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Abstract

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and protects critical security functions against unreliable software running on

the same physical system. The programming language SPARK 2014 is used to achieve a particularly

high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components.

This feasibility study investigates the ARMv8-A architecture and in particular the AArch64 Virtualiza-

tion Extensions introduced with the latest ARM architecture and evaluates how this technology could

be used for porting the Muen SK to ARM. In order to be able to achieve this, the mechanisms used by

Muen SK are first examined in detail. Based on this investigation, the requirements for a target proces-

sor architecture are derived and compared with the features provided by the ARMv8-A architecture.

Since the target hardware platform for this study is the Raspberry Pi 3, the requirements declared as

„implementation defined“ by the ARM documentation are finally assessed with respect to this System

on Chip designed by the Raspberry Pi Foundation.
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1 Introduction

The evolution within the last years in the world of information technology not only led to a tremendous

increase of mobile devices and networking, but also let the world economy dream of a new tech-

nological era, the Industry 4.01. This fourth industrial revolution is characterized in particular by the

interconnection of objects and people within a so called information network. In this context, the most

frequently mentioned keywords are Internet-of-Things, Cloud Computing and Bioengineering.

One of the consequences of the integration of autonomously communicating devices into our daily

life is that a lot of sensitive data is collected and stored that needs best possible access control. A

mathematically provable secure approach to control the access to sensitive data is the theory of the

Separation Kernel published by John Rushby in a paper presented at the 8th ACM Symposium on

Operating System Principles in December 19812. Based on this theoretical foundations and the Intel

hardware virtualization extension, Reto Buerki and Adrian-Ken Rueegsegger designed the Muen Sepa-

ration Kernel (SK) as their Master Thesis at the University of Applied Sciences Rapperswil (HSR)3. The

Muen SK ensures a strict and reliable isolation of components and protects critical security functions

against unreliable software running on the same physical system.

A second consequence of the fourth industrial revolution is the need for small devices with low energy

consumption and low production costs that still meet the state of the art with respect to processor

architecture and peripheral device integration. Since many of these small devices, especially mobile

devices, use an ARM central processing unit (CPU) or an ARM based system on chip (SoC) one

could also determine enormous improvements up to the latest ARM architecture, the so called ARMv8

architecture 4.

This Student Research Study, which is part of the Bachelor of Science in Computer Science program

at the University of Applied Sciences Rapperswil (HSR), investigates the possibility of porting the Muen

SK to the ARMv8 architecture. As the Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components, the aim of this feasibility

study is to take a closer look at the ARMv8 architecture and in particular the AArch64 Virtualization

Extension (VE) introduced with the latest ARM processors. The target hardware for this study is the

Raspberry Pi 3 5.

1[3] Devezas, Leitão, and Sarygulov. Industry 4.0 - Entrepreneurship and Structural Change in the New Digital Landscape.

2017, Chapter 1, page 2 f.
2[17] Rushby. “Design and Verification of Secure Systems”. 1981.
3[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013.
4https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A, December 21, 2017
5cf. https://www.raspberrypi.org/, December 21, 2017
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1.1 Structure of the Study

The study is divided into three main parts followed by a summarizing conclusion including a risk as-

sessment for the planned Bachelor Thesis to port the Muen SK to the ARMv8 architecture. In the first

part (chapter 2), an overview of the Muen SK is given and the most important hardware dependent

features are described, from which the general hardware requirements are derived. In the next chapter

3, an introduction to the ARMv8 architecture is presented with focus on the AArch64 architecture and

the Virtualization Extension (VE) followed by a qualification of these features with respect to the derived

hardware requirements from the first part. As the target hardware for this study is the Raspberry Pi

3, the third part of this document (chapter 4) is dedicated to a detailed description of this single board

computer considering hardware related features used by the Muen SK.

1.2 Related Documents

As the focus of this study lies on the feasibility of porting the Muen SK to the ARMv8 architecture, many

related documents apart from this document were elaborated. As examples, there can be mentioned

the Raspberry Pi 3 Beginner’s Guide and all the Evaluation Cases illustrated with small coding exam-

ples. All this documents are an integral part of the Student Research Project. A list can be found in the

appendix of this document.

1.3 Literature

Due to the task description of the Student Research Project 6, the Muen Report7 with the related

documents and the official ARM documentation, i.e. the ARMv8 Architecture Reference Manual8 and

the ARM Cortex-A Series Programmer’s Guide9, were used as the principal literature. A detailed list of

referenced literature can be found in the bibliography at the end of this document (cf. Bibliography).

Because a detailed and with respect to the AArch64 architecture complete Raspberry Pi 3 hardware

reference manual did not exist at the time of writing, chapter 4 of this study had to be based on the

VideoCore Reference Manual10 and the BCM2835 ARM Peripherals documentation11 for the Rasp-

berry Pi 1 as well as different online sources mentioned in the corresponding section 4.1.1 of this

document.

6cf. assignment from the AVT platform, Appendix B
7[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013.
8[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017.
9[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015.

10[13] n.a. VideoCore IV 3D Architecture Reference Guide. 2013.
11[11] n.a. BCM2835 ARM Peripherals. 2012.
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2 Muen Separation Kernel

The design and implementation of the Muen SK is premised on three basic concepts: first of all the

Separation Kernel principle, formal verification and hardware supported virtualization.

The concept of a Separation Kernel was introduced by John Rushby in a paper presented at the 8th

ACM Symposium on Operating System Principles in December 1981 as a solution to the problem with

the development and verification of large, complex security kernels1. His proposition was to basically

adapt the principles of a distributed system to a single processor to avoid the aforementioned problem.

As a consequence, such a system has to physically isolate all the subjects that are part of the security

policy. The communication and the access to shared resources of all these subjects must be handled

only through likewise isolated, so called trusted components that can be verified2. Finally, Rushby

verified the outlined proposition with a Proof of Separability3.

As the verification is a compulsory consequence of the Separation Kernel principle, an implementation

of a Separation Kernel has to use a programming language that is amenable to formal verification.

