all meta-data information from the data source to the
case database. After this step, the encrypted volume is usable as additional data source in the
autopsy case (fig. D.3).

93

Figure D.3.: Autopsy project including a Bitlocker encrypted volume

D.2. Update Hash Sets

The Autopsy options panel (fig. D.4) contains a register for Hash Databases. Using the "up-
date hashset" button, you can choose which hash sets you want to download (fig. D.5).

94

Figure D.4.: Hash Database configuration panel

95

Figure D.5.: Wizard to automatically download hash sets

Figure D.6 shows the the hash database panel with the included hash sets.

96

Figure D.6.: Hash Database configuration panel with downloaded hash sets

D.3. Verify AuthentiCode Signatures

The AuthentiCode Ingest Module is launched like every other ingest module in Autopsy. The
user configures with which hash types he wants the module to compute the files on the data
source to. (fig. D.7). The modules default is to compute SHA-1 and SHA-256 hashes. This
delivered enough information from the images for the benchmarking.

97

Figure D.7.: AuthentiCode configuration options

After the module has finished, the tagged files are visible in the autopsy project. The tag name
is the subject of the signer certificate (fig. D.8).

Figure D.8.: File tags created by AuthentiCode ingest module

To see more information about the AuthentiCode signature, you can use the data content
viewer tab (fig. D.9).

98

Figure D.9.: AutheniCode Data Content Viewer Tab

D.4. VirusTotal Online Checker

This is a standard file ingest module. To use this module, you have to obtain a personal API-
key for the VirusTotal API. After successful registration on http://www.virustotal.com you
automatically receive the key.

Figure D.10 displays the API-key configuration panel. The module will not work if the

Figure D.10.: AutheniCode Data Content Viewer Tab

99

http://www.virustotal.com

D.5. Golden Image

In order to run the Golden Image ingest module, you need to have two data sources imported
to Autopsy:

• The dirty image: The image with possible infection

• The golden image: The image which is known not to be infected by any kind of malware

To run the module, you need to open the run-ingest-modules panel on the dirty image. Select
the module Golden Image.

When you click on the Golden Image entry in the ingest module list, the settings panel will
appear on the right side of the window. Select the golden image - which you want to run the
dirty image against - from the dropdown in the settings panel as shown in the screenshot
below.

Figure D.11.: Golden Image - Configuration

After you start the ingest process, you will see its progress on the lower corner of the main
window of Autopsy.

When the Golden Image module is done processing you can view the tagged files. Top open
the file lists of the tagged files, open the navigation "Tags -> [Tagname] -> File Tags" in the left
navigation panel.

100

Figure D.12.: Golden Image - Show tagged files

D.6. Tag Filter

Opening The Tag Filter

In the upper right corner, there is a button called "Tag Filter" as shown in the screenshot
below. By clicking on it, a new window will open with the filter configuration panel.

101

Figure D.13.: Tag Filter - Open

Tag Filter Configuration Panel

Following screenshot shows the Tag Filter configuration panel.

• Button "Add Filter": By clicking on this button, a new filter will be added to the end of
the list.

• Button "Add Filter Group": By clicking on this button, a new filter group will be added

to the end of the list. By clicking on the plus-icon () on the right side of the filter
group, a new filter can be added to this filter group.

• Dropdown Data Source: The user can specify, if he only wants to search for files on a
specific data source. If none is selected, the filter will search for files in all data sources
contained in the current Autopsy case.

• Button "Filter": By clicking on this button, the filter will be applied and matching files
are being searched. The Tag Filter configuration window will close and a list with the
matched files will be displayed to the user.

The filters / filter groups are meant to be read top-down. The combination-operator (AND /
OR) is connected to the previous filter in the list.

102

Figure D.14.: Tag Filter - Configuration Panel

Filter Entry

Following screenshot shows a filter entry within the Tag Filter configuration panel:

Figure D.15.: Filter Entry

• Dropdown "Combination-operator": In the first dropdown on the left, you can specify
the combination-operator AND / OR.

