. HSR o
HOCHSCHULE FUR TECHNIK ®
RAPPERSWIL

. . COMPUTER SCIENCE INSTITUTE FOR
SOFTWARE

OSMNames
Local Open Street Name
Database

Term Project

Department of Computer Science
University of Applied Science Rapperswil

Spring Term 2016

Author: Andreas Egloff
Advisor: Prof. Stefan Keller

ABSTRACT

There is a need for a data set consisting of street names (geo names) of the world. Such
gazetteer data however is either not available for every country (openaddresses.io) or
is not in a suitable format. Furthermore, if such data is found, it is often not for free.

Another problem we face is formatting postal addresses. Each country has its own set
of formatting rules and in order to have a database of addresses one needs to bring
these different formats to a common format and vice versa.

This thesis includes work in the following areas: First and foremost, the main objective
was creating a global and structured data set with street names with the help of OSM
data. Additionally, similar products, mostly Nominatim had been analyzed in order to
get familiar with the topic. Second, the workflow had to be dockerized so that it can be
easily deployed on any system. Finally, an export in a suitable format had to be made
publicly available so it can be used in conjunction with a geocoder.

A data set containing planet data could be provided. A secondary target, importing
additional house numbers for each street, could not be met in scope of this project. The
workflow could be setup in such a way, that it can easily be setup anywhere (via
Docker). The simplicity of the installation and, most of all, the clear arrangement of
code is a big advantage over other products like Nominatim. After all, the processing
run times are way faster than the latter, which takes up to several days for a global data
set.

The resulting and easy accessible data export has been successfully integrated by
Klokan Technologies with a SphinxSearch powered geocoder.

Further information is available on https://osmnames.org.

KEYWORDS: OPENSTREETMAP, DOCKER, POSTGIS, ADDRESSES, GAZETTEER, GEOCODER, GEO NAMES

MANAGEMENT SUMMARY

Problem Statement

There is a need for a data set consisting of street names (geo names) of the world. Such
gazetteer data however is either not available for every country (openaddresses.io) or
is not in a suitable format. Furthermore, if such data is found, it is often not for free.

Another problem we face is formatting postal addresses. Each country has its own set
of formatting rules and in order to have a database of addresses one needs to bring
these different formats to a common format and vice versa.

Finally, such a dataset could be used in conjunction with a geocoder in various
applications.

Approach

The main objective is creating a global and structured data set with street names with
the help of OpenStreetMap (OSM) data. There are two ways to look at this assignment
as depicted in the following L shaped figure.

Country

Region

State

County

City

District

Street House Number ZIP Code

4mmm——)

FIGURE A — POSTAL ADDRESS REPRESENTATION (C)SK

One way is to look at the vertical axis representing the hierarchy and the street names,
the other being the horizontal, contextual axis representing a postal address. The focus
of this work will be on creating a global data set representing the vertical axis.

The tasks can be summarized as follows:

* Analyze similar products, mostly Nominatim in order to get familiar with the
topic.

* Create a Docker workflow that imports OSM data and does the ranking of the
features.

* Refine data quality especially when it comes to street segments that belong
together.

* With the help of the ranking from above the features should get hierarchized.

* An export should be provided so it can be used in conjunction with a geocoder.

* The data should be made available to download in a usable format.

The whole Docker workflow can be run regularly at a later date.
Achievements

First of all, a data set containing planet data could be provided. A secondary target,
importing additional house numbers for each street, could not be met in scope of this
project.

The workflow could be setup in such a way, that it can easily be setup anywhere (via
Docker). The simplicity of the installation and, most of all, the clear arrangement of
code is a big advantage over other products like Nominatim. After all, the processing
run times are way faster than the latter, which takes up to several days for a global data
set.

The TSV file from the planet export includes 21'055'840 entries. The current data export
can be downloaded at https://osmnames.org .

The resulting data have been successfully integrated by Klokan Technologies with a
SphinxSearch powered geocoder. The result includes osm2vectortiles-generated vector
tiles and can be seen here: https://osmnames.klokantech.com/ .

+ [easer
pelen
Basel, Basel-Clly, Switzerland (adminisiative)

Lorrach

¥

(o31]
Blotzheim

Michelbach-le-Bas E Niedereich

Ranspach-le-Bas Inzlingén

Bettingen
Rihrberg
Michelbach-le

Hégenheim

Buschwiller Basel

Allschwil Grenzach

s Muttenz
o= Neuwiller (az] Giebenach

MUNChEnstein Pratteln

Oberwil

FIGURE B — OSMNAMES USED AS A GEOCODER

The implementation makes use of the calculated importance in order to sort the results.
The bounding box is also visualized. The meta-data can be seen in the lower-left corner.

Outlook

The current version 1.1 is quite satisfactory and could already be implemented in a real
life application as seen above. However, there are still a few improvements that can be
developed.

First and foremost, the database and Docker settings need to be tweaked, so the
processing times go down even more. An enhancement that can benefit from these
improvements is differential updates. With diff updates enabled one can think of
automated regular updates of the name database. Such updates take a really short time
compared to a full planet import and consequently improve the product overall.

Secondly, it would be great to have house numbers in the database as well. This
extension however brings a further challenge when it comes to the export. Further
work has to be done in designing the export format, unless we want to have an entry
in the export file for every house number, resulting in a humongous file size.

DECLARATION OF ORIGINALITY

| hereby declare that

* this thesis and the work reported herein was composed by and originated
entirely from me unless stated otherwise in the assignment of tasks or agreed
otherwise in writing with the supervisor.

e all information derived from the published and unpublished work of others has
been acknowledged in the text and references are correctly given in the
bibliography.

* no copyrighted material (e.g. images) has been used illicitly in this work.

PLACE, DATE

SIGNATURE

TABLE OF CONTENTS

1Y ¢T3 4 Vot N 2
ManagemeNnt SUMMAIY ..c.ciiiieiieiiiiiiiiiiiiniieeiieiiacsssiossiaesssiesstaesssssssiassssssssstasssnssssssasssnns 3
Declaration Of Originalityccccceieeeeeiieeiiiieeierienieiienseeeeenssernensseseensessenssesssnssessenssesssnnsans 6
LI L1 LT 0 0 T 41 =T 4 N 7
3 A 1514 T [Tt o o 9
1.1 Problem Statementccccceiiiiiiiinuiiiiiiiiiiiiner s sesssssssssssssanesasnes 9

3 7 oY =Tt G -V o 4 U oS 10
R T - 1 7T 0 1 3 =Y 11

2 Requirements ENGINEEIING....ccccciiuuiiiiiuiiiiieniiiinuiiiiiemiiiinmiiemimiiesiessrenss 12
0 R U 1 - - T - N 12
2.2 SequENCE DIiagramscccieeiieeireeiiienirtenierneerenserenseressernsssensssenssssnsssenserenserassernes 15
2.3 ActiVity DIiagramscccuiieeiiieeiiceiiieeirrccerieereneerennerensernensensssensesensesenserenseransernes 16
2.4 Non-Functional ReqUIrementscccceucereeeniiieeneereenncereneseereenseerensseeseenseessnnsssees 17

3 Architecture & DeSigNccciiiieeueiiiiiiiiinnniiiiiiiieensiiiiiiiesssiiiessiessmssassnes 18
O © 1V =T VY PN 18
3.1.1 DOCKEr arChitECLUIE c..cceeeeeeeee e e e e e e e 19

307 N 0 T | - 1 1Y/ o T 1= 21
3.3 Export: Data FOrmatcccciiiieiiiiiiiiiiiiiciiiiieiiiieiieeiiisesiessiscsssissssascssssenss 22

L/ 1 1T 1 (=13 T=T 1 - 14 T] TR 24
s R © 1T oV T Y 24

L7 7 N © 1 |/ I 1 4T Yo T o N 24
42.1 OSM Data in BENEIal....ciii it 24
4.2.2 IMPOSM MAPPING ..eiiiiiiiiiiiiiiiirrere e ettt sse s s e s e e s e e eeeeeeeeeeeennnnes 25

L7 0 N o Yot XYY 1 o T- SRt 27
43.1 Delete UNUSAble ENtries. ... e e 27
43.2 Ranking & PartitionNingceeeeiiuiiiiiiieiiiiee e 28
43.3 Determine linked Placescovcuviiiieiicieeee e 30
4.3.4 Create HIiBrarCNY e e e e e e e e e 30
435 Merge corresponding street SEgZMEeNtS........ccooevvieiicciiiiinirieeeeeeee e 31

