
Inter-Procedural Static
C++ Concurrency Checker

Bachelor Thesis

Department of Computer Science

University of Applied Sciences Rapperswil

Spring Semester 2017

Students: Frank Jordi, Hansruedi Patzen, Fabian Schläpfer

Supervisor: Prof. Peter Sommerlad

Technical Advisor: Mario Meili

Expert: Martin Botzler, Siemens AG

Proofreader: Prof. Oliver Augenstein

Time period: 20.02.2017 - 16.06.2017

I

Abstract

The rise of concurrent and parallel programming has lead to an increased de-

mand for native programming language support. C++ added a wide variety

of these constructs to the standard library starting with C++11. When using

concurrency one needs to be careful not to introduce data races. Data races

are dangerous because they are unde�ned behavior and, due to their non

deterministic nature, hard to �nd and solve. There are di�erent approaches

to detect them. One approach is to do a dynamic analysis which comes with

a run-time overhead. Another approach is to do a static analysis by doing a

control �ow analysis using the raw source code. This bachelor thesis takes

the ConditionR tool, a static data race analysis prototype developed in a mas-

ter thesis, and develops it further to make it usable with real world projects.

An open source project with at least one known data race was chosen to

evaluate the capabilities at the beginning and the end of the thesis. To do

so the three main parts of the prototype need to be developed further. The

groundwork is done in a Clang Static Analysis checker which outputs the

control �ow graph needed for the data race detection. The analysis is writ-

ten in Scala based on an algorithm patented by Prof. Dr. Luc Bläser. Finally

the detected data races are reported to the Cevelop IDE plug-in. The plug-in

visualizes the results, giving developers an overview of all found races and

their relation with each other.

II

Management Summary

Introduction

The rise of multi-core systems has lead programming paradigms to shift to-

wards concurrent and parallel programming. Most programming languages

support multi-threaded programming by providing concurrent program con-

structs. C++ introduced native concurrency support with the C++11 stan-

dard. Prior to that the POSIX threads C library was typically used for this

kind of application. One pitfall of parallel programming is that it opens up

programs to new error types like data races or deadlocks. Data races are es-

pecially dangerous because they result in unde�ned behavior. They are also

non-deterministic in nature and can manifest themselves in di�erent places

at di�erent times making them hard to �nd and solve.

Approach / Technologies

There are multiple approaches to �nd data races. One way is to do a run-time

analysis whereby memory access is checked while the program is running.

In addition to the need for speci�c compilers supporting this feature this

creates an additional overhead that can lead to missing a data race due to

timing di�erences with the original code. Another approach is to use static

analysis to check the program on a source code basis. This creates no ad-

ditional run-time overhead but the implementation can lead to many false

positives or worse false negatives missing the detection. The ConditionR,

which started as a master thesis with additional features done in a semester

thesis, is a project which uses static analysis to check C++ code for data

races. It does so using the Clang static analysis framework to create a con-

trol �ow graph which is analyzed using a patented algorithm by Prof. Dr.

Luc Bläser implemented in Scala. The results are then visualized inside the

Cevelop IDE.

III

Results

The ConditionR tool handles a wide variety of C++ speci�c constructs. The

original version, being a basic prototype, had many shortcomings which are

now mostly eliminated. This includes the support for multiple translation

units and function calls across translation units. It now also supports class

member functions and variables and lambdas. The data race visualization

inside the Cevelop IDE has been completely revamped and improved to allow

for an easy overview of the given problems found inside a project. Testing

and continuous integration has also been updated and fully automated. The

original goal of getting the project into a market ready state could not be

completely reached due to an overestimation of the already implemented

capabilities at the beginning of the thesis.

Outlook

With the current state of the ConditionR project one can analyze simple C++

projects with some restriction. The current approach with using a Clang

static analyzer checker should probably be reconsidered. Simply because

it creates a strong dependency on a speci�c compiler and version. Also

Clang has problems when dealing with loops which could be handled more

easily when dealing with the abstract syntax tree directly. The checker is

also missing support for some high-level C++ constructs like std::async or

std::future. Lambdas are only fully supported when de�ned directly in the

std::thread constructor, otherwise its captures are not recognized. The cur-

rent version has some di�culty dealing with large control �ow graphs that

cause high memory usage making it unusable with bigger projects. Finally,

there is always the option to implement deadlock detection as described in

the patented algorithm.

contents IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Context . 1

1.3 Goals . 1

1.4 Background . 2

2 Architecture 6

2.1 Overview . 6

2.2 Extraction . 7

2.3 Algorithm . 8

2.4 Visualization Eclipse Plug-In 8

3 Initial Evaluation 9

3.1 Motivation . 9

3.2 Project Selection . 10

3.3 Evaluation . 13

3.4 Results . 16

3.5 Conclusion . 18

4 Control Flow Graph Extractor 19

4.1 Starting Position . 19

4.2 Requirements . 20

4.3 Architecture . 21

4.4 Extraction . 25

4.5 Output . 27

4.6 Testing . 28

4.7 Future Development . 28

5 Data Race Detection Algorithm 30

5.1 Overview . 30

5.2 Goals . 30

contents V

5.3 Phases . 31

5.4 Architecture . 36

5.5 Summary . 37

6 Visualization 39

6.1 Overview . 39

6.2 Master Thesis UI Version . 39

6.3 Student Research Thesis Proposals 43

6.4 UI Improvement . 44

6.5 Functionality . 48

6.6 Design and Architecture . 52

7 Final Evaluation 60

7.1 Motivation . 60

7.2 Project Selection . 60

7.3 Results . 62

8 Conclusion 64

8.1 Result . 64

8.2 Outlook . 65

8.3 Acknowledgments . 65

Glossary 66

Acronyms 67

Bibliography 68

A JSON Format 69

B Continuous Integration 72

introduction 1

1 Introduction

1.1 Motivation

The rise of multi-core systems has lead programming paradigms to shift to-

wards concurrent and parallel programming. Most programming languages

support multi-threaded programming by natively providing concurrent pro-

gramming constructs such as threads. Concurrent software may su�er from

unknown data races, which lead to dangerous unde�ned behavior and data

corruption.

1.2 Context

A prototype of the ConditionR tool was created in 2015 in a masters the-

sis by Silvano Brugnoni [Bru16]. It is a software to detect data races in

C++ projects. The implementation of the algorithm for the data race de-

tection is based on a patented algorithm by Prof. Dr. Luc Bläser. The plug-in

could initially only handle basic concurrency concepts like std::thread and

std::mutex. Multiple translation units (TUs), lambdas and function calls

with arguments were not supported. Further, the visualization in Eclipse

was not very sophisticated and was not usable on Linux.

In 2016, during a student research thesis by Fabian Schläpfer and Samuel

Jost [SJ16], more concepts like lambdas were investigated and implemented.

Additionally, new visualization concepts were developed and many depen-

dencies like Clang, LLVM or Eclipse were upgraded.

1.3 Goals

The goal of this bachelor thesis is to develop the current ConditionR proto-

type further towards a market-ready product. To achieve this, the visualiza-

tion has to be reworked and improved. To allow the usage in a real world

introduction 2

environment, the support of multiple TUs is necessary and the algorithm

must be extended accordingly. It should further be possible to detect POSIX

read/write locks and C++11 lambdas. To ensure the real world applicability

of the plug-in, it is evaluated with open-source projects at the beginning and

the end of the thesis.

The thesis goals are divided into minimal and extended goals. The mini-

mal goals should be reached during the bachelor thesis for it to be considered

a success. The extended goals may be addressed in case there is enough time

available after completing the minimal goals.

• Minimal goals:

– Usable and appealing visualization.

– Cross-Translation-Unit: Allow the analysis of a project contain-

ing multiple source �les.

– Suport for POSIX read/write locks.

– Lambdas as threads (capture lists).

– Selection of suitable open-source projects to evaluate the Condi-

tionR in a real world environment.

• Extended goals:

– Support for C++14/17 read/write locks.

– Lambdas as functions.

– Detection according the lockable requirements (see C++ stan-

dard).

– Evaluation of the ConditionR tool using the selected projects.

1.4 Background

This section gives an overview of topics relevant to static analysis and data

race detection and introduces some terminology used in the later chapters.

1.4.1 Flow Graphs

A �ow graph is a graph that represents all possible execution paths through

a program.

introduction 3

(a) if-then clause (b) if-then-else clause (c) while loop

Figure 1.1: Theoretical �ow graph examples. (a) depicts an if-then clause,

where one of the execution paths includes B and one does not. (b) shows an

if-then-else clause, where one path contains B and the other contains C. (c)

corresponds to a while loop, whose statements are evaluated at least zero,

up to an in�nite number of times.

The nodes of the �ow graph represent the basic blocks of the program. A

basic block is de�ned as a sequence of statements that contains no jump or

jump target except at the entry or exit of the block.

Each �ow graph begins with a special entry node that itself has no prede-

cessors, and has the �rst actual block of the graph as its successor. Similarly,

a special exit node completes each �ow graph, having as its predecessors all

�nal blocks of the execution paths.

Figure 1.1 visualizes three examples of simple fragments of code and their

representation as a �ow graph. It must be noted, however, that these graphs

are a theoretical representation. In practice, conditional blocks and potential

loop iterations are unrolled into explicit separate paths of the following basic

blocks. Figure 1.2 shows the actual �ow graphs constructed by the extraction

component for the same graphs discussed above.

1.4.2 Data-flow Analysis

The data race detection algorithm employs a technique called data-�ow anal-
ysis to �nd data races. This technique regards the execution of a program as

introduction 4

(a) if-then clause (b) if-then-else clause (c) while loop

Figure 1.2: Actual �ow graph examples. (a) depicts an if-then clause, where

one of the execution paths includes B and one does not. (b) shows an if-

then-else clause, where one path contains B and the branch successors and

the other contains C and the branch successors. (c) corresponds to a while

loop, whose statements B are evaluated an unpredictable number of times.

In practice, branches are created for a �xed number of potential iterations.

a series of state transformations applied to an initial empty state. Each state-

ment transforms the program state. Every program state is represented as a

program point that contains additional information such as the threads ac-

tive in this state. A sequence of program points corresponds to an execution
path through a program.

Flow-Sensitivity

An analysis is considered �ow-sensitive if the order of instructions of the

program under analysis is relevant. Data-�ow analysis is �ow-sensitive as

the series of state transformations have a well-de�ned order that is taken

into account during the analysis.

Path-Sensitivity

An analysis is further considered path-sensitive if all possible execution paths

are taken into account. This improves the accuracy of an analysis as more of

introduction 5

the complexity of a program is captured. A disadvantage is that the number

of execution paths grows exponentially with the number of branches in the

program.

architecture 6

2 Architecture

This chapter provides an overview of the architecture of the Software. It

describes shortly the three components of the ConditionR tool, the extrac-

tion part, the analysis part and the Eclipse CDT visualization plug-in. For a

detailed description of the single parts please refer to their chapters.