Therefore, the SPARK programming language was chosen to write the Muen SK. SPARK is a formally

analysable subset of the programming language Ada and used for implementing high integrity systems
4. A introduction to the programming language SPARK and the related derived requirements can be

found in section 2.7.

Another deducible consequence of the Separation Kernel principle is the requirement of a sufficiently

small code base for the implementation of such a kernel5. To achieve this, the Muen SK relies on the

hardware virtualization support of the Intel x86 architecture6. To get the full virtualization support for

a desktop environment, the Intel IA-32e/64-bit architecture was chosen as the target platform of the

Muen SK7. Therefore, a first basic requirement for a processor architecture, to be able to run the Muen

SK on, can be derived as:

REQ-0: The processor architecture has to support 64 bit datapath widths, integer size

and memory address widths as well as to be able to execute 32 bit applications.

1[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 1, page 3 f.
2[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 2 f., page 5 ff.
3[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 4, page 11 ff.
4cf. https://www.adacore.com/sparkpro, December 21, 2017
5[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 2.4, page 14.
6[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 2.3, page 11 ff.
7[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 3.2, page 20.
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2.1 Virtualization Basics

A hypervisor or virtual machine monitor (VMM) 8 is special software that emulates computer hardware.

In general, two different types of hypervisors are classified9: Type I native or bare-metal hypervisors

and Type II hosted hypervisors. A Type I hypervisor directly runs on the target hardware to control

and manage the guest operating system, whereas a Type II hypervisor makes use of a conventional

operating system. As a Type I hypervisor has comprehensive control over the processor(s) and other

platform hardware as well as over the guest software (e.g. memory access, communication etc.), it can

also be used as a mechanism for separation purpose10. Therefore, the Muen SK can be classified as

a Type I hypervisor.

A hypervisor multiplexes the hardware by the usage of different virtualization techniques to provide a

virtual environment to the guest software in a way that lets the guest software gain the impression of

running directly on the hardware. One approach to achieve this, is to add another privilege level or

protection ring to a processor architecture. A protection ring is one of two or more hierarchical layers of

privilege within the architecture of a computer system. Normally, the processor architecture enforces

this layering by providing different execution modes on hardware level. As an example - in standard

protected mode on an Intel x86 architecture there exist four privilege levels or protection rings with ring

0 as the most privileged one whereas ring 3 having the least privileges 11.

Figure 2.1: Intel x86 protection mode, protection rings hierarchy

As already mentioned, the Muen SK makes use of the Intel Virtualization Technology (VT) to fulfil the

requirement of a small code base. One of the basic features of the Intel VT is the so called Intel VT-x.

8Because the ARMv8 architecture uses the terms secure monitor and monitor mode for a separate exception level, the

expression hypervisor is used instead of VMM throughout this document.
9[16] Popek and Goldberg. “Formal Requirements for Virtualizable Third Generation Architectures”. 1974, the first classifi-

cation approach.
10[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3, page 11.
11It is absolutely important to note that ring 0 has the most privileges - because the ARM Exception Lev-

els define the privileges exactly the other way round by giving the Exception Level 0 the least privileges; cf.

https://en.wikipedia.org/wiki/Protection_ring, December 21, 2017
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This feature introduces a new hypervisor execution level with an additional protection ring „-1“ as well

as some new VMX instructions that simplify the switching between a hypervisor running in VMX root

operation and guest software executing in VMX non-root operation 12. Hence, to be able to execute the

Muen SK in hypervisor mode, a target processor architecture has to meet the following requirement:

REQ-1: The target processor architecture must provide a virtualization extension that is

capable of running a Type I hypervisor. This requirement includes the hardware assisted

support for an additional privilege level and instructions for a simplified switch between

this additional and other privilege level.

Another important feature of the VT-x virtualization technology is that VM exits and entries are handled

automatically while the exact behaviour still stays configurable13. To do so, a logical processor uses

virtual machine control data structures (VMCS) to manage transitions into and out of the VMX non-root

operation as well as the processor behaviour in VMX non-root operation14. An illustrating example is

a VM exit that automatically stores the guest processor state into the guest state area of the VMCS.

But one has to be aware that registers, which can be saved and loaded by the hypervisor itself (e.g.

general purpose registers), are not stored automatically15. Therefore:

REQ-2: The target processor architecture must provide a virtualization extension that

supports an automatic handling of guest exits (i.e. traps) and entries. At least, the target

processor architecture must provide a support mechanism to completely save and load

all the relevant guest state structures.

2.2 Memory

In modern computer systems, usually different memory and storage technologies are used as an at-

tempt to find the best possible compromise between access time, cost and persistence properties.

The first two criteria are interrelated by the fact that the shorter the access times of a specific type of

memory is, the more expensive they are. The third criterion not only considers the persistence in the

proper sense, i.e. volatile or persistent, but also other properties like the degree of hardware supported

manageability. Therefore, memory and storage are normally organized in a so called memory hier-

archy to use the advantages of the various components while, at the same time, circumventing their

disadvantages 16. A standard modern memory hierarchy is composed of17 18:

12more details can be found in [2], section 2.3.1, and [12], volume 3C, chapter 23 f., page 1083 ff.
13[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3, page 12.
14[12] n.a. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3. 2017, volume 3C, section 24.4, page

1090 ff.
15[14] Neiger et al. “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtualization”. 2006, page

170.
16cf. https://de.wikipedia.org/wiki/Speicherverwaltung, December 21, 2017
17[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.1.3, page 393 f.
18https://en.wikipedia.org/wiki/Memory_hierarchy, December 21, 2017
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• CPU Registers: The fastest (typically one clock cycle) and most expensive type of memory that

locates in the processor itself.

• Caches: A state of the art processor has numerous internal and shared caches (Static Random

Access Memory SRAM), organized in up to four levels with increasing access times from a few

tens of clock cycles down to a few hundreds, and additional hardware caching structures, e.g.

Translation Lookaside Buffers (TBL) and Branch Prediction Caches (BPC).

• Primary Storage (main memory): This type of memory is also referred to as Dynamic Random

Access Memory (DRAM). Its speed is moderate with up to 10 GB per second but still relatively

affordable. With respect to primary storage, two different applications are distinguished - physi-

cal RAM and Virtual Memory (cf. Memory Management Unit 2.2.2).

