
GslAtorPtr
C++ Core Guidelines Pointer Checker and

Support Library Refactorings

Bachelor Thesis

Department of Computer Science
University of Applied Science Rapperswil

Institute for Software

Spring Term 2016

Authors: Elias Geisseler & Philipp Meier
Advisor: Prof. Peter Sommerlad
External-Co-Examiner: Mr. Martin Botzler
Internal-Co-Examiner: Prof. Andreas Steffen

June 17, 2016

Abstract

The role of a raw pointer in legacy C++ is often ambiguous. It could
represent a single object on the heap that must be deleted. It could
represent an array of objects or it could represent a shared object
or one not on the heap. In modern C++ smart pointers can help
to alleviate that problem. However, raw pointers are still common
in code, most notably within legacy systems or when programmers
intend to stay resource efficient. This project wants to use the new
ideas introduced with the C++ Core Guidelines [SS16] to help clear
up this confusion of raw pointer roles in modern C++14 [ISO14] by
giving developers easy to use refactoring tools.

The C++ Core Guidelines that got introduced at CppCon15 [mk15]
aim to provide a set of guidelines on how to write better modern
C++. They include several topics on how to handle memory and
raw pointers. Following the guidelines allows for C++ code to be
checked by static analysis tools and catch many semantic programming
errors that are still common. Many of the guidelines make use of the
Guidelines Support Library (GSL) [Mic16]. The GSL provides several
types that should be used in context of raw pointers in code. The
GSL types are recommended because they are more expressive than
raw pointers and often contain additional functionalities that help
prevent errors with minimal additional overhead.

The end product of this project is a plug-in for the Cevelop IDE [fS16]
that helps developers to adhere to the C++ Core Guidelines in regards
to raw pointers. The plug-in contains code checkers that mark prob-
lematic code using raw pointers and will then allow for refactorings
to the GSL types marking their role. We have also tested our plug-in
on a real world code base to ensure a better user experience and more
reliable functionality.

I

Management Summary

The goal of this bachelor thesis is to build an Eclipse CDT [Fou16]
plug-in that helps C++ developers to adhere to the C++ Core Guide-
line rules [SS16] related to raw pointers. Our thesis builds on the pre-
vious CharWars [GS14] thesis and their plug-in. CharWars was also
concerned with refactoring raw pointers. In our plug-in we want to
provide a set of checks and refactorings concerned with making raw
pointers more expressive to programmers and therefore make code
better.

Motivation

A raw pointer is a variable that holds the memory address of an object.
Depending on the situation raw pointers can have different roles, how-
ever this role is not always clearly visible in code. The modern C++
standard [ISO14] introduced alternatives like smart pointers that can
evade the problem.

However smart pointer can not be used in all situations, this is why
the C++ Core Guidelines introduced rules to clearly mark what role
a raw pointer has. To mark roles we use types from the Guidelines
Support Library (GSL) [Mic16] that signify what role the raw pointer
has. The long term goal of the guidelines is to modify the code so it
can be checked by static analysis tools. These static analysis tools can
then find complex logic errors that are hard to find manually.

Goal

For this thesis we focused on the C++ Core Guideline rules related
to raw pointers. We want to provide a set of checks that find prob-
lematic code segments and a corresponding set of refactorings, helping
programmers to move from legacy C++ code to safer and better code.
We analyze the Guideline rules and types of the GSL, extracting the

III

core values and principles we can integrate into our plug-in. We ex-
tend the functionality of the CharWars plug-in by adding our checks
and refactorings. Finally we test our checks and refactorings on a real
life code base to improve their reliability and further test them.

Results

The end product of this bachelor thesis is an extension of the Char-
Wars plug-in for the Cevelop IDE [fS16]. Our contribution can be
divided into two parts: Ownership and nullability refactorings and
span refactorings.

• Ownership and nullability
We implemented checks to effectively find raw pointers in code.
When a raw pointer has been found, the programmer can then
execute the appropriate refactoring to a GSL type, clarifying
the role of the raw pointer. If the refactoring was made on a
function definition then all the associated declarations will get
searched and changed as well. By providing these reliable and
easy to use refactorings, we help the programmer save time on
repetitive tasks.

• Span
In C++, arrays are passed to a functions as raw pointers, point-
ing to the arrays first element. When doing so the size of the
array gets lost and therefore needs to be passed to the function
as a separate argument. We implemented checks that find these
situations in code and offer a refactorings to the GSL span<T>

type that encapsulates the raw pointer and its size. By putting
together what belongs together code gets more readable, cohe-
sive and safe.

IV

In figure 0.1 we show how such a check marks problematic code and
a refactoring resolves the situation.

Figure 0.1.: Example check and refactoring.

To make our plug-in fit for use we tested it on the Fish Shell project
[fSh16]. As a result we improved our code to ensure a better user
experience and more reliable functionality.

V

Further work

In this thesis we were able to extend the original CharWars plug-in
[GS14]. Adding modern features to its catalog, while keeping the orig-
inal functionality intact. However there are many cases were highly
specific types need to be used, we were not able to cover all of them yet.
Here are some additional features that could improve the plug-in:

• Improvement of the span<T> refactoring so it can handle more
diverse function interfaces.

• Quick assist for span<T> in addition to the quick fix.
• Suppression of warnings via attributes.
• Checks and refactorings for string_span.

VI

Declaration of Authorship

We declare that this bachelor thesis and the work presented in it was
done by ourselves and without any assistance, except what was agreed
with the supervisor. All consulted sources are clearly mentioned and
cited correctly. No copyright-protected materials are unauthorizedly
used in this work.

Place and date Elias Geisseler

Place and date Philipp Meier

VII

Contents

1. Introduction 5
1.1. Problem description . 5
1.2. Solution . 6
1.3. Previous work . 7
1.4. Our goals . 8

1.4.1. Planned Features 8
1.5. Time management . 8

2. Analysis 9
2.1. Analysis of GSL types 9

2.1.1. owner<T*> . 10
2.1.2. not null<T*> 10
2.1.3. span<T> . 12
2.1.4. string span . 14

2.2. General concepts and challenges 15
2.3. Memory leaks and corruption 15

2.3.1. Ownership . 17
2.3.2. Smart pointers 19

2.4. Analysis of C++ Core Guidelines 20
2.4.1. I.11: Never transfer ownership by a raw pointer

(T*) . 20
2.4.2. I.12: Declare a pointer that must not be null as

not null . 23
2.4.3. I.13: Do not pass an array as a single pointer . 25
2.4.4. I.24: Avoid adjacent unrelated parameters of

the same type 26
2.4.5. F.22: Use T* or owner<T*> to designate a sin-

gle object . 27
2.4.6. F.23: Use a not null<T> to indicate that ”null”

(meaning nullptr) is not a valid value 28
2.4.7. F.24: Use a span<T> or a span p<T> to des-

ignate a half-open sequence 28

1

Contents

2.5. Additional considerations for our plug-in 29
2.5.1. Adding the borrower type 29
2.5.2. Including the GSL and gslrefactor.h in the CDT

project . 30
2.5.3. Allowing the user to disable checks and warnings

but still use our refactorings 31
2.5.4. Configuring the GSL type names and other plug-

in preferences 32
2.6. Conclusion: How to proceed 33

2.6.1. GSL types we focus on 33
2.6.2. Checks to implement 33
2.6.3. Refactorings to implement 34
2.6.4. Configuration 34

3. Implementation 35
3.1. Overview of implemented features 35

3.1.1. Checkers and problem markers 35
3.1.2. Quick fixes . 37
3.1.3. Quick assists 39
3.1.4. GSL project includer 41
3.1.5. Preference page 42

3.2. Abstract syntax tree 43
3.3. Work flow when using checkers and quick fixes 44
3.4. Our approach and solved challenges 45

3.4.1. Ownership and nullability refactorings 45
3.4.2. Architecture and the n3 aspect problem 48
3.4.3. Span refactorings 51

4. Testing 53
4.1. Automated testing . 53

4.1.1. Testing checkers 54
4.1.2. Testing quick fixes 54
4.1.3. Testing quick assists 55

4.2. Manual testing . 56

5. Real world application 57
5.1. Raw pointer problem statistic 57

2

Contents

5.2. Raw pointer + size problem statistics 59
5.3. Span in Fish Shell . 59

6. Conclusion 61
6.1. Features . 61
6.2. Relevance of our refactorings 61
6.3. Early redefining of task 62
6.4. Future work . 62

A. User manual 63
A.1. Installation . 63
A.2. Configuration . 63
A.3. Refactorings . 65

A.3.1. Ownership and nullability refactorings 65
A.3.2. Span refactorings 67

B. Developer manual 69
B.1. Version and software used 69
B.2. How to setup Eclipse PDE compile and run the tests . 69

3

1. Introduction

This section outlines our bachelor thesis and our goals for it.

1.1. Problem description

In 2015, the Standard C++ Foundation, led by Bjarne Stroustrup, re-
leased an initial version of the C++ Core Guidelines document [SS16].
The document outlines a set of guidelines to help people use modern
C++ more effectively. The guidelines are focused on issues such as
interfaces, resource management, memory management and concur-
rency. They are designed to help the programmer write C++ code
that is statically type safe and has no resource leaks, they can also
help to catch common logic errors.

Alongside the guidelines, Microsoft released a small C++ library to aid
the implementation of these guidelines, called the Guidelines Support
Library (GSL) [Mic16]. Most notably for our thesis, the GSL provides
types that help increase resource safety by implicitly annotating the
intent of code. Meaning code can still use efficient raw pointers T* and
references T&, while static analysis tools notify the developer when a
misuse of pointers exists. The types GSL provides include owner<

T*>, not_null<T*>, span<T> and string_span. Using these types
instead of raw pointers and references also allows for static lifetime
safety analysis of the code, as described in the paper Lifetimes I & II
[SM15].

However, manually refactoring old C++ code to adhere to the C++
Core Guidelines and use the GSL types can be a time consuming and
tedious task. The Institute for Software at HSR is contributer to
the Cevelop IDE [fS16], this IDE is based on the Eclipse CDT IDE
[Fou16]. There has been previous work creating various refactorings,
but no GSL refactoring tools for Cevelop have been made yet.

5

1. Introduction

1.2. Solution

In order to make the task of refactoring old C++ code to adhere
to the C++ Core Guidelines easier and less time consuming for the
developer, we aim to develop a tool that finds problematic code not
following the core guidelines and provides quick refactorings. This tool
will be realized as a plug-in for Eclipse CDT.

The plug-in will perform static code analysis of C++ code on AST
basis. The analysis can be triggered manually by the user, or can be
set to run automatically whenever the code changes.

Problematic code snippets will be marked with a problem marker.
The user can then choose to apply refactorings to the code, depending
on the type of problem found. For example, a raw pointer declaration
could be refactored to the GSL types owner<T*> or not_null<T*>.