• Dropdown "Negation-operator": In the second dropdown on the left, you can specify
the negation-operator Contains / Doesn’t contain.

• Dropdown "Tag": In the third dropdown on the left, you can specify the tag of which
this filter is about. This dropdown dynamically shows all tags contained in the current
Autopsy case.

• This button enables you to move the filter down in the list.

• This button enables you to move the filter up in the list.

• This button enables you to delete the filter from the list.

103

When you are done with setting up your filter, click on the button "Filter" in the lower right
corner.

Tag Filter File List

After creating and applying a filter, all matched files will be displayed within a table as follow-
ing screenshot shows:

Figure D.16.: Tag Filter - File List

104

E. Analysis of Forensic Tool-kits

This chapter gives an overview about existing open source forensic tool kits.

E.1. Open Source Forensic Frameworks

E.1.1. MantaRay

Figure E.1.: MantaRay Forensics

Project webiste: http://mantarayforensics.com/category/mantaray/

MantaRay[21] is a forensic tool designed to automate the forensic processing of images with
existing open source tools. This tool kit comes with a graphical wizard. The wizard allows you
to run several modules/tools on an Image. Every Module creates an output file in a output
directory with detailed information about the results of the processing.

This tool meets plenty of our requirements for our forensic tool kit:

• Open Source

• Modular architecture

• Supports several image formats

105

http://mantarayforensics.com/category/mantaray/

There are also some downsides which will have a tremendous effect on our decision:

• Not actively developed anymore

• Installers do not work due to dependency problems.

The project is hosten on GitHub[22]. A compiled version can be downloaded directly on their
website[20].

E.1.2. The Sleuth Kit

Figure E.2.: The Sleuth Kit logo

Project webiste: http://sleuthkit.org/sleuthkit/

The Sleuth Kit[13] (TSK) is an open-source library and collection of several command-line
tools for analysing disk-images. Its main features is the analysis of volume and filesystem
data. This framework doesn’t come with a graphical user interface.

This open-source project allows to analyse disks in 3 Steps:

1. File extraction Phase

2. File Analysis Phase

3. Post Processing Phase

Some of the benefits of the Sleuth Kit are:

106

http://sleuthkit.org/sleuthkit/

• You can integrate it in other forensic tools

• You can implement new modules

• It handles the import of several disk-image types

• Active community

• Open Source

The project is hosted on GitHub[14] and it is written in c++. The Sleuth Kit framework can be
downloaded[12] directly on their website in different versions. The contribution of Modules
is well documented and welcome.

This framework comes with many benefits and a rich set of features. It might be a good choice
to build upon.

E.1.3. Autopsy

Figure E.3.: Autopsy

Project webiste: http://sleuthkit.org/autopsy/

Autopsy[3] was developed by the same company as the Sleuth Kit[13]. It is a digital foren-
sic platform with a graphical user interface for the Sleuth Kit framework and other forensic
tools. Like the Sleuth Kit, Autopsy is open source too. It has a modular architecture which
makes it easy to implement further features. Modules can be integrated into Autopsy while
the software is running and there are already several 3rd party modules.

107

http://sleuthkit.org/autopsy/

Autopsy is written in Java and uses several Netbeans libraries of the Netbeans Platform[netbeansplatform].
Further on, you can also implement your modules in Python, although they will be compiled
to Java, which comes with some limitations.

Some of the main benefits are:

• It uses the Sleuth Kit[13], which is a powerful framework

• Modular architecture

• Open Source

• Active community

• Ongoing development

• Java (Since we are good at Java development)

The autopsy project is hosted on GitHub[8] and it is mainly written in Java. The most recent
versions of Autopsy for Windows systems can be downloaded[7] on their website.

Due to its several benefits, it has a big potential for being our number one choice of software
to build upon.