• Secondary Storage (disk storage): On Secondary Storage, data can be permanently stored. It

is much cheaper than primary storage but about 10’000 times slower. The most known repre-

sentatives are Hard Disk Drives (HDD) or Solid State Disks (SSD).

• Tertiary Storage (input storage): This category includes various types of removable media de-

vices such as USB devices or SD cards as well as remote storage and peripherals. It is the

slowest and cheapest kind of storage.

Figure 2.2: example of a memory hierarchy

At this point, one has to remember the strict distinction between memory and storage. While the

CPU has direct access to the memory - whether through the processor’s hardware structures or over

the memory bus - storage is only available as an I/O device. Pointing out this difference is important

because all memory resources of a system running the Muen SK are static and explicitly specified in

the so called system policy19. This, for example, implies that there is no such mechanism implemented

for loading missing page contents from a storage device after a page fault or page miss, as most of

the common operating system kernels would do, and that no considerations about side and covert

19[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.2.1, page 24.
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channels with respect to disk caches or other storage structures have to be made. Since a subject 20

cannot change its own address space, also the page tables are static and therefore can be generated

in advance according to the relevant information in the system policy. As for the storage, it is treated

by the Muen SK as a pure I/O device (cf. Device Handling 2.5) .

2.2.1 Caches

As already mentioned, only cache and caching structures, that are directly accessible to the CPU,

have to be considered with respect to the fundamental requirement of the Muen SK to completely

separate the subjects and thus to eliminate side and covert channels. The main problem with caches

is that they are shared and can normally only be controlled to a limited degree21. Due to performance

aspects, the Muen SK has to enable the caches and caching structures. But as the Muen SK uses

the Intel Virtualization Extension at least the Translation Lookaside Buffer (cf. section 2.2.2) is cleared

automatically. Therefore, a processor architecture has to fulfil the following requirement:

REQ-3: The target processor architecture shall provide a minimal set of cache manage-

ment features and an automatic cache clearing feature in the context of virtualization.

At least, the target processor architecture must provide a support mechanism to clear

caches manually.

Even though out of scope for this study, the cache colouring mechanism has to be mentioned here.

This technique first divides the cache into disjoint units and assigns a „color “ to each of these partitions.

Every process then is assigned a certain color to. A cache area of certain color can only be accessed by

processes with the corresponding color. This technique is not only used for performance optimizations

but can also serve as a mechanism to prevent processor caches from being used as high-bandwidth

side channels22. The developers of the Muen SK mentioned this mechanism as one of possible future

enhancements23.

2.2.2 Memory Management

In modern computer systems, the management of the main memory is taken over by a hardware

component called Memory Management Unit (MMU) that is usually integrated into the processor. The

MMU handles all the access of the CPU to the main memory. In general, it has two main functions:

on the one hand it allows the implementation of virtual memory and on the other hand it can manage

memory protection and cache control 24.

20In the context of the Muen SK, a subject is defined as one of multiple, isolated and through well-defined interfaces interact-

ing components. More informations can be found in section 3.3 and 4.3 in [2]
21[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.1.2, page 7.
22[1] Braun, Jana, and Boneh. “Robust and Efficient Elimination of Cache and Timing Side Channels”. 2015, section 4, page

3, with references to other literature.
23[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 6.2.1.1, page 76.
24https://en.wikipedia.org/wiki/Memory_management_unit, December 21, 2017
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Virtual Memory is a technique that abstracts the available memory and storage resources on a com-

puter system in such a way that a process is given the illusion of running alone on that system and

having unrestricted access to the systems main memory 25. To be able to provide a linear 26 but virtual

logical address space to a process, a modern MMU uses a mechanism called paging. With paging the

physical as well as the virtual address space are divided into units with a fixed size. In the context of

physical memory, these units are called page frames whereas in the context of virtual memory they are

denoted as pages. The mapping between a physical page frame and a virtual page is done by a so

called page table that uses the two-part virtual address to calculate the physical address of the page

frame.

Figure 2.3: example of a one level paging with partitioning

As shown in figure 2.4, a virtual address is divided into two parts - a page number and an address

offset. The page number serves as an index into the page table to read out the content at this specified

address, namely the page frame number. Then the page frame number is multiplied by the predefined

page size to get the base address of the corresponding page frame in the physical memory. The

physical address for the requested virtual address can then be obtained by adding the offset of the

virtual address to this base address27.

To prevent illegal accesses, the page table must be initialized completely and undefined page table

entries have to be invalidated by at least setting an invalidation bit. In combination with a multiprocessor

environment, this requirement can lead to large page tables. One way to address this problem, is

to implement so called multi-level page tables. As an example, a two level page table hierarchy is

presented: In such a case, the virtual address is divided into three parts. The first part contains the

25https://en.wikipedia.org/wiki/Virtual_memory, December 21, 2017
26https://en.wikipedia.org/wiki/Flat_memory_model, December 21, 2017
27[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, paragraph Seiten-

basierte Adressumsetzung, page 450 ff.
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directory index to the first page table. The entry in this first page table does not directly return the

page frame number, but contains the address of a second page table. The second part of the virtual

address is now used as an index into this second page table. The entry at the corresponding index then

contains the page frame number, which serves as the basis for the actual address resolution according

to the principle described above28.

Figure 2.4: example of a one level address translation

To improve the performance of the MMU’s address translation, modern processor architectures rely

on the implementation of an associative cache structure, the Translation Lookaside Buffer (TLB) . The

address translation principle described above remains the same, but instead of a direct lookup of the

first part of the virtual address (i.e. the page number) in a page table the MMU first takes a look at the

TLB. If the corresponding page entry can be found in the TLB it loads the physical base address directly

from there - else the corresponding page descriptor gets first loaded into the TLB from the according

page table before returning it to the address translation process29. In the context of the Muen SK, the

separation concerns described in the section Caches 2.2.1 have to be considered accordingly (i.e. side

and convert channels).