Figure 1.1.: Example problem marker with quick fix refactoring. (Raw pointer to
owner)

6

1.3. Previous work

1.3. Previous work

There have been similar projects before. Specifically the term project
Pointerminator (2013) [GS13] by Fabian Gonzalez and Toni Suter, in
which they developed an Eclipse CDT plug-in providing refactorings
to get rid of pointers in C++. The plug-in is capable of the following
refactorings:

• Replace C strings with std::string objects
• Replace C arrays with std::array objects
• Replace pointer parameters with reference parameters

In their bachelor thesis CharWars (2014) [GS14], Gonzalez and Suter
have expanded the plug-in to allow better elimination of C strings,
providing refactorings for many common C string functions to their
corresponding std::string or <algorithm> counterparts.

The CharWars plug-in already has a lot of basic functionality that we
can utilize in our plug-in. It uses problem markers, quick fixes and it
already has an extensive array of functions for analyzing C++ code
on AST basis and applying refactorings. Therefore, it makes sense
for us to build upon the CharWars plug-in instead of starting from
scratch.

It is also worth mentioning the Smartor (2013) [FM13] project by
André Fröhlich and Christian Mollekopf. They developed a Eclipse
CDT plug-in to refactor raw pointers to smart pointers such as std

::unique_ptr and std::shared_ptr. Smart pointers often solve the
same problems as the GSL types, such as leaks and dangling. How-
ever, sometimes the developer can not or does not want to use smart
pointers. For example when dealing with legacy systems or when try-
ing to be as resource efficient as possible. This is when our plug-in
and the GSL types can be used.

7

1. Introduction

1.4. Our goals

Our goal is to advance the CharWars plug-in to include refactorings
for the GSL types. We will first analyze the different types in the GSL
as well as the corresponding C++ Core Guidelines. Our focus will be
on CGL rules and GSL types regarding raw pointers. Then we will
decide on refactorings that make sense to implement.

We will focus on simple refactorings that don’t rely on complex flow
analysis. This already provides value to users, helping them find prob-
lematic code such as raw pointers and quickly allowing them to chose
an appropriate refactoring as a resolution.

1.4.1. Planned Features

• Find problematic raw pointers and mark them
• Provide refactoring from problematic raw pointers to GSL types
• Provide a solution to refactor a project step by step to adhere

C++ Core Guidelines

1.5. Time management

Our project started on the 2016-02-22. It will end on 2016-06-17.
The report and all of our other artifacts will be due at the end. This
project is valued with 12 ECTS credits. 12 credits correspond to 360
hours of work per person and 720 hours for the team. In the last 2
weeks there are no classes, it is expected that we can work full time
on this thesis during that time. This means we will work 40 hours per
week and person on the last 2 weeks and an average of 18.6 hours per
week and person on the remaining weeks.

8

2. Analysis

This chapter contains the analysis needed to understand the purpose
of our project and to discover what should be implemented in our
plug-in.

Since our plug-in aims to provide refactorings to GSLs [Mic16] pointer
wrapper types, we will first analyze which GSL types exist and explore
their purpose, usage and function.

We will then explain some of the general concepts and challenges that
are important for understanding the problems associated with raw
pointers.

We will also analyze some of the C++ Core Guideline [SS16] rules
associated with raw pointers and the GSL types. We will evaluate
which rules are suited to be considered in our plug-in and how they
can be implemented as checks and refactorings.

Finally we have some additional considerations that we have to make
for our plug-in.

The analysis concludes with a summary on how we want to proceed,
giving the basis on what to implement in our plug-in.

2.1. Analysis of GSL types

In this section we will introduce the GSL types and explain their
purpose and usage. The following GSL types will be covered:

• owner<T*>

• not_null<T*>

• span<T>

• string_span and its variations

9

2. Analysis

2.1.1. owner<T*>

GSLs owner<T*> is a pure marker/annotation type: It has no func-
tionality whatsoever. (See listing 2.1) The purpose of owner<T*> is
to mark pointers which have ownership of the indirected object, thus
providing additional information that makes it easier to reason about
how the pointer needs to be handled.

In order to follow some of the C++ Core Guidelines it is necessary to
know if a pointer is an owner or not. Generally, a class or function that
has an owner is responsible to free the allocated memory at the end.
For example: If there is a class with an owner pointer as a member,
one should make sure that delete is called in the destructor of that
class. See section 2.3.1 for an explanation of the ownership concept.

Listing 2.1: Definition of GSLs owner type
template <class T>

using owner = T;

All raw pointers that are not marked with owner<T*> are considered
non-owning per C++ Core Guidelines. This can be a problem when
refactoring old code, since it is not possible to determine if a raw
pointer has already been looked at. In order to solve that problem we
introduce the borrower<T*> type to mark non owning pointers. It is
the counterpart of owner<T*>. See section 2.5.1 for more information
on the borrower<T*> type.

2.1.2. not null<T*>

GSLs not_null<T*> type is used to declare pointers that should never
be nullptr (NULL / 0). It is implemented in a way so that it is guar-
anteed to never be nullptr: Trying to set a not_null<T*> pointer to
nullptr results in a compiler error. Note that not_null<T*> is not
limited to raw pointers. It can be used for any value where nullptr

is a relevant value, such as std::unique_ptr or std::shared_ptr

[ISO14].

10

2.1. Analysis of GSL types

Typically, not_null<T*> is used for function parameter and return
types in order to indicate that null is not a valid value. (See listing
2.2)

Listing 2.2: Typical usage of not null<T*>
void justDoIt(not_null <Thing*> p); // justDoIt(nullptr) is invalid ,

it is the callers job to make sure the parameter p is not null

not_null <int*> calculateIt (); // calculateIt () is guaranteed to never

return null

Using not_null<T*> reduces overhead by eliminating the need to
check against nullptr before using a pointer. It also reduces the
possibility of a programming error where someone might forget such a
check, as suggested by the rule F.23 in section 2.4.6. Smart pointers,
described in section 2.3.2, can also be used with the not_null<T*>

type.

See section 2.4.2 for more information of how not_null<T*> can be
used to clarify ambiguity in interfaces.

We conclude that our plug-in should provide a refactoring for raw
pointers to not_null<T*>.

References as an alternative to not null<T*>

References (e.g. T&) are similar to not_null<T*> pointers. Both
of them can not be null. The differences are that pointers can be
repointed/rebinded (for example through pointer arithmetic), while
references are fixed to point to the same object after initialization.
Additionally, not_null<T*> can be used for other nullptr-assignable
types, such as std::unique_ptr or std::shared_ptr, which could
not be substituted with a reference that easily.

The CharWars plug-in already provides a checks and refactorings to
transform pointer parameters to reference parameters. No additional
refactorings for other pointer occurrences, such as return types or
member variables, are available though.

11

2. Analysis

2.1.3. span<T>

The span<T> type is used to represent a non-owning range of contigu-
ous memory, such as an array, pointer (with size) or std::vector.
[Ban16a]

One of the problems of using plain arrays (e.g. int[42]) is that the
size is lost when passing it as a function argument (array to pointer
decay). Therefore, a second parameter for the size is needed. This can
lead to errors when the size is incorrect. span<T> alleviates this issue
by storing both a pointer to the data as well as the size information.
It is bounds checked and safe. span<T> also removes the need to
implement different function overloads for different container types
and arrays/pointers, since they all can be converted to spans easily.
Another advantage of span<T> is that it can be easily traversed using
range based for loops. (e.g. for(auto x : mySpan))

Creating a span<T> is easy. There are constructors for arrays, pointer
+ size, begin + end pointer and standard containers with contiguous
memory like std::vector. (See listing 2.3)

Listing 2.3: A few examples of different ways to create a span<T>
void displayNumbers(span <int > numbers) {

//...

}

int numArr [] = {1, 2, 3};

span <int > spanNumArr = span{numArr }; // = {1, 2, 3}, when constructing

from a plain array , size is automatically deduced

span <int > spanNumArrWithSize = span{numArr , 2}; // = {1, 2}

displayNumbers(numArr); // = {1, 2 , 3}, implicit call of constructor

from plain array

vector <int > numVec = {1, 2, 3, 4};

span <int > spanNumVec = span{numVec }; // = {1, 2, 3, 4}

span <int > spanNumVecFromPointer = span{numVec.data(), 4}; // = {1, 2,

3, 4}, when constructing from pointer , size is required

span <int > spanNumVecFromPointerRange = span{& numVec [1], &numVec [2]};

// = {2, 3}

Our plug-in will try to find function definitions that consist of pointer
+ size parameters and will provide a refactoring to change them to
span<T>.

12

2.1. Analysis of GSL types

The refactoring will just generate a trampoline function and adjust the
call sites to use that new trampoline function. A trampoline function is
a function overload, with span<T> parameter instead of pointer + size,
that just calls the original function. This is much easier to implement
than trying to completely refactor the original function and its body
to span, which can be done in a later step once all the call sites have
been adapted.

An example of such a refactoring with a trampoline function can be
seen in listings 2.4 and 2.5.

Listing 2.4: Before refactoring
void displayNumbers(int* numbers ,

int numberCount) {

//...

}

int main() {

int[] numArr = {13, 42, 777};

displayNumbers(numArr , 3);

return 0;

}

Listing 2.5: After refactoring
void displayNumbers(int* numbers ,

int numberCount) {

//...

}

// generated trampoline function

void displayNumbers(span <int >

numbers) {

displayNumbers(numbers.data(),

numbers.size());

}

int main() {

int[] numArr = {13, 42, 777};

displayNumbers(gsl::span <int > {

intarr , 3 });

return 0;

}

Using std::array<T> as an alternative to span<T>
Instead of using span<T> to encapsulate plain arrays one could also
use std::array<T> instead of plain arrays and pass a reference to it.
CharWars already provides refactorings to change plain C-style arrays
into std::array<T>.

13

2. Analysis

2.1.4. string span

Although regular span<T> can be used with C-strings, the GSL pro-
vides different span implementations for various types of strings. [Ban16b]
These string_span types provide the same benefits as span<T>, such
as bounds checks, plus some additional string specific functionality.

The following string_span types are available:

• string_span for string spans of char
• cstring_span for string spans of const char

• wstring_span for string spans of wchar_t
• cwstring_span for string spans of const wchar_t

• zstring_span for nul-terminated string spans of char
• czstring_span for nul-terminated string spans of const char

• wzstring_span for nul-terminated string spans of wchar_t
• cwzstring_span for nul-terminated string spans of const wchar_t

The terminology is:

• c = const
• w = wide (e.g. wchar_t)
• z = nul-terminated (C-style char array ending with \0)

When creating a string_span from a C-style char array/pointer, the
function gsl::ensure_z() needs to be used. A string_span can
be easily converted to a std::string using the gsl::to_string()

function. (See listing 2.6)

Listing 2.6: Example usage of ensure z() and to string()
char * cstring = "Hello";

gsl:: string_span <> stringspan = gsl:: ensure_z(cstring);

std:: string stdstring = gsl:: to_string(stringspan);

14

2.2. General concepts and challenges

2.2. General concepts and challenges

This chapter contains explanations of general concepts and challenges
that are relevant for this thesis. We will explain memory leaks and
memory corruption, that can occur when misusing pointers. Addi-
tionally we explain the concept of ownership and how it can help to
prevent leaks and dangling. We will also take a quick look at smart
pointers, as they are often a better alternative to solve the problems
discussed in this paper.

