

Term project - Fall 2017

Ranck
Downhill Support App

Author:
Kurath Samuel

 Supervisor:
Prof. Dr. Farhad Mehta

 February 14, 2018

Abstract

The project Ranck aims to support downhill bikers during their risky rides along trails.
For this purpose, the cyclist needs to be informed if he is too fast for the next curve
or his speed is appropriate. Hence Ranck tries to realize this goal with the help of
an application for smartphones and their built-in sensors. If the built-in sensors aren’t
accurate enough external ones would be considered. As a first approach, the GPS sensor
and the accelerometer were fused with a Kalman filter. Unfortunately, this didn’t lead
to accurate enough measuring data, since the application didn’t recognize speed changes
within a reasonable time. To counteract this problem an external bike speed sensor from
Garmin was considered and tested. The external sensor improved the measurement and
provided the ability to detect fast speed changes. However, the determination of the
exact position on the track is still missing. Consequently, an application that is able to
handle the requirements of a downhill biker was not achieved. Nevertheless, the project
resulted in a runnable prototype and solved different sub-problems that might be helpful
for similar projects.

I

Declaration of Authorship

I declare that this term project and the work presented in it was done by myself and
without any assistance, except what was agreed with the supervisor. All consulted
sources are clearly mentioned and cited correctly. No copyright-protected materials are
unauthorizedly used in this work.

Place and date Samuel Kurath

II

Contents

1. Introduction 2
1.1. Motivation . 2
1.2. Vision . 2

2. Challenges 3
2.1. Physical model . 4
2.2. Curves . 7
2.3. Spatial reference system . 10
2.4. Alignment of the accelerometer . 12
2.5. Sensor fusion . 18
2.6. External sensor . 25
2.7. User interaction . 29

3. Results 32
3.1. Procedure . 32
3.2. Conclusion . 33
3.3. Outlook . 33

Glossary 35

A. Ranck Android app 37

B. Project Organization 39

C. Time Report 40

D. Code snippets 41
D.1. Sensor fusion . 41
D.2. Bike speed sensor . 43

Bibliography 46

1

1. Introduction

1.1. Motivation

Sport without technical support is unthinkable anymore. The current unbelievable
achievements of athletes are often related to improved analysis, measurement methods
and the usage of technical gadgets. All top athletes use devices to track their training
and performances. Even the amateur athletes wear multiple devices like a sports watch
or smartphone during their sportive activities. For example, skijumping professionals
use a differential global positioning system (DGPS) to get highly accurate measurements
of their trajectories and the amateur sportsman uses the bikecomputer to monitor his
pedalling rate and average speed over the past five kilometers.

In addition to the boost in performance, an other aspect is the security. Even the best
tennis player wouldn’t win a match with a broken arm. Hence, it is absolutely necessary
to have as few injuries as possible.

1.2. Vision

The Ranck application aims to use a smartphone to help downhill bikers avoid crashes,
by providing them information about the track, their current speed and a computed
maximum speed for the next curve.

This goal should be reached through the use of the built-in sensors in the smartphone
and tracks previously stored on the device. If external sensors are needed, the barrier to
use the application rises. Only when the results of the built-in sensors aren’t accurate
enough, will the external sensors be considered.

Since it isn’t certain that such an app can be realized, the project focuses on the best
possible solution and tries to identify and analyse the related issues.

2

2. Challenges

With the big goal of a downhill support application in mind, I had to deal with a lot
of interesting problems. These issues and the associated solutions are mentioned in the
following section.

To give a brief overview of them, let us have a look at the questions that arose during
the project.

• How can you determine if you are to fast for the next curve?

• What is a curve in a linestring of coordinates?

• Which is a reasonable spatial reference system?

• How can the acceleration values which are connected with to the device axis, be
aligned with the chosen spatial reference system?

• How can multiple sensors be combined for more accurate measurements?

• Which external sensor could improve the Ranck application?

• What is relevant information for the biker and how to provide it?

3

2. Challenges

2.1. Physical model

Problem To determine if the current speed of the downhill biker is too high for the next
curve. For that purpose a model, which is able to describe the physical circumstances,
is necessary.

Goal To define a reasonable physical model and identify the corresponding parameters
and forces.

2.1.1. Approach

The chosen model is an approximation of the physical circumstance and should model
the environment in an appropriate manner. To reduce the complexity of the model and
avoid the need of external sensors, the physics of the bicycle like the slope of the steering
wheel, weather circumstances, air resistance and more were ignored.

The parameters focused on are listed below. They are given by the defined tracks, added
as a setting or are provided by the built-in sensors of the smartphone.

m: Driver weight [kg]
v: Velocity [m

s]
µ: Friction coefficient
r: Curve radius [m]
α: Slope angle [◦]
g: Gravity acceleration [m

s2]

Firgure 2.1 shows a bicycle in a banked curve and the relevant forces. The goal of the
system is to let force F⃗A always be smaller or equal to the sum of the forces F⃗B and F⃗R.

Figure 2.1.: Physical model

where:

4

2. Challenges

F⃗G: Gravity force
F⃗N: Normal force
F⃗R: Friction force
F⃗Z: Centrifugal force
F⃗B: Gravity force under angle α

F⃗A: Centrifugal force under angle α

With the above listed parameters we are able to calculate the forces (2.1) and can
determine the maximum possible speed (2.2).

F⃗R = µ
m · g
cos α

F⃗Z = m
v2

r
F⃗G = m · g

F⃗A = F⃗Z · cos α

F⃗B = F⃗G · sin α

(2.1)

vmax =

√
r · g(sin α + µ · cos α)

cos α − µ · sin α
(2.2)

Example To get a better grasp of what these equations represent, let us have a look at
an example. The following are values for the parameters.

m = 70 kg
v = 7 m

s = 25.2 km
h

µ = 0.008 (bicycle tire on rough paved road [Too18])
r = 5 m
α = 30◦

g = 9.81 m
s2

Applying these parameters results in the forces listed in (2.3).

F⃗Z = 70 kg
(7 m

s)
2

5 m
= 686 N

F⃗A = F⃗Z · cos 30◦ = 594.1 N

F⃗R = 0.008
70 kg · 9.81 m

s2

cos 30◦
= 6.3 N

F⃗G = 70 kg · 9.81
m
s2 = 686.7 N

F⃗B = F⃗G · sin 30◦ = 343.4 N

(2.3)

5

2. Challenges

As you can see in equation (2.4), force F⃗A is bigger than the sum of forces F⃗B and F⃗R.
Thus, the current speed in relation to our example parameters is too high for the curve.

F⃗A >= F⃗B + F⃗R

594.1 N >= 343.4 N + 6.3 N
(2.4)

The related maximal speed could be determined and is shown in (2.5).

vmax =

√
5 m · 9.81 m

s2 (sin 30◦ + 0.008 · cos 30◦)

cos 30◦ − 0.008 · sin 30◦
= 5.4

m
s

= 19.4
km
h

(2.5)

The comparison between the calculated vmax and the current speed v consolidates this
result as illustrated in (2.6).

vmax < v

5.4
m
s

< 7
m
s

(2.6)

2.1.2. Conclusion

The chosen physical model fits the circumstances in an adequate way. It isn’t too
complex and is calculable in a suitable amount of time even on a smartphone with
limited performance. More problematic are some important parameters like the slope
of the curve, the friction coefficient or the skill of the driver. For example the slope of
one curve isn’t always the same and highly depends on the exact trail the biker takes.
Further, the friction often changes due to weather or trail usage conditions. Hence, the
Ranck application has an adjustable parameter to counteract these problems.

6

2. Challenges

2.2. Curves

Problem The tracks appear in line strings of coordinates, there is no information about
when a curve starts or ends, the radius, the direction or even what a curve is. Thus,
we have to figure out how to split the tracks into reasonable parts and figure out how a
curve could be represented.

Goal To build segments out of the tracks, calculate the radius of the curves, define their
directions and find an adequate representation for the tracks and curves. Furthermore,
the process should be repeatable and comprehensible.