28[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, paragraph Seiten-

basierte Adressumsetzung, page 455 ff.
29[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, page 446 f.
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The Muen Separation Kernel uses the virtualization functions of the Intel IA-32e mode on the one

hand for the implementation of the Type I hypervisor and on the other hand for the partitioning and the

separation of the different subjects. Since the 80286 processor, the Intel x86 processor architecture

provides an integrated MMU, that is capable of handling the paging mechanism for address virtualiza-

tion. The corresponding page tables can be defined and used on a per process basis and also serve

to define properties and permissions (i.e. memory protection). In addition, the MMU provided by Intel

validates and enforces compliance with these additional memory protection features. A hierarchical

arrangement of the page tables also enables multi-level paging - the Intel IA-32e mode supports up to

4 such levels and allows page sizes of 4 KB, 2 MB and 1 GB30. Therefore, the target architecture has

to support the following features:

REQ-4: The target processor architecture has to provide a Memory Management Unit

that supports:

(i) memory virtualization on a per subject basis (one page table per subject),

(ii) definition of properties and permissions per page table (read/write access, execute

disable, caching behaviour),

(iii) checking and enforcement of defined properties and permissions,

(iv) different page sizes (i.e. large page support 31), but at least a 4 KB page size 32.

2.2.3 Advanced Memory Virtualization

When using a hypervisor with different guest operating systems (i.e. virtual machines), the address

virtualization technologie described above has to be extended with a second layer. The hypervisor

assigns a first layer virtual memory area to the guest system, which is interpreted by the guest system

as its own physical memory. If the guest system is running a modern operating system, it will use the

address translation mechanism again for its applications, creating a complete second address transla-

tion layer. In order to be able to cope with the associated performance issues as well as the complexity

of the hypervisor implementation, Intel’s x86 virtualization technology „Extended Page Tables (EPT)“

provides a hardware assisted Second Level Address Translation (SLAT, also known as nested paging)

mechanism.

30[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.2, page 8 f.
31Most current CPU architectures support bigger pages, but name it differently: huge pages, super pages or large pages are

only the most often used terms.
32At the time of writing, the Muen SK only relies on 4KB pages. But as discussed in the meeting of November 20, 2017, the

question about large page support by the ARM architecture should be answered in this study too.
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The Muen architecture supports native subjects as well as complex Virtual Machines (VM) running their

own operating system33. To be able to run such complex VM’s without having an enormous adaptation

effort, the Muen SK makes use of the Intel’s x86 SLAT virtualization technology EPT34. Therefore, the

following must apply:

REQ-5: The target processor architecture must support hardware assisted second level

address translation (SLAT).

2.2.4 Multicore Environment

Even though out of scope for this study, the multicore environment topic has to be mentioned here. A

processor architecture that implements more than one core is called a multicore processor 35. Another

feature often implemented by modern processor architectures is the hardware assisted multithreading

ability. A processor architecture, that is capable of multithreading, subdivides a central processing

unit (CPU) or a single core in a multicore processor into logical cores to execute multiple processes

or threads concurrently 36. While in a multicore environment the CPU itself as well as core specific

resources (e.g. MMU, TLB and Caches) are multiplied, logical cores have to share these resources.

First of all, the Muen SK does not concern itself with memory management. All the page table struc-

tures needed in a computing system are created by the Muen policy tools and statically initialized at the

system startup by the initialization code. In an initialized multicore or multithreading environment, all

logical cores execute exactly the same (i.e. binary identical) Muen kernel code. Although each kernel

has its own stack page and a page to store per core data, this is fully transparent to the kernels due

to the usage of different page table structures per kernel37. In the current version of the Muen SK, the

multithreading features of the Intel x86 architecture are switched off 38. Therefore, to be able to port

the Muen SK to another multicore or multithreading processor architecture, a target architecture has to

provide the following feature:

REQ-6: A multicore target processor architecture has to provide a mechanism to switch

off the multithreading mechanism on a per core basis, if multithreading is supported.

The Muen SK uses a barrier as synchronization mechanism to avoid any interprocessor drift in the

context of scheduling plans and hence to eliminate timing side channels. This barrier guarantees that

all logical cores have arrived at a specific execution point, i.c. on major frame transition, and are

synchronized by waiting for the release. A sense-reversing barrier implemented in SPARK is used as

33[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4, page 22 f.
34[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.1.2, page 13,

and section 3.3.3, page 22.
35https://en.wikipedia.org/wiki/Multi-core_processor, December 21, 2017
36https://en.wikipedia.org/wiki/Multithreading_(computer_architecture), December 21, 2017
37[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.6, page 28, and

section 4.4.2, page 46.
38cf. Besprechungsnotiz November 27, 2017 - section 2, page 2
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the barrier mechanism 39. On assembly level, the barrier is realized with a spinlock using the atomic

XCHG processor swapping instruction40.

REQ-7: A multicore target processor architecture shall provide a barrier synchronization

mechanism. At least it must offer an atomic swapping instruction to support the according

spinlock implementation.

2.3 Interruption Handling

The various processor architectures and the corresponding literature use different terms (e.g. excep-

tion, interrupt, signal, event) for the temporary interruption of a running process by an interruption

cause. For this study, the term interruption is used as a generic term for all types of temporary inter-

ruptions. The terms for the different types of interruptions are then described in detail according to the

usage and the definitions in the respective topic. For example, in this chapter the interruption types are

defined as used in the Muen report.

In the literature one can find various criteria to distinguish between interruptions and hence quite a few

different categorisations of interruptions4142. For this study only the following criteria are relevant:

• internal vs. external: An interruption caused by a device outside the processor is referred to

as external while interruptions caused by the processor itself are considered as internal. For

example, a keyboard device signalling an input has to be qualified as external - in contrast,

interruptions, that occur in response to a processing error, such as referencing an invalid address

in memory, division by zero or similar error condition, have to be looked upon as internal.

• hardware vs. software: While a hardware interruption is routed to the processor via a channel

that is effectively implemented in hardware, the software interruption originates from a program

command. In the case of software interruptions, a distinction can also be made between in-

tentional and defective interruptions. Applying these criteria, a keyboard interruption reflects

a hardware interruption, a divison by zero would be a defective software interruption and the

execution of a trapping instruction could be qualified as intentional software interruption.