2.3. Memory leaks and corruption

One of the oldest programming challenges is to manage heap memory.
In languages like Java or C# a garbage collector takes care of freeing
unused heap memory. Garbage collection is helpful but costs a lot of
resources and is nearly unpredictable in a real time setting. In C++,
programmers have to handle allocating and freeing memory manually
or use types or libraries to help them, like smart pointers for example
(part of the standard library). Manually managing the memory is not
an easy task and the resulting bugs can be devastating and hard to
track down.

Memory leaks
A memory leak occurs when allocated heap memory is not freed prop-
erly. As seen in the example in listing 2.7, memory is allocated by
calling new but is never freed by calling delete.

Listing 2.7: Example code that can cause memory leaks
void doIt() {

int *i = new int {42}; // local pointer variable is lost at the end

of the function -> will probably never be deleted causing a memory

leak

}

15

2. Analysis

Memory corruption
Memory corruption occurs when memory of the wrong object or no
object is changed.

Common errors that can cause memory corruption include [Ipp16]:

• out of bounds access of an array, pointer, buffer etc.
• using a pointer that has already been freed (dangling pointer)
• freeing memory that has already been freed (double delete)
• using an address before memory is allocated and set
• invalid object access (wrong casts)
• exception errors (e.g. memory is never allocated because of an

exception)

See listing 2.8 for examples of code that can cause memory corrup-
tion.

Listing 2.8: Example code that can cause memory corruption
void doIt(int *i){

delete i;

}

void doArray(int *a){

a[5]++; // out of bounds access: there is no int at this index ,

there could be another object at this location

}

void foo(){

int *i = new int {0};

int *a = new int [2]{};

doIt(i);

doArray(a);

*i++; // dangling pointer: i doesn ’t exist anymore , another object

could be at this address now

delete i; // double delete

}

16

2.3. Memory leaks and corruption

2.3.1. Ownership

Whenever we use heap memory and initialize a pointer using new, it
becomes the question of who is responsible to delete that pointer once
it is not needed anymore. Because we do need to delete it in order to
prevent memory leaks, but we also should never delete it more than
once to avoid causing undefined behavior [ISO14].

Take the code in listing 2.9 for example.

Listing 2.9: Ownership example
class CakeMachine {

public:

CakeMachine ();

~CakeMachine ();

Cake* bakeCake ();

}

class CakeMonster {

public:

CakeMonster ();

~CakeMonster ();

void eatCake(Cake* cake);

}

The CakeMachine.bakeCake() function creates a Cake object and
returns a pointer to the instance. This pointer can then be passed to
the eatCake() method of the CakeMonster class for example.

The code in listing 2.10 shows and example of how these classes could
be used.

Listing 2.10: Ownership example usage
CakeMachine cmachine {};

CakeMonster cmonster {};

Cake* cake = cmachine.bakeCake ();

cmonster.eatCake(cake);

17

2. Analysis

The problem with raw pointers becomes apparent quickly. Who is
responsible for deleting the pointer returned by bakeCake()?

• Does CakeMachine deletes the pointer in its destructor? This
could result in using a dangling pointer if the return value of
bakeCake() is used after the generating CakeMachine instance
is destroyed.

• May the call of CakeMonster.eatCake() delete it? This could
cause problems if the pointer is not allocated on the heap or
deleted twice. Or not deleted at all, resulting in a leak.

• Or maybe we have to delete it ourselves? If we forget it would
cause a leak.

Here is where the concept of ownership comes in. The owner of the
pointer is the one who is responsible for deleting it. If the code would
be annotated using GSLs owner<T*> type for example, we could make
out who is responsible for the deletion.

• If bakeCake() does not return an owner, it means that
CakeMachine is responsible for deleting the pointer.

• If bakeCake() does return an owner, it means that ownership
is transfered to us, the caller of the function, and that we are
responsible for the deletion of the pointer.

• If then CakeMonster.eatCake() takes an owner as parameter,
it means we are transferring ownership to the CakeMonster class
and it is now responsible for the deletion. [Lav13]

The whole ownership problem could be avoided by using smart point-
ers std::unique_ptr (single ownership) and std::shared_ptr (shared
ownership). See section 2.3.2 for a brief explanation on how these
smart pointers work.

There are however cases where smart pointers can not be used, for
example when dealing with legacy systems that have raw pointer APIs.
This project aims to provide assistance in those cases. For smart
pointer refactorings check out the Smartor project. [FM13]

18

2.3. Memory leaks and corruption

2.3.2. Smart pointers

Modern C++ allows for easier memory management by using smart
pointers. Smart pointers can help to prevent memory leaks, mem-
ory corruption and also help clarifying ownership. This chapter will
explain the most commonly used smart pointers that have been intro-
duced with C++11: std::unique_ptr and std::shared_ptr. [ISO14]

std::unique ptr
std::unique_ptr is a container that encapsulates a raw pointer. It
takes ownership over the encapsulated pointer, so it will make sure
the encapsulated pointer gets deleted at the end of its lifetime. A
unique_ptr cannot be copied. It can however be moved by using
std::move(), this would signify a transfer of ownership to another
unique_ptr. [Lav13]

The code from listing 2.9 could be improved to use unique_ptr to
clearly indicate ownership. (See listing 2.11)

Listing 2.11: Ownership example with unique ptr
class CakeMachine {

public:

CakeMachine ();

~CakeMachine ();

std::unique_ptr <Cake > bakeCake ();

}

By returning a unique_ptr, it is clear that ownership is transfered
to the caller of bakeCake() and it is now responsible for whatever
happens to it. There should not be a copy stored in CakeMachine

because it is unique and cannot be copied.

std::shared ptr
std::shared_ptr is a container that encapsulates a raw pointer. It
shares ownership of the encapsulated pointer with all the copies of the
shared_ptr. It uses reference counting to ensure that the contained
raw pointer is deleted once all the copies of the shared_ptr have been
destroyed. This reference counting mechanism however causes a little
bit of overhead but makes things very convenient for the developer, as
he does not need to worry about manually deleting the pointer.

19

2. Analysis

2.4. Analysis of C++ Core Guidelines

In the following chapters we want to give our interpretation of the
guidelines related to our project, show what problems they want to
solve and how we can use this to create more robust refactorings. The
chapters are linked to C++ Core Guidelines [SS16], we recommend
the reader to be familiar with the respective guidelines as the aim of
this chapter is not to repeat their content fully but rather to give our
interpretation and the implications for our plug-in.

2.4.1. I.11: Never transfer ownership by a raw
pointer (T*)

In a function interface with only a raw pointer it is ambiguous whether
the caller or callee is the owner. This ambiguity leads to misuse of
the interface and this in turn leads to memory leaks and memory
corruption, as explained in section 2.3. For example the user might
not delete a given pointer thinking it is taken care of by an other
object, this leads to memory leaks. Consider the following code:

Listing 2.12: Bad interface

Result* doCalculation(ArithmeticExpression e){

Result* result = new Result{e};

...

return result;

}

Without looking at the body of the function it is not clear whether
that returned raw pointer Result* needs to be deleted by the caller
or if it is managed by a different object entirely. Since we can see the
body of the function we can conclude that the ownership of Result*
is transfered to the callee of the function and therefore needs to be
deleted by the callee.

20

2.4. Analysis of C++ Core Guidelines

To get rid of the ambiguity there are several possibilities. (See listing
2.13)

Listing 2.13: Good interfaces

// return by value

Result doCalculation(ArithmeticExpression e);

// return by using a smart pointer

std::unique_ptr <Result > doCalculation(ArithmeticExpression e);

std::shared_ptr <Result > doCalculation(ArithmeticExpression e);

// return by marked pointer

gsl::owner <Result*> doCalculation(ArithmeticExpression e);

gsl::borrower <Result*> getResultFromLibrary(ArithmeticExpression e);

Returning by value is the most robust way, since without having point-
ers there is no need of managing memory manually. Smart pointer
come with a built-in mechanism for managing memory and therefore
handle the cleaning up for the user. Using unique_ptr makes it clear
that the callee will be the owner of the object. With shared_ptr

ownership will possibly be shared between multiple objects, where the
last releasing the pointer will free the memory. The easy handling of
shared_ptr comes at the cost of resources, it costs more memory and
more computational resources than a raw pointer.

We still can and want to use raw pointers, for example in some envi-
ronments we want to be as resource efficient as possible or we are stuck
with the interface because of compatibility reasons. Here we can use
the type aliases owner<T*> and borrower<T*> introduced in section
2.1.1. Since they are only aliases they are reduced to raw pointers at
compile time, yet they help to clarify the intent of the interface. Us-
ing owner<T*> the interface signifies a transfer of ownership, meaning
the callee will need to delete the returned object. When receiving a
borrower<T*> there is no need to delete the object since it will be
handled by someone else.

We conclude that the ambiguity of ownership is a key problem of raw
pointers. By marking pointers as owner or borrower we can communi-
cate the underlaying ownership and help developers and static analysis
tools to find misuse of pointers.

21

2. Analysis

Implications for plug-in

In order to make code more safe and less ambiguous it is recommended
to mark every owner pointer in the code base as owner or borrower. We
introduced the concept of borrower to make a incremental transition
easier. To help the developers marking raw pointers with owner<T*>

or owner<T*> we want to provide them with easy to use code checks
and refactorings.

We have determined the following circumstances in which a raw pointer
declaration might occur (See listing 2.14):

• as a local variable
• as a global variable
• as a member variable of a class
• as a parameter
• as a return type
• in a template argument
• in a function pointer
• in a lambda function

Listing 2.14: Examples of possible pointer declerations

T* gp; // global pointer

void bar(T* p); // parameter pointer

T* foo(){ // return type pointer

T* p; // local pointer

std::vector <T*> vp; // template argument pointer

void (*fp)(T*) = bar; // function pointer containing pointer

auto func = [] (int* a) { *a = *a + 1; }; // pointer in lambda

function

return p;

}

struct Barbarossa{

T* p; // member pointer

};

We will not consider function pointers and lambdas in our refactorings
since they are a rather advanced subject and we want to focus on the
basics first.

22

2.4. Analysis of C++ Core Guidelines

We conclude that the plug-in should mark raw pointers and provide
refactorings to either owner<T*> or borrower<T*>.