4.4 Wikipedia ImMport & IMPOrtancCec.cceeeeecereenerteeneerensierrensneerenssessenssessenssessennns 31

L 38T =5 (o o1 o N 32
4.6 PostgreSQL PerfOrmManceccccceereenereeenncerensereensneerensseenenssessenssesssnssessenssessennes 33
4.6.1 TUNINE oot e e e e e e e e et et e et e et se s e e e e e e eeeeeetereeerernnnnnas 34
4.6.2 oo [T <Ly P UUUUTUUTPRN 34

0 A ¥ 1 4 Vot o To T L3 34

4.7.1 Finding Parent of Street segmentscc.ueeveiiiiiieee e 35
4.7.2 Determining Partitionuuueeeiiiiiieiee e 35
4.7.3 LanNgUAEE PreCeUENCEveeeiieiiieee ettt e e 36
4.7.4 AILEINAtIVE NAMES ..ccoieiiieieeccceeeeeeee e eeeeeeeeeeeeseesennns 36
4.7.5 COUNTIY NQMIES ot s e e e et e e s s e s e e e eeeanas 37

T (=T ¥ 38
5.1 Product RESUILSccoiiiieeeniiiiiiiiinniiiiiiiiennnniiininessssiississssssssssssnssssssssssssssssssssnns 38
51.1 D | - [PP PP PP PP P TTPPPPRPRTRN 38
5.1.2 Use Case: Search 0N IMap ...cocueiiiiiiienieeeeeeiee ettt st s 39

5.1.3 Performance MeasUremMENtScceiiicuuieieeeiiiiieee et e e e e e e e saareee e 39

07 N © 111 [Yo 1 40
TR J £ 1= { =T o o T 40

ST Yol [y 1o 3V Y] [T P U= o) Rt 42
/2 1 (o 1Y | o VARt 43
LI = 11+ T4 =T o] 4|V 44
L2 T o - (11 =L U 45
LT I 1 1 46
AppendiXx A INStAllatioNccceeeiiieeniiiiieccireeecereeneerreeeeereesesrensseesensseseennsesssnnsseennseeseas 47
AL INSTAIlING OSIMNGMES ..ceuviieiiieiieeeitee ettt sttt sttt et et esat e e sabeesateesabeesaneesbeeeanees 47

Appendix B [0 Te Yol 013 7=1 41 - 1 4 o] 3 JPUS RIS 48
B.1 REVIEWEA PrOTUCES ..uvviiieiiiicciitieeee ettt ettt e e e e e et ae e e e e e e e s aaabaeeeeeeeeenntraneeeaeas 48

= 700 000 A N\ 1 o 11 - o [o PSS 48

B.1.2 MAPZEN PEIIAS .eenueeeiiieeiet ettt sttt ettt bbb eneas 49

B.1.3 LIDPOSEAl ettt et s b e ereas 49

B.2 IMPOSM3 YAML MaAPPING...ceeeeiiiiiiiiiiiieiiee ettt s raeeeee e 50

SIS I Yo T8 fol=l D Lo Yol ¥ [4 =] a1 - L (o] o [SRS 53

Appendix C Project Management.........ccccieeiieeireeiereeiereeerenesrensereasereassresseressernsssensnses 54
(O R O 4= = o114 1 o o TP OO PPPPPPPPN 54

C.2 PIanning & CoordiNation.......ccoueiiueeriiiierie ettt sttt st seee bt et seeeesaee e 54

C.3 WOTKFIOW .ttt et e e e e e et ba e e e e e e e eesaabaeeeeeeeeeentssreeeaeeenanes 54

C.4 Target-performance Comparison & MONItOrING.......cceveerieeniiieiiieniee et 55

INTRODUCTION

This work consists of five main parts. The first chapter defines the problem statement
as well as what goals need to be achieved. A short overview over the state of the art
concludes this chapter.

The second chapter pinpoints the single parts of a typical requirements engineering
process covering use cases, sequence and activity diagrams, as well as non-functional
requirements.

The third chapter sketches an architectural view on the parts to be implemented.

The fourth chapter delves into the implementation itself. It consists of the
documentation of the source code.

The fifth chapter ultimately presents the results that were achieved in scope of this
work and gives a possible outlook for further work. It summarizes with a personal
reflection on the project.

1.1 PROBLEM STATEMENT

There is a need for a data set consisting of street names (geo names) of the world. Such
gazetteer data however is either not available for every country (openaddresses.io) or
is not in a suitable format. Furthermore, if such data is found, it is often not for free.

Another problem we face is formatting postal addresses. Each country has its own set
of formatting rules and in order to have a database of addresses one needs to bring
these different formats to a common format and vice versa.

Finally, such a dataset could be used in conjunction with a geocoder in various
applications.

1.2 PROJECT AIM

The main objective is creating a global and structured data set with street names with

the help of OpenStreetMap (OSM) data. There are two ways to look at this assignment

as depicted in the following L shaped figure.

Country

Region

State

County

City

District

Street

House Number

ZIP Code

4mmm——)

FIGURE 1-1 POSTAL ADDRESS REPRESENTATION (C)SK

One way is to look at the vertical axis representing the hierarchy and the street names,

the other being the horizontal, contextual axis representing a postal address. The focus

of this work will be on creating a global data set representing the vertical axis.

The tasks can be summarized as follows:

* Analyze similar products, mostly Nominatim in order to get familiar with the

topic.

* Create a Docker workflow that imports OSM data and does the ranking of the

features.

* Refine data quality especially when it comes to street segments that belong

together.

* With the help of the ranking from above the features should get hierarchized.

* An export should be provided so it can be used in conjunction with a geocoder.

* The data should be made available to download in a usable format.

The whole Docker workflow can be run regularly at a later date.

10

The whole process planning as well as the target-performance comparison can be
found in Appendix C - Project Management.

1.3 STATE OF THE ART

The most prominent candidate providing similar functionalities as stipulated is
Nominatim. It also makes use of OSM input data and as a (reverse) geocoder even
powers the OpenStreetMap website itself.

Other products worth mentioning include Mapzen’s “‘Who’s on First” along with Pelias,
Geonames, Quattroshapes, OpenAdresses and OpenCageData some of which are
described in more detail in Appendix B - Documentation.

In terms of address normalization and parsing there is libpostal which does a wonderful
job in language classification, transliteration among other things as well as separating
an address string into its components. It uses OpenCage’s address formatting rules.

11

2 REQUIREMENTS ENGINEERING

2.1 Use CASES

The following diagram presents the use cases and how they interoperate with each
other. UC_3 is not part of this work but is specified altogether for the sake of

completeness.

Administrator
\

A

Map User
J

system

UC_1 process OSM data

r«extend»

-
-
-
-

.-~ «include»
UC_2 export data set

UC_3 address search

:' «include»

present results

FIGURE 2-1 USE CASES

12

Use Case

uc_o1

Use Case Name
Use Case Description

Actor
Pre-condition

Basic Flow

Post-condition

Alternative Flows

Process OSM data
The administrator wants some specified
OSM data processed and as a result being
able to export a hierarchized and
structured data set.
Administrator
* Sources cloned from GitHub
* Docker installed
* PBF file downloaded.
The following steps represent
Docker workflows.
1. The database gets initialized
2. Wikipedia data (for defining
importance of places) gets
downloaded and imported
3. The schema gets initialized
4. Now the actual OSM import
happens with the help of
imposm3. Furthermore, data
refinements, ranking, hierarchy
creation and street segments
merging is done.
The administrator has processed OSM
data in the database.
In order to get the PBF file there exists an
optional Docker workflow. One needs to
edit the URL in the source code in case a
specific country extract is required.

TABLE 2-1UC_1

13

Use Case
Use Case Name
Use Case Description

Actor
Pre-condition

Basic Flow

Post-condition

Alternative Flows

uc_02

Export data set

The administrator wants to export the
processed data.

Administrator

OSM data processed -> UC_1

The data gets exported in a suitable TSV
format and gzipped in the end.