2.2.1. Approach

To define the track segments, two processing steps were taken. First we calculate the
radius and the direction for every point on the track [Fra17]. The radius is computable
out of three points illustrated in figure 2.2. The direction is determined by the cross
product of three points. The chosen format to represent these tracks is GeoJSON, since
it is easy to understand, readable with every text editor and provides a property field to
enhance the data in accordance to your wishes.

Figure 2.2.: Radius out of three points

The second step is to build segments from the points of the line string. The algorithm
summarizes all points along the track until the radius leaves a certain range or the
directions change. The ranges depend on the radius and are listed in table 2.1. After a
change, a mean radius is calculated out of all points in the current segment. To store the
gained information, a properties field is added to the GeoJSON file with the mean radius
and the direction for every point of the track. Thus, if you go along the properties of
the track, you know a new segment begins should the radius or the direction change.

Radius range [m] Category Name
0-10 1 small curve
10-40 2 curve
40-∞ 3 straight

Table 2.1.: Curve ranges

7

2. Challenges

Example To visualize the algorithm, have a look at figure 2.3. On the left-hand side,
the raw track is represented and on the other side there is the processed track with a
color for every segment that belongs together. The website geojson.io [Map17] provides
a tool to create geometries represented as GeoJSON. This tool was used to generate the
tracks for the Ranck application.

(a) track (b) track segments

Figure 2.3.: Track segment visualization

Listing 2.1 shows the related line string in the GeoJSON format. As you can see, there
are the additional properties directions and radiuses.

� �
1 {
2 "features": [{
3 "properties": {
4 "directions": [
5 -1.0, -1.0, -1.0, -1.0, -1.0, 1.0,
6 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0
7],
8 "radiuses": [
9 11.679104489078362, 11.679104489078362,

10 11.679104489078362, 7.612380836338962,
11 35.98007719302654, 44.87616608734529,
12 22.04574453395551, 22.04574453395551,
13 54.83334336476179, 20.41688307583868,
14 20.41688307583868, 20.41688307583868,
15 1135.0356087700316
16]
17 },
18 "geometry": {
19 "type": "LineString",
20 "coordinates": [
21 [9.335168302059174, 47.11897340210018],
22 [9.335152208805084, 47.11894054876184],
23 [9.335120022296906, 47.118918646525],
24 [9.335061013698578, 47.118918646525],
25 [9.334993958473206, 47.118927772458136],

8

2. Challenges

26 [9.334883987903595, 47.11892594727162],
27 [9.334830343723297, 47.11890039465411],
28 [9.334782063961029, 47.11885841532722],
29 [9.334712326526642, 47.11874707869123],
30 [9.334723055362701, 47.11871422521314],
31 [9.334792792797089, 47.118679546519814],
32 [9.334940314292908, 47.118661294566884],
33 [9.335050284862518, 47.118646693000024]
34]
35 },
36 "type": "Feature"
37 }],
38 "type": "FeatureCollection"
39 }� �

Listing 2.1: GeoJSON example

Result The described process resulted in a repository on [GitLab] called track_processing
[Kur18a]. The scope of application is not only restricted to the Ranck app. Other similar
applications could benefit from these findings too.

2.2.2. Conclusion

The current approach to split the track into accurate segments fulfills the requirements.
With the use of the GeoJSON format, a simple representation of the tracks is chosen
with the possibility to add extended information. In addition there are several libraries
that facilitate the handling of the format [Tob17] [Har17]. Creating the tracks by hand
is time-consuming. To avoid this toil, further steps could include recording the tracks
during the rides and automatically generating the processed tracks.

9

2. Challenges

2.3. Spatial reference system

Problem The most common spatial reference system is the EPSG 4326 - WGS84
[IOG18] projection, known as latitude and longitude. It is also the served format of
the Android API [Dev18a]. The unit in which longitude and latitude are given is de-
grees [◦]. In Europe we use the metric system if we talk about speed or distances. Thus
it would be helpful to use the metric system for the projection as well. This will enable
an interaction with our physical model without any previous transformations.

Goal To use a spatial reference system with a metric system.

2.3.1. Approach

During the Rank project two different spatial reference systems were used. They are
listed in the following subsection.

ECEF

The first choice of spatial reference system was the ECEF (earth-centered, earth-fixed),
the corresponding EPSG identification number is 4978. ECEF is a three dimensional
metric system with its origin in the center of the mass of the earth. The projection is
illustrated in figure 2.4.

Figure 2.4.: ECEF projection [Kri18]

10

2. Challenges

Web Mercator

Web Mercoator is a two dimensional metric spatial reference system (EPSG:3857 -
WGS84). It’s widely used in web mapping applications like Google Maps. The globe is
projected onto a card as illustrated in figure 2.5.

Figure 2.5.: Mercator projection [TM18]

2.3.2. Conclusion

Unfortunately, PROJ.4 doesn’t fully support ECEF, hence the projection from EPSG:4326
(latitude, longitude and altitude) had to be implemented on our own. And the altitude
measurements of the device has scatter the most (up to 30 m between two measurements).
This makes it rather impossible to calculate the exact speed and position. Thus, the alti-
tude measurement is ignored and only the latitude and longitude values are consulted.

Decision The Ranck app uses the Web Mercator (EPSG:3857 - WGS84) spatial refer-
ence system. Because of the metric unit, the measured altitude values vary too much,
the projection is widespread and supported by the PROJ.4 library [War18].

11

2. Challenges

2.4. Alignment of the accelerometer

Problem The built-in accelerometer of a smartphone provides measurement values in
the directions of the edges. If you want to combine the GPS values and the acceleration,
you need to have the same measurement units and the same alignment of the data.
Figure 2.6 show the two axis systems.

(a) Globe axis (b) Device axis (Azimuth, Pitch, Roll)

Figure 2.6.: Axis systems [Tea17]

Goal Align the acceleration measurements equal to the GPS values.

2.4.1. Approach

To align the acceleration values relative to the Web Mercator (EPSG:3857 - WGS84)
projection, you can use the built-in geomagnetic field and to the gravity sensor. They
enable us to determine the rotation matrix for the right alignment.

The units of the two sensors are micro tesla [µT] for the geomagnetic field and metre
per second squared [m

s2] for the gravity (along the device axises). Fortunately, we are
only interested in the orientation of these forces and not their strength. Hence, we could
normalize the raw values (2.7).

The cross product of the gravity and the magnetic north results in a vector pointing to
the earth’s east. The cross product of the east pointing vector and the gravity leads to
the a vector pointing to the earth’s north (2.8). This enables us to build the rotation
matrix out of the gravity of the east pointing vector and the north pointing vector (2.9)
[Mik17].

The mathematical equations are shown in 2.7.

12

2. Challenges

G =
1
|g| g

M =
1
|m|m

(2.7)

G × M = E
E × G = N

(2.8)

R =

xE yE zE
xN yN zN
xG yG zG

 (2.9)

where:

g: Raw values from the gravity sensor
m: Raw values from the magnetic field sensor
G: Normalized gravity vector
M: Normalized magnetic field vector
E: East vector
N: North vector
R: Rotation matrix

Figure 2.7.: equations to determine the rotation matrix

To get a better understanding of these equations, let’s have a look at an example. Assume
we have the following measurement values (2.10):

g =

−5.76
7.17
−3.42

 , m =

 19.38
−15.54
41.58

 (2.10)

Now we are able to calculate the normalized vectors G and M (2.11).

G =
1√

−5.762 + 7.172 +−3.422
·

−5.76
7.17
−3.42

 =

−0.59
0.73
−0.35

M =

1√
19.382 +−15.542 +−41.582

·

 19.38
−15.54
41.58

 =

 0.40
−0.32
0.86

 (2.11)

The corresponding vectors pointing to the earth’s east and north can be computed as
you can see at in equation (2.12).