2.1 Overview

The ConditionR tool comprises three components to extract the �ow graph

from the C++ code, �nd data races in there and display them for a user.

2.1.1 Communication

The communication between the components is described in the following

list. Figure 2.1 visualizes the described communication.

1. A user starts the data race analysis in the Eclipse CDT plug-in with a

command.

2. The Eclipse plug-in locates all relevant source �les and sends them

together with a Clang con�guration to the algorithm module.

3. The extractor is passed the source �les together with the Clang con-

�guration.

4. The extractor determines the required includes for Clang and calls it

with the Command Line Interface (CLI) �ags.

5. The extraction checker passes all control �ow graphs to the extractor.

6. The extractor post processes the control �ow graphs into a valid JSON

and delivers them to the data race detection algorithm.

7. The detected data race source locations and call stack are returned to

the visualization plug-in.

architecture 7

Figure 2.1: Communication and interaction between the components of the

ConditionR software. This �gure was adapted from the student research

thesis.

8. The potential data races are displayed to the user in a data race view

and as code markers in the editor.

2.1.2 Automated Integration Testing

To ensure that the latest versions of all components work together properly,

an integration test was put in place on the build server. The integration test

veri�es that the communication between all components, as described in

section 2.1.1, works as expected.

2.2 Extraction

The extraction component is responsible for extracting the control �ow graph

from the received source code �les. It receives the source code �les to be ex-

tracted and a Clang con�guration from the algorithm and sends back the

architecture 8

extracted control �ow graph in the JSON format. The extractor is written in

C++.

2.3 Algorithm

The algorithm receives the control �ow graph as JSON from the extraction

component. It performs the data race analysis based on the control �ow

graph. After the analysis, the detected potential data races are sent to the

visualization plug-in. The algorithm is written in Scala and is an implemen-

tation of the patented algorithm by Prof. Dr. Luc Bläser.

2.4 Visualization Eclipse Plug-In

The visualization plug-in is the point of interaction between the user and

the analysis tool. It starts the data race analysis and displays the results.

The plug-in is written in Java and extends the Eclipse CDT user interface

with a data race view, some commands and a preference page.

initial evaluation 9

3 Initial Evaluation

This chapter describes the evaluation of the ConditionR tool using real-

world open source software projects.

At the outset of this thesis, an initial evaluation was conducted. This was

done to determine the initial capabilities of the ConditionR tool. At the end of

this thesis, a �nal evaluation was carried out. Its purpose was to capture the

work achieved in this thesis and also to uncover any remaining shortcomings

that are yet to be resolved in the future.

3.1 Motivation

The motivation behind this initial evaluation is multifold.

First of all, the initial capabilities of the tool were somewhat unclear. The

masters thesis hints at many open issues and de�cits but does not provide

detailed information as to what features exactly are missing and what the

behavior of the tool is when an unsupported concurrency construct or lan-

guage feature is encountered.

Furthermore, ConditionR has never been used with real world source

code, but only with a relatively small number of hand-crafted test cases. In

the past it has become clear that simply changing minor details in the source

code of a test case will lead to a crash of the checker or algorithm. Using the

tool with actual real-world code will hopefully uncover many more such is-

sues, which can then be used to construct a list of de�ciencies in the initial

implementation. From that, a plan of action can then be derived.

Lastly, the visualization has never been tested using more than a hand-

ful of data races. The conservative nature of the algorithm implies that a

potentially large number of false positives are reported. This will allow the

initial evaluation 10

visualization to be judged on the basis of how well it scales with the number

of data races.

3.2 Project Selection

Before conducting an evaluation, a list of suitable candidate open source

projects needed to be determined. From these candidates, one project was

then selected to be the subject of the initial evaluation. Using that project,

the evaluation was then conducted and its results were captured.

3.2.1 Methodology

An initial list of candidate projects was obtained using GitHub. GitHub was

searched for issues containing the keywords “data race”. The associated

projects were then assessed on the basis on a number of criteria explained

in detail in section 3.2.2.

The reason behind focusing on open source projects with at least one

known data race is that this allows the evaluation to verify that ConditionR is

indeed able to �nd that speci�c data race. Otherwise, a data race would �rst

have to be found manually, which could prove to be quite time consuming.

3.2.2 Criteria

The following criteria were used to assess the suitability of projects:

Complexity For this initial evaluation, the selected project should be fairly

complex but not too complex. This is, on the one hand, due to the limited

capabilities of the initial version of ConditionR. On the other hand, the time

spent for this evaluation should be minimized such that there is enough time

to implement new features and to actually achieve an improvement over the

initial version. Selecting a project that is not too complex minimizes the

time needed to understand the code and judge whether a reported data race

is correct or a false positive.

Checker support The extraction checker in its initial version only sup-

ported a subset of C++11 language features and concurrency constructs. An-

alyzing code that makes use of elements not supported by the checker is

pointless as this will make it impossible to extract any useful information

from that code at all.

initial evaluation 11

Popularity It is desirable that the selected project be somewhat popular.

This is viewed as an indirect measure of the code being somewhat actively

maintained and representative of real world source code used in production

systems.

3.2.3 Candidates

The following candidates were determined using the methodology described

in section 3.2.1.

OpenCV A popular computer vision library.
Uses boost::barrier and a custom mutex and lock implementation.

Known race(s):
https://github.com/opencv/opencv/issues/8149

https://github.com/opencv/opencv/issues/5175

CppMicroServices An OSGi-like C++ dynamic module system and service
registry.
Uses custom wrapper classes for std::mutex and other C++11 concurrency

primitives.

Known race(s):
https://github.com/CppMicroServices/CppMicroServices/issues/173

HPX A C++ concurrency and parallelism library for high-performance com-
puting applications.
Known race(s):
https://github.com/STEllAR-GROUP/hpx/issues/2517

Chess An AI-driven chess TCP-client.
Uses std::future, std::async and C++11 lambdas as threads.

Based on https://github.com/siggame/chess.

Known race(s):
https://github.com/BryceMehring/Chess/issues/11

Etherum An Etherum client written in C++.
Uses std::thread and pthread_mutex_lock().

Uses a custom wrapper around std::lock_guard.

https://github.com/opencv/opencv/issues/8149
https://github.com/opencv/opencv/issues/5175
https://github.com/CppMicroServices/CppMicroServices/issues/173
https://github.com/STEllAR-GROUP/hpx/issues/2517
https://github.com/siggame/chess
https://github.com/BryceMehring/Chess/issues/11

initial evaluation 12

Known race(s):
https://github.com/ethereum/cpp-ethereum/issues/2287

OpenSSL A TLS/SSL cryptography library.
Uses a custom wrapper around POSIX threads functions.

Also uses POSIX readers/writer locks. It might be possible to disable these

by means of PTHREAD_RWLOCK_INITIALIZER and USE_RWLOCK.

Known race(s):
https://github.com/openssl/openssl/issues/2457

high�delity A client/server software for creating shared VR environments.
Known race(s):
https://github.com/highfidelity/hifi/pull/8859

cf A C++ library providing composable futures.
Known race(s):
https://github.com/rpz80/cf/issues/2

3.2.4 Decision

The main criteria used to select a subject for the initial evaluation were those

of complexity and checker support.

OpenCV uses various concurrency constructs from boost, for example

boost::barrier. OpenSSL uses POSIX readers-writer locks. As these con-

structs were not initially supported by the checker, these two candidates

could not easily be analyzed without spending additional e�ort to either

rewrite the code or implement the missing features in the checker.

All other projects except for the Chess project generally were too com-

plex and the already known races were relatively. While evaluating Condi-

tionR with more complex race conditions is one of the goals of this thesis,

that was scheduled for the �nal evaluation. This initial evaluation serves the

purpose of establishing a simple baseline.

https://github.com/ethereum/cpp-ethereum/issues/2287
https://github.com/openssl/openssl/issues/2457
https://github.com/highfidelity/hifi/pull/8859
https://github.com/rpz80/cf/issues/2

initial evaluation 13

In the end, the Chess project emerged as having the right complexity for

the initial evaluation. The known data race in that project is a straightfor-

ward and classic example of a data race and therefore a good benchmark

for an early version of ConditionR. The Chess project and the data race in

question are explained in detail in section 3.3.1.

3.3 Evaluation

3.3.1 The Chess Project

TheChess project selected as the subject of this evaluation has a fairly straight-

forward structure.

The context is a game of chess played over the network. The server is

provided by a di�erent software package and the Chess project is simply a

chess client talking to the server.

The main logic of the chess client is as follows: First, a connection to

the server is established and the game is set up. Then, for each turn, an AI

object is asked to pick the next move given the current board and the game

history. The AI class does this using a custom parallel implementation of the

Minimax algorithm.

3.3.2 Preprocessing

Since the initial version of the algorithm only supported a single TU, all TUs

found in the project needed to be merged into a single one. This was done by

simply concatenating all .cpp source �les into one resulting source �le, that

can then be passed to ConditionR for analysis, along with all header �les.

Furthermore, the chess project uses std::async and std::futures. How-

ever, the checker in its initial version does not support these constructs

yet. Hence these were replaced with std::threads and a std::condition-

_variable. It should be noted, however, that this transformation is only ap-

plicable due to an implementation detail of the checker. In its initial version,

std::condition_variables are not o�cially supported.

3.3.3 Problems

Identical Memory Location Names for Distinct Memory Locations

initial evaluation 14

It quickly became clear that one major shortcoming of the initial version

of ConditionR is that the memoryLocations reported by the checker are es-

sentially just variable names. This means that two variables in completely

di�erent contexts with the same name are regarded as being the same vari-

able and thus memory location.

Distinct Memory Location Names for Identical Memory Locations
On the other hand, accessing the same memory location using di�erent

identi�ers is not recognized as referring to the same memory location. List-

ing 3.1 shows a read access and a concurrent write access in the source code.

Listing 3.2 is the output of the checker for these two statements. The checker

is unable to deduce that the target of the read and write access is identical

because the identi�ers used are di�erent. Consequently, the algorithm is un-

able to detect the known data race in the chess project.

1 // ...

2 bool AI:: MiniMax(int playerID , bool bCutDepth ,

BoardMove& moveOut)

3 {

4 unsigned int depthLimit = (bCutDepth ? 3 :

m_depth); // <== Read access here.

5 // ...

6 }

7

8 // ...

9

10 std:: uint64_t AI:: GetTimePerMove ()

11 {

12 // ...

13 m_depth = 4; // <== Write access here.

14 // ...

Listing 3.1: Concurrent read and write accesses to the same location in

memory.

1 }, {

2 "type": "Write",

3 "memoryLocation": "&ai->m_depth",

4 ...

5 }, {

6

7 ...

8

initial evaluation 15

9 }, {

10 "type": "Read",

11 "memoryLocation": "&SymRegion{reg_$20 <ai >}->

m_depth",

12 ...

13 }, {

Listing 3.2: The output of the original checker for listing 3.1.