2.4.2. I.12: Declare a pointer that must not be null
as not null

Dereferencing a pointer that is a nullptr leads undefined behavior,
which most of the time means that the application crashes, or even
worse, that memory just gets modified or read out in its unknown
state, causing memory corruption. To mitigate the problem, program-
mers check pointers before accessing them. But each such nullptr

check costs a bit of processing time, so often we transfer the respon-
sibility of checking for nullptr to the caller of our interface. The
problem is that this transfer of responsibility is not natively clear in
C++, meaning it is not possible to know whether passing a nullptr

is allowed by just looking at the function signature.

Listing 2.15: Ambiguity if nullptr is allowed
int countDepth(Node const * n);

// ...

int main(){

countDepth(nullptr);

}

Take the code in listing 2.15 for example. It is ambiguous if the call
countDepth(nullptr) is within the specifications or not. As seen
in section 2.4.1 ambiguity can lead to mistakes. This is why we use
not_null<T*> to indicate clearly that the responsibility of not passing
a nullptr is given the caller. If the not_null<T*> is the return type
then the interface takes responsibility of never passing nullptr back.
If there is no not_null used we can assume that passing nullptr is
allowed.

Implications for plug-in

By giving refactorings for wrapping pointers in not_null<T*> we want
to help developers transition to safer code that follows the core guide-
lines.

23

2. Analysis

Why there is no nullable
At the beginning of our thesis we expected there to be some sort of
nullable<T*> type introduced by us accompanying not_null<T*>,
analogue to owner<T*> and borrower<T*> where one excludes the
other.

If we assume that a code base is moving from non guideline code
to safe guideline code incrementally and that a developer is deciding
whether or not a pointer is an owner or a borrower also decides if it is
not_null<T*> at the same time, then we can conclude that a pointer
will be left in one of the five states listed in listing 2.16.

Listing 2.16: Possible states of raw pointers before and after refactoring
// unrefactored -> was not looked at yet

void something(T* a);

//owner -> pointer could be nullptr , is owning

void something(gsl::owner <T*> a);

// borrower -> pointer could be nullptr , is not owning

void something(gsl::borrower <T*> a);

// not_null owner -> pointer is never nullptr and is owning

void something(gsl::not_null <gsl::owner <T*>> a);

// not_null borrower -> pointer is never nullptr and is not owning

void something(gsl::not_null <gsl::borrower <T*>> a);

Adding a nullable alias to the above code would add no additional
information and therefore would just clutter up the code more.

If the assumption that a programmer will do both refactorings for
a raw pointer at the same time is not holding up, then this scheme
above would not work. However, we feel that a programmer getting
introduced to owner<T*> also gets introduced to not_null<T*> since
they are a big part of the C++ Core Guidelines, GSL and the accom-
panying talks.

24

2.4. Analysis of C++ Core Guidelines

2.4.3. I.13: Do not pass an array as a single pointer

One of the problems of C-style arrays is that they degenerate to point-
ers when passed to function as a parameter. When this happens the
size of the array is lost. To circumvent this issue, developers usually
add a second parameter for the size to the function interface.

Listing 2.17: Example of a function interfaces taking pointer + size parameters
void calcSum(int* arr , int size);

void copy_n(T* p, T* q, int n);

Function interfaces like this are prone to errors. What if there are
less elements in the array than specified by the size parameter? We
would probably read or overwrite unrelated memory, which leads to
undefined behavior [ISO14].

A better alternative is to use GSLs span<T> or string_span types.
That way it is clear that a range of elements is expected. span<T>

also contains functionality to automatically deduce the element type
and number of elements in its constructors. (See section 2.1.3)

Listing 2.18: Example of better interfaces using GSL span¡T¿
void calcSum(span <int > arr);

void copy_n(span <T> p, span <T> q);

int [5] iarr;

//...

calcSum(iarr); // automatically deduce type and size

Implications for plug-in
We will have to implement a check to find function interfaces that
consist of pointer + size parameters. For this analysis we have to
consider the different possibilities for pointer + size, such as multiple
pointers but only a single size. (As seen in the above example in the
copy_n() function)

25

2. Analysis

We will then have to implement refactorings to change those function
interfaces to use span<T> or string_span instead. All the call sites
to said functions need to be adjusted too. In order to avoid having to
refactor the whole function body, we will first generate a trampoline
function. (See listing 2.20) Later we will also try to provide the option
the refactor the function body if possible.

Listing 2.19: Before refactoring
void displayNumbers(int* numbers ,

int numberCount) {

//...

}

int main() {

int[] numArr = {13, 42, 777};

displayNumbers(numArr , 3);

return 0;

}

Listing 2.20: After refactoring
void displayNumbers(int* numbers ,

int numberCount) {

//...

}

// generated trampoline function

void displayNumbers(span <int >

numbers) {

displayNumbers(numbers.data(),

numbers.size());

}

int main() {

int[] numArr = {13, 42, 777};

displayNumbers(gsl::span <int > {

intarr , 3 });

return 0;

}

2.4.4. I.24: Avoid adjacent unrelated parameters of
the same type

Adjacent parameters of the same type can be easily swapped by mis-
take. This is can be especially problematic when using pointers to
ranges, since an out of bounds access will result in undefined behav-
ior.

Listing 2.21: Problematic interface with adjacent parameters of the same type
void copy_n(T* p, T* q, int n); // copy from [p:p+n) to [q:q+n)

Consider the function interface in listing 2.21. It’s easy to reverse the
”to” and ”from” arguments.

26

2.4. Analysis of C++ Core Guidelines

A better alternative would be to use GSLs span<T> type or to use a
parameter struct with appropriately named parameters.

Implications for plug-in
Our plug-in will help implementing this rule by providing refactorings
from pointer + size interfaces to GSLs span<T>. See section 2.4.3
about rule I. 13 for more information.

2.4.5. F.22: Use T* or owner<T*> to designate a
single object

In traditional C and C++ code raw pointers (T*) are used for many
purposes, such as to [SS16]:

• Identify a (single) object (not to be deleted by this function)
• Point to an object allocated on the free store (and delete it later)
• Hold the nullptr

• Identify a C-style string (nul-terminated array of characters)
• Identify an array with a length specified separately
• Identify a location in an array

This rule says to only use raw pointers to designate single objects.
For ranges such as arrays, use span<T>. For C-style strings user
string_span<T> or zstring.

Implications for plug-in
Our plug-in will help implementing this rule by providing refactorings
from pointer + size interfaces to GSLs span<T>. See section 2.4.3
about rule I. 13 for more information.

27

2. Analysis

2.4.6. F.23: Use a not null<T> to indicate that
”null” (meaning nullptr) is not a valid value

This rule is similar to rule I.12 (See section 2.4.2). It says to use
not_null<T*> to indicate when nullptr is not a valid value. That
way it’s clear to the user of an interface if he needs to check against
nullptr before dereferencing a pointer for example.

Implications for plug-in
Our plug-in will help implementing this rule by providing refactorings
for raw pointers to GSLs not_null<T>. See section 2.4.2 about rule
I.12 for more information.

2.4.7. F.24: Use a span<T> or a span p<T> to
designate a half-open sequence

Similar to rules I. 13 and I. 24, this rule says to use span<T> instead
of raw pointers (+ size) to designate ranges.

Implications for plug-in
Our plug-in will help implementing this rule by providing refactorings
from pointer + size interfaces to GSLs span<T>. See section 2.4.3
about rule I. 13 for more information.

28

2.5. Additional considerations for our plug-in

2.5. Additional considerations for our plug-in

In order to make our plug-in more robust and user friendly we had to
make a couple of a additional considerations that are not directly tied
to a GSL type or CGL rule.

2.5.1. Adding the borrower type

The GSL provides types used for writing code according to the C++
Core Guidelines [SS16]. However, it tries to be as resource small and
lightweight as possible. This means that only a type alias for owning
pointers exists and that every raw pointer not declared as such will
be regarded as non-owning. Although this is fine for a code base
already following the guidelines, it is problematic when migrating code
to follow the guidelines.

To apply the guidelines to old code, the developers need to revisit all
the uses of raw pointers and decide whether or not it is an owner. To
do these refactorings step by step, developers need to be able to dif-
ferentiate already refactored code from code that has not been looked
at yet. This is not possible with only the GSL types, since it is not
possible to know if a raw pointer has already been decided to be non
owning or if it just has not been looked at yet.

To solve this problem we introduce the type alias borrower<T*> as
counterpart of owner<T*>. The type is defined in our own header file
called gslrefactor.h. The header file also includes the rest of the GSL
so that #include "gslrefactor.h" is sufficient to have access to all
of the GSL types.

29

2. Analysis

Listing 2.22: Content of gslrefactor.h
/*

* gslrefactor.h

*

*/

#ifndef GSLREFACTOR_H

#define GSLREFACTOR_H

#include "gsl.h"

namespace gsl

{

//

// GSL.borrower: non owning pointer

//

template <class T>

using borrower = T;

}

#endif // GSLREFACTOR_H

2.5.2. Including the GSL and gslrefactor.h in the
CDT project

In order use the GSL types and borrower<T*>, the gslrefactor.h header
file needs to be included with a #include statement. This statement
should be automatically by our refactorings whenever one of them is
applied.

For the code to compile, gslrefactor.h and the GSL files need to be
lying somewhere on the file system and need to be added to the include
path of the CDT C++ project, so the compiler knows where to find
them. Ideally, our plug-in should be able to ensure that those needed
files are available and automatically add the references to the C++
project whenever a refactoring is applied.

30

2.5. Additional considerations for our plug-in

In order to this we would have to bundle a recent version of the GSL
with the plug-in or implement a mechanism to download it from the
Internet. Downloading it from the Internet is rather sophisticated
and could break our plug-in if it changed too much from the version
we developed the plug-in for, so bundling a version with the plug-in
appears to be the better option. However, we need to make sure that
the developer is still be able to use his own GSL instead of the bundled
one if he wants to.

2.5.3. Allowing the user to disable checks and
warnings but still use our refactorings

In the talk ”CppCon 2015:Static Analysis and C++” by Neil MacIn-
tosh [Mac15], he explains that code checks being too noisy, by gen-
eration a lot of warnings, is one of the common causes a user might
not use the code check at all and deactivate it. This is especially true
when the checks are used in a legacy code project for the first time,
because there would be a lot of problematic code sections.

For this reason we want to ensure that a user can disable the warnings
and checkers but can still use the refactorings provided by our plug-in,
like refactoring a raw pointer to owner<T*> for example.

31

2. Analysis

2.5.4. Configuring the GSL type names and other
plug-in preferences

Since the GSL is relatively new and in a early stadium, the names
of the types could still be subject to change in a future version. To
circumvent this problem, our supervisor Prof. Sommerlad suggested
that we make the type names configurable. This would also have the
added benefit of allowing the user to use his own types instead of the
GSLs if he desires.

It would also be nice if the include functionality outlined in the pre-
vious section is configurable as well. Like being able to disable the
automatic includes or to change the name of the header file that is
included. That way the user is able to use his own header file.