E =

−0.59
0.73
−0.35

×

 0.40
−0.32
0.86

 =

 0.52
0.36
−0.10

N =

 0.52
0.36
−0.10

×

−0.59
0.73
−0.35

 =

−0.05
0.24
0.59

 (2.12)

13

2. Challenges

Figure 2.8 illustrates the determined vectors.

(a) Gravity (blue), Magnetic (black),
East (red)

(b) East (red), Gravity (blue), north
(green)

Figure 2.8.: Cross products of the gravity and magnetic field sensor values resulting in the
components for the rotation matrix

14

2. Challenges

2.4.2. Verification

To verify if the projection from the device axis aligned acceleration values to the Web
Mercator (EPSG:3857 - WGS84) spatial reference system works as expected, two exper-
iments were carried out.

Experiment 1

Construction The first experiment looks at the processed acceleration values (they
should be relative to the Web Mercator projection). The acceleration in the z-axis that
should result to the earth’s gravity is particularly important. For that purpose, the
smartphone is in a fix position (with indefinite rotation) illustrated in figure 2.9. Hence,
the processed acceleration should approximately be 0.0 m

s2 in the x-axis, 0.0 m
s2 in the

y-axis and 9.81 m
s2 in the z-axis (gravity acceleration of the earth). Figure 2.9 represents

the construction of the experiment.

Figure 2.9.: Verification experiment 1

Results The tracked values of the raw acceleration and the processed ones verify the
expected values. An excerpt of the measurements is shown in the table 2.2.

Raw acceleration Processed acceleration
x y z x x z
-6.160 7.185 3.235 -0.021 -0.094 10.001
-6.153 7.204 3.220 -0.042 -0.106 10.006
-6.174 7.170 3.356 -0.023 -0.015 10.041
-6.174 7.173 3.416 -0.033 -0.069 10.062

Table 2.2.: Measurements experiment 1

Conclusion As you can see the values do have a certain shift related to measuring
inaccuracies. To avoid this problem, an initial calibration should be done.

15

2. Challenges

Experiment 2

Construction The second experiment observes the orientation of the acceleration of
the x and y axises. The idea is to move the smartphone along a straight line, once in
a vertical and once in a horizontal position, see figure 2.10. The expected values of the
raw acceleration should differ in direction, but the processed values (relative to Web
Mercator projection) should point in the same direction independently of the device
orientation.

(a) horizontal (b) vertical

Figure 2.10.: Experiment 2 visualization

Results The logged values of the raw acceleration and processed ones verify the ex-
pected results. As you can see in figure 2.11 the processed values of both measurements
(Vertical Acceleration Earth relative and Horizontal Acceleration Earth relative) point
to the same direction, whereas the different directions are clearly recognizable between
the Vertical acceleration and Vertical Acceleration Earth relative.

Figure 2.11.: Verification experiment 2

Conclusion The logged values verify the correctness of the reorienting of the accelera-
tion, but also uncover some uncertainties in the measurement values.

16

2. Challenges

2.4.3. Conclusion

The basic information to align the acceleration measurements relative to Web Mercator
spatial reference system is projectable by the gravity and the magnetic field sensor of
the smartphone. Furthermore, the Android SDK provides the functions to transform
the values into the needed projection. Unfortunately, there are some pitfalls with that
process like the sensor scattering [Kal17]. The magnetic sensor could be influenced by
other magnetic fields. In addition, there is the problem of measuring the gravity when
the device is in motion [17].

17

2. Challenges

2.5. Sensor fusion

Problem A sticking point of the application is to determine the current position and
the speed of the driver as exactly as possible. Since the GPS signal is not always
accurate enough or even worse sometimes completely unavailable, the idea is to combine
the multiple sensors of the smartphone.

Goal To use multiple sensors of the smarthphone to improve the measurement accuracy
of the current position and the speed of the biker.

2.5.1. Approach

The chosen procedure in this project was to combine the accelerometer with the GPS sen-
sor of the device. The sensor fusion is realized with a Kalman filter [Kal+60] [Sim01].

Kalman filter

The basic idea of a Kalman filter [RAH17] is to predict the future state of a linear system
based on the previous ones. A linear system is a process described by a state equation
(2.13) and an output equation (2.14).

xk = Fk−1xk−1 + Bk−1uk−1 + wk−1 (2.13)

yk = Hkxk + vk (2.14)

where:

x: State vector
y: Output vector
u: Input vector
w: Process noise vector
v: Measurement noise vector
F: State transition model matrix
B: Control-input model matrix
H: Observation model matrix

After the system is defined, we are able to predict the next measurement value with the
following equation (2.16).

x̂k|k−1 = Fk−1 x̂k−1 + Bk−1uk−1 (2.15)

where:

x̂k|k−1: Predicted state vector

18

2. Challenges

x̂k−1: Previous estimated state vector

And the state error covariance is determined by the equation (2.16)

Pk|k−1 = Fk−1Pk−1FT
k−1 + Qk−1 (2.16)

where:

Pk|k−1: Predicted state error covariance matrix
Pk−1: Previous estimated state error covariance matrix

Q: Process noise covariance matrix

With the predicted state error covariance matrix, we are able to calculate the Kalman
gain (2.17).

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1 (2.17)

where:

H: Matrix to define the output equation
R: Measurement noise covariance
K: Kalman gain matrix

Finally, we can update the estimated state vector (2.18) and the state error covariance
(2.19).

x̂k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1) (2.18)

Pk = (I − Kk Hk)Pk|k−1 (2.19)

where:

zk: Measurement output
I: Identity matrix

19

2. Challenges

Sensor fusion model

As already mentioned, we tried to combine the acceleration sensor and the GPS sensor
to get a better position and velocity estimation. This is realized with a Kalman filter
and the following section describes the used model.

State Vector x The state vector represents the values that will be estimated by the
Kalman filter. In our case this is the position, the velocity and the acceleration.

xk =

xp
yp
xv
yv
xa
xa

 (2.20)

where:

xp, yp: Position
xv, yv: Velocity
xa, ya: Acceleration

State transition function The matrix F describes the state transition function which
is related to Newton’s laws of motion.

F =

1 0 ∆t 0 1
2 ∆t2 0

0 1 0 ∆t 0 1
2 ∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 (2.21)

where:

∆t: Time between filter steps

Process The process is described by the equation (2.22). The term Bu isn’t relevant
anymore because there is no control input.

xk = Fk−1xk−1 (2.22)

20

2. Challenges

Measurment noise covariance R The noise covariance matrix R represents the squared
noise of the acceleration and the position.

R =

rp 0 0 0
0 rp 0 0
0 0 ra 0
0 0 0 ra

 (2.23)

where:

rp: Squared acceleration noise
ra: Squared position noise

Measurement matrix H The matrix H determines which states are measurable. In our
case this is the acceleration and the position.

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2.24)

State error covariance matrix P The matrix P defines the initial uncertainty and is
going to be updated during the process.

P =

rp 0.0 0.0 0.0 0.0 0.0
0.0 rp 0.0 0.0 0.0 0.0
0.0 0.0 rv 0.0 0.0 0.0
0.0 0.0 0.0 rv 0.0 0.0
0.0 0.0 0.0 0.0 ra 0.0
0.0 0.0 0.0 0.0 0.0 ra

 (2.25)

where:

rv: Squared velocity noise

Process noise covariance matrix Q The matrix Q is related to the process noise. On
our system, the acceleration could be influenced by potholes, wind, stones or other
objects on the track. Thus, the process noise is wk = Gak.

G =
[1

2 ∆t2 1
2 ∆t2 ∆t ∆t 1 1

]
Q = GTGσ2

a
(2.26)

where:

G Vector related to the motion
σa: Acceleration process noise

21

2. Challenges

Example

To get an impression of what a Kalman filter does, imagine the following circumstances.

We measure the acceleration and position at a fix point and we don’t move. Thus in
a world with perfect measurement instruments we would get always the same position
and no acceleration at all. Due to the fact that sensors are imperfect we have some
inaccuracy in the values.

Assume the Kalman parameters are:

∆t = 0.1
rp = 10.0
rv = 1.0
ra = 0.25

(2.27)

The measured values are generated by a python script. The first three of them are listed
in table 2.3.