The administrator gets an export of the
database reflecting all the imported and

processed attributes containing
hierarchy and merged streets.
None

TABLE 2-2UC_2

14

2.2 SEQUENCE DIAGRAMS

The following sequence diagram emphasizes the flow of control and data in the system

when processing the OSM data.

|interaction process OSM data)

Administrator postgres import_wikipedia schema import_osm
1 : compose up
2 : compose run o
<
3 : write data |
4 : compose run o
Goreanenaensnn s e l
5 : write data v
6: composé run : -

7 : write data

e S S ——

FIGURE 2-2 PROCESS OSM DATA

Finally, the administrator can export the data set.

interaction export data set)

Administrator

postgres

export_osmnames

1: compose up

2 : compose run

o

G mmmmmn

3 : write data ’ |

FIGURE 2-3 EXPORT DATA SET

15

2.3 AcTiviTY DIAGRAMS

The following activity diagram shows the importing workflow as a whole.

activity import_osm)

[reading PBF file in data folder)

[File exists?]

<>

YES

(import PBF with imposm3)

[success?]

<\

NO

YES

initialize helper tables

initialize functions

processing

delete unusable entries

ranking & partitioning

determine linked places

create hierarchy

(m

erge corresponding street segments]

J

TABLE 2-3 IMPORT OSM DATA

16

2.4 NON-FUNCTIONAL REQUIREMENTS

The following quality attributes should be taken into account:

1D Description

NFR_01 The whole importing and processing workflow should not take more
than 30 hours for a planet dump to process.

NFR_02 The resulting TSV must be correctly formatted. In order to achieve this

requirement, possible tabs in the imported data need to be eliminated
prior to the export.

NFR_03 Features with faulty geometries and/or empty names in the import
data should be ignored.

TABLE 2-4 NON-FUNCTIONAL REQUIREMENTS

17

3 ARCHITECTURE & DESIGN

3.1 OVERVIEW

OSMNames is built with Docker and is therefore shipped in containers. This allows to
have an extra layer of abstraction and avoids overhead of a real virtual machine.
Specifically, it is built with Docker compose thus allowing to define a multi-container
architecture defined in a single file. The Docker compose YAML file looks as follows:

(Eotal]

- r/lib/postgresql/data

“tianon/true"

“tianon/true"
- /data/cache

src/postgres"
.env

pgdata oy
"5432"

“src/import-osm"
.env

./data:/data/import

cache —
db _

“src/import-wikipedia"
.env

./data:/data/import
cache _
db _

"src/export-osmnames"
.env

./data:/datq
db < —

"src/schema"
.env

db <

“src/download-pbf"
.env

./data:/data
FIGURE 3-1 DOCKER COMPOSE FILE

18

The data-only container pattern is used in cache and pgdata. These containers are
mounted from import-osm and import-wikipedia for storing cache data and in postgres
for storing the database files.

The single containers can be started started separately but the whole environment can
be easily brought up with a single docker compose up command.

Dockerfiles meet best practices followed defined by Docker [1].

3.1.1 DOCKER ARCHITECTURE

Docker uses a client-server architecture [2]. The client connects to the Docker daemon,
which ultimately does the building, running and finally distributing the Docker
containers. Client and daemon do not necessarily have to run on the same machine.

ocker s (o)

docker build -- /,)‘{ Docker daemon _] @ I
: ooy T = PR
. \ .., Sl < Y
docker pull -| |/ - T
\
| -

i Containers }— \. W
\ :

docker run — NGinX

L
¢

FIGURE 3-2 DOCKER ARCHITECTURE

Figure 3-2 illustrates the architecture.
Other Docker essentials include images, registries and containers.

Docker images are read-only templates and can for instance contain already installed
software such as an Ubuntu Linux and an nginx webserver. They are used for creating
Docker containers. Docker images are built with the docker build command.

Docker registries are used for distributing existing Docker images. They are either
private or public (the Docker Hub). Docker images are downloaded from Docker
registries with the docker pull command.

19

Docker containers are built from Docker images. They contain everything needed for an
application to run and have their own file system and networking. Each container is an
isolated application platform and can be run, started, stopped, moved and deleted.
Docker containers are run with the docker run command.

20

3.2 DAtA MODEL

The tables in the data model can be categorized in two categories. Helper tables and
OSM data tables. The data model looks as follows:

FIGURE 3-3 OSMNAMES DATA MODEL

osm_polygon osm_linestring
S id INTEGER Cid INTEGER
osm_id BIGINT osm_id BIGINT
type CHARACTER VARYING type CHARACTER VARYING
country_code CHARACTER VARYING name CHARACTER VARYING
name CHARACTER VARYING name_fr CHARACTER VARYING
name_fr CHARACTER VARYING name_en CHARACTER VARYING
name_en CHARACTER VARYING name_de CHARACTER VARYING
name_de CHARACTER VARYING name_es CHARACTER VARYING
name_es CHARACTER VARYING name_ru CHARACTER VARYING
name_ru CHARACTER VARYING name_zh CHARACTER VARYING
name_zh CHARACTER VARYING wikipedia CHARACTER VARYING
wikipedia CHARACTER VARYING vakidata CHARACTER VARYING
wikidata CHARACTER VARYING admin_level INTEGER
admin_level INTEGER geometry geometry
geometry geometry rank_search INTEGER
rank_search INTEGER partition INTEGER
parfition INTEGER calculated_country_code CHARACTER VARYING{2)
cakulated_country code CHARACTER VARYING(2) parent_id BIGINT
parent_id BIGINT merged BOOLEAN
linked_osm_id BIGINT
osm_point osm_merged_multi_linestring osm_relation
id INTEGER ' member_ids INTEGER](] o d SERIAL
osm_id BIGINT type TEXT osm.id BIGINT
type CHARACTER VARYING name CHARACTER VARYING member BIGINT
name CHARACTER VARYING name_fr TEXT role CHARACTER VARYING
name_fr CHARACTER VARYING name_en TEXT type SMALLINT
name_en CHARACTER VARYING name_de TEXT name CHARACTER VARYING
name_de CHARACTER VARYING name_es TEXT geometry geometry
name_es CHARACTER VARYING name_ru TEXT
name_ru CHARACTER VARYING name_zh TEXT
name_zh CHARACTER VARYING vakipedia TEXT
wikipedia CHARACTER VARYING wikidata TEXT
wikidata CHARACTER VARYING geometry geometry
admin_level INTEGER partition INTEGER
geometry geometry calculated_country_code TEXT
rank_search INTEGER rank_search INTEGER
parftion INTEGER parent_id BIGINT
cakulated_country_code CHARACTER VARYING(2)
parent_id BIGINT
linked BOOLEAN
wikipedia_article country_name country_osm_grid
¢ * language TEXT country_code CHARACTER VARYING(2) country_code CHARACTER VARYING(2)
¢ " tite TEXT name hstore ama DOUBLE PRECISION
langcount INTEGER country_default_language_code CHARACTER VARYING(2) geometry geometry
othercount INTEGER parftion INTEGER
totalkcount INTEGER
lat DOUBLE PRECISION
fon DOUBLE PRECISION
importance DOUBLE PRECISION
osm_type CHARACTER(1)
osm_id BIGINT
infobox_type TEXT
population BIGINT
website TEXT

Note that the bottom tables are helper tables and initialized before importing OSM

data. The OSM tables are being constructed during the import by imposm3. Note that

21

the osm_id in the OSM tables is not necessarily the original osm_id from
OpenStreetMap, but rather a special kind where osm_ids of relations are negated in
order to prevent collisions with way IDs.

3.3 EXPORT: DATA FORMAT

The requirement of the export data format is being simple to use. The decision led to
using an UTF-8 encoded TSV like Geonames, where the first line contains the column
names. Compared to a CSV, names are now allowed to have usual delimiters such as
commas or semicolons [3]. The definition looks as follows:

Column Name Description

name The name of the feature (default language is en, others available
are de, es, fr, ru, zh)

alternative_names All other available and distinct names separated by commas

osm_type The OSM type of the feature (node, way, relation)

osm_id The unique osm_id for debug purposes

class The class of the feature e.g. boundary

type The type of the feature e.g. administrative

lon The decimal degrees (WGS84) longitude of the centroid of the
feature

lat The decimal degrees (WGS84) latitude of the centroid of the
feature

place_rank Rank from 1-30 ascending, 1 being the highest. Calculated with
the type and class of the feature.

importance Importance of the feature, ranging [0.0-1.0], 1.0 being the most
important. Calculated with wikipedia information or the
place_rank.

street The name of the street if the feature is some kind of street

city The name of the city of the feature, if it has one

county The name of the county of the feature, if it has one

state The name of the state of the feature, it it has one

country The name of the country of the feature

country_code The ISO-3166 2-letter country code of the feature

display_name The display name of the feature representing the hierarchy, if
available in English

west The western decimal degrees (WGS84) longitude of the
bounding box of the feature

south The southern decimal degrees (WGS84) latitude of the bounding

box of the feature

22

east
north

wikidata
wikipedia

The eastern decimal degrees (WGS84) longitude of the
bounding box of the feature

The northern decimal degrees (WGS84) latitude of the bounding
box of the feature

The wikidata associated with the feature

The wikipedia URL associated with the feature

TABLE 3-1 OSMNAMES DATA EXPORT FORMAT

23

IMPLEMENTATION

4.1 OVERVIEW

This chapter shows in-depth some of the more interesting parts of the implementation.
First of all, it addresses how and what kind of OSM data is imported. Second of all, it
highlights how the data is processed and refined in the end. Third of all, it shows how
the export of the data is done. Finally, it pinpoints some technical details in terms of DB
performance and presents some functions used in OSMNames.