Nearly every processor architecture uses a different naming and separation of the components that

are involved in an interruption processing. Therefore, the following explanation of a typical device

interruption process is simplified with respect to the components (esp. the CPU) as well as to the

architecture.

39This type of barrier is described in the book The Art of Multiprocessor Programming by Maurice Herlihy and Nir Shavit
40[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.6, page 28, and

section 4.4.2.2, page 47.
41[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 300 ff.
42[18] Tanenbaum and Bos. Moderne Betriebssysteme. 2016, section 5.1.5, page 427 ff.
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Figure 2.5: simplified interruption process

(1) The starting situation is illustrated in the figure 2.5 - a process A running on top of an operating

system, both loaded into RAM, is executed by the CPU.

(2) As soon as an interruption (i.c. caused by a keyboard) occurs, the Interruption Controller informs

the Control Unit (CU) about it. The CU then stops the execution of the process A.

(3) To be able to restore the state of process A, the CU saves (on some processor architectures

automatically) the programm counter and other registers used by process A.

(4) Then, the CU checks the cause number of the interruption and retrieves the base address for

the according Interruption Service Routine (ISR) defined in the operation systems code.

(5) After that, the CU loads the instructions of the ISR

(6) and executes its code until the end of the ISR.

(7) When the execution of the ISR is finished, the CU informs the Interrupt Controller with an ac-

knowledgement about the processed interruption.

(8) Last, the CU restores the registers of the process A and continues executing the corresponding

instructions. Process A does not even realise the interruption.
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2.3.1 Programmable Interrupt Controller

Even modern processor architectures often implement only a few input lines for interruption signals and

only support a simple interruption logic. In such cases, an external device, the Programmable Interrupt

Controller (PIC), can be attached to the associated processor line(s) to first of all combine different

interrupt sources onto one CPU interruption line, but also to allow the assignment of priorities to differ-

ent kind or groups of interruption causes or to mask different types of interruptions43. A Programmable

Interrupt Controller normally features the following registers: (a) an Interruption Request Register (IRR)

that specifies the pending interruptions, b an In Service Register (ISR) that records the acknowledged

but still waiting for an End of Interrupt (EOI) interruptions and (c) an Interrupt Mask Register (IMR) that

defines which interrupts are to be ignored and not acknowledged.

The Muen SK makes use of Intel’s Advanced Programmable Interrupt Controller (APIC) that is com-

posed of two components - the Local APIC as a part of every physical CPU and the I/O-APIC as a part

of the chipset44. The most important features of this interruption architecture are 45:

• local interruption management on a per CPU basis and therefore better performance

• support for inter-processor interrupts (IPI) between Local APICs

• Local APICs provide a high-resolution timer for interval and one-off mode usage

• flexible interruption configuration on a per interruption type basis

• support for Message Signaled Interrupts (MSI) 46

• priority definition on a per interruption type basis

• interrupt and NMI window exiting feature associated with virtualization47

• I/O APIC support multiple interruption input lines

• I/O APIC redirection table to route interruptions to one or more Local APIC(s)

The exact determination of the APIC features required by the Muen SK and the therefore resulting

requisites for a target architecture are elaborated in the following sections. But in this context, it can

already be stated that:

REQ-8: A target processor architecture has to provide a mechanism to programmatically

handle interruptions.

43[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 306 ff.
44[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.4, page 9 f.
45https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller, December 21, 2017
46https://en.wikipedia.org/wiki/Message_Signaled_Interrupts, December 21, 2017
47[14] Neiger et al. “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtualization”. 2006, page 171

ff.
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2.3.2 Interrupts

In the context of the Muen SK, interrupts are defined as external hardware interruptions. As an exam-

ple, the Muen report mentions a network card that generates an interrupt whenever a data packet is

received48.

The Muen SK uses the Intel VT-x technology to inform a subject about an external interrupt. An external

interrupt request (IRQ) is routed to the in the system policy statically defined subject through the Muen

SK that provides a per subject array with up to 32 pending interrupts for delivery. To achieve this

routing mechanism, the Muen SK has to enable the I/O APIC and rely on the LAPIC feature to be

able to specify not only the physical CPU, that the subject is allocated to, but also the subject itself49.

To improve the interrupt delivery with respect to performance, the Muen SK also makes use of Intel’s

virtualization mechanism called interrupt window exiting50. Therefore, a target processor architecture

has to meet the following requirements:

REQ-9: A target processor architecture has to provide an interruption handling that guar-

antees the exclusive treatment of interrupts by the separation kernel.

Another important aspect of Intel’s x86 architecture is that it allows to enable or disable interrupts for

the VMX root mode. This is done by not setting the IF interrupt flag in the host’s FLAGS register. The

Muen SK uses this mechanism to simplify the the kernel code and to assure that the Muen SK is not

disrupted by external interrupts51. Therefore, a target processor architecture has to manifest a similar

feature:

REQ-10: A target processor architecture has to provide an enabling and disabling mech-

anism for (external) interrupts, at least for the execution of the hypervisor code.

2.3.3 Exceptions and Software Generated Interrupts

In the context of the Muen SK, exceptions are defined as defected software interruptions. This means,

that an exception is an interruption generated by the processor itself detecting an error condition dur-

ing the execution of an instruction. As an example, the division by zero is given. While exceptions

denote defected software interruptions, software generated interrupts have to be qualified as inten-

tional software interruptions52. As both interruption types are treated similarly, they are subsumed in

this section.

48[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.3, page 9.
49[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.6, page 50 f.
50[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.4, page 49.
51[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.6, page 51.
52[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.3, page 9, section

3.4.4, page 27 f., and section 4.4.7, page 51 f.
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First of all, the Muen report distinguishes between exceptions and software generated interrupts that

occur in VMX non-root mode (i.e. while executing a subject) and in VMX root mode (i.e. while the Muen

SK is executed). As a basic requirement for the Muen SK, the ability to prove the absence of runtime

errors is stated. Hence, if an exception (or even less likely a software generated interruption as well

as a non maskable interrupt) occurs during the regular execution of the Muen SK in VMX root mode, it

would indicate a serious problem in the kernel code and therefore the whole system would be halted.