E.1.4. LOKI Free IOC Scanner

Figure E.4.: LOKI

Project website: https://github.com/Neo23x0/Loki

LOKI is a scanner for simple indicators of compromise (IoC)[25]. It comes with some inter-
esting Features:

108

https://github.com/Neo23x0/Loki

• MD5 / SHA1 / SHA256 hashes

• Yara Rules (applied to file data and process memory)

• Hard Indicator Filenames based on Regular Expression (e.g. \\pwdump\.exe)

• Soft Indicator Filenames based on Regular Expressions (e.g. Windows\\[\w]\.exe)

This tool comes with some disadvantages:

• The project has no documented extension points

• The project is designed to run on the target host itself.

• It’s not a tool kit, rather a tool

Since LOKI isn’t a tool kit, we won’t be able to build upon it. But it’s an interesting tool and we
might be able to integrate it in our future tool kit.

E.1.5. PlainSight

Project webiste: http://www.plainsight.info/

PlainSight is a forensic tool kit which combines several open source forensic tools. It comes
with a graphical user interface.

This tool kit provides several features such as:

• Get hard-disk & partition information

• Importing DD-Images

• Several data analysis tools for gathering information

There are some downsides regarding this project:

• They don’t provide the source code for download - you have to contact them to get it

• No active community

• No documentation found

109

http://www.plainsight.info/

• No information about active development

E.1.6. Digital Forensics Framework

Project webiste: http://www.digital-forensic.org/

This is an open source digital forensic framework. It has a modular architecture and already
comes with some features. The downside of this project is, that many important features
aren’t freely available - you have to buy a pro version of the software.

This project isn’t actively extended - no commits in the last 2 years. Further on there is no
active community.

E.2. Tools and Scripts

Following is a list of some interesting scripts and tools:

• Bulk Extractor
Takes an image, file or folder and delivers data by keyword search.
http://www.forensicswiki.org/wiki/Bulk_extractor

• Scalpel
Tool to recover deleted files. (File carving)
https://github.com/sleuthkit/scalpel

• Fireeye’s Redline
Windows tool for live forensics. Many features.
https://www.fireeye.com/services/freeware/redline.html

• Volatility
Memory forensics
http://www.volatilityfoundation.org/

• RegRipper
Registry analysis
https://github.com/keydet89/RegRipper2.8

• NSRLLookup
NIST NSRL DB Query Tool
http://rjhansen.github.io/nsrllookup/

110

http://www.digital-forensic.org/
http://www.forensicswiki.org/wiki/Bulk_extractor
https://github.com/sleuthkit/scalpel
https://www.fireeye.com/services/freeware/redline.html
http://www.volatilityfoundation.org/
https://github.com/keydet89/RegRipper2.8
http://rjhansen.github.io/nsrllookup/

• OSSEC
Host-based Intrusion Detection System (HIDS)
http://ossec.github.io/about.html

• log2timeline
Generate Timelines
https://github.com/log2timeline

• Open IOC Scanner
IOC Database
http://www.openioc.org/

Lists of further forensic tools can be found on following websites:
https://en.wikipedia.org/wiki/List_of_digital_forensics_tools#Computer_forensics
http://www.computer-forensik.org/tools/

E.3. White- and Blacklists

An important part in digital forensics is the use of white- and blacklists. These are lists con-
taining hashes of file which are known good or known bad.