4.2 OSM IMPORT

OSM Data comes in different file formats. The whole planet is as big as 666GB
uncompressed XML data [4]. This is also why initially it made sense to start with a
smaller extract such as Switzerland. OSMNames uses PBF file formats which is way
smaller (31GB) and therefore faster to download and much faster to process.

4.2.1 OSM DATA IN GENERAL

There are three data models in the OSM data model:

* Nodes
* Ways
e Relations

All of these components can have associated tags [5].

Nodes represent specific point on earth’s surface with its latitude and longitude. They
can describe standalone features such as bus stops. They are also used as points along
ways. Nodes can also be included as members of relations.

Ways are ordered list of 2-2000 nodes and represent as polylines streets or rivers. As
closed ways they can also represent traffic circles. Even more, as boundaries of areas
they describe buildings or forests. In this special case the last node must be the same
as the first one in the list. They are not suitable to represent multipolygon data.

24

Relations are multi-purpose data structures defining a relationship between two or
more OSM data models. One worth mentioning is as a multipolygon describing an area
with holes. Basically, relations are ordered lists of nodes, ways or other relations. Each
member can have a role describing its purpose. Typically, the relation has at least a type
tag defining its meaning.

Tags are used with every of the three data models. They are basic key-value fields with
no fixed dictionary but rather following OSM conventions. The purpose is adding
meaning to geographic data.

4.2.2 IMPOSM MAPPING

For importing OSM data into Postgres, imposm3 by Omniscale is used in favor of
osm2pgsqgl mainly because of its superior speed results. It makes heavy use of parallel
processing favoring multicore systems. Explicit tag filters are set in order to have only
the relevant data imported. Due to the fact that imposm3 cannot import multiple
geometry types into a single table, separate tables are created for points, linestrings as
well as polygons.

This is an excerpt of how the mapping YAML could look like [6]:

tables:
landusages:
type: polygon
mapping:
natural: [wood, land]
tourism: [zo00]

LISTING 4-1

The features matching the following tags are imported:

Key Values
place * City

* borough

* suburb

® (quarter

* neighbourhood

* town

* village

* hamlet
landuse * residential
boundary * administrative
highway * motorway

25

motorway_link
trunk
trunk_link
primary
primary_link
secondary
secondary_link
tertiary
tertiary_link
unclassified
residential
road
living_street
raceway
construction
track

service

path
cycleway
steps
bridleway
footway
corridor
crossing

TABLE 4-1 IMPOSM MATCHING

The following fields are then incorporated:

Key

id
geometry
type
name
name_en
name_de
name_fr
name_es
name_ru
name_zh
wikipedia
wikidata

Type
Integer
Geometry
String
String
String
String
String
String
String
String
String
String

Description

the osm id (negative for relations)
polygon, point or linestring

the mapping value from the table above
the name used locally

English (if available)

German (if available)

French (if available)

Spanish (if available)

Russian (if available)

Chinese (if available)

wikipedia link

wikidata Hash

26

admin_level Integer originally used for differentiate border rendering, now
used for ranking

ISO3166- String the ISO 3166 2-letter country code
1:alpha2

member_id Integer the id of the member
member_role String the role of the member
member_type String the type of the member

TABLE 4-2 IMPOSM IMPORTED TAGS

The complete mapping can be found in Documentation.

4.3 PROCESSING

After importing the OSM data with imposm3 the real processing begins. Each of the
steps taken is described in this sub-chapter.

4.3.1 DELETE UNUSABLE ENTRIES

Since the goal is to have names in the data set, each entry with an empty name in all
imported languages is useless and therefore deleted. Instead of NULL values, imposm3
writes empty strings which has to be accounted for.

Additionally, since the export should be in TSV format, any entries containing tabs are
deleted as well.

DELETE FROM osm_polygon_tmp WHERE (name <> '' OR name_fr <> '' OR name_en
<> "' OR name_de <> '' OR name_es <> '' OR name_ru <> '' OR name_zh <> ''")
IS FALSE;

--remove tabs, so the export in tsv is valid

UPDATE osm_polygon_ tmp SET name = regexp replace(name,'\t', ' ') WHERE
name LIKE '%'||chr(9)]|]|'s';

UPDATE osm_polygon_tmp SET name_ fr = regexp replace(name fr,'\t', ' ")
WHERE name fr LIKE '%'||chr(9)||'%';

UPDATE osm_polygon_tmp SET name_en = regexp replace(name en,'\t', ' ")
WHERE name_en LIKE '%'||chr(9)||'%"';

UPDATE osm_polygon_tmp SET name_de = regexp replace(name de,'\t', ' ")
WHERE name_de LIKE '%'||chr(9)||'%"';

UPDATE osm_polygon_ tmp SET name_es = regexp replace(name es,'\t', ' ")
WHERE name_es LIKE '%'||chr(9)||'%"';

UPDATE osm_polygon_ tmp SET name_ru = regexp replace(name ru,'\t', ' ")
WHERE name_ru LIKE '%'||chr(9)||'%"';

UPDATE osm_polygon_tmp SET name_zh = regexp replace(name zh,'\t', ' ")
WHERE name zh LIKE '%'||chr(9)||'%"';

LISTING 4-2

Note that this extract shows the empty name and tab removal only for one table.

27

4.3.2 RANKING & PARTITIONING

For every geometry type a new table is created since this is far more effective than
altering the old tables and updating every single row (see chapter 4.6). Additionally, the
according rank and partition are calculated.

CREATE TABLE osm_polygon AS
(SELECT

id,

osm_id,

type,

country_code,

name,

name_fr,

name_en,

name_de,

name_es,

name_ru,

name_zh,

wikipedia,

wikidata,

admin_level,

geometry,

rpc.rank_search AS rank_search,

rpc.partition AS partition,

rpc.calculated_country code AS calculated_country code,

NULL: :bigint AS parent_id,

NULL: :bigint AS linked osm_id
FROM

osm_polygon_tmp p,

determineRankPartitionCode(type, geometry, osm_id, country code) AS rpc

LISTING 4-3
Pivotal to this process is the ranking for places and addresses as follows:

CREATE OR REPLACE FUNCTION rank place(type TEXT, osmID bigint)
RETURNS int AS $$
BEGIN
RETURN CASE
WHEN type IN ('administrative') THEN 2* (SELECT
COALESCE (admin_level,15) FROM osm_polygon_tmp o WHERE osm_id = osmID)
WHEN type IN ('continent', 'sea') THEN 2
WHEN type IN ('country') THEN 4
WHEN type IN ('state') THEN 8
WHEN type IN ('county') THEN 12
WHEN type IN ('city') THEN 16
WHEN type IN ('island') THEN 17
WHEN type IN ('region') THEN 18 -- dropped from previous value
of 10
WHEN type IN ('town') THEN 18
WHEN type IN
('village', 'hamlet', 'municipality', 'district’', 'unincorporated area', 'boroug
h') THEN 19
WHEN type IN
('suburb', 'croft', 'subdivision', 'isolated _dwelling', 'farm', 'locality’', 'isle
t', 'mountain pass') THEN 20
WHEN type IN ('neighbourhood', 'residential') THEN 22
WHEN type IN ('houses') THEN 28

28

WHEN type IN ('house', 'building') THEN 30
WHEN type IN ('quarter') THEN 30
END;
END;
$$ LANGUAGE plpgsql IMMUTABLE;

CREATE OR REPLACE FUNCTION rank address(type TEXT)
RETURNS int AS S$S
BEGIN
RETURN CASE
WHEN type IN
('service', 'cycleway', 'path', 'footway', 'steps', 'bridleway', 'motorway_link',
'primary link', 'trunk_link', 'secondary_ link', 'tertiary link') THEN 27
ELSE 26
END;
END;
$$ LANGUAGE plpgsql IMMUTABLE;

LISTING 4-4

Note that these value mappings are the same as in Nominatim. If not available, the
country code is calculated along with its partition code (unique integer value for each
country) with the help of the pre-initialized table country_osm_grid.