In VMX non-root mode, there has to be differentiated between native and VM subjects. While VM

subjects must implement their own exception handling and hence exceptions and software generated

interrupts must not result in a subject exit, native subjects do not react on exceptions but handover the

execution to the kernel53 (cf. trap in section 2.3.4).

REQ-11: A target processor architecture must support a mechanism to enable and dis-

able exceptions and software generated interrupts resulting in an exit of the guest subject.

In the context of exceptions and software generated interrupts, also system management exceptions

(e.g. non maskable interrupts) have to be mentioned. The Muen SK makes sure that this type of

interrupts are not handled by the subject itself but result in a subject exit by all means. Therefore:

REQ-12: A target processor architecture shall provide a mechanism to force system

management exceptions to lead to an exit of a guest subject.

2.3.4 Traps

The term trap, as used by the Muen report, subsumes different kind of interruptions and virtualization

techniques that lead to a VM exit. As examples for VM exits, the documentation mentions the execution

of a privileged operation or a constrained instruction. The Muen SK uses the VT-x technology to provide

the possibility of specifying a per subject trap table in the system policy, whereby all of the VMX basic

exit reasons defined by Intel can be configured according to the subjects needs except the following,

by the Muen SK internally reserved traps54:

• external interrupt (cf. section 2.3.2)

• interrupt window (cf. section 2.3.2)

• VMCALL (cf. section 2.3.5)

• VMX preemption timer expired (cf. section 2.4)

53[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.7, page 51 f.
54[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.5, page 49 f.
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Therefore, a virtualization extension or interrupt handling mechanism for a target processor architecture

has to meet the following requirement:

REQ-13: A target processor architecture must be able to differentiate between exit rea-

sons of a guest system and to handle them as specified per subject.

2.3.5 Events

The Muen SK implements an event mechanism that is used for inter-subject signalization. This means,

that a subject is allowed to send an event to another subject as long as this has been granted by an

entry in the subject’s policy event table.

The implementation of this event mechanism is based on the VMCALL VMX instruction. Hence, when

a subject sends an event to a destination subject, it results in a trap into the Muen SK that handles

the event according to the system policy. Additionally, an optional inter-processor interrupt (IPI) can be

emitted to speed up the inter-core interrupt delivery. If this option is enabled for an interrupt event, an

inter-processor interrupt is delivered to the CPU of the destination subject. Finally, this results in the

preemption 55 of the subject, that is executed at the moment on the destination CPU, and therefore

the immediate delivery of the event. A target architecture should therefore have the ability to provide a

similar mechanism:

REQ-14: A target processor architecture should provide a technique to fast process in-

terruptions between cores.

2.4 Timers

In the context of timers, the clock generator has to be mentioned first. In a system, the clock generator

is responsible for producing a constant timing signal. This so called clock signal normally corresponds

to a frequency generated by a quarz piezo-electric oscillator 56. This signal is then used by all com-

ponents of the system to synchronize a circuit’s operation, including the timer components. In this

documentation, the term „clock“ refers only to this initial output signal. All other periodic signals, that

depend on this initial signal and that are mentioned in the context of synchronization, are termed „timer“

(even though in most literature this terms are used interchangeably).

A timer is an integrated circuit that normally signals an interruption after a configurable amount of „time“

(Programmable Interval Timer PIT 57) or after an overflow of a counter register. There exist many differ-

ent types of and definitions for timers realized in hardware according to their usage, e.g. pause function

timers, one-shot timers, periodic timers, time-slicing timers and watchdog timers. For this study, only

55https://en.wikipedia.org/wiki/Preemption_(computing), December 21, 2017
56https://en.wikipedia.org/wiki/Clock_generator, December 21, 2017
57https://en.wikipedia.org/wiki/Programmable_interval_timer, December 21, 2017
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the system timers are important: A system timer is a timer integrated into a hardware component that

is responsible for producing a periodic signal used by the whole component. Regardless of the desig-

nation and application of a timer, its functionality can be described as a device that uses a high-speed

clock input to provide a series of time or count-related interruption signals. As a single counter can

only generate short time intervals due to the high-speed frequency of the clock, a technique called

cascading can be used with some additional programmable scaling registers to multiply this short time

intervals and thereby generating longer time intervals58. An alternative to programmable scaling reg-

isters is the cascading of multiple timer components. A simple unscaled programmable timer can be

described as follows:

Figure 2.6: timer component

The most important timer used by the Muen SK is the VMX preemption timer in the context of the

statically defined scheduling mechanism for subjects running on the same core59. This timer provided

by Intel’s virtualization extension can be set to a specific value according to the time slice definition for

the corresponding subject. The subject is then automatically preempted by the processor when the

time slice defined in the scheduling plan is over. After that, the Muen SK hands over the execution to

the next subject according to the scheduling plan.

REQ-15: A target processor architecture shall provide a preemptive mechanism on a per

subject basis. At least it must provide a timer per core.

2.5 Device Handling

Basically, there are three possibilities to handle devices60. The first possibility (and least reasonable

one) is the code or software based device handling. It makes use of a polling mechanism by continu-

ously checking the status register of the desired device. The second possibility is an interrupt based

approach explained in the previous sections. The third one is called Direct Memory Access (DMA).

58[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 309.
59[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.3, page 47 f.
60[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2, page 300.
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This last technique allows attached peripheral devices to directly interact with the main memory over

a usually external hardware controller (i.e. DMA controller). The CPU only has to configure the DMA

controller at initialization time - after that the controller acts without the usage of the CPU61.

At the time of its writing, the Muen report declared the device virtualization out of scope62. But in

the past years the implementation of the Muen SK has been extended and now uses Intel’s VT-d

Virtualization Technology for Directed I/O to virtualize I/O devices through an IOMMU. The virtualization

extension VT-d simplifies the direct assignment of devices to virtual machines in two ways - first, by

providing secure direct memory access (DMA) and second, by extending device interrupt remapping

functionality. Even though a further evaluation of this topic is out of scope for this study, at least the

following requirement can be stated:

REQ-16: A target processor architecture must provide a mechanism to virtualize I/O de-

vices by completely isolating the access to devices and providing support for associated

interruption and memory features.