Following is a list with databases that can be used for forensic tasks (mainly for white-/blacklisting):

• NIST National Software Reference Library (NSRL). Hash database with known-good
hashes of Windows operating system and user-software
http://www.nsrl.nist.gov/

• OWASP File Hash Repository (FHR) aggregates several existing hash databases and pro-
vides access via a DNS queries. The project in not online at the time of evaluation.
https://www.owasp.org/index.php/OWASP_File_Hash_Repository

• Kaspersky Whitelist
Online hash database with known-good and known-bad hashse. Public access is lim-
ited to a few requests per minute
http://whitelist.kaspersky.com/

• VirusShare
Downloadable hash database of knonw-bad files.
https://virusshare.com/

• Virustotal

111

http://ossec.github.io/about.html
https://github.com/log2timeline
http://www.openioc.org/
https://en.wikipedia.org/wiki/List_of_digital_forensics_tools#Computer_forensics
http://www.computer-forensik.org/tools/
http://www.nsrl.nist.gov/
https://www.owasp.org/index.php/OWASP_File_Hash_Repository
http://whitelist.kaspersky.com/
https://virusshare.com/

Online hash database of known-bad files. Public access is limited to a few requests per
minute.
https://www.virustotal.com/

112

https://www.virustotal.com/

F. Glossar

AuthentiCode code signing standard by Microsoft
Autopsy Open source forensic analysis platform
Bitlocker Disk encryption software from Microsoft
Blacklist A list containing hashes of known bad files.
CERT Computer Emergency Response Team
Data Source A data source can be a system image, hard disk or a set of files.
Digital Forensics Recovery and investigation of material found in digital devices.
GitHub Provider for Git repositories
Git Version control system
Golden Image An Image which is considered to be uninfected.
Hashset A list of hashes of software artifacts.
Image A (system) image is an exact copy of a hard disk.
Ingest Module A type of autopsy module performing a specific analysis method.
Java Swing Framework for building user interfaces in Java.
Java A programming language.
Kali Linux Security Linux distribution
Kaspersky Digital security organization
Known bad files Files that are known to be (partially) malicious code
Known good files Files that are known to be safe, and which do not contain any kind of

malicious code
Meta data Data that provide information about other data.
module A plug-In or attachable part for a software.
NIST National Institute of Standards and Technology
NSRL National Software Reference Library by NIST.
OpenIOC Open indicators of compromise, a description format of technical characteristics

that identify a known threat.
TSK the Sleuth Kit abbreviation
VirusTotal Online hash lookup
Whitelist A list containing hashes of known good files.

113

G. Bibliography

[1] Aorimn. Dislocker. https://github.com/Aorimn/dislocker. last accessed at 11th
April 2016.

[2] Emmanuel Bourg. jsign libary. https://ebourg.github.io/jsign/. last accessed at
1th June 2016.

[3] Brian Carrier. Autopsy. http://sleuthkit.org/autopsy/. last accessed at 9th April
2016.

[4] Brian Carrier. Autopsy 3rd-Party Modules. http://wiki.sleuthkit.org/index.
php?title=Autopsy_3rd_Party_Modules. last accessed at 28th May 2016.

[5] Brian Carrier. Autopsy Content Viewer Modules. http://sleuthkit.org/autopsy/
docs/api-docs/4.0/mod_content_page.html. last accessed at 23th mai 2016.

[6] Brian Carrier. Autopsy Developers Guide. http://sleuthkit.org/autopsy/docs/
api-docs/4.0/. last accessed at 23th May 2016.

[7] Brian Carrier. Autopsy Downloads. http://sleuthkit.org/autopsy/download.
php. last accessed at 9th April 2016.

[8] Brian Carrier. Autopsy GIT Repository. https://github.com/sleuthkit/autopsy.
last accessed at 9th April 2016.

[9] Brian Carrier. Autopsy Ingest Modules. http://sleuthkit.org/autopsy/docs/api-
docs/4.0/mod_ingest_page.html. last accessed at 23th May 2016.

[10] Brian Carrier. Autopsy Report Modules. http://sleuthkit.org/autopsy/docs/
api-docs/4.0/mod_report_page.html. last accessed at 23th May 2016.

[11] Brian Carrier. Autopsy Result Viewer Modules. http://sleuthkit.org/autopsy/
docs/api-docs/4.0/mod_result_page.html. last accessed at 23th May 2016.