Position x -12.93 4.01 14.2
Position y -28.15 -0.34 2.89
Acceleration x 0.87 -0.14 -0.24
Acceleration y -0.36 0.65 -0.51

Table 2.3.: Example measurements values

Now we are able to set the initial values.

F =

1.0 0.0 0.1 0.0 0.005 0.0
0.0 1.0 0.0 0.1 0.0 0.005
0.0 0.0 1.0 0.0 0.1 0.0
0.0 0.0 0.0 1.0 0.0 0.1
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0

 , R =

100.0 0.0 0.0 0.0

0.0 100.0 0.0 0.0
0.0 0.0 0.25 0.0
0.0 0.0 0.0 0.25

P =

100.0 0.0 0.0 0.0 0.0 0.0
0.0 100.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.25 0.0
0.0 0.0 0.0 0.0 0.0 0.25

 , H =

1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0

Q =

2.5 · 10−5 2.5 · 10−5 0.0005 0.0005 0.005 0.005
2.5 · 10−5 2.5 · 10−5 0.0005 0.0005 0.005 0.005

0.0005 0.0005 0.01 0.01 0.1 0.1
0.0005 0.0005 0.01 0.01 0.1 0.1
0.005 0.005 0.1 0.1 1.0 1.0
0.005 0.005 0.1 0.1 1.0 1.0

(2.28)

22

2. Challenges

After the initialization we can apply the Kalman filtering process at the measured values.
This would result in the vector as you can see in (2.29) for the first three processing steps.

x1 =

−6.47
−14.08

0.05
−0.02
0.54
−0.08

 , x2 =

−2.97
−9.49
0.07
0.03
0.32
0.17

 , x3 =

1.33
−6.49
0.07
0.00
−0.22
−0.40

 (2.29)

If we go ahead with this process for another 500 steps and observe the position, we can
see that it goes towards zero in x and zero in y as we expected. Figure 2.12 shows the
results of this process.

Figure 2.12.: Verification experiment 1

To reproduce the values and the gained result, use the script in D.1.

23

2. Challenges

2.5.2. Conclusion

Using of a Kalman filter to enhance the measurement accuracy was an adequate approach.
Since it allows the acceleration and the GPS values to fusion, it filters out measurement
uncertainties and enables to refer to the underlying process.

Nevertheless, a Kalman filter does have some pitfalls too. For example, the modulation
of a fitting process isn’t always obvious. Time complexity raises in quadratic manner
related to the number of parameters [Mon05]. To handle the noise parameters right you
need a lot of experience and if the sensors are not accurate enough, a Kalman filter won’t
help either.

Hence, several attempts to enhance the measurement precision with the combination of
the sensors and the usage of an Kalman filter didn’t lead to sufficient results. Due to
the fact that the sensors are not sensitive and accurate enough. Consequently, I decided
to use an external bike speed sensor from Garmin.

24

2. Challenges

2.6. External sensor

Problem The built-in sensors of the smartphone are not accurate enough to handle
fast speed changes and to determine an adequate position.

Goal To improve the measurements to get sufficient position and speed values that will
enable an suitable feedback for the biker.

Decision To improve the measurement accuracy, I used an external bike speed sensor
from Garmin since they provide an API to the measurements directly from the smart-
phone.

2.6.1. Approach

The bike speed sensor from Garmin uses ANT+ technology to communicate with the
smartphone. There is a instruction in how to access the sensor data and integrate it in
your own Android application [Wir17e].

Installation

The basic steps to install and start using the ANT+ are:

1. Download the Android ANT+ SDK to communicate with ANT+ devices [Wir17d].

2. Add the SDK (antpluginlib_x-y-z.jar) to your Android Application libraries.

3. Install the ANT Radio Service App on your Android smartphone [Wir17c].

4. Install the ANT+ Plugins Service App on your Android smartphone [Wir17b].

Unfortunately, not all smartphones support the ANT+ protocol. To get an overview of
all supporting smartphones, consider the list of compatible devices [Wir17f].

Development

The downloaded Android ANT+ SDK provides a document called ”Creating ANT+
Android Applications”. This document gives a brief overview and starting point of the
ANT+ development with Android.

The procedure to use the ANT+ API is described as the following:

1. Search for devices

2. Request access to the plugin

3. Subscribe to events

4. Use device while monitoring the device connection state

5. Release the plugin communicator objects (called PCCs)

25

2. Challenges

The documentation is not very detailed, luckily there are sample Android applications
[Gal17] and API documentation [Wir17a]. To get more familiar with this procedure, let
us take a look at some code snippets.

Search for devices

To get the devices you are interested in, you could use the class MultiDeviceSearch that
takes the application context, a set of devices and a callback as parameters. An example
of the device search is shown in listing 2.2. If a device is found, you have to ask for
access as you can see in listing 2.3.� �

1 private void searchForDevices() {
2 EnumSet<DeviceType> deviceTypes = EnumSet.of(DeviceType.BIKE_SPD);
3 MultiDeviceSearch.SearchCallbacks searchCallbacks =
4 new MultiDeviceSearch.SearchCallbacks() {
5
6 @Override
7 public void onSearchStarted(MultiDeviceSearch.RssiSupport rssiSupport) {
8 }
9

10 @Override
11 public void onDeviceFound(MultiDeviceSearchResult multiDeviceSearchResult) {
12 mMultiDeviceSearchResult = multiDeviceSearchResult;
13 requestDeviceAccess(mMultiDeviceSearchResult);
14 }
15
16 @Override
17 public void onSearchStopped(RequestAccessResult requestAccessResult) {
18 }
19 };
20 MultiDeviceSearch _ =
21 new MultiDeviceSearch(context, deviceTypes, searchCallbacks);
22 }� �

Listing 2.2: Search for device listing

Request access to the plugin

To get access, you could us the requestAccess method of the PCC object, concerned.
Previously, you should check that you are using the sensor of your choice. An example
is represented in listing 2.3.� �

1 private void requestDeviceAccess(MultiDeviceSearchResult multiDeviceSearchResult) {
2 boolean isBSC = multiDeviceSearchResult.getAntDeviceType()
3 .equals(DeviceType.BIKE_SPDCAD);
4 AntPlusBikeSpeedDistancePcc.requestAccess(context,
5 multiDeviceSearchResult.getAntDeviceNumber(), 0,
6 isBSC, mResultReceiver, mDeviceStateChangeReceiver);
7 }� �

Listing 2.3: Request access listing

26

2. Challenges

Subscribe to events

The PCC objects allow to subscribe to events of the sensors. In listing 2.4 we use a
AntPlusBikeSpeedDistancePcc related to our Bike Speed Sensor. This sensor needs the
wheel circumference to calculate the speed. If a new value is provided by the sensor the
onNewCaculatedSpeed method is called and you are able use the value for your needs.� �

1 private void subscribeToEvents() {
2 BigDecimal wheelCircumference = new BigDecimal(2.095) ; //average road tire
3 AntPlusBikeSpeedDistancePcc.CalculatedSpeedReceiver speedReceiver =
4 new AntPlusBikeSpeedDistancePcc.CalculatedSpeedReceiver(wheelCircumference)
5
6 bsdPcc.subscribeCalculatedSpeedEvent(speedReceiver) {
7 @Override
8 public void onNewCalculatedSpeed(final long esTimestamp,
9 final EnumSet<EventFlag> eventFlags,

10 final BigDecimal calculatedSpeed) {
11 setSpeed(calculatedSpeed.doubleValue());
12 }
13 });
14 }� �

Listing 2.4: Subscribe to events listing

Use device while monitoring the device connection state

Device state changes could be handle by the DeviceStateChangeReceiver as displayed in
listing 2.5. The handling of the measurements is done by a callback as shown in listing
2.4.� �

1 private void monitorDeviceStateChanges(){
2 mDeviceStateChangeReceiver = new AntPluginPcc.IDeviceStateChangeReceiver() {
3 @Override
4 public void onDeviceStateChange(final DeviceState newDeviceState) {
5 Log.i(TAG, bsdPcc.getDeviceName() + ": " + newDeviceState);
6 if (newDeviceState == DeviceState.DEAD) bsdPcc = null;
7 }
8 };
9 }� �

Listing 2.5: Monitoring the device connection state listing

Release the plugin communicator objects

Finally, if you don’t need the sensor data anymore, you could close the communication
with the PccReleaseHandle. Illustrated in listing 2.6.� �

1 private void destroy() {
2 bsdReleaseHandle.close();
3 if (bcReleaseHandle != null) {
4 bcReleaseHandle.close();
5 }
6 }� �

Listing 2.6: Release the plugin communicator objects listing

27

2. Challenges

2.6.2. Conclusion

The Garmin Bike speed sensor worked as expected and delivered accurate measurements.
Due to the fact that the sensor only detects rotations and you have to set the circum-
ference of the wheel on your own, measurement inaccuracies could appear. For example
there could be more or less air in the tire. The documentation of the ANT API for
developing an Android app was not very detailed. Furthermore, not all smartphones
support the ANT protocol. Therefore, I had to change my development device from
an Nexus X5 [Inc18] to a Samsung Galaxy S8 [SAM18]. Even with the adequate speed
measurements, the exact position on the track is still missing.

It would be possible to use further external sensors to improve the measurement accuracy
but this would have exceeded the scope of this project. Unfortunately, the more the
external sensors are necessary the less likely it is that the Ranck app be used.

28

2. Challenges

2.7. User interaction

Problem The section user interaction focuses on the interaction of the user with the
Ranck application.

Goals The usage of the app should be self-explanatory. The features should be reduced
to a minimum and the user should get the important information in an appropriate
manner.

2.7.1. Approach

Mockups

To get a first impression of the look and feel of the Android application, I designed some
mockups. They were created with the integrated designer of the Android Studio and
Inkscape for image editing.

Initialization Figure 2.13 shows the initial screen. The progress bar should indicate
that there is some work going on to get an acceptable GPS signal.

Figure 2.13.: Waiting for GPS

Settings The Ranck app has a settings screen to define the important preferences that
are necessary to run the application. The goal was to use as few settings as possible in
order to keep the configuration simple. The skill and the weight of the driver have to be
set. Optionally, you could confirm the usage of a bike speed sensor and set the wheel
circumference for that purpose.

Figure 2.14 illustrates the settings screen. The progress bar should indicate that there
is some work going on to get an acceptable GPS signal.

29

2. Challenges

Figure 2.14.: Settings

Biking

Visual Figure 2.15 shows the mockups for the application which are displayed during
the biking phase. The main characteristics are the curve direction and the background
colors. The color green indicates that everything is fine, orange signals that your velocity
is critical and you should reduce it and finally if the background is red you are too fast
for the next curve. The current speed is displayed at the bottom of the screen in m

s . The
arrow indicates if the curve is left, right or straight and the angle of the arrow points
out how tight the curve is.

(a) Green (b) Orange (c) Red

Figure 2.15.: Mockups biking

30

2. Challenges

Sensing Despite the fact that the application might not be visible during the biking
phase, the cyclist still likes some feedback. Hence, the Ranck app uses the vibration of
the smartphone to warn the driver if he is too fast on the track.

User interface

The user interface (UI) uses the constraint layout of Android [Dev18b] and the images
are vectorized. Thus, the UI is responsive and fits on devices with different resolutions.

2.7.2. Conclusion

The user interaction of the Rank application is kept as simple as possible. To fulfill
that purpose, known signal colors from traffic lights were used. The arrows are self-
explanatory and the information is kept to a minimum so that the cyclist is not distracted
too much. If the smartphone is in a pocket during the ride, the vibration of the device
is an accurate way to indicate that the driver is too fast.

31

3. Results

The project resulted in a collection of challenges and proposed solutions for them. The
challenges related to the initial goals of the downhill supporting application are are
listed in the chapter 2. Furthermore, a prototype of an Android application has been
developed, which is able to determine your current speed and your position on the track
as well as the sensor measurements allow. The app informs you if you are too fast for
the next curve and displays the direction of the curve as well.

3.1. Procedure

The current section will give you a summary of the procedure of the project. The
approach is strongly relate to the milestones as you can see in C.1.

The first tasks involved a rough planning of the project and the preparation of all the
needed tools.

After the initial phase, the physical model was on the task board. The model serves as a
basic module to determine if the current speed of the downhill biker is too high for the
next curve or luckily not. If you are interested in the used parameters and the physics
behind the model, have a look at section 2.1. The task resulted in an ready to use Java
implementation of the physical model concerned.

Beside the sensor data, the tracks are an essential input of the application. The raw
data of these tracks are GPS coordinates. Since we’d like to apply our physical model on
these tracks, we first of all have to determine how a curve is represented by GPS points.
For that purpose, we had to preprocess the track data as already mentioned in section
2.2. In addition, we had to choose an adequate spatial reference system as you can see
in 2.3.

With the physical model and the preprocessed tracks, we were ready to build the shell
of the Android application and stuck the components together. The missing parts were
the position and the related speed determination, hence we could focus on these issues
from now on.

The position and speed determination with the built-in sensors was a very difficult task
and didn’t lead to accurate enough results. The chosen approach is explained in detail in
section 2.5. In short, we used a Kalman filter to fusion the acceleration and a GPS sensor
to estimate the position and velocity as well as possible. The acceleration measurements
had to be transformed from the axis system of the smartphone to the coordinate system
of the earth. This is introduced in section 2.4.

The inadequate accuracy of the sensors lead to the usage of an external sensor. Fitting
for our circumstances, was the bike speed sensor from Garmin. The integration of these

32

3. Results

sensor is listed in section 2.6. With the help of the external sensor, fast velocity changes
could be detected and the position could be estimated if the GPS signal is lost. An
exact determination of the position is still only possible to a certain degree and would
need an additional, more accurate positioning sensor. Sadly, that was out of the scope
of the Ranck project, thus the resulting prototype had to deal with the accuracy of the
data from the smartphone and the bike speed sensor.

Finally, the work was documented and a promotional video of the prototype was recorded.

3.2. Conclusion

The project hosted several difficult and interesting problems. As we already expected
before I started to work, the built-in sensors might not be accurate enough for reasonable
results. Unfortunately, this issue confirms as true. The accuracy requirements in terms
of position and speed determination such an application needs are only realizable with
expensive external sensors. Even then it is an ambitious task. Nevertheless if you are
confronted with problems which don’t have out of the box solutions and the Ranck
project had a lot of them, you learn the most. For example, I never had to deal with
measurement uncertainties. That’s why I first had to familiarize myself with the topic,
test different approaches and verify the achieved results. Hence, I could apply a Kalman
filter in practice and recycle some techniques I learnt during physic lessons. Since a lot
of applications you are developing as a software engineer are largely abstract, it was
a pleasure to deal with a program that has to interact with the environment. Next
to the coding work, I had to go out and test the Ranck app. That was a lot of fun
and I also uncoverd some missing bugs. The prototype combines the components and
challenges into an Android application and additionally fulfils the requirement as well
as the measurements of the sensors enable.

3.3. Outlook

The built-in sensors of smartphones aren’t accurate enough and external sensors prevent
the usage of an Application with requirements similar to the Ranck app. It could be
a good idea to change the application requirement to the specific degree the built-in
sensors are able to provide. For example, it is might not necessary to determine the
maximal possible speed for every curve. It would be enough to set rough speed limits
along the track to improve safety.