CREATE OR REPLACE FUNCTION get country_ code(place geometry) RETURNS TEXT
AS $S
DECLARE
place_centre GEOMETRY;
nearcountry RECORD;
BEGIN
place_centre := ST PointOnSurface(place);

FOR nearcountry IN select country code from country osm grid where
st _covers(geometry, place centre) order by area asc limit 1
LOOP
RETURN nearcountry.country_ code;
END LOOP;

FOR nearcountry IN select country code from country osm grid where
st _dwithin(geometry, place centre, 0.5) order by st _distance(geometry,
place_centre) asc, area asc limit 1

LOOP

RETURN nearcountry.country_ code;

END LOOP;

RETURN NULL;

END;

$S

LANGUAGE plpgsql IMMUTABLE;

LISTING 4-5

29

4.3.3 DETERMINE LINKED PLACES

In order to determine linked places (points linked with polygons) additional tags about
the relations are imported. Specifically, the role values admin_centre and label are of
interest.

-- places with admin_centre tag
UPDATE osm_polygon p
SET linked osm _id = r.member
FROM osm relation r
WHERE
r.type = 0 AND (r.role = 'admin centre' OR r.role = 'admin center')
AND p.name = r.name
AND p.osm_id = r.osm_ id
AND p.linked osm id IS NULL;

LISTING 4-6

This information is later on used in the export mainly to rule out point features linked
to their polygon features as well as determining city types instead of administrative
types.

4.3.4 CREATE HIERARCHY

In order to create the display_name, the parent feature of every feature is determined
with the following function:

CREATE OR REPLACE FUNCTION determineParentPlace(id_value BIGINT,
partition _value INT, rank_ search value INT, geometry value GEOMETRY)
RETURNS BIGINT AS $$
DECLARE
retVal BIGINT;
BEGIN
FOR current _rank 1IN REVERSE rank search value..l LOOP
SELECT id FROM osm_polygon WHERE partition=partition_value AND
rank_search = current rank AND NOT id=id_value AND ST Contains(geometry,
geometry_value) AND NOT ST Equals(geometry, geometry value) INTO retVal;
IF retVal IS NOT NULL THEN
return retVal;
END IF;
END LOOP;
RETURN retVal;
END;
$$ LANGUAGE plpgsqgl;

LISTING 4-7

With the reverse loop it is ensured to match only features with the same or a lower
rank. Also, by checking geometry equality it is ensured that no infinite loop emerge
(parent of feature A is feature B whose parent is feature A). This phenomenon was
identified with European OSM data where geometry duplicates with different ids exist.
Finally, only features with the same partition are considered.

30

For road features a different function is used (see chapter 4.7.1).

4.3.5 MERGE CORRESPONDING STREET SEGMENTS

In order to merge streets segments that belong together, a new table
osm_merged_multi_linestring is created. The ids are being aggregated into an array,
the type into a comma separated string. Linestrings are merged to a multi-linestring
when they have at least one point in common.

CREATE TABLE osm_merged multi_ linestring AS
SELECT array agg(DISTINCT a.id) AS member_ ids,
string agg(DISTINCT a.type,',') AS type,
a.name, max(a.name_fr) AS name_ fr,
max(a.name_en) AS name_en,
max(a.name_de) AS name_de,
max(a.name_es) AS name_es,
max(a.name_ru) AS name_ru,
max(a.name_zh) AS name_zh,
max(a.wikipedia) AS wikipedia,
max(a.wikidata) AS wikidata,
ST UNION(array_agg(ST MakeValid(a.geometry))) AS geometry,
bit and(a.partition) AS partition,
max(a.calculated _country code) AS calculated_country code,
min(a.rank search) AS rank_search,
a.parent_id

FROM
osm_linestring AS a,
osm_linestring AS b

WHERE
ST Touches(ST_MakeValid(a.geometry), ST MakeValid(b.geometry))

AND

a.parent_id = b.parent_id AND
a.parent_id IS NOT NULL AND
a.name = b.name AND
a.id!=b.id

GROUP BY
a.parent_id,
a.name;

LISTING 4-8

Note that before merging, invalid geometries are attempted to be made valid without
loosing vertices.

4.4 \NIKIPEDIA IMPORT & IMPORTANCE

In order to have an importance value for each feature, a wikipedia helper table is being
downloaded from a Nominatim server. This is the same information Nominatim uses to
determine the importance. It was decided to take this pre-calculated data instead of
calculating it itself due to longer processing times (up to several days!). Also, the same
calculations are applied, in order to achieve the same results.

31

If a feature has a wikipedia URL a matching entry in the wikipedia helper table is taken
for calculating the importance with the following formula:

log(totalcount)

. t =
importance log (max (totalcount))

EQUATION 4-1

Where totalcount is the number of references to the article from other wikipedia
articles. In case there is no wikipedia information or no match was found, the following
formula is applied:

importance = 0.75 — (rank /40)
EQUATION 4-2

Since every feature has a rank, it is ensured that every feature also has an importance.

4.5 EXPORT

The data for the TSV is extracted with the help of the pgclimb tool which takes an SQL
file as an argument [7]. The results of the SELECT statements for each geometry table
are then combined with UNION ALL. The resulting TSV is then being gzipped. The
hierarchy for each feature is extracted with the following custom type and function:

CREATE TYPE parentInfo AS (

state TEXT,
county TEXT,
city TEXT,
displayName TEXT

)i

CREATE OR REPLACE FUNCTION getParentInfo(name value TEXT, id value BIGINT,
from rank INTEGER, delimiter character varying(2)) RETURNS parentInfo AS $$
DECLARE

retVal parentInfo;

current_rank INTEGER;

current_id BIGINT;

currentName TEXT;

BEGIN
current_rank := from_ rank;
retVal.displayName := name_value;
current_id := id_value;

IF current_rank = 16 THEN

retVal.city := retVal.displayName;
ELSE
retvVal.city := '';
END IF;
IF current_rank = 12 THEN
retVal.county := retVal.displayName;
ELSE

32

retVal.county := ;

END IF;
IF current_rank = 8 THEN
retVal.state := retVal.displayName;
ELSE
retVal.state := '';
END IF;
--RAISE NOTICE 'finding parent for % with rank %', name value, from_ rank;

WHILE current_rank >= 8 LOOP

SELECT getLanguageName(name, name_ fr, name en, name_de, name_es,
name_ru, name_zh), rank search, parent id FROM osm polygon WHERE id =
current_id INTO currentName, current rank, current_ id;

IF currentName IS NOT NULL THEN

retVal.displayName := retVal.displayName || delimiter || ' ' ||

currentName;

END IF;

IF current_rank = 16 THEN

retVal.city := currentName;

END IF;

IF current_rank = 12 THEN
retVal.county := currentName;

END IF;

IF current_rank = 8 THEN
retVal.state := currentName;

END IF;

END LOOP;
RETURN retVal;

END;
$$ LANGUAGE plpgsqgl;

LISTING 4-9
First, it checks if the feature itself has a rank of 16,12 or 8 (city, county, state). Then it
determines the name of the parent, appends it to the display_name and checks if the

parent itself is a city, county or state and so on. The parent_ids of the countries are
always NULL and therefore the loop always terminates.

4.6 PoSTGRESQL PERFORMANCE

As already mentioned the tables created by imposm3 are not being updated with the
ranking & partitioning but rather copied to new tables since this is the faster way [8].
Of course the indices then have to be recreated.

Additional VACUUM ANALYZE commands are applied to enhance the efficiency of the
script executions.

In addition, CLUSTER commands on the geometry indices help to speed up geometry
queries further by reordering the table accordingly.