Another thing to be configured are the types that should be considered
size types for the span<T> refactorings since the user might use special
size types in his code and not just int, long, char, etc.

This whole plug-in configuration would be best realizied as a prefer-
ence page directly in the Eclipse preferences dialog.

32

2.6. Conclusion: How to proceed

2.6. Conclusion: How to proceed

Concluding our analysis we want to give a quick summary of the results
and outline what features we want to implement in our plug-in.

2.6.1. GSL types we focus on

We have decided to focus on providing refactorings for the following
types:

• owner<T*>

• borrower<T*>

• not_null<T*>

• span<T>

We have not included string_span because we think that the other
types are more important and we want to focus on those in the limited
time we have. CharWars already provides great refactorings for C-
style strings to std::string, which can often be used as an alternative
to string_span.

2.6.2. Checks to implement

To implement those refactorings we first need to implement checks that
find raw pointers in code and mark them. For these checks we will
consider the following circumstances where raw pointer might occur:

• as a local variable
• as a global variable
• as a member variable of a class
• as a parameter
• as a return type
• in a template argument

Additionally, we need checks that find raw pointer + size combinations
in function parameters for the span<T> refactoring. We will first focus
on simple function interfaces and then try to improve the checks to
find more complex ones.

33

2. Analysis

2.6.3. Refactorings to implement

We need to implement the actual refactorings to convert those raw
pointers into GSL types. Since we want to provide combined refac-
torings for not_null<T*> with either owner<T*> or borrower<T*> we
get the following list of refactorings:

• raw pointer to owner<T*>

• raw pointer to borrower<T*>

• raw pointer to not_null<T*>

• raw pointer to not_null<owner<T*>>

• raw pointer to not_null<borrower<T*>>

• raw pointer + size parameter to span<T>

To following points need to be considered when implementing the
refactorings:

• When refactoring function interfaces, make sure that all the dec-
larations of the function and the call sites are also refactored.

• Allow the refactorings to be used even when checks and warnings
are disabled.

• Make sure the gslrefactor.h file gets included when a refactoring
is applied.

• Make sure the GSL files and gslrefactor.h are made available and
are referenced in the projects include path when a refactoring is
applied.

2.6.4. Configuration

We want to allow the user to configure certain aspects of the plug-in,
such as the GSL type names and the include functionality. For this we
need to implement our own preference page and add it to the Eclipse
preference dialog.

34

3. Implementation

In this chapter we will explain how we implemented the checks and
refactorings outlined in the analysis as checkers, quick fixes and quick
assists. We show how we extended the existing CharWars [GS14]
plug-in infrastructure and what considerations were made to achieve
our goals. We also want to show the challenges that came up during
implementation and our approach to solve them.

3.1. Overview of implemented features

Here we give an overview of the different features that have been
implement and how they work. When possible, we will also show
how the implemented feature can help to adhere to the C++ Core
Guidelines analyzed in the analysis chapter.

3.1.1. Checkers and problem markers

Static analysis of the code is done by checkers. Checkers in Eclipse
CDT can be run on demand or whenever a change is made in the
document. They traverse and analyze the code using the AST (See
section 3.2). If a checker finds code that meets its criteria, it marks
the corresponding AST node with a problem marker.

Figure 3.1.: A problem marker indicating a raw pointer in a return type.

Each checker is responsible for a specific problem (e.g. raw pointer
variable declaration, raw pointer in return type, etc.). The checkers
can be configured for the whole workspace or on a per project ba-
sis under the ”Code Analysis” tab in the Eclipse preferences dialog,
allowing the user to enable or disable each specific checker.

35

3. Implementation

Figure 3.2.: Configuration of checkers.

In the upcoming sections we will quickly go over every checker we
have implemented. They all can find different positions as seen in the
”Implications for plug-in” section of 2.4.1. By finding most positions
we can provide a fast way to clear up ambiguous sections of code. We
will also show how the checkers map to the positions described in the
analysis.

Raw pointer variable declaration checker
This checker can find raw pointers in variable declarations. This means
it can find raw pointers in the following situations:

• local pointer variable
• global pointer variable
• member pointer variable
• pointer in a template argument of a local, global or member

variable

Raw pointer parameter checker
This checker can find raw pointers in parameters of function defini-
tions. This includes template arguments of these types.

Raw pointer return type checker
This checker can find raw pointers in return types of function defini-
tions. This includes template arguments of these types.

36

3.1. Overview of implemented features

Raw pointer parameter + size to span<T> checker
This checker is searching for raw pointers in parameters and a follow
up size parameter. It finds a set of the situations described in section
2.4.3. The current checker is fairly limited: It is only able to recognize
functions interfaces where the size parameter comes directly after the
raw pointer parameter, improving this checker would be a good topic
for future work. This checker is used for the span<T> refactoring.

3.1.2. Quick fixes

Quick fixes are the actual refactorings that can be applied via a prob-
lem marker. Each problem reported by a checker can have several
quick fixes associated with it (e.g. owner, borrower, etc.). When the
user applies a quick fix the AST is modified to the newly wanted
structure.

Figure 3.3.: Selecting a quick fix to be applied.

The quick fixes in our plug-in can be divided in 2 categories: Quick
fixes for ownership and nullability and quick fixes for raw pointer +
size parameters to span<T>.

Ownership and nullability quick fixes
This category includes the following quick fixes:

• raw pointer to owner<T*>

• raw pointer to borrower<T*>

• raw pointer to not_null<T*>

• raw pointer to not_null<owner<T*>>

• raw pointer to not_null<borrower<T*>>

37

3. Implementation

These quick fixes are available on the problem markers generated by
these checkers:

• raw pointer variable declaration checker
• raw pointer parameter checker
• raw pointer return type checker

This category of quick fixes can be used to adhere to the following
core guideline rules:

• I.11: Never transfer ownership by a raw pointer (T*). (See sec-
tion 2.4.1)

• I.12: Declare a pointer that must not be null as not null. (See
section 2.4.2)

• F.22: Use T* or owner<T*> to designate a single object. (See
section 2.4.5)

• F.23: Use a not null<T> to indicate that ”null” is not a valid
value. (See section 2.4.6)

Raw pointer + size parameters to span<T> quick fixes
This category includes 2 quick fixes to refactor function interfaces that
have raw pointer + size parameters to span<T>. One quick fix that
generates a trampoline function and another quick fix that tries to
refactor the functions body. (See section 3.4.3 for more information)

These quick fixes are available on problem markers generated by the
”raw pointer parameter + size to span<T>” checker.

Figure 3.4.: Raw pointer + size parameters to span<T> quick fixes.

This category of quick fixes can be used to adhere to the following
guideline rules:

• I.13: Do not pass an array as a single pointer. (See section 2.4.3)
• F.24: Use a span<T> or a span p<T> to designate a half-open

sequence. (See section 2.4.7)

38

3.1. Overview of implemented features

3.1.3. Quick assists

Quick fixes only work in combination with checkers and problem mark-
ers. However, some users might prefer to disable the checkers in order
to not have their code riddled with warnings, but still want to use our
refactorings. This is why we have decided to also offer refactorings in
the form of quick assists in addition to quick fixes.

Quick assists do not require a problem marker to be present in order
to be applied. To apply a quick assist the user just needs to select
the code he wants to refactor in the editor and then open the quick
assist menu (Default Ctrl+1/Cmd+1 on Windows/Mac). Eclipse then
checks which quick assists are available for the selected code by using
the quick assist processor.

Figure 3.5.: Selecting a quick assist to be applied.

We have implemented quick assists for all the ownership and nullability
refactorings outlined in section 3.1.2. Therefore However, we have not
implemented quick assists for the span<T> refactorings because we ran
out of time and had to focus on more important issues.

In order to use the quick assists provided by our plug-in the selection
needs to be exactly the pointer (meaning the * symbol) that should
be refactored. This can be achieved by putting the cursor directly to
the left/right of the * or by having the selection enclosing just the *.
We chose this approach because of its simplicity and reduced chance
for ambiguity.

39

3. Implementation

Figure 3.6.: The 3 possible selections to use a quick assist on a raw pointer.

Additionally, the quick assists are only available if the corresponding
checker is disabled. For example: The quick assists to refactor raw
pointers in return types (to owner<T>, borrower<T>, etc.) only be-
come available once the checker for raw pointers in return types has
been disabled. This was done in order to avoid displaying both the
quick fixes and the quick assists at once, because they would be redun-
dant, and also to increase performance by not unnecessarily running
the code analysis to determine which quick assists are available.

40

3.1. Overview of implemented features

3.1.4. GSL project includer

In order to solve the issues outlined in section 2.5.2 we implemented
a feature we call GSL project includer.

Whenever a refactoring (quick fix or quick assist) is applied, the GSL
project includer checks if the gsl C++ project is present in the current
Eclipse workspace. The gsl project is a project that contains all of the
GSL files plus our own gslrefactor.h file.

If the gsl project is not already present in the workspace, it is auto-
matically generated using the files bundled with our plug-in.

Figure 3.7.: The gsl C++ project.

The gsl project is then added to the include path of the current C++
project (this is the project the refactoring is applied on) if it is not
already there, so the compiler knows where to find it.

Figure 3.8.: The gsl project is automatically added to the include path.

41

3. Implementation

This entire feature makes it very convenient to use our refactorings,
as the user does not need to worry about downloading the GSL and
adding it to his projects. If the user still prefers to manually manage
the inclusion of the GSL this feature can be disabled on the plug-in
preference page. (See section 3.1.5)

3.1.5. Preference page

In section 2.5.4 we concluded that we want to make certain aspects of
our plug-in configurable. For this purpose we have created a preference
page for our plug-in. The preference page is implemented using Eclipse
SWT and is registered at an extension point so that it appears in
the Eclipse preferences dialog as ”GSLatorPtr” under the ”C/C++”
category.

Figure 3.9.: The preference page for our plug-in.

42

3.2. Abstract syntax tree

In the following sections we will briefly explain each of the prefer-
ences.

GSL project

Here the user can enable or disable the GSL project includer (See
section 3.1.4). It is also possible to change the name of the gsl project
to something different.

GSL header include

Here the user can chose to enable or disable the automatic generation
of the #include directive. He can also change the path of included
file from "gslrefactor.h" to something different.

GSL type names and GSL refactor type names

Here the user can configure the names of the GSL types the plug-
in uses when applying refactorings. Owner, not null, span and our
own borrower type can be configured. This is useful if the GSL types
change in the future or if the user wants to use his own types instead.

Additional size type names for span refactorings

Here the user can specify additional types that should be considered
as sizes in the raw pointer + size checker and the associated span
refactorings.