2.6 Floating Point

Modern processor architectures usually implement a so called Floating Point Unit (FPU), a specialized

integrated circuit used for floating point calculations. As these floating point calculations often make

use of the single instruction multiple data 63 technique, the SIMD engine has to be mentioned in this

context too. Since the Muen SK does not use either component 64, there can’t be derived any further

requirements in this topic area.

2.7 SPARK

While Ada is a general-purpose language supporting the usual features of modern programming lan-

guages including built-in support for the design-by-contract paradigm, SPARK is a specialized well-

defined subset of Ada designed for the development of high integrity software. Due to these restric-

tions of the Ada programming language, SPARK has the ability to simplify the application of formal

mathematical methods, so that the correctness of the software or other program properties can be

guaranteed with mathematics-based assurance.

At the beginning of the Muen project, the development of SPARK 2014 was still ongoing, so that the

Muen SK was initially written in SPARK 200565. Within the last years, the Muen developers have

61[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.3, page 309 ff.
62[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.1.3, page 14.
63https://en.wikipedia.org/wiki/SIMD, December 21, 2017
64cf. Besprechungsnotiz October 23, 2017, and [2] page 41
65[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, chapter 2, section 2.1.3,

page 5.
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changed the underlying programming language and are now using SPARK 2014 66. Since SPARK

is a true subset of Ada and compilers ignore the SPARK inherent annotations, every correct SPARK

program is a valid Ada program and can therefore be compiled with an existing Ada compiler such as

GNAT (part of the GNU compiler collection GCC). Hence, to be able to build the Muen SK, the following

requirement has to be fulfilled:

REQ-17: There must exist a native or cross compiler for the SPARK 2014 programming

language and the targeted processor architecture. At least, it must be possible to build

such a native or cross compiler with freely available software.

To fulfil the requirement of a small code base, the Muen SK uses the Ada Zero Footprint Runtime67.

A Zero Footprint Runtime (ZFP) is a downscaled runtime system (RTS) where only a minimum of

supporting code is required. As no unnecessary libraries are introduced into the system, this setup

is ideal for critical low level programming. Therefore, to be able to run the Muen SK on an processor

architecture other than Intel x86, a ZFP for the targeted architecture has to be available.

REQ-18: There must exist a Zero Footprint Runtime for the SPARK 2014 programming

language and the targeted processor architecture. At least, it must be possible to build

such a Zero Footprint Runtime with freely available software.

2.8 Derived Requirements

The following table summarizes the above derived requirements for a target architecture to be able to

run the Muen SK:

number requirement topic

REQ-0 The processor architecture has to support 64 bit data-

path widths, integer size and memory address widths

as well as to be able to execute 32 bit applications.

basics

REQ-1 The target processor architecture must provide a vir-

tualization extension that is capable of running a Type

I hypervisor. This requirement includes the hardware

assisted support for an additional privilege level and

instructions for a simplified switch between this addi-

tional and other privilege level.

basics

Table 2.1: requirement summary part one

66cf. section kernel, first statement in https://muen.codelabs.ch/#kernel, December 21, 2017
67[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 4.2, page 41.
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number requirement topic

REQ-2 The target processor architecture must provide a vir-

tualization extension that supports an automatic han-

dling of guest exits (i.e. traps) and entries. At least,

the target processor architecture must provide a sup-

port mechanism to completely save and load all the

relevant guest state structures.

basics

REQ-3 The target processor architecture shall provide a min-

imal set of cache management features and an auto-

matic cache clearing feature in the context of virtualiza-

tion. At least, the target processor architecture must

provide a support mechanism to clear caches manu-

ally.

memory

REQ-4 The target processor architecture has to provide a

Memory Management Unit that supports: (i) memory

virtualization on a per subject basis (one page table

per subject), (ii) definition of properties and permis-

sions per page table (read/write access, execute dis-

able, caching behaviour), (iii) checking and enforce-

ment of defined properties and permissions, (iv) dif-

ferent page sizes (i.e. large page support), but at least

a 4 KB page size.

memory

REQ-5 The target processor architecture must support hard-

ware assisted second level address translation (SLAT).

memory

REQ-6 A multicore target processor architecture has to pro-

vide a mechanism to switch off the multithreading

mechanism on a per core basis, if multithreading is

supported.

memory

REQ-7 A multicore target processor architecture shall provide

a barrier synchronization mechanism. At least it must

offer an atomic swapping instruction to support the ac-

cording spinlock implementation.

memory

REQ-8 A target processor architecture has to provide a mech-

anism to programmatically handle interruptions.

interruption handling

REQ-9 A target processor architecture has to provide an inter-

ruption handling that guarantees the exclusive treat-

ment of interrupts by the separation kernel.

interruption handling

Table 2.2: requirement summary part two
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number requirement topic

REQ-10 A target processor architecture has to provide an en-

abling and disabling mechanism for (external) inter-

rupts, at least for the execution of the hypervisor code.

interruption handling

REQ-11 A target processor architecture must support a mech-

anism to enable and disable exceptions and software

generated interrupts resulting in an exit of the guest

subject.

interruption handling

REQ-12 A target processor architecture shall provide a mecha-

nism to force system management exceptions to lead

to an exit of a guest subject.

interruption handling

REQ-13 A target processor architecture must be able to differ-

entiate between exit reasons of a guest system and to

handle them as specified per subject.

interruption handling

REQ-14 A target processor architecture should provide a tech-

nique to fast process interruptions between cores.

interruption handling

REQ-15 A target processor architecture shall provide a preemp-

tive mechanism on a per subject basis. At least it must

provide a timer per core.

timer

REQ-16 A target processor architecture must provide a mech-

anism to virtualize I/O devices by completely isolating

the access to devices and providing support for asso-

ciated interruption and memory features.

device handling

REQ-17 There must exist a native or cross compiler for the

SPARK 2014 programming language and the targeted

processor architecture. At least, it must be possible to

build such a native or cross compiler with freely avail-

able software.