33

4.6.1 TUNING

For calculating bigger metro extracts or even planet files, a blazing fast SSD-based
server has been provided by HSR. With the help of PgTune calculator [9], it has been
tried to find optimal settings for Postgres for the task at hand, but eventually has been
proven a time consuming task with a lot of trial and error. The following settings have
been applied (machine with 50GB of RAM):

max_connections = 20

shared_buffers = 12800MB

effective cache_size = 38400MB

work mem = 320MB

maintenance work _mem = 2GB

min wal size = 4GB

max_wal size = 8GB

checkpoint_ completion_target = 0.9

wal buffers = 16MB
default statistics_target = 500

LISTING 4-10

4.6.2 INDICES

The following indices have been applied to speed up the queries:

--create indexes

CREATE INDEX IF NOT EXISTS idx osm _polgyon geom ON osm_polygon USING gist
(geometry);

CREATE INDEX IF NOT EXISTS idx osm point geom ON osm point USING gist
(geometry);

CREATE INDEX IF NOT EXISTS idx osm linestring geom ON osm linestring USING
gist (geometry);

CREATE INDEX IF NOT EXISTS idx osm polygon partition_rank ON osm_polygon
(partition,rank search);
CREATE INDEX IF NOT EXISTS idx osm polygon_id ON osm polygon (id);

CREATE INDEX IF NOT EXISTS idx osm point_ osm_id ON osm_point (osm_id);

CREATE INDEX IF NOT EXISTS idx osm linestring merged false ON
osm_linestring (merged) WHERE merged IS FALSE;

LISTING 4-11

Most noteworthy is the creation of geometry GIST indices for the geometry tables. This
speeds up spatial queries tremendously.

4.7 FUNCTIONS

At this point, additional important functions are described which are used for importing
or exporting the data.

34

4.7.1 FINDING PARENT OF STREET SEGMENTS

CREATE OR REPLACE FUNCTION findRoadsWithinGeometry(id_value
BIGINT,partition_value INT, geometry value GEOMETRY) RETURNS VOID AS $$
BEGIN

UPDATE osm_linestring SET parent id = id_value WHERE parent_id IS
NULL AND ST _Contains(geometry_ value,geometry);
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION determineRoadHierarchyForEachCountry() RETURNS

void AS $$
DECLARE

retVal BIGINT;
BEGIN

FOR current partition 1IN 1..255 LOOP
FOR current_rank 1IN REVERSE 22..4 LOOP
PERFORM findRoadsWithinGeometry(id, current partition, geometry)
FROM osm_polygon WHERE partition = current partition AND rank_ search =
current_rank;
END LOOP;
END LOOP;
END;
$$ LANGUAGE plpgsql;

LISTING 4-12

For every partition (country), all street segments that are contained in features having
a rank of 22 or lower are determined and updated accordingly. 22 (neighborhood,
residential) is the highest rank of features that can contain street segments. This way it
is ensured, that the parent has the highest rank possible when a feature is contained in
two parent features with different ranks.

4.7.2 DETERMINING PARTITION

As already described in chapter 4.3.2 the pre-initialized table country_osm_grid is used
to determine the partition of a feature. However, as there are quite some features that
could not be classified, a different method has been developed. The key is to work with
the now imported countries (having a rank of 4).

CREATE OR REPLACE FUNCTION determinePartitionFromImportedData(geom
geometry)
RETURNS INTEGER AS $$
DECLARE

result INTEGER;
BEGIN

SELECT partition, calculated_country code from osm polygon where
ST Within(ST_ PointOnSurface(geom), geometry) AND rank search = 4 AND NOT
partition = 0 INTO result;

RETURN result;

END;
$$ LANGUAGE plpgsqgl;

LISTING 4-13

35

4.7.3 LANGUAGE PRECEDENCE

Because the names are imported in seven different languages, there needs to be a
unigue way of weighing which language is more relevant in the exported data. This
happens in the following function with the precedence [English -> native name ->
French -> German -> Spanish -> Russian -> Chinese]:

CREATE OR REPLACE FUNCTION getLanguageName(default lang TEXT, fr TEXT, en

TEXT, de TEXT, es TEXT, ru TEXT, zh TEXT)
RETURNS TEXT AS $$

BEGIN

RETURN CASE
WHEN en NOT IN ('') THEN en
WHEN default _lang NOT IN ('') THEN default lang
WHEN fr NOT IN ('') THEN fr
WHEN de NOT IN ('') THEN de
WHEN es NOT IN ('') THEN es
WHEN ru NOT IN ('') THEN ru
WHEN zh NOT IN ('') THEN zh
ELSE ''

END;

END;
$$ LANGUAGE plpgsql IMMUTABLE;

LISTING 4-14

Of course, this behavior can be interchanged.

4.7.4 ALTERNATIVE NAMES

It is a requirement to have also the names in the export that weren’t used in the name
field in the export. This way a geocoder can index these fields as well and find for
instance native names as well.

CREATE OR REPLACE FUNCTION getAlternativesNames(default lang TEXT, fr TEXT,
en TEXT, de TEXT, es TEXT, ru TEXT, zh TEXT, name TEXT, delimiter character
varying)
RETURNS TEXT AS $$
DECLARE
alternativeNames TEXT[];
BEGIN
alternativeNames := array_distinct(ARRAY[default lang, en, fr, de, es,
ru, zh]);
alternativeNames := array_ remove(alternativeNames, '');
alternativeNames := array_ remove(alternativeNames, name);
RETURN array_to string(alternativeNames,delimiter);
END;
$$ LANGUAGE plpgsql IMMUTABLE;

LISTING 4-15

The name parameter is the value used in the name field, so it is excluded as well as
empty name fields. Also, it is ensured that the names in the result are distinct.

36

4.7.5 CoUNTRY NAMES

Country names are exported from the pre-initialized helper table country_name. This

happens with the same precedence as used in described in chapter 4.7.3.

CREATE OR REPLACE FUNCTION countryName(partition id int) returns TEXT as $$
SELECT COALESCE (name -> 'name:en',name -> 'name',name -> 'name:fr',6 name -

> 'name:de',name -> 'name:es',name -> 'name:ru',name -> 'name:zh') FROM

country name WHERE partition = partition_id;
$$ language 'sql';

LISTING 4-16

37

RESULTS

5.1 PRoDUCT RESULTS

First of all, a data set containing planet data could be provided. A secondary target,
importing additional house numbers for each street, could not be met in scope of this
project.

The workflow could be setup in such a way, that it can easily be setup anywhere (via
Docker). The simplicity of the installation and, most of all, the clear arrangement of
code is a big advantage over other products like Nominatim. After all, the processing
run times are way faster than the latter, which takes up to several days for a global data
set.

Finally, the quality of the data proves to be quite satisfactory as seen in the real-life
example in O.

5.1.1 Data

The TSV file from the planet export includes 21'055'840 entries. The current data export
can be downloaded at https://osmnames.org.

If one is only interested in a specific country, he or she can download the file and easily
extract the information with the following command:

awk -F $'\t' 'BEGIN {OFS = FS}{if (NR!=1) { if ($16 =="[country code]") {
print} } else {print}}' planet-latest.tsv > countryExtract.tsv
LISTING 5-1

Where [country _code] needs to be replaced with the ISO-3166 2-letter country code.

In terms of quality control, only manual checks have been executed. Since the data
export now also contains a unique osm_id, it is possible to match the results with the
results from a Nominatim search service. This automated data control, however, has
not been developed in scope of this project.

38

5.1.2 USE CASE: SEARCH ON MAP

The resulting data export has been successfully integrated by Klokan Technologies with
a SphinxSearch powered geocoder. The result includes osm2vectortiles-generated
vector tiles and can be seen here: https://osmnames.klokantech.com/

Michelbach-le-Bas Niedereick

Buschwiller Basel

Allschwil Grenzach

MUNChEnstein Pratteln

FIGURE 5-1 OSMNAMES USED AS A GEOCODER

The implementation makes use of the calculated importance in order to sort the results.
The bounding box is also visualized. The meta-data can be seen in the lower-left corner.

5.1.3 PERFORMANCE MEASUREMENTS

The run times for a planet dump file on the test server provided are the following for
each step:

Task Time

Import Wikipedia 00:19 h
Import OSM data 03:01h
Delete unusable entries 00:12 h
Ranking & Partitioning 01:59h
Determine Linked Places 00:10 h
Create Hierarchy 11:40 h
Merging Corresponding Street Segments 01:46 h
Export to TSV 07:22 h
TOTAL 26:29 h

TABLE 5-1 PERFORMANCE TIMES

39

These results meet the non-functional requirement NFR_01 stated in chapter 2.4.