3.2. Abstract syntax tree

The AST is a representation of source code that is used to modify,
analyze and compile the program. The AST is generated by a parser
using the context free grammar of C++. The relationship between the
ASTs tree structure and the source code is bidirectional. This means
that code can be parsed into a tree, then the tree can be modified and
finally translated back to source code. We mostly modify or analyze
code in its AST representation, only #include statements need to be
added on text basis. See section 3.4.1 for an example of how such an
AST could look like and for how CDT represents its AST.

43

3. Implementation

3.3. Work flow when using checkers and
quick fixes

Here we show the most common work flow, but it is also possible
to disable all checks, let them run on demand or even just before a
compilation.

• (A) Finding a problem
1. The user writes some code
2. Editor detects code change and notifies Codan
3. CDT generates the AST and Codan runs activated checkers
4. Our code checker traverses the AST and reports found

problems
5. Codan annotates code sections according to the problems

with problem markers
6. The users sees his newly written code underlined with a

warning (problem marker)
• (B) Resolving a problem

1. The user opens a context menu on the faulty code and
executes a quick fix to solve the problem

2. CDT starts our quick fix on the problem marker
3. Our quick fix changes the AST and tries to solve the prob-

lem. Then returns a corrected AST.
4. The changes are applied to the code and the user can see

the results in the editor

Figure 3.10.: Work flow when using checkers and quick fixes

44

3.4. Our approach and solved challenges

3.4. Our approach and solved challenges

Here we want to show our approach on how we solved certain chal-
lenges that came up during implementation.

3.4.1. Ownership and nullability refactorings

The ownership and nullability checkers and refactorings can be divided
into 3 different aspects that are independent of each other. Figure
3.11 shows these aspects and the possible values for each. For the
implementation we needed to work with the AST of C++ where the
context of a pointer is important. A pointer in a parameter type, for
example, needs to be refactored differently than a pointer in a function
body.

Figure 3.11.: Different aspects that build the ownership refactorings and checks

45

3. Implementation

AST positons
It is important to understand that although the semantic meaning
of a pointer in a declaration within a class body is different to one
within a function body, they both can be manipulated the same way
since they share the same grammatical possibilities and therefore AST
nodes. For an in depth example see the sample code in listing 3.1 and
how it translates into the AST seen in figure 3.12. Please note the
following:

• The type of a variable consists of:
DeclSpecifier: It holds the type name and eventual template
argument and modifiers like const, extern, unsigned
Declarator: It holds the name of the declared element and
eventual pointer or reference modificators, array and function
pointer indication.

• The parent nodes of each pair of DeclSpecifier and Declara-
tor are not always the same.

• The member and the function body variable share the same par-
ent nodes and thus can be modified in the same way. This is
also true for global variables (not shown in the figure).

We can do all the refactorings by handling these AST positions:

• Variable type, found within global variables, class bodies and
function bodies

• Parameter type
• Return type

AST nodes in CDT
The CDT framework provides a lot of helpful functionality. Most no-
tably the parsing of code files and translation into an AST. Depending
on the AST node types found one can, for example, add or get differ-
ent sub nodes. To find specific nodes in the AST, visitors can be used
on it. Not all nodes are visitable but can be found by first searching
the underling node via a visitor and then use introspection (reflection)
and down-casting to navigate to the wanted node.

46

3.4. Our approach and solved challenges

Listing 3.1: A class with simple functionality using pointers
class C {

char* description;

char* spawDescription(char* newDescription) {

char* temp = description;

description = newDescription;

return temp;

}

};

Figure 3.12.: Abstract syntax tree representation of example code in listing 3.1

47

3. Implementation

3.4.2. Architecture and the n3 aspect problem

In this section we want to show how to incremental implementation
of new refactorings bloated our architecture and code-base over time
and how we fixed this issue with an architectural overhaul.

The creation and improvement of refactorings lends itself well to test
driven development (TDD). TDD causes you to be focused on one
task and not overbuild the architecture in advance. However during
the construction of later quick fixes we noticed that we are not be able
to reuse a lot of code and that but because of our architecture we were
forced to repeat ourselves a lot.

Each aspect in figure 3.11 needs to be represented in code. We chose
to build one refactoring and then add an additional changeable aspect
into our system, one at the time. Figure 3.13 shows the the growth
of the architecture in a simplified way. First we implemented the
a Variable-Nullable-Owning refactoring (Base). Then we made the
ownership aspect changeable. Then we made it possible to refactor at
the parameter AST position. Then we created refactorings for not-
null. Please note that over time, to incorporate one more value of an
aspect, we had to make increasingly bigger changes.

Figure 3.13.: Illustration on how the architecture grew over time

48

3.4. Our approach and solved challenges

Figure 3.14 shows the final stage of the architecture before we over-
hauled it. When using inheritance to realize the task we needed
3 ∗ 2 ∗ 2 = 12 leaf classes, the product of each aspects values. (AST
postition * Ownership * Nullability).

Figure 3.14.: Resulting bad architecture

This architecture is functional and makes it possible to change behav-
ior very precisely. However, this degree of freedom is not needed and
the many classes needs a lot of organization. This is why we decided
to refactor our architecture.

49

3. Implementation

Figure 3.15 shows how the core architecture has changed from a stat-
ically configured one to a dynamic one. There are now only 4 leaf
classes as children of GslBaseQuickFix.

The checkers (not in figure) add information about where a prob-
lem was found to an argument list that later can be accessed by
GslBaseQuickFix, with this information the correct algorithm can
be invoked (left).

All algorithms depend on the creation and modification of DeclSpec-
ifiers and Declarators, as seen in section 3.4.1, for this we use the
DeclarationHelper (right).

For the not null refactorings we use the DeclarationWrapperHelper

that can simply wrap a created TemplateSpecifier with not_null<

T*>.

Some parts of the refactorings cause an include file to be added to the
current files (includeGSL()), since this can not be done by modifying
the AST we established a link to the GslBaseQuickFix class. The
base class can generate includes on a text basis once all changes have
been collected and applied.

Figure 3.15.: Better architecture after the overhaul

50

3.4. Our approach and solved challenges

3.4.3. Span refactorings

This group of refactorings is concerned with the modification function
signatures consisting of raw pointer + size parameters to span<T>.
Checkers that report on this problem also need to save the parameter
position where the pointer and length was found.

When a refactoring is executed we search for call sites to this function
and change the call to use span<T>.

Because some situations need different flavors of delicacy when chang-
ing a function interface, we actually created two refactorings to solve
this problem:

• Add a trampoline function using span<T>

• Change raw pointer + size parameter to span<T>

Adding a span-trampoline function
This refactoring is useful when for legacy reasons the original function
interface can not be changed but developers want to use span<T> to
call this function. The trampoline function simply calls the original
function with unpacked span<T> contents. For an example we execute
this refactoring on listing 3.3 and get listing 3.3.

Listing 3.2: Original code before span refactoring
int summ(int* p, int length){

int summ {0};

for(int i =0; i < length; i++){

summ += p[i];

}

return summ;

}

int main(){

int* p = new int [5];

std::cout << summ(p, 5);

delete [] p;

}

51

3. Implementation

Listing 3.3: Code after span trampoline refactoring
#include "gslrefactor.h"

int summ(int* p, int length) {

int summ { 0 };

for (int i = 0; i < length; i++) {

summ += p[i];

}

return summ;

}

int summ(gsl::span <int > p) {

return summ(p.data(), p.size());

}

int main(){

int* p = new int [5];

std::cout << summ(gsl::span <int > { p, 5 });

delete [] p;

}

Changing the function
With this refactoring the function interface is changed and the code
within the function body is adapted to use the new span<T> param-
eter. We adapt the body by accessing the encapsulated content in
span<T> wherever one of the old parameters was used. It is important
to note that while this approach tries to keep the same functionality it
can not be guaranteed. Once the refactoring is done the programmer
still needs to adapt the code within the function body to incorporate
the full span<T> functionality. Listing 3.4 shows the code after this
refactoring is applied on the code from listing 3.2.

Listing 3.4: Code after span refactoring with changing the body and interface
#include "gslrefactor.h"

int summ(gsl::span <int > p) {

int summ {0};

for (int i = 0; i < p.size(); i++) {

summ += p[i];

}

return summ;

}

int main(){

int* p = new int [5];

std::cout << summ(gsl::span <int > { p, 5 });

delete [] p;

}

52

4. Testing

Our plug-in was tested using a mixture of automated testing and man-
ual testing.

4.1. Automated testing

We developed the majority of our plug-in using the test driven de-
velopment (TDD) approach. Meaning that we would first write an
automated test for a new feature that would fail initially and then im-
plement the feature in order to get the test to run successfully. Thus
it was important for us to write good automated tests.

CharWars already has a lot of tests for their checkers and quick fixes.
We have adopted their style of testing for our project.

The tests are implemented using the CDT Testing [fS15] framework.
They are integration tests, because we are not testing individual func-
tions or classes, but rather entire checkers, quick fixes and quick as-
sists.

The CDT Testing framework allows us to have the test cases and their
C++ code in a so called .rts file, along with additional parameters
needed to evaluate the test. When running the tests, the framework
loads the code from the .rts file and runs our checkers, quick fixes, etc.,
on it. It then evaluates if the results correlate with what is expected.

In the following sections will briefly explain how the tests work for
checkers, quick fixes and quick assists respectively.

53

4. Testing

4.1.1. Testing checkers

Checker tests are made up of C++ code and a parameter called mark-
erPositions. When running the test, the code is checked by the
checker and annotated with problem markers. It is then evaluated if
the problem markers set by the checker are at the correct positions
as specified by the markerPositions parameter and have the correct
problem id. The problem id is defined per test class, there is a test
class for each specific checker.

Listing 4.1: Test case for a checker
//!ReturnPointer

//@.config

markerPositions =4

//@main.cpp

#include "gslrefactor.h"

int* foo(int i);

int* foo(int i) {

return nullptr;

}

int main() {

foo (7);

}

4.1.2. Testing quick fixes

The quick fix tests expand on the checker tests by applying a quick fix
on the problem marker and then comparing the resulting code with
the expected code. The ”to be refactored” code and the expected code
are separated by //=. By default the quick fix is applied on the first
problem marker that has the problem id defined in the test class, this
can be overridden with the markerNumber parameter.

54

4.1. Automated testing

Listing 4.2: Test case for a quick fix
//!SimpleParameterFix

//@.config

markerNumber =0

//@main.cpp

void foo(int *p);

void foo(int *p){

}

int main() {

}

//=

#include "gslrefactor.h"

void foo(gsl::not_null <gsl::borrower <int*> > p);

void foo(gsl::not_null <gsl::borrower <int*> > p) {

}

int main() {

}

4.1.3. Testing quick assists

For the quick assist tests we have tested if quick assists are available
in C++ code based on the selection and whether the corresponding
checker is enabled or disabled. We do not have automated tests for ap-
plying quick assists because that logic is identical to the quick fixes.