This particular limitation was initially worked around by modifying the

checker to output the memory locations of member variables in the format

Class::member. This allowed the algorithm to recognize that the two con-

current statements access the same memory location and correctly report

the data race. The resulting output is shown in listing 3.3.

1 }, {

2 "type": "Write",

3 "memoryLocation": "AI:: m_depth",

4 ...

5 }, {

6

7 ...

8

9

10 }, {

11 "type": "Read",

12 "memoryLocation": "AI:: m_depth",

13 ...

14 }, {

Listing 3.3: The output of the modi�ed checker for listing 3.1.

Program Points Computation
When running the ConditionR tool on the preprocessed chess AI source

code for the �rst time, a stack over�ow exception occurred in the algorithm

Scala code. A quick investigation revealed that the computation of the pro-

gram points was implemented in a recursive fashion. However, the function

de�nition was not tail-recursive, which prevented tail call optimization from

being applied. As a quick workaround, the amount of memory allocated for

the stack was increased from 64MB to 512MB, which allowed the analysis

for this speci�c source code to run without error. Later on, this problem was

properly solved by rewriting the function in a tail-recursive way.

initial evaluation 16

Figure 3.1: Data race visualization of the initial evaluation. Default view

displayed when the analysis has �nished.

3.4 Results

This section presents the results of the initial evaluation.

3.4.1 Visualization

The visualization of the data races found during the analysis is displayed

in �gure 3.1. The black squares in the top left corner of every node are an

artifact of a temporary workaround to get the visualization to work under

Linux and can be ignored. Clicking on on the node representing the memory

location Vector2d<int>::x on the bottom right results in the view shown in

�gure 3.2. Expanding on the rightmost access node displays the expanded

view shown in �gure 3.3.

3.4.2 Data races

The analysis reported 360 data races on 12 unique memory locations. Of

those data races, only one is a true data race, namely the race on AI::m_depth.

The rest are false positives.

On the other hand, a data race on Connection::playerID found by clang

thread sanitizer was not reported at all.

initial evaluation 17

Figure 3.2: Data race visualization of the initial evaluation. View expanded

on one data race.

Figure 3.3: Data race visualization of the initial evaluation. View expanded

on one memory access of one data race.

initial evaluation 18

3.4.3 Extractor

During the evaluation, a number of bugs in the custom clang extraction

checker were found and �xed in order to analyze the entire source code

without crashing.

3.5 Conclusion

Clearly, there is a lot of room for improvements in all components.

The visualization currently o�ers little value above what a trivial list

would provide.

The extraction checker uses a very crude memory location naming con-

cept which does not allow the algorithm to properly correlate read and write

accesses needed to detect a data race.

The algorithm can only work with a single TU. In the evaluation setup

this was not a huge problem as concatenating all source �les into one was

enough to overcome this limitation in the current version. For real world

applications though, multiple TUs with explicit function calls are required.

The �nal evaluation will show what improvements this thesis was able

to deliver.

control flow graph extractor 19

4 Control Flow Graph Extractor

The extractor does the groundwork for the ConditionR. Its task is to create a

control �ow graph from C++ source code. This is achieved using the Clang

Static Code Analyzer infrastructure. The extractor is written in C++.

4.1 Starting Position

This section deals with the state of the Clang extraction checker condition

when this bachelor thesis started. It gives an overview of the capabilities

and about the known missing features.

4.1.1 Capabilities

The ConditionR tool the end of the master thesis supported only a small

number of C and C++ constructs. The student research thesis added support

for POSIX thread start, join and lock statements. The following list gives an

overview of all supported constructs:

• Support for races on global variables.

• Basic support for std::thread and POSIX threads.

• Basic support for std::mutex and POSIX lock and unlock.

• Support for locking mechanisms like std::lock_guard due to the func-

tion call inlining of Clang.

4.1.2 Missing features

To be able to analyze real world code, there are still quite a few features

missing. The following list shows the known shortcomings including the

ones found during the thesis:

• No support for C++ variables and function overloading.

control flow graph extractor 20

• No support for C++ constructors, destructors and operators.

• Incorrect output if a function is found within two di�erent TUs.

• Lambdas can not be analyzed because they are not named.

• When multiple locks are locked, the named mutex will always be named

the same. This is because the name is determined based on the variable

inside the locks implementation

• Arguments and parameters of a function cannot be mapped due to the

Clang memory location naming.

• No data race detection when objects are used.

• Only very basic multi TU support, basically just global variables.

4.2 Requirements

This section covers the requirements to build and run the extractor and

checker in its latest form.

4.2.1 Linux

There are many di�erent Linux distributions available and not every one

of them provides a built package containing the latest versions of Clang and

LLVM. To be able to run all tests successfully and use the extraction checker,

Arch Linux or one of its derivative like Manjaro are preferred. These come

with the latest versions per default and allow for an easy setup. For distri-

butions like Ubuntu one needs to install the experimental packages to get

the correct versions. If no packages are available at all, there is still the pos-

sibility to build and install these two tools directly from the source code.

If one has enough space and does not want to install Clang and LLVM di-

rectly, a docker container could be used as well. (See listing 4.1 for a simple

Dockerfile example.)

1 FROM base/archlinux

2 RUN pacman -Syyuu --noconfirm

3 RUN pacman -S clang llvm cmake make vim --noconfirm

4 RUN pacman -Sc --noconfirm

Listing 4.1: Minimal Docker�le to create a working clang and llvm

environment needed to build the extraction checker.

control flow graph extractor 21

Figure 4.1: Error during the extraction checker build process on Windows

using Cygwin and Clang 3.9.1.

4.2.2 MacOS

Running and compiling the checker on MacOS requires that Clang and LLVM

with version 4.0.0 is installed on the system. This can be done through ei-

ther homebrew or using the sources directly. After this, cmake will handle

the rest except that one needs to de�ne LLVM_PATH when running it for the

�rst time.

4.2.3 Windows

There is no o�cial installation binary for Clang and LLVM on Windows. One

approach to get it working is to use Cygwin. This method worked up until

the memory location name started to be determined by walking through

the abstract syntax tree (AST) of the given expression. The error during the

compilation is shown in �gure 4.1. Because of the di�erent versions of Clang

and LLVM this is most likely solved after updating from version 3.9.1 to 4.0.0.

Like with MacOS, additional libraries need to be linked during compilation

and LLVM_PATH must be de�ned for cmake to run. Another approach would

be to build it directly from source using Visual Studio. [Cla]

4.3 Architecture

The extractor is built as a Clang Static Code Analyzer checker which pro-

cesses speci�c events to create control �ow graph JSON output, which can

then be passed to the algorithm for further analysis.

4.3.1 Basics

When building a checker, one should follow the guidelines given by the

Clang static analyzer. [Che]

• Let the checker inherit from the Clang Checker<...> class.

• Specify the events one is interested in, by passing them as a template

parameter.

control flow graph extractor 22

• Register the checker using the registerChecker<...>() method and

passing it as the only template parameter.

The registerChecker<...>()must be called inside the given clang_reg-

isterCheckers(...) method which has external C linkage. One should fur-

ther de�ne the clang version the library is compiled against using the char

const clang_analyzerAPIVersionString[].

4.3.2 Implementation

Herein follow the speci�cation and implementation details of the extractor

code checker. A big picture overview of the whole implementation can be

seen in �gure 4.2. The checker can be divided in three major parts. The

extraction checker itself, the graph classes containing all the building blocks

needed in the control �ow graph and at separate printing class which bu�ers

and then prints all graphs after each TU.

Extraction

The extraction part contains the actual checker implementation. Figure 4.3

shows which hooks from the clang::ento::check namespace the Extrac-

tionChecker implements. Initially the checker code was contained inside a

single C++ source �le. During this thesis the structure has been broken up

and the checker hook methods contain little logic themselves. Code belong-

ing to the graph part has been put into the TreeGraph class and its dependen-

cies. To print the graph to std::cout the JSONPrinter class is used. Finally

to create the correct statements from a given expression the PreCallHandler

and LocationHandler classes are called.

Graph

The graph part provides the data structure which will later be serialized.

The TreeGraph holds a list of all BasicBlocks and also the special entry and

exit block. The list containing the blocks is only used during the initial ex-

traction because the checker only saves the list index of the last BasicBlock

in its state. When using a deserialized graph, the entry block must be used

directly. If a list containing all blocks is needed the getBlocks() function

can be used. This function �attens the graph data structure starting with the

entry block in order. Since each graph represents a single function it further

contains a list of Parameter objects and a SourceLocation. The latter allows

control flow graph extractor 23

Figure 4.2: Extraction checker global overview.

the algorithm to determine the entry point the user has selected inside the

Cevelop IDE. Figure 4.4 gives a basic overview of the dependencies to other

classes.

Printer

The JSONPrinter bu�ers the graph of each function after it has been an-

alyzed. When the TU is fully processed, the graphs will then be printed

to std::cout. �gure 4.5 shows that the current implementation depends

directly on rapidjson [Rap] as a back end for serialization. This strong de-

pendency to a third party library can be weakened if an adapter is used. This

allows for an easy replacement if another JSON library is needed.

control flow graph extractor 24

Figure 4.3: Extraction plug-in extraction overview showing the direct depen-

dencies from the Clang Checker class and also the classes used to implement

most of the logic.

Figure 4.4: Extraction graph part overview with its dependencies.

control flow graph extractor 25

Figure 4.5: Extraction checker printer part overview, showing the depen-

dency on the rapidjson library.

4.4 Extraction

After analyzing the architecture of the checker in section 4.3, this section

will give an overview of how the user or the algorithm can interact with the

extractor.

4.4.1 Extractor

The extractor is a small CLI tool created to allow for an easier interaction

with the actual Clang checker. Normally the plug-in must be called using

a lot of arguments. Some of those, like the system include paths, must be

manually looked up on each system. Additionally some post processing of

the checker output, like �xing the invalid JSON output is done. If desired,

all UnresolvedCall nodes, which point to graphs not contained inside the

checker output, can be removed. For additional space optimization JSON

output can be compressed by removing all empty basic blocks. Refer to ta-

ble 4.1 for a full list of supported CLI arguments.

As a word of warning, one must be careful not to pass malicious content

as the Clang binary or checker library argument because it will be invoked

directly inside a std::system call.

Figure 4.6 gives an overview on how the extractor is used within the

ConditionR tool. It can also be used directly from the CLI to get the JSON

data, if the required arguments are provided.

control flow graph extractor 26

Usage:

-c <clang binary> [Required] Clang binary which is used

to extract the CFG.

--clang See -c.

-l <extraction library> [Required] Extraction checker library

which needs to be loaded.

--checker-lib See -l.

-f <list of files> [Required] Files which need to be

analyzed.

--files See -f.

-o "<more flags>" Further optional flags. (Example

-stdlib=libc++). Must be enclosed in

"".

--other-flags See -o.

--raw-output Get the raw checker plug-in output

(JSON format will still be fixed).

--fno-ucall-remove Do not remove calls for which there are

no graphs found."

--fno-emptyblock-remove Do not remove blocks containing no

statements."