Surely, these times can still be reduced by tweaking the database as well as the Docker
settings

5.2 OuTLoOK

The current version 1.1 is quite satisfactory and could already be implemented in a real
life application as seen above. However, there are still a few improvements that can be
developed.

First and foremost, the database and Docker settings need to be tweaked, so the
processing times go down even more. An enhancement that can benefit from these
improvements is differential updates. With diff updates enabled one can think of
automated regular updates of the name database. Such updates take a really short time
compared to a full planet import and consequently improve the product overall.

Secondly, it would be great to have house numbers in the database as well. This
extension however brings a further challenge when it comes to the export. Further
work has to be done in designing the export format, unless we want to have an entry
in the export file for every house number, resulting in a humongous file size.

5.3 REFLECTION

Working with Docker was a new experience. However, it showed me different way of
abstracting, packaging and distributing applications which is quite useful. There are
many scenarios to think of where Docker can be applied.

Furthermore, the project gave me insight into OpenStreetMap and the meaning of
quite a few tags. Code analysis of Nominatim was quite cumbersome, since there does
not exist any documentation whatsoever. Still, | was able to extract the information
necessary to build a product that meets the requirements.

Working with PostGIS was really interesting as one works with real world data which is
easier to grasp. However, the function names are not always self-evident and need to
be properly read up on in the documentation and tested with small test data.
Speaking of test data: It proved wise to work with a small dataset in the beginning and
expand it over and over again (CH->DACH->Europe->Planet). However, bigger data set
can also mean different kinds of data and therefore a possible need for data integrity

40

checks. For instance, checking for geometry equality as there are such duplicates in
Great Britain. Also, in the planet dataset there exist non-valid geometries which are
needed to be intercepted and treated accordingly.

41

6 ACKNOWLEDGMENT

| express my sense of gratitude to my supervisor Prof. Stefan Keller. Thanks to his strong
support | was able to work on this interesting topic. His invaluable insight into the
matter showed me some of the quirks in working with geo data.

| would also like to take this opportunity to thank Dr. Petr Pridal of Klokan Technologies
GmbH. With his support and regular meetings, | was able to keep this project on track.
It has been a pleasure working with him.

| am very much thankful to Marcel Huber for giving me access to test infrastructure at
HSR where | could run the heavy workload. His knowledge with Docker tuning helped
me in optimizing database parameters.

| acknowledge with thanks the help of Lukas Martinelli and Manuel Roth for setting me
up with a Docker template to get started with. At this point, | also want to thank Lukas
Toggenburger for introducing me to the topic of OSM addresses.

And last, but not least, | am extremely thankful to Franzi Zahner for her constant
encouragement throughout this year.

42

Geo Name

Gazetteer

Geocoder

Address

Docker

PBF

TSV

YAML

7 Glossary

Name of areas, regions, localities, cities, suburbs, towns or
settlements, or any geographical or topographical feature of
public or historical interest. A feature can have many names in
different languages [10].

Geographical dictionary or directory used in conjunction with a
map or atlas. They associate geo names with their associative
features.

A (web) service that delivers a spatial representation in numerical
coordinates for the given geo name as input.

An address is a collection of information describing the location
of a building, apartment or other structure using street names as
references along with identifiers such as house numbers and zip
codes.

Docker is a software containerization platform, which enables
developers to easily build, ship and run applications.
Protocollbuffer Binary Format, file format for OpenStreetMap
data which allows faster processing than XML

Tab-separated value, file format with a tab delimiter between
values

Alternative format to JSON and XML

43

8 BIBLIOGRAPHY

[1] Docker. (2016, Aug.) Best practices for writing Dockerfiles. [Online].
https://docs.docker.com/engine/userguide/eng-image/dockerfile best-
practices/

[2] Docker. (2016, Aug.) Docker Overview. [Online].
https://docs.docker.com/engine/understanding-docker/

[3] GisGraphy. (2016, Aug.) About the street names CSV / TSV format. [Online].
https://download.gisgraphy.com/format.txt

[4] OpenSteetMap. (2016, Aug.) Planet.osm. [Online].
https://wiki.openstreetmap.org/wiki/Planet.osm

[5] OpenStreetMap. (2016, Aug.) Elements. [Online].
https://wiki.openstreetmap.org/wiki/Elements

[6] OmniScale Imposm 3.0.0a Documentation. (2016, Aug.) Data Mapping. [Online].
https://imposm.org/docs/imposm3/latest/mapping.html

[7] Lukas Martinelli. (2016, Aug.) GitHub pgclimb. [Online].
https://github.com/lukasmartinelli/pgclimb

[8] Nuno Teixeira. (2015, May) How to update large tables in PostgreSQL. [Online].
http://blog.codacy.com/2015/05/14/how-to-update-large-tables-in-postgresql/

[9] Alexey Vasiliev. (2016, Aug.) PGTune - Configuration calculator for PostgreSQL.
[Online]. http://pgtune.leopard.in.ua/

[10] European Commission. (2016, Aug.) INSPIRE Registry. [Online].
http://inspire.ec.europa.eu/theme/gn

44

FIGURES

Figure A — Postal Address Representation ©SK...........cc.coviiviiiiiiiiiiciieceecee e 3
Figure 1-1 Postal Address Representation ©SK...........ccc.covviiiiiiiiiiiiiciece e 10
FIGUIE 2-1 USE CASES ittt 12
Figure 2-2 Process OSM Data ... 15
Figure 2-3 EXPort Data Set......oooii 15
Figure 3-1 Docker COmMPOSE Fle ...ccoviiiiiiiiciic e 18
Figure 3-2 Docker ArChiteCUIEiiiiiii e 19
Figure 3-3 OSMNames Data MoOdel........cc.ccooiiiiiiiiiiii e 21
Figure 5-1 OSMNames Used AS A GEOCOTETcuuviiiiiiiiiie et 39

45

1 O TABLES

TAbIE 2-T UC L oot 13
TADIE 2-2 UC 2 oo 14
Table 2-3 IMPOort OSM dat@.....coouiiiiiiiieiee e 16
Table 2-4 Non-Functional REQUIrEMENTSc..viiiiiieiiiiecec et 17
Table 3-1 OSMNames Data EXport FOrmat.......cooviiiiiiiiiiiiiciic e 23
Table 4-1 IMpPosSmM MatChiNg......ocuviiiiiei e 26
Table 4-2 ImposmM IMPOrted TAES ..oovveieiiieeiiee et 27
Table 5-1 Performance TIMES ...ouuii et 39

46

Appendix A Installation

A.1 INSTALLING OSMNAMES

With the following set of commands one can easily setup OSMNames in a matter of
minutes. Prerequisites are a working installation of Docker https://www.docker.com/

along with Docker compose.

1. Checkout source from GitHub

git clone https://github.com/geometalab/OSMNames.git

2. Either download specific PBF manually or the planet dump with the following
Docker task

docker-compose run download-pbf
wget --directory-prefix=./data
http://download.geofabrik.de/europe/switzerland-latest.osm.pbf

3. Setup the database

docker-compose up -d postgres

4. Import wikipedia data

docker-compose run import-wikipedia

5. Create the schema

docker-compose run schema

6. Import the OSM data from the PBF file
docker-compose run import-osm
7. Export the data to a TSV file

docker-compose run export-osmnames

That’s it. The export file can be found in the data folder.

47

Appendix B Documentation

B.1 ReviEwWED PRODUCTS

One task of the project was reviewing some of the products on the market that have
similar functionalities. They are presented at this point.

B.1.1 NOMINATIM

Nominatim is a geocoder and reverse geocoder used to search OSM data on
openstreetmap.org. It requires quite a bunch of prerequisites such as a GCC compiler,
a PostgreSQL installation with PostGIS, Proj4j, GEOS, PHP5, PHP-pgsql, PEAR::DB, wget,
boost and for importing OSM data osmosis. It can be downloaded from
www.nominatim.org .

It is easier to run it in a Docker container which was used in scope of this project:

https://hub.docker.com/r/nicopace/nominatim-docker/

Since the planet dump takes several days to import, only a small extract was imported
(Switzerland). The goal was to understand the following activities of Nominatim:

* Ranking
* Hierarchy

* |mportance

The ranking is basically a mapping of types to values between 1 and 30 and the exact
matching was reproduced and described in 4.3.2.

The hierarchy is done on query time. In table placex every feature has a parent _id
referencing another feature in the same table. The display_name is then constructed
by following the path upwards. A similar concept has been followed with OSMNames.