Each quick assist test consist of C++ code with a selection. The selec-
tion is marked with /*$*/ ... /*$$*/. There are parameters to con-
trol which checkers should be enabled for the test (e.g. nakedPoin-
terDeclarationProblemEnabled) and a parameter called should-
HaveQuickAssists to specify if the selection should have quick as-
sists in that case.

Listing 4.3: A test case for the ”raw pointer in variable declaration” quick assist
//!LocalPointerHasQuickAssistsWhenProblemDisabled

//@.config

nakedPointerDeclarationProblemEnabled=false

nakedPointerParameterProblemEnabled=true

nakedPointerReturnProblemEnabled=true

shouldHaveQuickAssists=true

//@main.cpp

int main(){

int/*$*/*/*$$*/ x = new int {42};

}

55

4. Testing

4.2. Manual testing

All of our features were tested manually in an Eclipse CDT instance
hooked up with our plug-in. When testing manually we have put extra
emphasis on testing the features that are hard to test automated,
such as the user interface. When testing we used our own C++ code
according to whatever we wanted to test. We also tested our plug-in
in a real world scenario, see chapter 5 for that.

We have tested on both the Windows 10 and Mac OS X operating
systems and have used Eclipse Mars version 4.5.2 with CDT version
8.8.1.

56

5. Real world application

Here we try out our plug-in on an open source project and see where
it performs and where it falls short. We chose to use the Fish Shell
repository from Github [fSh16] (26 of May 2016), as it is a small to
mid size open source application with automated tests that does not
rely on highly specific build tools. It does however rely on Autotools
[mk16] and is therefore not easily buildable directly with Eclipse CDT.
We can however use our plug-in to refactor the code and then manually
build it and run tests with Autotools. This means that we need to
manually include the GSL header files in the source directory since the
automatically created C++ project will not be linked in Autotools.
Fish Shell does not rely on the C++14 code standard [ISO14] but
the GSL library does, so we also had to change the build process to
accommodate the newer standard.

5.1. Raw pointer problem statistic

To measure how many problems of a certain type can be found by our
plug-in we let the analysis tool run over the whole source code and
then see how many warning markers have been produced. Table 5.1
shows the number of locations where a refactoring could be used.

Raw pointers in parameter types 929
Raw pointers in return types 123
Raw pointers in variable types 968
Total 2020

Table 5.1.: Possible situations for owner, borrower and not null refactoring found

Raw pointer parameter problem

These problems hint at a missing ownership indication in the param-
eters of a function. These are really important to refactor since here

57

5. Real world application

misunderstandings could arise when programmers just use the API of
the functions without looking at their implementation.

Raw pointer return problem
In the Fish Shell project there are many functions that query a char
array for certain properties. Many results of these queries are posi-
tions returned as non-owning raw pointers, our plug-in can help the
programmer to declare the non owning relationship with borrower<T

*>. In addition the programmer can clarify if the returned value needs
to be null checked or not by refactoring to not_null<T*>.

Raw pointer variable declaration problem
These problems show missing indications of ownership in the body of
a function, class or in global scope. As seen in the example in listing
5.1, we can not be sure if the description could be null and if it needs
to be deleted by just looking at the code.

Listing 5.1: Missing ownership indication in struct found in Fish Shell code
/// Struct describing a resource limit.

struct resource_t {

int resource; // resource ID

const wchar_t *desc; // description of resource

wchar_t switch_char; // switch used on commandline to specify

resource

int multiplier; // the implicit multiplier used when setting

getting values

};

58

5.2. Raw pointer + size problem statistics

5.2. Raw pointer + size problem statistics

In table 5.2 we show how many raw pointer + size situations were
found in the Fish Shell source code by our plug-in. We also show
what clear improvement was made by advancing the span refactoring
so it is not only applicable to functions with 2 parameters. (See section
5.3 for more information)

Raw pointer + size, just 2 Parameters 57
Raw pointer + size, many Parameters 184
Improvement 127

Table 5.2.: Possible situations for span refactoring found

5.3. Span in Fish Shell

In the Fish Shell project there are many operations made on the user
input. These functions often need a pointer to an array and a size as
seen in the excerpt of Fish Shell code in listing 5.2. These function
signatures then can be changed by our span<T> refactoring as seen in
listing 5.3.

During our test of refactoring several different code snippets, we dis-
covered that would need span but did not get marked. The biggest
reason for this was that our checker and refactoring was limited to only
2 parameters in a functions signature, but many places also needed
some additional parameters as seen in the example in listing 5.4. This
realization was the reason to go back to the drawing board and try to
improve the refactoring by lifting the 2 parameters only constraint.

59

5. Real world application

Listing 5.2: Raw pointer + size problem found in Fish Shell
static wcstring str2wcs_internal(const char *in, const size_t in_len)

{

if (in_len == 0) return wcstring ();

...

Listing 5.3: Problem resolved using the span refactoring
static wcstring str2wcs_internal(gsl::span <const char > in) {

if (in.size() == 0)

return wcstring ();

...

Listing 5.4: Pointer + size occurance not detected by first checker implementation
static bool wildcard_has_impl(const wchar_t *str , size_t len ,

bool internal) {

assert(str != NULL);

const wchar_t *end = str + len;

...

60

6. Conclusion

Finally we want to look back on what we achieved with this bachelor
thesis and what compromises we had to take. We also want to describe
how our plug-in could be expanded upon in future.

6.1. Features

With this bachelor thesis we were able to realize the following fea-
tures:

• Refactoring of raw pointers in a variety of different positions into
borrower<T*> or owner<T*> and not_null<T*>.

• Refactoring of raw pointer + size function parameters into the
more cohesive span<T> type.

• Automatically create GSL library project in workspace and link
it up with the project where a refactoring is made.

• Give the user the ability to configure and customize his GSL
preferences, this will help staying compatible with future changes
to the GSL library.

We also tested the plug-in against a popular code base and improved
functionality and stability of our refactorings accordingly.

6.2. Relevance of our refactorings

Our refactorings pave the way for the static code analysis as described
in the Lifetime I & II paper [SM15]. Many checks can only work on
code that correctly uses not_null<T*>, owner<T*> and span<T*>, so
this has do be done first.

61

6. Conclusion

6.3. Early redefining of task

At the start of our project, we set our goal to implement parts of the
Lifetime I & II paper [SM15] as a static code analysis tool. We were
able to build a simple prototype to find aliasing problems like the one
in listing Listing 6.1. However, after corresponding with our supervisor
Prof. Peter Sommerlad, who was injured at the start of the project
and thus unavailable, we concluded that it would be unfeasibly hard to
implement a useful tool before the end of our thesis. As a result, our
supervisor gave us the more realistic task of refactoring raw pointers
to adhere with the C++ Core Guidelines [SS16].

The time invested in the original task was not wasted though, since
we were able to understand the core issues and challenges with raw
pointers and their static analysis.

Listing 6.1: Lifetime Safety Checker: Simple pointer aliasing and dangling example
int main() {

int *p;

{

int i = 7;

p = &i; // p points to i

} // i goes out of scope , p is now a dangling pointer

*p = 42; // ERROR: Dereferencing dangling pointer

}

6.4. Future work

In this thesis we were able to extend the original CharWars plug-in
[GS14]. Adding modern features to its catalog, while keeping the orig-
inal functionality intact. However there are many cases were highly
specific types need to be used, we were not able to cover all of them yet.
Here are some additional features that could improve the plug-in:

• Improvement of the span<T> refactoring so it can handle more
diverse function interfaces.

• Quick assist for span<T> in addition to the quick fix.
• Suppression of warnings via attributes.
• Checks and refactorings for string_span.

62

A. User manual

A short overview of important plug-in features and how to use them.
Our plug-in is built on top of CharWars [GS14], for features of the
previous work please see the CharWars manual instead.

This plug-in wants to make it easier to adhere to the C++ Core Guide-
lines [SS16] by providing refactorings converting raw pointers into GSL
[Mic16] types.

A.1. Installation

Or plug-in can be installed via the Eclipse ”Install New Software”
dialog found in the Help section.

A.2. Configuration

Configuration is done in two ways: Workspace specific (general plug-in
preferences) and Project specific (enabling or disabling checkers) .

Workspace settings

These settings, shown in Figure A.1, let you configure how the plug-
in maps with the GSL version [Mic16] you use. We included a GSL
version (snapshot spring 2016) and the configuration for it. You can
find the workspace settings in ”Window - Preferences - C++ - GslA-
torPtr”.

1. GSL project
Name of the project that will be linked to the refactored one. If
there is no GSL project in the workspace already there will be
one generated.

2. GSL header include
Decide what GSL file should be included at the top of the refac-
tored file.

63

A. User manual

Figure A.1.: Workspace configuration settings

3. GSL type names
These names correspond to the types found in GSL.

4. GSL refactor type name
This name corresponds to the type found within the ”gslrefac-
tor.h” file.

5. Additional size type names
This is a list of names to be considered as a size type for the
pointer + size to span refactoring. If you use a specific name
representing a size of an array you should put it here. Integers
are always included and do not need to be added manually.

64

A.3. Refactorings

Project settings

The project settings are all about what problems should be searched
for and how marked. The configuration, as seen in Figure A.2, can be
found in ”Project - Properties - C/C++ General - Code Analysis”.

Figure A.2.: Project code analysis settings

A.3. Refactorings

There are two groups of refactorings we want to feature here. Ones
considered with single raw pointers and ones where a array might be
passed to a function.

A.3.1. Ownership and nullability refactorings

You can use these refactorings to refactor raw pointers into a more
expressive type. The refactorings, as seen in Figure A.3, can be ex-
ecuted by moving your cursor over the pointer operator you wish to

65

A. User manual

clarify and then open the quick assist / quick fix menu (Mac: Cmd+1,
Windows: Ctrl+1). You can choose one of the following:

• borrower
Use this to signify that the pointer is not owning and that you
have been looking at it so others in your developer team do not
need to repeat your work and look at the pointer again and
again. Before accessing this pointer there is a null check needed.

• owner
Use this to signify a owning relationship. Before accessing this
pointer there is a null check needed.

• not null borrower
Like borrower but no null check is need.

• not null owner
Like owner but no null check is need.

• not null
Use this if you do not want to use borrower.

Figure A.3.: Quick fix dialog

66

A.3. Refactorings

A.3.2. Span refactorings

When a function is passed a pointer and a follow up length, it is
possible refactor the two to the GSL span<T> type. There are two
types of span refactorings available:

• Generate a span trampoline function leaving the old function
as is, but adding an additional function with span calling the
original. This is useful when you want to keep the original for
compatibility reasons.

• Change function signature and trying to adapt the body
This refactoring changes the signature of the function removing
the old function. The body of the function will be refactored to
use span, however the programmer will still need to change the
function body to fully utilize the spans functionality.

Both refactorings search for callers of the function and change them
to call the new function with the span type.

Figure A.4.: Span quick fix dialog

67

B. Developer manual

Here we address future developers of our plug-in who want to expand
the functionality or just compile it and use it as reference.