-h Show this usage message.

--help See -h.

Table 4.1: Usage of the cr-extractor tool.

Figure 4.6: Sequence diagram showing the interaction between the algo-

rithm, extractor and the checker

control flow graph extractor 27

4.4.2 Checker

The Clang Static Analyzer Checker library has been completely refactored.

When this thesis started, everything was contained inside a single C++ �le,

making it di�cult to get a good overview of the current code base. This �le

was also included inside the test suite but never actually used for any tests.

Which meant that every required Clang and LLVM library had to be linked

with it as well.

During the thesis the code has been separated and put into di�erent

classes inside the ConditionR namespace. For general methods, used in dif-

ferent parts of the extraction, the ExtractionHelper namespace was cre-

ated. The existing functionality has been moved into the PreCallHandler

and LocationHandler classes to keep �les at a manageable size.

Major Changes

The biggest change was the removal of Clangs function inlining capabilities.

This was done to allow the output to be consistent when analyzing multiple

translation units. Normally Clang would follow a call if it was in the same

translation unit and generate UnresolvedCall nodes otherwise. This cre-

ated problems with memory locations since they had di�erent names and

no correlation could be found anymore, which meant no data race could be

detected even though the same memory location had been accessed.

The JSON output changed signi�cantly as well. New nodes had to be

added to each graph for example a block for the current function location

and parameters. The UnresolvedCall and ThreadStart statements now also

contain a list of argument objects and a MemoryLocation if it’s a named vari-

able.

4.5 Output

After the analysis of each function is done, the checker serializes the cur-

rent TreeGraph and bu�ers its output in a rapidjson::StringBuffer object

inside the JSONPrinter class. The bu�er will then be printed to std::cout

after every TU with an added comma. This allows the extractor to simply

read the output, remove the last comma and add ’[’ before and ’]’ after the

string to get a valid JSON. The de�nition of this output can be found in ap-

pendix A

control flow graph extractor 28

Usage:

-c <clang binary> [Required] Clang binary which is used

to extract the CFG.

--clang See -c.

-l <extraction library> [Required] Extraction checker library

which needs to be loaded.

--checker-lib See -l.

-o "<other flags>" Further optional flags. (Example

-stdlib=libc++). Must be enclosed in

"".

--other-flags See -o.

--update-test-data Update the JSON test data for all

tests.

-h Show this usage message.

--help See -h.

Table 4.2: Usage of the cfg-extraction-test.

4.6 Testing

To test that the extraction checker actually works, the cfg-extraction-test

project has been updated and populated with more test cases. The old CLI

has also been updated. Refer to table 4.2 to get an overview of the available

CLI arguments. Since cfg-extraction-test actually calls the cr-extractor the

same precautions concerning the clang binary and the extraction checker

library must be taken. The --update-test-data argument can be used to

update all the current test data. This can further be used when the output

format or the output in general has changed. Of course one needs to validate

that the new data is actually correct, otherwise the whole point of these tests

would be useless. Updating the test data manually is labor intensive due to

the memory locations using �le byte o�sets which are tedious to determine.

The JSON output will get quite big when branching or loops occur. Every

test calls Clang with the relevant �ags using the header �les of the extractor

and passing it the relevant arguments. All tests use the raw and not the post-

processed output. In a future update the tests could be updated to allow using

the graphs directly and check their correctness without relying on simple

string comparisons.

4.7 Future Development

This section describes future development of the extraction checker and the

extractor. The current version is still not fully �nished and maybe some

control flow graph extractor 29

concepts need to be rethought to move it into a market ready state.

4.7.1 Loop handling

Handling loops is a known issue with the clang project, that is not fully

resolved [Loo]. For example listing 4.2 will not generate the correct state-

ments, meaning that the z = 200 write statement will never be recorded

since Clang determines that the loop will run at maximum 20 times but the

extractor limits it to two iterations.

1 int main() {

2 int z { };

3 for (int i { 0 }; i < 20; ++i) {

4 if (i > 10) {

5 z = 200;

6 }

7 }

8 }

Listing 4.2: Code where the current solution to the loop issues results in

a wrong graph.

A possible solution to most of the problems concerning Clang could be

to work directly with the AST instead of relying on Clang to do the control

�ow analysis. To get this working the extraction checker could likely be

replaced entirely.

4.7.2 Deployment

Deployment is tricky as described in section 4.2. The hard dependency on

speci�c Clang versions with their constant API changes makes stable devel-

opment di�cult. One possible solution could be to bundle Clang with the

checker but this requires further research.

data race detection algorithm 30

5 Data Race Detection Algorithm

This chapter describes the algorithm component of the ConditionR tool.

First, an overview of the components history and scope is given. Then, the

phases of the data race detection algorithm are described. Finally, the work

done in this thesis and potential future work is summarized.

5.1 Overview

Once the extraction component has extracted the control �ow graph from

the source code of the project under analysis, the graph must be further

analyzed in order to detect potential data races. These data races are then

reported to the visualization component, which in turn displays the analysis

results to the user.

The algorithm was invented and patented by Dr. Luc Bläser. [Blä15] The

implementation used in this project is written in Scala and was created in

the masters thesis.

This chapter gives a high level overview of the algorithm and a detailed

description of the aspects modi�ed or added in this thesis. For a detailed

overview of the inner workings of the algorithm left untouched in this thesis,

please refer to [Bru16].

5.2 Goals

The initial version of the algorithm had several limitations that prevented it

from being applied to real world C++ projects. One of the goals of this thesis

was to reduce these limitations.

First, the ability to analyze projects that consist of multiple TUs is vitally

needed. This requires the algorithm to be able to resolve function calls, not

just within a TU but also across TUs.

data race detection algorithm 31

Furthermore, the algorithm should track accesses to memory locations

even if they are not globally de�ned but rather accessed using a pointer

passed as an argument to a function, as this is common practice in C++ code.

Finally, for each data race the algorithm should provide the sequence of

function calls that lead to the data race. This information can then be used

by the visualization to guide the user through the source code.

The following sections detail the functionality of the algorithm and the

implementation of the improvements described above.

5.3 Phases

The algorithm consists of the following phases:

1. The function calls in the control �ow graph obtained from the extrac-

tor need to be resolved.

2. A thread-graph containing thread starts and joins is constructed from

the resolved control �ow graph.

3. The locks held during memory accesses are recorded in a Lockset.

4. A �ow-sensitive analysis determines potential data races between tem-

porally related threads using the constructed thread-graph and lock-

set.

5. A fully-concurrent analysis determines potential data races between

threads without a direct temporal relationship.

These phases are described in more detail in the following sections.

5.3.1 Function Call Resolution

The �rst step is to resolve function calls present in the initial control �ow

graph.

Interaction with the extractor

In order to support the new functionality, the interface between the extrac-

tion component and the algorithm was revised.

Previously, the algorithm would instruct the extractor to analyze the

analysis entry point, starting with the main function, and in return receive

data race detection algorithm 32

the control �ow graph for all statements in this TU reachable from this func-

tion. Function calls to targets within the same TUs were directly inlined by

the Clang static analyzer and not explicitly recorded. Calls to functions not

de�ned in the same TUs are recorded in the control �ow graph. The al-

gorithm would then check for any unresolved function calls and iteratively

call the extractor to analyze the called function in the context of its TU. This

process was repeated until all unresolved function calls were resolved.

The advantage of this method is that most of the heavy lifting is out-

sourced to the extractor, or more precisely, the Clang static analyzer. This

greatly simpli�es the algorithm implementation.

The downside to this method is that function calls within a TU are auto-

matically inlined by the extractor and are thus not visible to the algorithm.

This meant that when a data race was reported to the user, no further details

about the data race were known. Speci�cally, the sequence of function calls

that lead to the data race would be very useful to the user to track down

the cause of the data race. Another disadvantage of this method is related

to the capabilities of the Clang static analyzer. Attempting to resolve an un-

resolved function call to a constructor, destructor, operator or lambda was

previously impossible. This is because these special functions are not yet

supported as analysis target. As a consequence, detecting data races that

include a function call of this kind was previously not possible.

In the new version of the algorithm developed in this thesis, the exchange

of data between the algorithm and the extractor has been modi�ed to allow

for more �ne grained control. The extractor no longer resolves function calls

directly but rather inserts explicit function call statements. This allows the

algorithm to track function calls and resolve them during analysis. It also

enables the algorithm to detect data races on memory shared by passing

pointers as arguments to functions in entirely di�erent TUs, which previ-

ously also was not possible. Finally, even calls to constructors, destructors,

operators and lambdas in di�erent TUs are now resolved in the algorithm.

This is because when started without an explicit analysis target, the extractor

simply analyzes every function in the given TU. This provides the algorithm

with a more detailed control �ow graph that allows the data race detection

to be improved.

Translation Units

The new interface to the extractor described in the previous section enables

multiple TUs to be supported with relatively little e�ort required by the al-

data race detection algorithm 33

gorithm. Unlike the previous data exchange format, new format described

in detail in the extractors chapter takes into account the fact that functions

reside in a TU and provides access to all of them. When parsing the control

�ow graph, all the graphs are extracted and organized in a single data struc-

ture. This allows the algorithm to operate independently of TUs and reduces

the problem to function call resolution.

Inlining

Since the extractor no longer immediately inlines intra-TU function calls,

the algorithm now has to do all of the inlining, whereas before only inter-

TU calls needed to be inlined outside of the extractor in the algorithm.

In the proof-of-concept implementation of the previous version, each

function was traversed recursively and independently of all other functions

in an arbitrary order. Each unresolved function call is substituted with the

statements of the called function. This method is not suited to the new ap-

proach where there are a much larger number of functions and calls since

resolving everything independently would result in a lot of work being done

multiple times without any bene�t.

Rather than simply resolving everything without any particular strategy,

the new implementation starts the process at functions that do not contain

any further function call and simply marks them as resolved. Next, functions

that only contain calls to these resolved functions are resolved. This process

is repeated until the analysis entry point has been resolved.

A fundamental drawback of this approach, however, is that recursive

functions do not �t into this model without any further e�ort, as they can

not be inlined. A control �ow graph containing recursive function calls can

be interpreted as a directed graph. In order for inlining to be possible in all

cases, the graph would have to be acyclic. This however is not the case for

source code containing recursive procedures. A di�erent approach would be

to forgo inlining the call graph before starting the �ow analysis altogether.

This would require a complete redesign of the program points computation

in the lockset construction, which is outside the scope of this thesis. For the

time being, this issue was addressed by employing a recursion limit for the

function call resolution.

Multiple Identical Function Calls

data race detection algorithm 34

Another issue that revealed itself in more complex test cases is resolving

multiple calls to the same target within the same function. In the original

version, the blocks of the target function were inserted without modi�cation

into the source function. The predecessor of the �rst inserted block is set

to the caller block, which contains the call currently being resolved, and

the successor of the caller block is set to the �rst inserted block. The same

principle is applied to the last block of the target function and the successor

of the caller block. This concept is analogous to insertion for doubly linked

lists.