The importance is determined with the help of the wikipedia_article table. Whenever a
guery has been run the matching importance is updated in the according placex entry.
In order to get the same results, the wikipedia information has been imported in
OSMNames and in case there is no match the same calculations based on the ranks are
used.

48

B.1.2 MAPZEN PELIAS

Mapzen’s Pelias is an open-source geocoder built on top of ElasticSearch. It also
supports multiple data sources such as OSM, OpenAdresses, Geonames and Mapzen'’s
own Who's on First.

In order to test the product without having to install all the required software
components, the following vagrant development environment has been used:

https://github.com/pelias/vagrant

After getting it work, it was not possible to do a proper analysis of how the processing
is done in detail, due to other more important requirements in the project.

B.1.3 LIBPOSTAL

As already mentioned, there is a problem when it comes to formatting postal addresses.
Each country has its own set of formatting rules and in order to have a database of
addresses one needs to bring these different formats to a common format and vice
versa. This is where libpostal comes in handy. It is a c library with bindings for Python,
Ruby, Go, Java, PHP and NodeJS and does address normalization and parsing by using
statistical Natural Language Processing (NLP).

For testing purposes the Perl extension has been installed.
Example: Input string: Haringstrasse 2, Altstadt, 8001 Zurich, Switzerland

Parsing separates address string into components and uses address templates from
OpenCage and uses them appropriately (https://github.com/OpenCageData/address-

formatting).

Output: [('haeringstrasse', 'road'), ('2', 'house number'), ('altstadt',
"'suburb'), ('8001"', 'postcode’), ('zurich', 'city'), ('switzerland',
'country')]

The following data is considered to the training of the NLP:

e OSM: training examples of parsed addresses and language classifications
* Geonames: for place names and postal code gazetteer
* Quattroshapes/Zetashapes: for administrative/local boundaries

Finally, libpostal also does address normalization, specifically:

* |anguage classification

49

abbreviations extended, e.g. Str->Strasse, Rd->Road, W -> West
numeric expression translated to numbers

transliteration, e.g. Cyrillic -> Latin

There also exists a Postgres extension which could be quite an interesting extension to

the current OSMNames.

The current version can be found here: https://github.com/openvenues/libpostal

B.2 IMPOSM3 YAML MAPPING

The complete YAML mapping used in imposm3 is the following:

tables:
linestring tmp:

type: linestring

fields:

- name: osm_id
type: id

- name: geometry
type: geometry

- name: type
type: mapping value

- key: name
name: name
type: string

- name: name_fr
key: name:fr
type: string

- name: name_en
key: name:en
type: string

- name: name_de
key: name:de
type: string

- name: name_es
key: name:es
type: string

- name: name_ru
key: name:ru
type: string

- name: name_zh
key: name:zh
type: string

- key: wikipedia
name: wikipedia
type: string

- key: wikidata
name: wikidata
type: string

- key: admin level
name: admin level
type: integer

mapping:
highway:

50

- motorway
- motorway_ link
- trunk
- trunk link
- primary
- primary_ link
- secondary
- secondary_ link
- tertiary
- tertiary link
- unclassified
- residential
- road
- living street
- raceway
- construction
- track
- service
- path
- cycleway
- steps
- bridleway
- footway
- corridor
- crossing
polygon_tmp:
type: polygon

fields:
- name: osm_id
type: id

- name: geometry
type: geometry

- name: type
type: mapping value

- name: country code
type: string
key: IS03166-1l:alpha2

- key: name
name: name
type: string

- name: name_fr
key: name:fr
type: string

- name: name_en
key: name:en
type: string

- name: name_de
key: name:de
type: string

- name: name_es
key: name:es
type: string

- name: name_ru
key: name:ru
type: string

- name: name_zh
key: name:zh
type: string

- key: wikipedia
name: wikipedia
type: string

- key: wikidata
name: wikidata

type: string
key: admin level
name: admin level
type: integer

mapping:

place:

- city

- borough

- suburb

- quarter

- neighbourhood
- town

- village

- hamlet
landuse:

- residential
boundary:

- administrative

point_ tmp:
type: point
fields:

name: osm_id
type: id

name: geometry
type: geometry
name: type
type: mapping value
key: name

name: name
type: string
name: name_fr
key: name:fr
type: string
name: name_en
key: name:en
type: string
name: name_de
key: name:de
type: string
name: name_es
key: name:es
type: string
name: name_ru
key: name:ru
type: string
name: name_zh
key: name:zh
type: string
key: wikipedia
name: wikipedia
type: string
key: wikidata
name: wikidata
type: string
key: admin level
name: admin level
type: integer

mapping:

place:
- city
- borough
- suburb
- quarter

52

- neighbourhood
- town
- village
- hamlet
relation:
type: relation_member
columns:
- name: osm_id
type: id
- name: member
type: member id
- name: role
type: member role
- name: type
type: member type
- name: geometry
type: geometry
- name: name
key: name
type: string
from member: true
mapping:
landuse:
- residential
boundary:
- administrative

B.3 SOURCE DOCUMENTATION

The additional documentation, which is greatly based on this documentation and

specially provided for Klokan Technologies GmbH, is being exported as a PDF an

appended to this document.

53

C.1 ORGANIZATION

Appendix C Project

Management

This work has been done as a one-man operation with the help of Dr. Petr Pridal of

Klokan Technologies GmbH and supervised by Prof. Stefan Keller. The source code is

open source on GitHub (https://github.com/geometalab/OSMNames). Additionally,

the source code is provided on a separate disc.

C.2 PLANNING & COORDINATION

Coordination meetings have been held every two weeks either via Skype or Google

Hangouts. An agile software development process with adaptive planning as well as

continuous improvement was followed.

After an initial phase of analysis, a 2-week release cycle was followed. The milestones

for each release were the following:

Milestone Date

M_01
M_02
M_03
M_04
M_05
M_06
M_07
M_08

March 14
April 25
May 9
May 25
June 16
July 9
July 20
August 1

C.3 WORKFLOW

The scripts were coded with Sublime text editor (https://www.sublimetext.com/).

Release Description

v0.2
v0.3
v0.4
v0.6
V1.0
V1.1

Sync Meeting

Hierarchy/Relations Analysis Nominatim
Towns in extracts

Place, State, Country

Structure finished, wikipedia import
skipped

World extract done

Multiple improvements, data refinement

54

GitHub was used as a code revision control and source code management tool. With
the help of issues problems and requirements were documented and discussed.

K3
5/29 07710 07/31

02/14 03/06 03/27 04717 05/08 05/2 06/19 7

FIGURE C.1 COMMITS ON GITHUB

C.4 TARGET-PERFORMANCE COMPARISON & MONITORING

Each week all the tasks were analyzed in a target-performance comparison sheet. The
pre-defined milestones were always met.

jekt PA2
Wochd | Datum | Tasks [+] probleme / Notizen [] Milestones [*] zeitigv]zeitsoLL]v]
9 "22/02/16 Kickoff Meeting, Definition der Problemstellung 5
17
10 29/02/18 a
17
11 07/03/16 34
17
12 |14/03/16 Nominatim installiert /f Anzlyse Code wie ierarchie berechnet wird| 17
17
13 21/03/16 0
17
11 |28/03/16 FERIEN 0
0
15 04/04/16 FERIEN 0
0
16 11/04/16 2
17
17 18/04/16 8
17
18 |25/04016 5
17
19 02/05/16 2
17
20 |09/05/16 0.2 town extracts
17
21 16/05/16 0
17
2 |23/05/16 V0.3 place, state, country extracts 2
17
23 30/05/16 27
17
24 06/06/16 V 0.4 structure finished, wikipedida import 3
17
25 13/06/16 V0.5 either updates from diff OR calculation of house numbers 15
17
26 |20/08/15 5
17
27 27/06/16 19
17
28 09/07/18 vos 20
17
29 11/07/16 2
17
0 |18/07/16 ¥ 1.0 World extract done 10
17
31 25/07/16 Schriftlicher Bericht anfangen 42
17
2 01/08/16 V1.1 deployment 8
3
33 08/08/16 0
0
34 15/08/16 8
0
35 22/08/16 30 0
36 |29/08/16 Abgabe Arbeit PA_2)
405 360

FIGURE C.2 TARGET-PERFORMANCE COMPARISON AND MONITORING SHEET

55