[12] Brian Carrier. SleuthKit Downloads. http://sleuthkit.org/sleuthkit/download.
php. last accessed at 9th April 2016.

[13] Brian Carrier. Sleuthkit framework documentation. http://sleuthkit.org/sleuthkit/
framework.php. last accessed at 9th April 2016.

[14] Brian Carrier. SleuthKit GIT Repository. https://github.com/sleuthkit/sleuthkit/.
last accessed at 9th April 2016.

[15] Mandiant Cooperation. OpenIOC. http://openioc.org/. last accessed at 15th June
2016.

[16] Oracle Corporation. The NetBeans Platform. http://www.netbeans.org/features/
platform. last accessed at 16th June 2016.

114

https://github.com/Aorimn/dislocker
https://ebourg.github.io/jsign/
http://sleuthkit.org/autopsy/
http://wiki.sleuthkit.org/index.php?title=Autopsy_3rd_Party_Modules
http://wiki.sleuthkit.org/index.php?title=Autopsy_3rd_Party_Modules
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_content_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_content_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/
http://sleuthkit.org/autopsy/docs/api-docs/4.0/
http://sleuthkit.org/autopsy/download.php
http://sleuthkit.org/autopsy/download.php
https://github.com/sleuthkit/autopsy
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_ingest_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_report_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_report_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_result_page.html
http://sleuthkit.org/autopsy/docs/api-docs/4.0/mod_result_page.html
http://sleuthkit.org/sleuthkit/download.php
http://sleuthkit.org/sleuthkit/download.php
http://sleuthkit.org/sleuthkit/framework.php
http://sleuthkit.org/sleuthkit/framework.php
https://github.com/sleuthkit/sleuthkit/
http://openioc.org/
http://www.netbeans.org/features/platform
http://www.netbeans.org/features/platform

[17] Simon Garfinkel. Bitlocker Disk Encryption. http://www.forensicswiki.org/wiki/
BitLocker_Disk_Encryption. last accessed at 11th April 2016.

[18] Telia CERT Jimmy Arvidsson. Taxonomy of the Computer Security Incident related ter-
minology. https://www.terena.org/activities/tf-csirt/iodef/docs/i-
taxonomy_terms.html. last accessed at 15th June 2016.

[19] B. Kaliski. PKCS #7: Cryptographic Message Syntax. RFC 2315. RFC Editor, Mar. 1998.
URL: http://www.rfc-editor.org/rfc/rfc2315.txt.

[20] Doug Koster and Kevin Murphy. MantaRay Download. http://mantarayforensics.
com/downloads/. last accessed at 15th June 2016.

[21] Doug Koster and Kevin Murphy. MantaRay Forensics. http://mantarayforensics.
com/category/mantaray/. last accessed at 15th June 2016.

[22] Doug Koster and Kevin Murphy. MantaRay GIT Repository. https://github.com/
mantarayforensics/mantaray. last accessed at 15th June 2016.

[23] Kaspersky Lab. Whitelist Security Approach. http://whitelist.kaspersky.com/.
last accessed at 16th June 2016.

[24] Rotarua Limited. About VirusTotal. https://www.virustotal.com/en/about. last
accessed at 16th June 2016.

[25] Hun-Ya Lock. IoC Article. https://www.sans.org/reading-room/whitepapers/
forensics/ioc-indicators-compromise-malware-forensics-34200. last ac-
cessed at 15th June 2016.

[26] Microsoft. BitLocker Drive Encryption Overview. http://windows.microsoft.com/
en-us/windows-vista/bitlocker-drive-encryption-overview. last accessed at
16th June 2016.

[27] Microsoft. Microsoft PE and COFF Specification. https://msdn.microsoft.com/en-
us/windows/hardware/gg463119.aspx. last accessed at 9th June 2016.

[28] Microsoft. Tools to Sign Files and Check Signatures. https://msdn.microsoft.com/
en-us/library/windows/desktop/aa388151(v=vs.85).aspx. last accessed at 2th
June 2016.