The problem with this approach is that when multiple calls to the same

function exist in the source function, the blocks inserted while processing

the second call will be identical to the ones inserted during the �rst call.

This lead to in�nite loops and subsequently a stack over�ow error in the old

version.

The revised version creates a separate copy of the target function blocks

for each call and tags these blocks with the caller block. This makes them

distinguishable during traversal later.

Function Parameters and Arguments

Accesses to memory allocated outside the current function via pointers or

references passed in as arguments should be properly correlated with con-

current accesses to the same memory locations using a di�erent name out-

side the function context. This is solved by looking up the name of the func-

tion parameter at the same position as the argument passed in to the function

when it is called. Accesses to the parameter inside the function are then cor-

related with accesses to the location passed to the function under the name

of the argument. This allows the algorithm to detect data races even when

function calls and no global variables are involved, which previously was

the only case in which data races could be detected.

5.3.2 Thread Graph Construction

After resolving function calls in the control �ow graph received from the

extractor, a thread graph is constructed. This additionally requires an entry

point for the analysis. The analysis then assumes that there is one main

thread running when the given entry point is entered. Subsequent thread

starts add a thread to the thread graph.

data race detection algorithm 35

This aspect of the algorithm remains mostly unchanged from the previ-

ous version.

5.3.3 Program Points

Section 1.4.2 introduced the notion of program points as a sequence of pro-

gram state transformations. These program points are calculated based on

the resolved control �ow graph and the thread graph. The resulting program

points represent the possible execution paths through the program. They are

used in the lockset analysis to construct a lockset. This process is described

in the corresponding section below.

Deeply Nested Function Calls

It was observed that when analyzing projects containing a data race only

reachable via deeply nested function calls, the data race would often be

missed. An investigation into the issue showed that the way the program

points calculation in the lockset construction kept track of the active threads

was �awed. An empty basic block containing no statements would cause the

calculation to forget what threads are currently active. This issue has been

�xed in the current version of the algorithm.

5.3.4 Lockset Analysis

Following the thread graph construction, a so called lockset is constructed.

This process is traditionally called lockset analysis. The lockset contains all

memory accesses along with the thread entries that performed them and the

locks held by the thread when accessing the memory. This lockset can then

be used in combination with the thread graph to detect data races between

concurrent threads. The lockset analysis is �ow- and path-sensitive, that

is, it traverses every execution path. To construct the lockset, the program

points computed in the previous phase are used.

5.3.5 Flow-Sensitive Data Race Analysis

Given the extensive preparation work done in the previous phases, the actual

data race analysis is relatively straightforward. As already discussed, every

program point describes a possible state of the program and includes a mem-

ory access, the locks held and the active threads. This is all the information

needed to �nally detect the data races.

data race detection algorithm 36

The �ow-sensitive data race analysis aims to �nd data races between

conditionally concurrent threads. Two threads are considered conditionally

concurrent if one thread may or may not start another thread. Since the

algorithm can not determine whether or not the second thread is actually

started, it will always assume that it is in fact started to ensure not missing

any potential data races.

The analysis traverses every program point and reports a data race when-

ever two or more threads concurrently access the same memory location

without sharing a common lock, and at least one access is a write access.

This �rst part of the data race analysis also detects unconditionally con-

current threads and stores them for the second part of the data race analysis.

Two threads are regarded as unconditionally concurrent if there is no appar-

ent relationship between the two threads, i.e., there is no start edge from one

thread to the other in the thread graph. For these threads, the analysis will

assume that both are always running concurrently.

5.3.6 Fully Concurrent Flow-Sensitive Data Race

Analysis

Using the unconditionally concurrent threads determined in the previous

analysis, this �nal step will employ a �nal data race detection for these

threads.

For each pair of unconditionally concurrent threads, a data race is re-

ported for a shared memory access if the conditions described in the previous

section are met.

5.4 Architecture

This section gives an overview of the high-level architecture of the algorithm

and shows the details of the graph package which was the main subject of

extension during this thesis.

5.4.1 Overview

The high-level architecture of the analysis component remains largely the

same as in the version provided in the masters thesis. Figure 5.1 provides a

white-box view of the analysis component.

data race detection algorithm 37

Figure 5.1: White-box view of the analysis component.

5.4.2 Graph

The graph package outlined in �gure 5.2 was extended for function param-

eters and arguments. Much of the work done on extending the algorithm

functionality was independent of architectural changes.

5.5 Summary

The algorithm implementation was extended to employ proper cross-transla-

tion unit function call inlining. Pointers to memory locations passed as ar-

guments to other functions are tracked and considered during the data race

detection. Nested function calls of arbitrary depth are correctly followed.

Multiple calls to the same function from the source function are not an issue

for the algorithm anymore. Various bugs have been �xed to improve the

stability of the implementation.

As the number of execution paths during a path-sensitive analysis grows

exponentially with the number of conditionals, analyzing larger projects us-

ing the current approach comes with a considerable performance penalty.

The current approach should be reconsidered to address these issues in or-

der to be viable for large-scale projects.

data race detection algorithm 38

F
i
g
u

r
e

5
.2

:
C

l
a
s
s

d
i
a
g
r
a
m

o
f

t
h

e
g
r
a
p

h
p

a
c
k

a
g
e
.

visualization 39

6 Visualization

This chapter documents the visualization plug-in of the ConditionR tool.

First, the initial UI of the masters thesis as well as the developed concepts

from the student research thesis are analyzed. Then, new concepts from this

bachelor thesis are proposed and analyzed. After that, the decision of which

design was chosen for the implementation is documented. In the �nal part

of this chapter, the implementation is described in detail.

6.1 Overview

After the user started the data race analysis for a given project, the analysis

returns a list of potential data races. These results are then visualized in

the IDE to assist the user with his goal of developing correct software. This

closes the loop of the user experience of the ConditionR tool.

In order to deliver maximum value to the user, it is vital that the analysis

results are communicated to the user as e�ectively as possible.

6.2 Master Thesis UI Version

The version of the visualization presented in the masters thesis has at its

core a dedicated view within the Eclipse view. The results of the data race

analysis are shown as a graph directly in that view. In addition to this view,

warning messages and editor code markers concerning the detected data

races are added. The analysis is started using a button added to the main

toolbar by the plug-in.

6.2.1 Analysis

Looking at a very simple example as shown in �gure 6.1, the visualization

seems fairly straightforward. Once the plug-in is applied to a more complex

visualization 40

Figure 6.1: Screenshot of the visualization component from the master thesis

documentation

example such sa theChess project described in section 3.3.1, the visualization

of the results appears fairly confusing and overwhelming.

Graph View

For each data race, the main view only shows the locations of the two mem-

ory accesses that lead to the data race. It does not give any further details

on why there is a data race and how it occurred. Furthermore, only one data

race connection for a given access is shown at a time. If an access belongs

to a data race with several other locations, these are not visible.

Another issue with this view is apparent in cases where a memory loca-

tion is involved in multiple data races. An example of this is shown in �g-

ure 6.2. The data races for a memory location are laid out in a circle around

that location. Each race is represented as a solid, indistinguishable circle.

Therefore it is impossible for the user to tell which node corresponds to

which race, which makes the process of investigating a given data race very

di�cult. The same problem presents itself if there are many memory loca-

tions that belong to data races. Once more than eight memory locations are

involved in (potentially distinct) data races, it is possible for them to overlap

visually. This is due to the way the graph is laid out and makes it very hard

for the user to understand what is going on.

The next point of criticism is the inconsistency of the navigation inside

the view. The user has to click in the graph on each node to show more in-

formation. To show the location of a data race access in the editor, hovering

over it using a mouse is required.

visualization 41

Figure 6.2: View example of multiple data races on memory location x

Figure 6.3: Eclipse problems view with duplicated warning messages

A further issue with operating the visualization is that the graph view

has to be manually opened before the data race analysis is completed. If the

view has not been opened manually or has been opened after the analysis

has already completed, no results will be displayed in the view.

Warning Messages

The warning messages for the data races could also be improved. For each

access location of a data race, one warning message is generated. If a location

has multiple data races, the exact same warning message for the data races

is generated multiple times. An example of this issue is shown in �gure 6.3.

Editor Markers

Eclipse allows markers to be set on arbitrary lines of code in the editor. A

marker consists of an icon on the left hand side of the editor, and an emphasis

on a fragment of code on that line.

For each data race reported by the analysis, a marker is created. This

marker covers the entire line of code, and not just the fragment involved in

the data race. While this makes it easier to spot the line of code involved in

visualization 42

Figure 6.4: Unclear marking of a data race

the data race, it does not allow the user to easily determine where exactly

on that line the data race occurs. Additionally, if there are multiple locations

involved in data races on the same line, this can not be recognized visually.

The same problem exists for example if there is a method call with mul-

tiple parameters which will be copied. An example of this is shown in �g-

ure 6.4.

6.2.2 UI Bug

The initial visualization plug-in, while su�ering from many drawbacks, works

as intended on MacOS systems.

In the current version of Ubuntu (16.04) and Eclipse (4.6.x), the visual-

ization of the analysis results does not work properly. The entire data race

graph was drawn on a single Composite object. Each node of the graph,

which was clickable, was covered by an "invisible" rectangle to make the

node clickable. But this rectangle turned out not to be invisible on Linux.

The reason for that was a bug in the Standard Widget Toolkit (SWT) library

with newer GIMP-Toolkit (GTK) versions. The clickable rectangles used the

NO_BACKGROUND �ag which should made the background invisible and reveal

the actual node below. Inside the SWT package, the Composite class of SWT

deactivates some style-�ags, as shown in listing 6.1.

1 static int checkStyle (int style) {

2 if (OS.INIT_CAIRO) {

3 style &= ~SWT.NO_BACKGROUND;

4 }

5 style &= ~SWT.TRANSPARENT;

6 return style;

7 }

Listing 6.1: snippet from the SWT library

The NO_BACKGROUND style is disabled if Cairo or a GTK version newer than

2.17.0 is used. On recent Linux systems, the style-�ag NO_BACKGROUND was

ignored because of the usage of a newer GTK version. Even without the use

of cairo and an older GTK version it did not work properly. Instead of being

invisible, the rectangle now was gray. So the attempt to force SWT to set the

visualization 43

Figure 6.5: UI concept of the thread view with two concurring threads

NO_BACKGROUND style did not work. Using the TRANSPARENT �ag instead does

not work either, because this will be ignored anyway.

Possible Fixes

An easy hot�x for this view would be to, instead of making the whole nodes

clickable, only add a small clickable square at the left top of the node. For the

initial evaluation (see section 3.3.1), this hot�x was implemented in order to

get at least some usable results in the view. This is also the reason why in

every screenshot of the old view, apparently meaningless black squares are

visible.

If the graph view should work and look identical to the master thesis UI,

the view has to be rewritten. The nodes should be drawn on the clickable

rectangle instead of the graph view composite.