33

Glossary

ANT ANT and ANT + are proprietary wireless network standards for the 2.4 GHz ISM
band. 25, 28

API An Application Programming Interface (API) provides an interface to an applica-
tion from other parts of the application or even from an other software. 10, 25, 26,
28, 34

Azimuth Degrees of rotation around the z axis. The angle between the device’s current
compass direction and the magnetic north. 12

covariance Covariance provides a measure of the strength of the correlation between
two or more sets of random variables. 19, 21

DGPS Differential Global Positioning System (DGPS) is an enhancement to Global
Positioning System that provides improved location accuracy. 2

ECEF ECEF (earth-centered, earth-fixed) is a metric three dimensional spatial reference
system. 10, 11

ECTS ECTS (European Credit Transfer and Accumulation System) credits are a euro-
pean standard for comparing workload of higher education. 40

EPSG The EPSG (Geodetic Parameter Dataset) is a collection of definitions of coordi-
nate reference systems and coordinate transformations. 10–12, 15, 38

Garmin Garmin Ltd. is a manufacturer of navigation receivers for satellite positioning
and navigation. I, 24, 25, 28, 32, 38, 43, 45

GeoJSON GeoJSON is an open standard format designed for representing simple geo-
graphical features. 7–9, 38

GitLab GitLab is a web application for versioning software projects based on git. 37, 39

GPS The Global Positioning System (GPS) is a radionavigation system based in space.
I, 12, 18, 20, 24, 29, 32, 33, 38–40

Kalman filter A Kalman filter tries to estimate the current state of a system based on
previously done measurements and possible noises. I, 18, 20, 22–24, 32, 33, 38, 41,
42

PCC PCC are plug-in communicator objects of the ANT+ API. 25–27

34

Glossary

Pitch Degrees of rotation around the x axis. The angle between a plane parallel to the
device’s screen and a plane parallel to the ground. 12

Roll Degrees of rotation around the y axis. The angle between a plane perpendicular to
the device’s screen and a plane perpendicular to the ground. 12

WGS84 World Geodetic System 1984 (WGS84) is a geodetic reference system that pro-
vides a unified basis for position information on earth and in near-earth space.
10–12, 15, 38

35

Appendices

36

A. Ranck Android app

The Code of the Ranck Android app is available on GitLab at the Ranck repository
[Kur18b]. In addition to the application code, the repository provides the documentation
as well.

The following section will give you an overview of the application architecture.

A.0.1. Package diagram

Beside the listed package on figure A.1, there are Android specific packages like the sev-
eral resources which are not mentioned at this point since they are the basic ingredients
of every Android application and don’t vary a lot.

Figure A.1.: Package Diagram

ui

The ui package handles all interaction with the user, displays all necessary information
for the user and is the main entry point for the application. Thus, it initializes the Ranck
service.

37

A. Ranck Android app

services

The services package hosts the RanckService and RanckReceiver. The RanckService
manages the interaction with the different sensors, the physical model and the tracks.
To properly use the sensors, the RanckService is responsible for the sampling rate. The
RanckReceiver handles the communication with the ui to provide up to date informa-
tion.

sensors

The sensors package is responsible for the acceleration sensor, the location sensor and
the bike speed sensor from Garmin. With the help of a Kalman filter, the measurement
values are merged and the errors will be minimized.

physics

The physics package includes the physical model of the system, physical constants and
determines if a driver is too fast for the next curve or not.

tracks

The tracks package provides a TrackReader that parses the GeoJSON track-files and
provides Track and Curve classes for further usage.

utils

The package utils includes helper classes for the RanckService. There is a location
estimator if no GPS signal is available and a location converter to transform the lat-
itude/longitude coordinates (EPSG 4326 - WGS84) to the Web Mercoator projection
(EPSG:3857 - WGS84) and vice versa.

38

B. Project Organization

The Ranck project was realized by Samuel Kurath with Prof. Dr. Farhad Mehta as
advisor. During the project, there were several meetings about current state, planned
tasks, problems that occurred and idea collection to solve them.

B.0.1. Milestones

For planing reasons, the project was split into the following milestones:

1. Project setup

2. Physical model

3. Extended GPS Tracks

4. Shell of App ready for velocity and position

5. External sensor usage

6. Accuracy and practicality verification

7. Finalize app and documentation

B.0.2. Tools

To organize the project, the tools listed in table B.1 were used.

Tool Description
Landing Page To get an overview of the project and fast access to all relevant

project pages, a landing page was used [Kur18c].
GitLab GitLab provided several tools for the project organization

[Kur18b]:

• Code repository

• Documentation repository

• Wiki

• Project management

• Time reporting

Table B.1.: Used tools

39

C. Time Report

The Ranck project started on 18. September 2017 and ended on 14. February 2018. It
lasted a total of 22 weeks.

The time allotment structure can be seen in table C.1.

Milestone Start End Number
of days

Time
spend [h]

Project setup 18.09.2017 26.09.2017 8 47,5
Physical model 27.09.2017 03.10.2017 6 28
Extended GPS Tracks 04.10.2017 17.10.2017 13 43
Shell of App ready for velocity and position 18.10.2017 14.11.2017 27 47,5
External sensor usage 15.11.2017 21.11.2017 6 26
Accuracy and practicality verification 22.11.2017 15.12.2017 23 57,5
Finalize app and documentation 16.12.2017 14.02.2018 60 140
Total 389.5

Table C.1.: Working time

The proposed working time for a PA (Projektarbeit / term project) is 360 hours. This
is related to the 12 ECTS points you gain if you succeed.

40

D. Code snippets

D.1. Sensor fusion

The following script D.1 shows an example of a Kalman filter fusioning the acceleration
and position measurements.� �

1 from sympy import Matrix, eye
2 import numpy as np
3
4 number_of_steps = 500
5
6 # parameters
7 dt = 0.1
8
9 squared_acceleration_noise = 0.5 ** 2

10 squared_position_noise = 10.0 ** 2
11 squared_velocity_noise = 1.0 ** 2
12
13 # initialization
14 F = Matrix([[1.0, 0.0, dt, 0.0, 1 / 2.0 * dt ** 2, 0.0],
15 [0.0, 1.0, 0.0, dt, 0.0, 1 / 2.0 * dt ** 2],
16 [0.0, 0.0, 1.0, 0.0, dt, 0.0],
17 [0.0, 0.0, 0.0, 1.0, 0.0, dt],
18 [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
19 [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]).reshape(6, 6)
20
21 R = Matrix([[squared_position_noise , 0.0, 0.0, 0.0],
22 [0.0, squared_position_noise , 0.0, 0.0],
23 [0.0, 0.0, squared_acceleration_noise , 0.0],
24 [0.0, 0.0, 0.0, squared_acceleration_noise]]).reshape(4, 4)
25
26 P = Matrix([[squared_position_noise , 0., 0., 0., 0., 0.],
27 [0., squared_position_noise , 0., 0., 0., 0.],
28 [0., 0., squared_velocity_noise , 0., 0., 0.],
29 [0., 0., 0., squared_velocity_noise , 0., 0.],
30 [0., 0., 0., 0., squared_acceleration_noise , 0.],
31 [0., 0., 0., 0., 0., squared_acceleration_noise]]).reshape(6, 6)
32
33 H = Matrix([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
34 [0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
35 [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
36 [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]).reshape(4, 6)
37
38 acceleration_process_noise = 0.001
39 G = Matrix([1 / 2.0 * dt ** 2, 1 / 2.0 * dt ** 2, dt, dt, 1., 1.]).reshape(6, 1)
40 Q = G * G.T
41
42 I = eye(6)
43
44 x = Matrix([0., 0., 0., 0., 0., 0.]).reshape(6, 1)
45
46 # generate data
47 np.random.seed(seed=11)
48 np.set_printoptions(precision=2)
49 noise_acceleration = np.random.normal(0, 0.5, 2 * number_of_steps)
50 noise_position = np.random.normal(0, 10.0, 2 * number_of_steps)

41

D. Code snippets

51 positions = [(noise_position[i], noise_position[i + number_of_steps])
52 for i in range(0, number_of_steps)]
53 accelerations = [(noise_acceleration[i], noise_acceleration[i + number_of_steps])
54 for i in range(0, number_of_steps)]
55
56 results = []
57
58 # kalman processing
59 for i in range(number_of_steps):
60 z = Matrix([positions[i][0], positions[i][1],
61 accelerations[i][0], accelerations[i][1]]).reshape(4, 1)
62 x = F * x
63 P = F * P * F.T + Q
64 K = P * H.T * (H * P * H.T + R).inv()
65 x = x + K * (z - H * x)
66 P = (I - K * H) * P
67 results.append(x)� �

Listing D.1: Example Kalman filter

42

D. Code snippets

D.2. Bike speed sensor

The listing D.2 shows a working example to interact with the Bike speed sensor from
Garmin.� �

1
2 import android.content.Context;
3 import android.content.SharedPreferences;
4 import android.preference.PreferenceManager;
5 import android.util.Log;
6
7 import com.dsi.ant.plugins.antplus.pcc.AntPlusBikeCadencePcc;
8 import com.dsi.ant.plugins.antplus.pcc.AntPlusBikeSpeedDistancePcc;
9 import com.dsi.ant.plugins.antplus.pcc.MultiDeviceSearch;

10 import com.dsi.ant.plugins.antplus.pcc.defines.DeviceState;
11 import com.dsi.ant.plugins.antplus.pcc.defines.DeviceType;
12 import com.dsi.ant.plugins.antplus.pcc.defines.EventFlag;
13 import com.dsi.ant.plugins.antplus.pcc.defines.RequestAccessResult;
14 import com.dsi.ant.plugins.antplus.pccbase.AntPluginPcc;
15 import com.dsi.ant.plugins.antplus.pccbase.PccReleaseHandle;
16 import com.dsi.ant.plugins.antplus.pccbase.MultiDeviceSearch.MultiDeviceSearchResult;
17 import com.murthy.ranck.R;
18
19 import java.math.BigDecimal;
20 import java.util.EnumSet;
21
22 public class BikeSpeedSensor {
23 private final String TAG = this.getClass().getSimpleName();
24 private SharedPreferences preferences;
25 private Context context;
26 private MultiDeviceSearchResult mMultiDeviceSearchResult;
27 private AntPlusBikeSpeedDistancePcc bsdPcc = null;
28 private PccReleaseHandle<AntPlusBikeSpeedDistancePcc > bsdReleaseHandle = null;
29 private PccReleaseHandle<AntPlusBikeCadencePcc > bcReleaseHandle = null;
30 private AntPluginPcc.IPluginAccessResultReceiver <AntPlusBikeSpeedDistancePcc >
31 mResultReceiver;
32 private AntPluginPcc.IDeviceStateChangeReceiver mDeviceStateChangeReceiver;
33
34 private double mSpeed;
35 private double distance;
36
37 public BikeSpeedSensor(Context context) {
38 this.context = context;
39 preferences = PreferenceManager.getDefaultSharedPreferences(context);
40 initReceiver();
41 searchForDevices();
42 }
43
44
45 private void resetPcc() {
46 //Release the old access if it exists
47 if (bsdReleaseHandle != null) {
48 bsdReleaseHandle.close();
49 }
50 if (bcReleaseHandle != null) {
51 bcReleaseHandle.close();
52 }
53 }
54
55 protected void destroy() {
56 bsdReleaseHandle.close();
57 if (bcReleaseHandle != null) {
58 bcReleaseHandle.close();
59 }
60 }
61
62

43

D. Code snippets

63 private void searchForDevices() {
64 EnumSet<DeviceType> deviceTypes = EnumSet.of(DeviceType.BIKE_SPD);
65 MultiDeviceSearch.SearchCallbacks searchCallbacks =
66 new MultiDeviceSearch.SearchCallbacks() {
67 @Override
68 public void onSearchStarted(MultiDeviceSearch.RssiSupport rssiSupport) {
69 Log.i(TAG, "Search stared");
70 }
71
72 @Override
73 public void onDeviceFound(MultiDeviceSearchResult multiDeviceSearchResult) {
74 mMultiDeviceSearchResult = multiDeviceSearchResult;
75 requestDeviceAccess(mMultiDeviceSearchResult);
76 }
77
78 @Override
79 public void onSearchStopped(RequestAccessResult requestAccessResult) {
80 Log.i(TAG, "Search stopped");
81 }
82 };
83 MultiDeviceSearch multiDeviceSearch =
84 new MultiDeviceSearch(context, deviceTypes, searchCallbacks);
85 }
86
87 private void requestDeviceAccess(MultiDeviceSearchResult multiDeviceSearchResult) {
88 boolean isBSC = multiDeviceSearchResult.getAntDeviceType()
89 .equals(DeviceType.BIKE_SPDCAD);
90 AntPlusBikeSpeedDistancePcc.requestAccess(context,
91 multiDeviceSearchResult.getAntDeviceNumber(), 0,
92 isBSC, mResultReceiver, mDeviceStateChangeReceiver);
93 }
94
95 private void subscribeToEvents() {
96 BigDecimal wheelCircumference = new BigDecimal(2.095) ; //average road tire
97 AntPlusBikeSpeedDistancePcc.CalculatedSpeedReceiver speedReceiver =
98 new AntPlusBikeSpeedDistancePcc.CalculatedSpeedReceiver(wheelCircumference)
99

100 bsdPcc.subscribeCalculatedSpeedEvent(speedReceiver) {
101 @Override
102 public void onNewCalculatedSpeed(final long esTimestamp,
103 final EnumSet<EventFlag> eventFlags,
104 final BigDecimal calculatedSpeed) {
105 setSpeed(calculatedSpeed.doubleValue());
106 }
107 });
108 }
109
110 private void initReceiver() {
111 mResultReceiver = new AntPluginPcc
112 .IPluginAccessResultReceiver <AntPlusBikeSpeedDistancePcc >() {
113 @Override
114 public void onResultReceived(AntPlusBikeSpeedDistancePcc result,
115 RequestAccessResult resultCode,
116 DeviceState initialDeviceState) {
117 switch (resultCode) {
118 case SUCCESS:
119 bsdPcc = result;
120 Log.i(TAG, result.getDeviceName() + ": " + initialDeviceState);
121 subscribeToEvents();
122 break;
123 case CHANNEL_NOT_AVAILABLE:
124 Log.e(TAG, "Channel Not Available");
125 break;
126 case ADAPTER_NOT_DETECTED:
127 Log.e(TAG, "ANT Adapter Not Available.");
128 break;
129 case BAD_PARAMS:
130 // Note: Since we compose all the params ourself, we should

44

D. Code snippets

131 // never see this result
132 Log.e(TAG, "Bad request parameters.");
133 break;
134 case OTHER_FAILURE:
135 Log.e(TAG, "RequestAccess failed. See logcat for details.");
136 break;
137 case DEPENDENCY_NOT_INSTALLED:
138 Log.e(TAG, "Missing Dependency");
139 break;
140 case USER_CANCELLED:
141 break;
142 case UNRECOGNIZED:
143 Log.e(TAG, "Failed: UNRECOGNIZED. PluginLib Upgrade Required?");
144 break;
145 default:
146 Log.e(TAG, "Unrecognized result: " + resultCode);
147 break;
148 }
149 }
150 };
151
152 // Receives state changes and shows it on the status display line
153 monitorDeviceStateChanges();
154 }
155
156 private void monitorDeviceStateChanges(){
157 mDeviceStateChangeReceiver = new AntPluginPcc.IDeviceStateChangeReceiver() {
158 @Override
159 public void onDeviceStateChange(final DeviceState newDeviceState) {
160 Log.i(TAG, bsdPcc.getDeviceName() + ": " + newDeviceState);
161 if (newDeviceState == DeviceState.DEAD) bsdPcc = null;
162 }
163 };
164 }
165
166 public double getSpeed() {
167 return this.mSpeed;
168 }
169
170 private void setSpeed(double mSpeed) {
171 this.mSpeed = mSpeed;
172 }
173
174 private void setDistance(double distance) {
175 this.distance = distance;
176 }
177 }� �

Listing D.2: Garmin Bike speed sensor listing

45

Bibliography

[17] getRotationMatrix. Dec. 2017. url: https : / / developer . android . com /
reference/android/hardware/SensorManager.html#getRotationMatrix(float[],
%20float[],%20float[],%20float[]).