[29] Microsoft. Windows Authenticode Portable Executable Signature Format. http://download.
microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/
authenticode_pe.docx. last accessed at 15th June 2016.

[30] Oracle. JavaTM Native Interface. http : / / docs . oracle . com / javase / 7 / docs /
technotes/guides/jni/. last accessed at 17th April 2016.

[31] Mark Russinovich. sigcheck.exe utility. https://technet.microsoft.com/en-us/
sysinternals/bb897441.aspx. last accessed at 1th June 2016.

[32] Offensive Security. Kali Linux. https://www.kali.org/. last accessed at 9th April
2016.

115

http://www.forensicswiki.org/wiki/BitLocker_Disk_Encryption
http://www.forensicswiki.org/wiki/BitLocker_Disk_Encryption
 https://www.terena.org/activities/tf-csirt/iodef/docs/i-taxonomy_terms.html
 https://www.terena.org/activities/tf-csirt/iodef/docs/i-taxonomy_terms.html
http://www.rfc-editor.org/rfc/rfc2315.txt
http://mantarayforensics.com/downloads/
http://mantarayforensics.com/downloads/
http://mantarayforensics.com/category/mantaray/
http://mantarayforensics.com/category/mantaray/
https://github.com/mantarayforensics/mantaray
https://github.com/mantarayforensics/mantaray
http://whitelist.kaspersky.com/
https://www.virustotal.com/en/about
https://www.sans.org/reading-room/whitepapers/forensics/ioc-indicators-compromise-malware-forensics-34200
https://www.sans.org/reading-room/whitepapers/forensics/ioc-indicators-compromise-malware-forensics-34200
http://windows.microsoft.com/en-us/windows-vista/bitlocker-drive-encryption-overview
http://windows.microsoft.com/en-us/windows-vista/bitlocker-drive-encryption-overview
https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388151(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388151(v=vs.85).aspx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx
https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx
https://www.kali.org/

	Abstract
	Management Summary
	Introduction
	Approach / Technologies
	Results
	Outlook

	Technical report
	Introduction
	Problem statement
	Project

	Standard Forensic Procedure
	Introduction
	Forensic procedure
	Context

	Analysis of existing forensic tool kits
	Triage techniques
	Evaluation of the framework
	Conclusion

	Requirements
	Introduction
	Uses Case Diagram
	Actors
	Functional Requirements
	Non-Functional Requirements
	Conclusion

	Autopsy Architecture
	System context
	Architectural Targets and Decisions
	Logical Architecture
	Specific Procedures and Decisions
	Libaries / Frameworks
	Deployment
	Data Management
	Collaboration between Autopsy and Sleuth Kit

	Results
	Introduction
	Bitlocker Decryption Provider
	Automatic HashSet update
	Virustotal Online Checker
	Golden Image Module
	AuthentiCode verification
	Tag Filter Module
	Repositories
	Conclusion

	Benchmarking
	Benchmarking setup
	AuthentiCode on raw Windows 8
	GoldenImage Reboot check
	HashSet check
	Bitlocker Efficiency

	Conclusion
	Assessment of the results
	Outlook

	Appendices
	Aufgabenstellung
	Einführung
	Aufgabe
	Vorgehen
	Randbedingungen
	Infrastruktur
	Erwartete Resultate
	Termine
	Betreuung
	Referenzen
	Unterschriften

	Golden Image Documents
	Module: Golden Image - Options
	Module: Golden Image - Planning

	Installation Guide
	Plugin installation

	User Guide
	Add a Bitlocker Data Source to Autopsy
	Update Hash Sets
	Verify AuthentiCode Signatures
	VirusTotal Online Checker
	Golden Image
	Tag Filter

	Analysis of Forensic Tool-kits
	Open Source Forensic Frameworks
	Tools and Scripts
	White- and Blacklists

	Glossar
	Bibliography