6.3 Student Research Thesis Proposals

In the student research thesis, two new visualization concepts were devel-

oped. First, a thread view which, for each memory location with data races,

shows a thread graph. Secondly, a spread view that mainly focuses on the

variables and how they are mapped.

6.3.1 Thread View Concept

The concept of the thread view contains the following components as �g-

ure 6.5 shows:

• A list of racy variables where the user can select a variable to be shown

in the graph-part of the view

• A graph view where the selected variable is drawn with all involved

read and write accesses, thread starts and joins.

visualization 44

The bene�ts of this concepts are that it shows in which threads the racy

variable is used and presents a complete overview for a given racy variable.

Additionally, it also reveals whether a thread joins correctly. Another good

idea is that all racy variables are listed separately. Only information about

one racy variable at a time is shown in the graph view. This makes it much

more clear and useful.

The concept also took into account complex cases like large number of

threads or too many uncritical read accesses. With buttons over some nodes,

the graph could be extended or collapsed to show only the critical sections.

But even with the support of such complex cases, the view could still be

too confusing and potentially unclear if there are too much data races for a

variable.

6.3.2 Spread View Concept

Unlike the thread view, the spread view focuses on the variables and how

they are mapped. The idea of this concept is to give the user more informa-

tion about how a race occurred. Figure 6.6 shows such a view. The spread

graph shows the involved methods main(); and method1(var test); and

their variables. The variable a is passed to a new method, which uses it as

test. The underlying memory location is identical.

The following two components are used in a spread view:

• A list of racy variables where the user can select a variable to be shown

in the graph-part of the view

• A spread graph which shows the involved methods with their variables

in a UML style.

The problem of this view is that it is only usable in easy examples with few

methods involved. If a data race involves a large number methods, it would

be too cluttered to display the whole data race.

Also, this concept would not work for static or global variables, because

there is no mapping to display.

6.4 UI Improvement

This section documents the improvement ideas and also their implementa-

tion for the visualization which came up during this bachelor thesis.

visualization 45

Figure 6.6: UI concept of the spread view with two methods and a passed

variable

Figure 6.7: Improved result of the warning messages in the problem view

6.4.1 Warning Messages

As discussed during the analysis of the UI presented in the masters thesis

in section 6.2.1, a warning message was generated for all locations of a data

race. If a location was involved in several data races, several warnings with

the same message were generated.

It was not a bad idea to have the same error message occur multiple times

but for the user this was not very helpful as screen real estate is limited. To

improve the user experience, identical warning messages should be merged

into one and the number of occurrences should be displayed along with the

message. Figure 6.7 shows this improvement. The warning for line 76 is

shown only once instead of twelve times.

6.4.2 Editor Markers

The code markings from the master thesis had a lot of potential for improve-

ments. The biggest �aw was that for a data race found in the code, the whole

line was marked. There was no information about where on the line the data

race was. Also if two or more data races were on the same line, there was

no way of telling.

The best improvement to remove this �aw was to underline the racy

variable only. Figure 6.8 shows the solution of the code markers revision.

This involved some code changes in the extractor and algorithm, because

more detailed information about the location was needed.

Next, the tooltip information while hovering over the code markers had

to be revisited. The UI version of the master thesis only showed a single mes-

visualization 46

Figure 6.8: Improved result of the code marking in the editor

Figure 6.9: Hovering over var1 on line 66 shows with which other lines a

con�ict exist

sage with an internal id of the last data race of this line which was of no use

to the user. The reworking idea was to show a list of messages with infor-

mation about every other location this variable access has a data race with.

Figure 6.9 shows the result of this. Clicking on a list entry will cause the data

race view to move focus to the selected data race to get more information.

6.4.3 View

The view is the core of the ConditionR Eclipse plug-in visualization. It shows

more information about how a speci�c data race in the code occurs.

Because the implementation of the master thesis was on one hand not

usable on Unix systems and on the other hand not terribly useful for the

understanding of the data races, the view had to be totally reworked. Since

the proposals of the student research thesis had their �aws, new proposals

were developed based on their ideas.

One Graph for each Memory Location

This proposal shows all data races for a given memory location in a single

graph. The basic idea was to, instead of drawing only separate data race

pairs like in the master thesis, sum up all the pairs in a connected graph.

visualization 47

Figure 6.10: Mockup where a read access location of x is selected

This reduces duplicated race locations and gives a useful overview of all

con�icting race locations for a location.

Figure 6.10 shows an example of this view. It contains three parts. First,

a list on the left side where all memory locations with data races are listed,

based on the idea of the thread view concept variable list described in sec-

tion 6.3.1. Secondly, an information box on the left bottom, where more in-

formation about a node could be displayed. And �nally, a graph view where

the data race graph for the selected memory location will be displayed.

If a memory location has been clicked in the list, its graph will be drawn.

The graph contains nodes and edges. A node stands for a race location of

the memory location in the code and shows also whether it is a read (R) or

write (W) access. An edge stands for a potential data race between two race

locations. The nodes are clickable. A click shows more information about the

location in the information box, highlighting the node and its connections

and jumps in the code editor to the location.

Like the other proposals, this view also has �aws. One disadvantage is

that it is only visible which positions in the code are involved in a data race.

Showing additional information, like a stack trace, would be di�cult in the

view. Another problem is the scaling. If there are many data races for a

memory location, the graph would be to big. This would be di�cult to draw

in a small view without overlapping nodes and edges. This is the reason why

this view was not further developed and implemented.

One Graph for each Data Race

The biggest problem was the scaling of the view when there are a large num-

ber of data races and displaying helpful additional information about a data

race. So the basic idea to �x the scaling problem was to show only one data

race in a separate section of the view, because the amount of data races for

a memory location can increase but a single data race can not grow.

visualization 48

Figure 6.11: Mock-up where a read access location of x is selected

Figure 6.11 shows the mock-up for this view. On the left side it contains

two lists. A list with memory locations and a list with all data races for the

chosen memory location. On the right side the data race information sub-

view is displayed. This sub-view is split into three parts. The left part shows

the two accesses for a race as a blue R for Read access or a red W for write

access. The middle part shows for both accesses their code snippet. In the

right part, a call stack is displayed to give more information about how the

data race arises. More information about the functionality of this view is

described in section 6.5.

The visualization of the call stack evolved during development. In the

mock-up it is displayed as a graph. In the �nal implementation it has been

changed into a tree list because it shows more information on the �rst look.

6.5 Functionality

This chapter documents the functionality of the visualization plug-in from

the users perspective. It describes how to con�gure the plug-in, how to start

a data race analysis and how to interpret the results.

6.5.1 Running Analysis

An analysis can be started in two di�erent ways. The standard way to run

the analysis is to click on the button in the toolbar (see �gure 6.12). This

starts the analysis with the main method of the project as entry point for

the algorithm. If no main method is found, the analysis will be canceled and

an error window will be displayed to inform the user.

For project with no existing main method, like libraries, or if a user only

want to run an analysis only for part of a project, there is another solution.

visualization 49

Figure 6.12: Added button from the plug-in to start a data race analysis with

the main method as entry point for the algorithm.

Figure 6.13: Added drop-down menu entry to start a data race analysis from

the actual cursor position in the editor.

The user can select a position inside the editor in a method body and right

click to start the analysis from this method. This is shown in �gure 6.13.

6.5.2 Data Race Visualization

In this section, the usage of the data race visualization is described. This

description is based on an example project which is illustrated in �gure 6.14.

Data Race View

After a successful data race analysis, the visualization automatically opens

the data race view for the user. The view contains two lists. One list for

visualization 50

Figure 6.14: Screenshot of an analyzed C++ project with data races.

all memory location that contain data races and another for all data race

pairs of the selected memory location. Additionally, a data race information

subview is opened (see �gure 6.15). If a memory location is selected in the

�rst view, the data race list will be updated with all races for that memory

location. If an data race pair is selected in the data race list, the data race

will be displayed inside the data race information subview.

The data race subview is composed of three di�erent parts.

In the left part, the two data race locations are displayed as circles. Blue

for read access and red for a write access of the memory location. Hovering

over a circle will show a tool-tip view with information about the �le name,

the line number inside the �le of the location and the access type. Clicking

on a circle will jump to the location in the editor and highlight the data race.

In the middle part, the whole function where the data race occurs is dis-

played for both location. This simpli�es the comparison of the two location,

because a user does not have to jump to the data race in the editor.

In the right part, the call stack for the data race is listed. Here, the user

can see in which function the data race or the function of the data race is

called. This helps the user to better understand the data race.

visualization 51

Figure 6.15: The data race view with analyzed input of a project.

Figure 6.16: Displayed editor marking of a location with is in con�ict with

two other lines.

Editor Markings

The editor markings in the editor are created or updated after a successful

data race analysis. The markings consist of a purple underlining of the data

race locations and an icon on the left side of the editor on each line where an

data race was found. Hovering over a underlined location in the editor will

show an tooltip which lists all other locations where this line has a con�ict

with. Clicking on a list element will show the data race view with the se-

lected race in the information subview. Another way to show the data race

is clicking on the icon on the left side of the editor. This shows also an list

of all con�icting other locations. From here the user can jump into the data

race view (see �gure 6.16).

6.5.3 Configuration

To use the ConditionR plug-in, paths to clang, the checker library and the

cr-extractor binary must be provided. This can be done via the preferences
window in Eclipse. A user can open the window with Window > Preferences

> ConditionR and add the �les. Figure 6.17 shows this window. Addition-

ally, a user has the possibility to add some optional �ags for clang here, for

visualization 52

Figure 6.17: Preference window for the con�guration of the plug-in.

example -std=c++14.

6.6 Design and Architecture

This section documents the design and architecture of the visualization plug-

in. The major part of the visualization architecture was taken from the mas-

ter thesis [Bru16]. For components that have not been changed greatly, only

a short summary is given. If more information is needed, please refer to the

masters thesis.

6.6.1 Component Overview

The source code is organized in �ve packages. Four of them were taken from

the master thesis with some changes. In the following list a short overview

of the packages is given.

• preferences. This package contains the logic for the preference page

where a user can modify settings of the plug-in.

• common. This package contains several classes that are used by more

than one of the other packages. For example the EventBus for the

communication between UI subcomponents.

• commands. This package contains the commands for the plug-in.

• datarace. This is the newly added package which contains the data

race class for the view and the conversion for the data races from the

algorithm.

• views. This package contains the classes that implement the in sec-

tion 6.5 described data race view.

visualization 53

Figure 6.18: White-box view of the UI components.

The white-box view of the UI component is illustrated in �gure 6.18.

The following sections describe the contents of the commands, datarace and

views packages. The other two packages have not been changed and more

information about them is given in the master thesis.

6.6.2 commands

This package contains the two commands RunAnalysisCommand and Run-

AnalysisFromEntryPoint which uses the org.eclipse.ui.commands exten-

sion point. It also contains the point of interaction with the algorithm com-

ponent (ch.hsr.ifs.conditionr.analysis). The content of the commands

package, including important dependencies, is illustrated in �gure 6.19. In

the following list are the classes of this packages described.