[Dev18a] Android Developers. Android Oreo. Jan. 2018. url: https://developer.
android.com/index.html.

[Dev18b] Android Developers. Build a Responsive UI with ConstraintLayout. Jan. 2018.
url: https://developer.android.com/training/constraint-layout/
index.html.

[Fra17] Adam Franco. Technology. Dec. 2017. url: http://roadcurvature.com/
technology/.

[Gal17] Shane Gallup. Android ANT+ SDK Samples. Dec. 2017. url: https : / /
github.com/ant-wireless/ANT-Android-SDKs/tree/master/ANT%2B_
Android_SDK/Sample.

[Har17] Björn Harrtell. jts2geojson. Dec. 2017. url: https://github.com/bjornharrtell/
jts2geojson.

[Inc18] Google Inc. 5X. Jan. 2018. url: https://www.google.com/intl/de_ch/
nexus/5x/.

[IOG18] IOGP. About the EPSG Dataset. Jan. 2018. url: http://www.epsg.org/.
[Kal+60] Rudolph Emil Kalman et al. “A new approach to linear filtering and predic-

tion problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.
[Kal17] KalebKE. FSensor. Dec. 2017. url: https://github.com/KalebKE/FSensor.
[Kri18] Krishnavedala. ECEF. Jan. 2018. url: https://en.wikipedia.org/wiki/

ECEF.
[Kur18a] Samuel Kurath. Ranck. Jan. 2018. url: https://gitlab.com/Murthy10/

track_processing.
[Kur18b] Samuel Kurath. Ranck. Jan. 2018. url: https://gitlab.com/Murthy10/

ranck.
[Kur18c] Samuel Kurath. Ranck. Jan. 2018. url: https://samuelkurath.ch/ranck.
[Map17] Mapbox. geojson.io. Dec. 2017. url: http://geojson.io.
[Mik17] Mike-Stanley. Simple 3-axis and 6-axis Algorithms. Dec. 2017. url: https:

//github.com/memsindustrygroup/Open-Source-Sensor-Fusion/wiki/
simple_algorithms.

[Mon05] Corey Montella. “The Kalman Filter and Related Algorithms: A Literature
Review”. In: (May 5).

46

https://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],%20float[],%20float[])
https://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],%20float[],%20float[])
https://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],%20float[],%20float[])
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/training/constraint-layout/index.html
https://developer.android.com/training/constraint-layout/index.html
http://roadcurvature.com/technology/
http://roadcurvature.com/technology/
https://github.com/ant-wireless/ANT-Android-SDKs/tree/master/ANT%2B_Android_SDK/Sample
https://github.com/ant-wireless/ANT-Android-SDKs/tree/master/ANT%2B_Android_SDK/Sample
https://github.com/ant-wireless/ANT-Android-SDKs/tree/master/ANT%2B_Android_SDK/Sample
https://github.com/bjornharrtell/jts2geojson
https://github.com/bjornharrtell/jts2geojson
https://www.google.com/intl/de_ch/nexus/5x/
https://www.google.com/intl/de_ch/nexus/5x/
http://www.epsg.org/
https://github.com/KalebKE/FSensor
https://en.wikipedia.org/wiki/ECEF
https://en.wikipedia.org/wiki/ECEF
https://gitlab.com/Murthy10/track_processing
https://gitlab.com/Murthy10/track_processing
https://gitlab.com/Murthy10/ranck
https://gitlab.com/Murthy10/ranck
https://samuelkurath.ch/ranck
http://geojson.io
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/wiki/simple_algorithms
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/wiki/simple_algorithms
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/wiki/simple_algorithms

Bibliography

[RAH17] Matthew Rhudy, Roger A Salguero, and Keaton Holappa. “A Kalman Filter-
ing Tutorial for Undergraduate Students”. In: 08 (Feb. 2017), pp. 01–18.

[SAM18] SAMSUNG. Galaxy S8 | S8+. Jan. 2018. url: http://www.samsung.com/
ch/smartphones/galaxy-s8/.

[Sim01] Dan Simon. “Kalman filtering”. In: Embedded systems programming 14.6
(2001), pp. 72–79.

[Tea17] MathWorks Mobile Sensor Connectivity Team. Capturing Azimuth, Pitch,
and Roll Example. Dec. 2017. url: https://www.mathworks.com/examples/
matlab/community/20183-capturing-azimuth-pitch-and-roll-example.

[TM18] James Talmage and Damon Maneice. Mercator maps: Use and criticism. Jan.
2018. url: https : / / kaiserscience . wordpress . com / earth - science /
maps/mercator-maps-use-and-criticism/.

[Tob17] Toblerity. Shapely. Dec. 2017. url: https : / / github . com / Toblerity /
Shapely.

[Too18] Engineering ToolBox. Rolling Resistance. Jan. 2018. url: https : / / www .
engineeringtoolbox.com/rolling-friction-resistance-d_1303.html.

[War18] Frank Warmerdam. PROJ.4. Jan. 2018. url: http://proj4.org/.
[Wir17a] ANT Wireless. ANDROID ANT+ API. Dec. 2017. url: https : / / www .

thisisant.com/APIassets/Android_ANT_plus_plugins_API/.
[Wir17b] ANT Wireless. ANT+ Plugins Service. Dec. 2017. url: https : / / play .

google.com/store/apps/details?id=com.dsi.ant.plugins.antplus.
[Wir17c] ANT Wireless. ANT Radio Service. Dec. 2017. url: https://play.google.

com/store/apps/details?id=com.dsi.ant.service.socket.
[Wir17d] ANT Wireless. DOWNLOADS: SOFTWARE AND DOCUMENTS. Dec. 2017.

url: https://www.thisisant.com/developer/resources/downloads.
[Wir17e] ANT Wireless. STARTING YOUR PROJECT. Dec. 2017. url: https://

www.thisisant.com/developer/ant/starting-your-project#75_tab.
[Wir17f] ANT Wireless. TOP BRANDS. COMPATIBLE DEVICES. Dec. 2017. url:

https://www.thisisant.com/directory.

47

http://www.samsung.com/ch/smartphones/galaxy-s8/
http://www.samsung.com/ch/smartphones/galaxy-s8/
https://www.mathworks.com/examples/matlab/community/20183-capturing-azimuth-pitch-and-roll-example
https://www.mathworks.com/examples/matlab/community/20183-capturing-azimuth-pitch-and-roll-example
https://kaiserscience.wordpress.com/earth-science/maps/mercator-maps-use-and-criticism/
https://kaiserscience.wordpress.com/earth-science/maps/mercator-maps-use-and-criticism/
https://github.com/Toblerity/Shapely
https://github.com/Toblerity/Shapely
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
http://proj4.org/
https://www.thisisant.com/APIassets/Android_ANT_plus_plugins_API/
https://www.thisisant.com/APIassets/Android_ANT_plus_plugins_API/
https://play.google.com/store/apps/details?id=com.dsi.ant.plugins.antplus
https://play.google.com/store/apps/details?id=com.dsi.ant.plugins.antplus
https://play.google.com/store/apps/details?id=com.dsi.ant.service.socket
https://play.google.com/store/apps/details?id=com.dsi.ant.service.socket
https://www.thisisant.com/developer/resources/downloads
https://www.thisisant.com/developer/ant/starting-your-project#75_tab
https://www.thisisant.com/developer/ant/starting-your-project#75_tab
https://www.thisisant.com/directory

	Introduction
	Motivation
	Vision

	Challenges
	Physical model
	Curves
	Spatial reference system
	Alignment of the accelerometer
	Sensor fusion
	External sensor
	User interaction

	Results
	Procedure
	Conclusion
	Outlook

	Glossary
	Ranck Android app
	Project Organization
	Time Report
	Code snippets
	Sensor fusion
	Bike speed sensor

	Bibliography