B.1. Version and software used

This configuration is for developing the plug-in on a Windows 10 ma-
chine.

1. latex for the documentation
MiKTeX 2.9

2. Eclipse PDE
Mars.1 Release (4.5.1)

3. Maven for testing the build scripts
Apache Maven: 3.3.9
cygwin: 2.873(64 Bit)

4. Source Control
Git 2.6.0.windows.1
SourceTree 1.8.3.0

B.2. How to setup Eclipse PDE compile and
run the tests

Here we give an explanation on how we set up the environment, how-
ever it is possible to do it differently.

1. Install Eclipse PDE (Plug-in Development Environment)
2. Pull current Cevelop repository
3. Create a workspace on the Cevelop folder, so the subdirectories

are all ”ch.ifs.cute...”
4. Via Eclipse import dialog, import all the projects found into the

workspace
5. Find the ”*.taget” file in the cute directory and open it in Eclipse

PDE

69

B. Developer manual

6. Update the repository URLs of the ”.target” file if needed
7. Set the ”.target” file as target: ”Set as Target Platform”

Now the includes that were missing in all the projects should be
found.

8. Close all unrelated projects except for CharWars
9. You can now run the CharWars project as an plug-in project,

but there will be exceptions thrown in the console.
10. To fix the exceptions you have to deactivate all plug-ins that are

not related to your OS. Open the run configuration, then click
the plug-ins tab, select ”Launch with: plug-ins selected below
only”, now un tick all plug-ins that generated an exception. You
can run again and un tick until no more exceptions occur.

11. If you want to run the CharWars tests open the ”ch.hsr.ifs.cute.charwars.test”
project and within it open the ”ch.hsr.ifs.cute.charwars.test”
package. Run the ”TestSuiteAll” class as a JUnit plug-In Test.

Build server
If you want to use Jenkins as a build server you need to add some
additional plug-ins and software.

• Git plug-in
To get the newest source

• Maven integration plug-in To run the POM files
• Xvnc plug-in

To run JUnit plug-in tests on the server (needs window manager
installed on unix server to open eclipse window)

70

Bibliography

[Apa04] Apache. Maven - build automation tool, jul 2004. https:

//maven.apache.org/ Accessed: 2016-06-15.

[Atl] Atlassian. Sourcetree- git client. https://www.

sourcetreeapp.com/ Accessed: 2016-06-15.

[Ban16a] Marius Bancila. Codexpert blog: Guidelines support library
review: span<T>. http://codexpert.ro/blog/2016/

03/07/guidelines-support-library-review-spant/

Accessed: 2016-06-07, 2016.

[Ban16b] Marius Bancila. Codexpert blog: Guide-
lines support library review: string span<T>.
http://codexpert.ro/blog/2016/03/21/

guidelines-support-library-review-string_span/

Accessed: 2016-06-07, 2016.

[FM13] André Fröhlich and Christian Mollekopf. Smartor, 2013.
https://eprints.hsr.ch/318/1/Smartor%20-%20Dress%

20Naked%20C++%20Pointers%20to%20Smart%20Pointers.

pdf Accessed: 2016-06-12.

[Fou16] The Eclipse Foundation. Eclipse CDT (C/C++ develop-
ment tooling), 2016. https://eclipse.org/cdt/ Accessed:
2016-06-07.

[fS15] HSR Institute for Software. Cdt testing frame-
work, 2015. https://github.com/IFS-HSR/ch.hsr.ifs.

cdttesting Accessed: 2016-06-15.

[fS16] HSR Institute for Software. Cevelop IDE, 2016. https:

//www.cevelop.com/ Accessed: 2016-06-07.

[fSh16] fish - the friendly interactive shell, 2016. https://github.
com/fish-shell/fish-shell Accessed: 2016-06-07.

71

https://maven.apache.org/
https://maven.apache.org/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
http://codexpert.ro/blog/2016/03/07/guidelines-support-library-review-spant/
http://codexpert.ro/blog/2016/03/07/guidelines-support-library-review-spant/
http://codexpert.ro/blog/2016/03/21/guidelines-support-library-review-string_span/
http://codexpert.ro/blog/2016/03/21/guidelines-support-library-review-string_span/
https://eprints.hsr.ch/318/1/Smartor%20-%20Dress%20Naked%20C++%20Pointers%20to%20Smart%20Pointers.pdf
https://eprints.hsr.ch/318/1/Smartor%20-%20Dress%20Naked%20C++%20Pointers%20to%20Smart%20Pointers.pdf
https://eprints.hsr.ch/318/1/Smartor%20-%20Dress%20Naked%20C++%20Pointers%20to%20Smart%20Pointers.pdf
https://eclipse.org/cdt/
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting
https://www.cevelop.com/
https://www.cevelop.com/
https://github.com/fish-shell/fish-shell
https://github.com/fish-shell/fish-shell

Bibliography

[GS13] Fabian Gonzalez and Toni Suter. Pointerminator,
2013. https://eprints.hsr.ch/350/1/Pointerminator_

eprints.pdf Accessed: 2016-06-07.

[GS14] Fabian Gonzalez and Toni Suter. Charwars, 2014. https://
eprints.hsr.ch/373/1/CharWars_eprint.pdf Accessed:
2016-06-07.

[Haa] Krister Haav. toggl. www.toggl.com Accessed: 2016-06-15.

[HT05] Junio Hamano and Linus Torvalds. Git - version control
system, apr 2005. https://git-scm.com/ Accessed: 2016-
06-15.

[Ipp16] Greg Ippolito. C/c++ memory corruption and mem-
ory leaks, 2016. http://www.yolinux.com/TUTORIALS/

C++MemoryCorruptionAndMemoryLeaks.html Accessed:
2016-06-07.

[ISO14] International Organization for Standardization, Geneva,
Switzerland. ISO/IEC 14882:2014: Information technology
– Programming languages – C++, 4th edition, dec 2014.

[JKN11] Jenkins - open source continuous integration tool, feb 2011.
https://jenkins.io Accessed: 2016-06-15.

[Lav13] Eric Lavesson. C++ ownership semantics, 2013.
http://ericlavesson.blogspot.ch/2013/03/

c-ownership-semantics.html Accessed: 2016-06-08.

[LD06] J Lang and E Davis. Redmine-open source project manage-
ment web-application, jun 2006.

[Mac15] Neil MacIntosh. Static analysis and c++: More than lint -
CppCon 2015, sep 2015. CppCon: http://sched.co/3vaZ

Talk: https://www.youtube.com/watch?v=rKlHvAw1z50

Accessed: 2016-06-07.

[Mic16] Microsoft. Gsl: Guidelines support library, 2015-2016.
https://github.com/Microsoft/GSL Accessed: 2016-06-
07.

72

https://eprints.hsr.ch/350/1/Pointerminator_eprints.pdf
https://eprints.hsr.ch/350/1/Pointerminator_eprints.pdf
https://eprints.hsr.ch/373/1/CharWars_eprint.pdf
https://eprints.hsr.ch/373/1/CharWars_eprint.pdf
www.toggl.com
https://git-scm.com/
http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html
http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html
https://jenkins.io
http://ericlavesson.blogspot.ch/2013/03/c-ownership-semantics.html
http://ericlavesson.blogspot.ch/2013/03/c-ownership-semantics.html
http://sched.co/3vaZ
https://www.youtube.com/watch?v=rKlHvAw1z50
https://github.com/Microsoft/GSL

Bibliography

[mk15] Cppcon 2015. Standard C++ Foundation, September 2015.
https://cppcon2015.sched.org/ Accessed: 2016-06-08.

[mk16] Gnu build system, 2016. https://en.wikipedia.org/

wiki/GNU_Build_System.

[SM15] Herb Sutter and Neil MacIntosh. Lifetime safety: Prevent-
ing leaks and dangling. https://github.com/isocpp/

CppCoreGuidelines/blob/master/docs/Lifetimes%20I%

20and%20II%20-%20v0.9.1.pdf Accessed: 2016-06-07,
December 2015.

[SS16] Bjarne Stroustrup and Herb Sutter. C++ core
guidelines, 2015-2016. https://github.com/isocpp/

CppCoreGuidelines/blob/master/CppCoreGuidelines.

md Accessed: 2016-06-07.

[Sut15] Herb Sutter. Writing good c++ 14 by default - Cpp-
Con 2015, sep 2015. CppCon: http://sched.co/41a3

Talk: https://www.youtube.com/watch?v=hEx5DNLWGgA

Accessed: 2016-06-07.

73

https://cppcon2015.sched.org/
https://en.wikipedia.org/wiki/GNU_Build_System
https://en.wikipedia.org/wiki/GNU_Build_System
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetimes%20I%20and%20II%20-%20v0.9.1.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetimes%20I%20and%20II%20-%20v0.9.1.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetimes%20I%20and%20II%20-%20v0.9.1.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://sched.co/41a3
https://www.youtube.com/watch?v=hEx5DNLWGgA

	Introduction
	Problem description
	Solution
	Previous work
	Our goals
	Planned Features

	Time management

	Analysis
	Analysis of GSL types
	owner<T*>
	not_null<T*>
	span<T>
	string_span

	General concepts and challenges
	Memory leaks and corruption
	Ownership
	Smart pointers

	Analysis of C++ Core Guidelines
	I.11: Never transfer ownership by a raw pointer (T*)
	I.12: Declare a pointer that must not be null as not_null
	I.13: Do not pass an array as a single pointer
	I.24: Avoid adjacent unrelated parameters of the same type
	F.22: Use T* or owner<T*> to designate a single object
	F.23: Use a not_null<T> to indicate that "null" (meaning nullptr) is not a valid value
	F.24: Use a span<T> or a span_p<T> to designate a half-open sequence

	Additional considerations for our plug-in
	Adding the borrower type
	Including the GSL and gslrefactor.h in the CDT project
	Allowing the user to disable checks and warnings but still use our refactorings
	Configuring the GSL type names and other plug-in preferences

	Conclusion: How to proceed
	GSL types we focus on
	Checks to implement
	Refactorings to implement
	Configuration

	Implementation
	Overview of implemented features
	Checkers and problem markers
	Quick fixes
	Quick assists
	GSL project includer
	Preference page

	Abstract syntax tree
	Work flow when using checkers and quick fixes
	Our approach and solved challenges
	Ownership and nullability refactorings
	Architecture and the n3 aspect problem
	Span refactorings

	Testing
	Automated testing
	Testing checkers
	Testing quick fixes
	Testing quick assists

	Manual testing

	Real world application
	Raw pointer problem statistic
	Raw pointer + size problem statistics
	Span in Fish Shell

	Conclusion
	Features
	Relevance of our refactorings
	Early redefining of task
	Future work

	User manual
	Installation
	Configuration
	Refactorings
	Ownership and nullability refactorings
	Span refactorings

	Developer manual
	Version and software used
	How to setup Eclipse PDE compile and run the tests