• RunAnalysisCommand. This command is called if a user wants to run

an analysis via the toolbar in the user interface. All this class does is

to instantiate and schedule an Analysis Job with the main function as

entry point for the algorithm.

• RunAnalysisCommandFromEntryPoint. This command is called if a user

want to run an analysis via the selected location in the code editor. It

extends the RunAnalysisCommand with the selected function as entry

point.

visualization 54

Figure 6.19: Package-Diagram for the classes of the commands package and

their dependencies.

• AnalysisJob. This job is in charge of performing the data race anal-

ysis. If the job has been started, it goes through the following steps.

First it gets all source �les of the current active Eclipse project from

the CoreModel. Then it checks the entry point. If the entry point is not

valid, the job will be canceled. Afterwards it loads the tool con�gura-

tion from the plug-in store via the Activator. Then it instantiates the

Driver from the analysis component and runs the analysis. When the

analysis is complete, the received result is converted into the data race

model described in section 6.6.3 and schedules a UIUpdateJob with the

converted result.

The AnalysisJob runs asynchronously in a separate thread to prevent

it from blocking the UI.

• UIUpdateJob. This job displays the result in Eclipse. It creates code

markers for the editor, that underline the source locations of the poten-

tial data races and publishes the result on the common.EventBus which

informs the view to display the data races.

visualization 55

Figure 6.20: Domain model of the data race for the view.

6.6.3 datarace

This package contains the data race model for the view and a sub-package

datarace.util, which converts the data races received from the algorithm

component and provides additional information about a data race from the

AST. Figure 6.20 shows the domain model of a data races for the view. The

following list describes each class of the domain model.

• DataRace. This class contains all information about data races for one

memory location. It has an attribute name, which contains the name

of the location and a list of races with all associated data races.

• Race. This class contains the information about a data race. Each race

has an internal id and two RaceInfos, one for each location of the data

race.

• RaceInfo. This class contains all information about a speci�c data race

location. It has a RaceType, the FunctionContent, the RaceLocation

and a callStack, which

• RaceLocation. This class contains the position of a data race in a �le.

The position is represented by the attributes line for the line number,

a beginOffset and an endOffset for the marking of the location, and

a file which contains the absolute path of the �le.

• FunctionContent. This class contains information about the function

where the data race occurs. The content attribute contains the whole

visualization 56

Figure 6.21: Package-Diagram for the classes of the view package and their

dependencies.

function code with declaration and body. The offset and length at-

tributes describes the position of the data race inside the function. The

FunctionContent class is used by the view to display a code snippet

of the data race.

• RaceType. This is an enumeration type with the values WRITE for a

write access, and READ for a read access of a memory location.

• CallLocation. This is an abstract class which extends the RaceLocation

with an getLabel() method which is used for displaying the call stack

as a TreeView.

• CallLocationParent. This class is used for the TreeView of a call stack

as a parent component. It contains information about the function

(functionHeader) and on which line the call inside the function is.

• CallLocationChild. This class is used for the TreeView of a call stack

as a child component for a CallLocationParent. It contains informa-

tion about the statement of a call.

6.6.4 view

This package contains the classes for the view and for the marker resolu-

tions. At the end of this bachelor thesis it only contains a view for the data

races. In the future, this package could be expand with new views like a view

for deadlocks. Each view implements the org.eclipse.ui.part.ViewPart,

which is the abstract base implementation of all workbench views. The con-

tent of the views package, including important dependencies, is illustrated

in �gure 6.21. In the following list the classes of this packages are described.

visualization 57

Figure 6.22: Diagram of the view.widgets package with their class depen-

dencies.

• DataRaceView. This class implements the view for the data races. It

contains all widgets which are described in section 6.6.4. The class

also subscribes to the common.EventBus to get informed which data

races it has to display.

• DataRaceResolutionGenerator. Factory class for new DataRace-

Resolution instances. This class implements the IMarkerResolution-

Generator interface.

• DataRaceResolution. This class is the marker resolution for a data

race. When the resolution is invoked by a user, it publishes the data

race on the event bus to inform the view.

view.widgets

This package contains all custom widgets of the plug-in which are used to

create the DataRaceView. Most of the widgets extend some SWT classes, but

there are also some more complex widgets which uses the JFace library. Most

code ideas for writing the widgets originate from the website http://www.

vogella.com/tutorials/eclipse.html [Gmb]. Figure 6.22 shows a diagram

with all created widgets and their dependencies from SWT and JFace.

In the following list the most important widgets are brie�y described.

• MemoryLocationListViewer. This widget class extends the JFace List-

Viewer. It lists, after a data race analysis, all memory locations, which

contain data races.

• DataRaceListViewer. This widget class is like the MemoryLocationList-

Viewer, but instead of the memory locations, it lists all data races for

the chosen memory location.

• DataRaceNode. The DataRaceNode is a clickable widget element. It uses

the RaceInfo, described in section 6.6.3, to display information about

http://www.vogella.com/tutorials/eclipse.html
http://www.vogella.com/tutorials/eclipse.html

visualization 58

Figure 6.23: Test coverage, created with EclEmma, of the

ch.hsr.ifs.conditionr.ui.datarace and datarace.util packages

only of the project.

the race. If the race is a read access, it is a blue circle with an R, if the

race is a write access, it is a read circle with an W.

• CodeContainer. This widgets displays the code snippet of a data race

in an editor and highlights the location. The editor is an org.eclipse-

.cdt.internal.ui.editor.CSourceViewer;

• GraphWidget. This widget is the ground view of the right site of the

data race view. It creates all CodeContainers, DataRaceNodes and Call-

StackTreeViewers, and updates them, if the view has been resized or

an new data race has to be displayed.

• CallStackTreeViewer. This widget extends the JFace TreeViewer. It

lists for a data race location their call stack. A parent of tree is a

CallLocationParent (see section 6.6.3) and a child of a parent a Call-

LocationChild.

6.6.5 Testing

The visualization plug-in is tested using the JUnit framework. In the version

provided by the masters thesis, nothing was tested. Most of the newly added

logic, like the data race domain model or the conversion from the algorithm

data race to the data race view model, is tested. The views package is not

tested, because most of the code there is creation of widgets or positioning of

them. The e�ort for writing view tests would have outweighed the bene�ts.

Also excluded from testing are packages which only contain static constant

strings or minimal logic like preferences or common. The commands package

only has a few tests, because most of the methods there only use Eclipse

infrastructure, for example to retrieve project �les or start a job.

visualization 59

Figure 6.23 shows the test coverage of the datarace and datarace.util

packages. Simple getters and setters are not tested. This is why the coverage

of the datarace package is only around 80%.

final evaluation 60

7 Final Evaluation

This chapter describes the �nal evaluation of the improved ConditionR tool

available at the end of this thesis.

First, the results of the initial evaluation are recapitulated. Then, the project

used during the �nal evaluation is described. Finally, the results are pre-

sented.

7.1 Motivation

The goal of this second evaluation is to give a concise overview of what was

achieved during this thesis to improve the user experience.

At the beginning of the thesis, an initial evaluation was conduced. It re-

vealed many issues with the original implementation of all components. The

results of that initial evaluation served as a basis on which to improve the

ConditionR tool towards a state in which real-world project can be analyzed.

The following sections

7.2 Project Selection

Due to time constraints, a number of performance issues with the new im-

plementation could not be fully addresses at the time of �nishing this thesis.

This makes it currently infeasible to apply the new version of the ConditionR

tool to the Chess project evaluated in the initial evaluation. Nevertheless,

many fundamental issues with the original implementation were resolved,

which enables the tool to be applied to C++ source code much closer to what

actual real-world projects typically look like.

The �nal evaluation is thus conducted using a C++ project developed

to showcase the improvements of the new implementation. This code is

slightly more complex than a typical test case as it contains multiple as-

pects, but much less complex than a real-world C++ project. However, it

final evaluation 61

does embody many aspects that were previously not at all supported by the

ConditionR tool but now are.

7.2.1 Example Project

This section presents the source code of the example project used in this

evaluation.

Structure

The project consists of two TUs, one de�ned in the source �le main.cpp,

shown in listing 7.1, called main, and a second one in foo.cpp called foo,

shown in listing 7.3. Main includes the header �le foo.h to import the func-

tion void foo(int*) de�ned in foo.

The TU main contains a global variable of type int named global and

the de�nition of the main function int main(void). The main function �rst

starts a thread de�ned using an anonymous lambda function. The thread

increments the integer variable global. Incrementing a number entails �rst

reading its current value, adding one to it, and �nally writing the new value

to the original memory location. After starting a thread, it calls the function

foo(int*), passing as an argument a pointer to the variable global.

The function foo(int*) de�ned in the TU foo dereferences the pointer

received as an argument and reads the current value stored at that memory

location. It then increments the value by one and writes the result to the

same memory location.

Since the pointer passed to foo points to the memory location global

written to in the thread started by main, a data race is to be expected. The

algorithm correctly determines that this is indeed a data race.

final evaluation 62

C++ source code

1 #include "foo.h"

2

3 #include <thread >

4

5 int global;

6

7 int main() {

8 std:: thread t { []() { global ++; } };

9 foo(& global);

10 t.join();

11 }

Listing 7.1: The �le main.cpp of the evaluation project. It contains

a global variable of type int and the de�nition of the function main.

The main function starts a thread de�ned using an anonymous lambda

function. The thread increments the global variable. After starting the

thread the function foo located in a di�erent translation unit is called.

1 #ifndef FOO_H

2 #define FOO_H

3

4 void foo(int*);
5

6 #endif

Listing 7.2: The �le foo.h of the evaluation project. It declares the

function foo and is included in both translation units main and foo.

1 #include "foo.h"

2

3 void foo(int * x) {

4 (*x)++;

5 }

Listing 7.3: The �le foo.cpp of the evaluation project. It contains the

de�nition of the function foo which takes a pointer parameter of type

int* and increments the referenced integer.

7.3 Results

The initial implementation of the ConditionR tool lacked support for many

basic C++ programming constructs as well as basic aspects such as function

calls across TUs. For many of these aspects, if they were present in the

program, the extraction step would crash and an analysis could not even

final evaluation 63

Figure 7.1: A screenshot showing the visualization of the example project

used in the �nal evaluation. The data race on the memory location global

is correctly detected and precisely marked in the source code.

be partially executed. In the version of ConditionR available now, a project

like this can be fully analyzed and data races are correctly reported. The

visualization resulting from the project outlined here is shown in �gure 7.1.

conclusion 64

8 Conclusion

This chapter reviews the project described in this document. It summarizes

the results of this thesis and concludes with an outlook for future work on

this project.

8.1 Result

During this bachelor thesis, the static analysis tool ConditionR has been im-

proved and extended with the following results:

• Support for source code located in multiple TUs and function calls

across TUs.

• Support for C++ member functions and variables was added.

• Support for lambdas created in the std::thread constructor.

• The data race visualization for the Eclipse plug-in has been completely

revamped and improved to give a user an informative overview of all

data races found inside a project.

• The data race analysis can be started using an arbitrary function as

the entry point.

• For future development, continuous integration on a build server was

set up.

The productizing goal of getting the project into a market ready state

could not be completely reached due to an overestimation of the already

implemented capabilities at the beginning of the thesis. Nevertheless, a sig-

ni�cant step towards that goal was made.

conclusion 65

8.2 Outlook

The analysis tool is not completely market ready yet. To allow the pro-

gram to be used with any kind of real world code further improvements

are needed. The following list gives an overview example for futures devel-

opments of this tool.

• Increasing the number of supported C++ constructs.

• Support for lambdas captures when used as a normal function.

• Fixing currently known bugs and improve performance.

The deployment in its current form only fully supports Linux with recent

Clang versions. The current approach of using a Clang checker to generate

the control �ow graph should perhaps be reconsidered.

8.3 Acknowledgments

We want to thank our advisor Prof. Peter Sommerlad for his guidance and

valuable feedback during this bachelor thesis.

We also want to thank Mario Meili for the helpful discussions during the

project meetings and for giving us insightful feedback on the documenta-

tion.

glossary 66

Glossary

Clang C based language front-end supporting C, C++, Objective C/C++,

OpenCL C, and others for the LLVM compiler. 19, 21, 25, 65

EclEmma A free Java code coverage tool for Eclipse. 58

Eclipse An integrated development environment (IDE) to write C++ and

Java code. 6, 8, 39, 46, 51, 58, 64

Jenkins Jenkins is an open source automation server written in Java. 72

JFace JFace is a set of helpful complex widgets relying on SWT. 57, 58

JUnit A unit testing framework for the Java. 58

Scala Scala is a multi-paradigm programming language based on the JVM.

15, 30

acronyms 67

Acronyms

AST abstract syntax tree. 21, 29, 55

CI Continuous Integration. 72

CLI Command Line Interface. 6, 25, 28

GTK GIMP-Toolkit. 42

JSON JavaScript Object Notation. 69, 71

SWT Standard Widget Toolkit. 42, 57

TU translation unit. 1, 2, 13, 18, 20, 22, 23, 27, 30, 32, 33, 61, 62, 64

bibliography 68

Bibliography

[Blä15] Luc Bläser. Swissreg - Eidg. Institut für Geistiges Eigentum. May 4,

2015. url: https://www.swissreg.ch/srclient/faces/jsp/

patent/sr300.jsp?language=de§ion=pat&id=CH711035

(visited on 06/12/2017).

[Bru16] Silvano Brugnoni. “ConditionR - A Static Data Race Detection Tool

for C++11”. Masters thesis. University of Applied Sciences Rapper-

swil, May 19, 2016. eprint: https://eprints.hsr.ch/id/eprint/

507.

[Che] Checker Developer Manual. url: http://clang-analyzer.llvm.
org/checker_dev_manual.html (visited on 02/27/2017).

[Cla] Clang - Getting started. url: http : / / clang . llvm . org / get _

started.html (visited on 02/27/2017).

[Gmb] Vogella GmbH. Eclipse, RCP, Plugin and OSGi Development. url:
http://www.vogella.com/tutorials/eclipse.html (visited on

03/02/2017).

[Loo] Handling of loops in the Clang Static Analyzer. url: http://clang-
developers.42468.n3.nabble.com/Handling- of- loops- in-

the-Clang-Static-Analyzer-td4055475.html (visited on 04/30/2017).

[Rap] RapidJSON. url: http://rapidjson.org/ (visited on 02/27/2017).

[SJ16] Fabian Schläpfer and Samuel Jost. “Studienarbeit ConditionR”. Stu-

dent Research Project thesis. University of Applied Sciences Rap-

perswil, Dec. 23, 2016.

https://www.swissreg.ch/srclient/faces/jsp/patent/sr300.jsp?language=de§ion=pat&id=CH711035
https://www.swissreg.ch/srclient/faces/jsp/patent/sr300.jsp?language=de§ion=pat&id=CH711035
https://eprints.hsr.ch/id/eprint/507
https://eprints.hsr.ch/id/eprint/507
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang.llvm.org/get_started.html
http://clang.llvm.org/get_started.html
http://www.vogella.com/tutorials/eclipse.html
http://clang-developers.42468.n3.nabble.com/Handling-of-loops-in-the-Clang-Static-Analyzer-td4055475.html
http://clang-developers.42468.n3.nabble.com/Handling-of-loops-in-the-Clang-Static-Analyzer-td4055475.html
http://clang-developers.42468.n3.nabble.com/Handling-of-loops-in-the-Clang-Static-Analyzer-td4055475.html
http://rapidjson.org/

json format 69

A JSON Format

listing A.1 shows the current JavaScript Object Notation (JSON) output for-

mat of the cr-extractor.

1 // Basic buildup

2 [

3 [

4 { <graph > }

5]

6]

7

8 // graph

9 {

10 "graph" : "<function_name >",

11 "fileLocation" : { <file_location > },

12 "parameters" : [{ <parameter > }],

13 "nodes" : [{ <basic_block > }]

14 }

15

16 // file_location

17 {

18 "line" : 1..n,

19 "beginFileOffset" : 1..n,

20 "endFileOffset" : 1..n,

21 "file": "<file_path >"

22 }

23

24 // basic_block

25 {

26 "id" : "<block_id >",

27 "predecessors" : ["<block_id >"],

28 "successors" : ["<block_id >"],

29 "statements" : [{ <statement > }]

30 }

31

32 statement : <call > | <lock > | <memory_access > |

<thread_start > | <thread_join >

33

json format 70

34 // call

35 {

36 "type" : "UnresolvedCall",

37 "functionName" : "<function_name >",

38 "captures" : [{ <capture > }],

39 "arguments" : [{ <argument > }],

40 "fileLocation" : { <file_location > }

41 }

42

43 // lock

44 {

45 "type" : "<lock_type >",

46 "mutex" : "<variable_name >",

47 "fileLocation" : { <file_location > }

48 }

49

50 // memory_access

51 {

52 "type" : "<access_type >",

53 "memoryLocation" : { <memory_location > },

54 "fileLocation" : { <file_location > }

55 }

56

57 // thread_start

58 {

59 "type" : "ThreadStart",

60 "threadId" : "<variable_name >",

61 "entryPoint" : "<function_name >",

62 "captures" : [{ <capture > }],

63 "arguments" : [{ <argument > }],

64 "fileLocation" : { <file_location > }

65 }

66

67 // thread_join

68 {

69 "type" : "ThreadJoin",

70 "threadId" : "<thread_id >",

71 "entryPoint" : "<function_name >",

72 "fileLocation" : { <file_location > }

73 }

74

75 // parameter

76 {

77 "type" : "<parameter_type >",

78 "position" : 0..n,

79 "name" : "<parameter_name >"

80 }

81

json format 71

82 // argument

83 {

84 "type" : "<argument_type >",

85 "position" : 0..n,

86 "memoryLocation" : { <memory_location > }

87 }

88

89 // capture

90 {

91 "type" : "<capture_type >",

92 "isThisCapture" : true | false ,
93 "memoryLocation" : { <memory_location > }

94 }

95

96 // memory_location

97 {

98 "name" : "<location_name >",

99 "scope" : { <scope > }

100 }

101

102 // scope

103 {

104 "type" : "<scope_type >",

105 "parent": { <scope > }

106 }

107

108 scope_type : global | local | member

109 capture_type : byref | byval

110 argument_type : readonly | readwrite

111 parameter_type : parameter type including const
etc.

112

113 access_type : Read | Write

114 lock_type : AcquireLock | ReleaseLock

115

116 location_name : variable name

117 parameter_name : name of the function parameter ,

can be empty

118

119 block_id : <function_name >/<id>

120 id : entry | 1..n | exit

121 function_name : mangled function name | main

Listing A.1: JSON format overview

continuous integration 72

B Continuous Integration

This part serves as an overview of things to keep in mind when dealing

with Continuous Integration (CI) and the ConditionR tool. CI is done us-

ing Jenkins as the server platform. The di�erent projects all have speci�c

con�gurations needed to building and running the tests.

Full integration testing means that a call to the algorithm with some

given �les, Clang and the checker is simulated and the �nal result is checked.

This requires that every part is successfully built and also that a compatible

Clang binary is used.

1 #!/bin/bash

2

3 UPDATE_SITE="http ://sinv -56089. edu.hsr.ch/jenkins/

job/conditionr -dependencies -updatesite/ws/

ch.hsr.ifs.conditionr.dependencies/target/

repository/plugins/"

4 TARGET_FILE="../ch.hsr.ifs.conditionr.target/

ch.hsr.ifs.conditionr.target.target"

5

6 PLUGIN_NAME="ch.hsr.ifs.conditionr -analysis"

7 SNAPSHOT_VERSION="[0 -9]*[.][0 -9]*[.]

[0 -9]*[.][0 -9]*"

8 PREFIX_VERSION="[0 -9]*[.][0 -9]*"

9 VERSION_PATTERN="${PREFIX_VERSION }[_]

${SNAPSHOT_VERSION}"

10

11 CURRENT=`wget -O - ${UPDATE_SITE} \

12 | grep -oP

${PLUGIN_NAME}_${VERSION_PATTERN} \

13 | head -n 1 \

14 | grep -oP ${VERSION_PATTERN}`

15

16 CURRENT_SNAPSHOT=`echo ${CURRENT} | grep -oP

${SNAPSHOT_VERSION}`

17 CURRENT_PREFIX=`echo ${CURRENT} | grep -oP

${PREFIX_VERSION} | head -n 1`

18

continuous integration 73

19 sed -i "s/<unit

id=\"${PLUGIN_NAME}_${PREFIX_VERSION }\"

version =\"${SNAPSHOT_VERSION }\"\/>/<unit

id=\"${PLUGIN_NAME}_${CURRENT_PREFIX }\"

version =\"${CURRENT_SNAPSHOT }\"\/>/g"

${TARGET_FILE}

Listing B.1: Shell script used to automatically update the Algorithm

target before running the integration tests.

	Introduction
	Motivation
	Context
	Goals
	Background

	Architecture
	Overview
	Extraction
	Algorithm
	Visualization Eclipse Plug-In

	Initial Evaluation
	Motivation
	Project Selection
	Evaluation
	Results
	Conclusion

	Control Flow Graph Extractor
	Starting Position
	Requirements
	Architecture
	Extraction
	Output
	Testing
	Future Development

	Data Race Detection Algorithm
	Overview
	Goals
	Phases
	Architecture
	Summary

	Visualization
	Overview
	Master Thesis UI Version
	Student Research Thesis Proposals
	UI Improvement
	Functionality
	Design and Architecture

	Final Evaluation
	Motivation
	Project Selection
	Results

	Conclusion
	Result
	Outlook
	Acknowledgments

	Glossary
	Acronyms
	Bibliography
	JSON Format
	Continuous Integration