SPARK

REQ-18 There must exist a Zero Footprint Runtime for the

SPARK 2014 programming language and the targeted

processor architecture. At least, it must be possible to

build such a Zero Footprint Runtime with freely avail-

able software.

SPARK

Table 2.3: requirement summary part three
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3 ARMv8 Architecture

The Advanced RISC Machines ARM architecture denotes a Reduced Instruction Set Computing RISC
1 microprocessor design from ARM Limited. Unlike the popular Intel processors, ARM Limited does not

manufacture the processors itself, but grants design licenses to semiconductor manufacturing compa-

nies. Compared to Complex Instruction Set Computing CISC 2 architectures, the ARM architecture is

characterized by a lower number of transistors and as a result lower costs, improved power consump-

tion and less heat generation. Due to the large number of manufacturers and the advantages of this

architecture, ARM processors are the most widely used processors in the embedded area. Almost all

smartphones, tablets and industrial controllers today use licensed ARM processors 3.

The success of ARM-based processors has led to a steady development of the architecture. With

the ARMv8-A architecture introduced in 2011, ARM Limited has presented the first 64-bit architecture

with a virtualization extension applicable for embedded systems. In the following years, the ARMv8-

A architecture was continuously improved with the versions ARMv8.1-A, ARMv8.2-A and ARMv8.3-A
4. These enhancements to the ARM architecture now allow software developers to port the latest

applications implemented for Intel and AMD processors to the ARM architecture as well as to meet the

requirements in the progress of the Industry 4.0 context by developing more secure software.

Due to the application field of ARM processors and the licensing strategy of ARM Limited, a large num-

ber of so called ARM-based System on Chip (SoC) was developed. An ARM-based SoC corresponds

to the combination of an ARM processor as CPU together with the GPU and other peripheral devices

on a single chip 5. The distinction between the processor and the other devices on such a chip is

essential for software development - while the architecture of the processor is defined and very well

documented by the ARM company, the accessibility of the processor to the peripherals and its control

is not predetermined by ARM. Hence, there are a variety of different SoC architectures with different

accessibility strategies: from processor controlled (Odroid C2 with amlogic S905 SoC 6) to VideoCore

controlled (Raspberry Pi 3 with Broadcom 2837 7).

This feasibility study follows a general approach to evaluate the portability of the Muen SK to the ARM

architecture. Therefore, this chapter only covers the ARM processor architecture and its capabilities.

However, some of the derived requirements from the last chapter are SoC specific and can therefore

in this context only be qualified as IMPLEMENTATION DEFINED. In the next chapter 4, the Raspberry

Pi 3 as the target hardware platform of this study is examined in more detail.

1cf. https://en.wikipedia.org/wiki/Reduced_instruction_set_computer, December 21, 2017
2cf. https://en.wikipedia.org/wiki/Complex_instruction_set_computer, December 21, 2017
3cf. https://www.arm.com and https://en.wikipedia.org/wiki/ARM_architecture, December 21, 2017
4cf. https://developer.arm.com/products/architecture/a-profile, December 21, 2017
5cf. https://en.wikipedia.org/wiki/System_on_a_chip, December 21, 2017
6http://www.hardkernel.com/main/products, December 21, 2017
7https://www.raspberrypi.org/products/raspberry-pi-3-model-b, December 21, 2017
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3.1 Code Examples

After a thorough review of all the available options to run and verify ARMv8 assembly, it was decided

to use the following configuration to test the code snippets mentioned in this chapter:

identifier description link

Method installation as Virtual Machine VM Ware

Host Operating System Debian 64-bit 9.2 Debian Download

Toolchain (Cross) Linaro aarch64-elf cross compiler Linaro Release

IDE DS-5 Community Edition Linux64 28rel0 DS-5 IDE

Debugger DS-5 Community Edition Debugger (inte-

grated into the DS-5 IDE)

DS-5 Debugger

Simulation ARMv8-A Foundation Model (integrated

into DS-5 IDE)

Fast Models

Details on the installation and configuration of the corresponding tools can be found in the respective

evaluation case documentation. However, it should be noted that the version of the DS-5 IDE has

changed during this project - therefore, the installation process slightly changed compared to this doc-

uments. Due to the limitations of the Community Edition of the DS-5 IDE, the code snippets were tested

in a minimal environment derived from the official startup example code and only on one processor.

3.1.1 Code Compilation

Principally, three useful compilers are available for compiling assembly code, i.e. the FASMARM As-

sembler 8, the ARM Compiler 6 9 and the assembler of the GCC GNU Compiler Collection 10.

The FASMARM v1.42 assembler is a free and Open Source cross assembler add-on for the FASM flat

assembler. At the beginning of this project, this assembler was used exclusively because it is easy

to install, to configure and to use. However, the main disadvantage of the assembler is that it does

not support the 64-bit ELF DWARF debugging format 11 and therefore the assembled code cannot be

executed on the Fast Model Simulation Debugger provided by the ARM DS-5 Community Edition.

The ARM Compiler 6 is the latest C/C++ Compiler toolchain provided by ARM Limited. It can be

used as a standalone tool but it also supports the integration of the Compiler toolchain into the DS-5

Development Studio Professional and Ultimate Edition. As this compiler is not freely available, it was

not tested during this project.

8cf. https://arm.flatassembler.net, December 21, 2017
9cf. https://developer.arm.com/products/software-development-tools/compilers/arm-compiler, December 21, 2017

10cf. https://gcc.gnu.org, December 21, 2017
11ReadMe section 5, first paragraph - „... For 64-bit code only the binary format is currently supported. ELF64 and PE64

formats have not yet been updated.“; cf. https://arm.flatassembler.net/ReadMe.txt, December 21, 2017
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The third compiler tested for compiling assembly code is the compiler of the GCC Gnu Compiler Collec-

tion. The Gnu Compiler Collection is a freely available compiler suit for the programming languages C,

C++, Objective-C, Fortran, Ada and Go published under the Gnu Public License GPL. As part of the C

compiler suite, an assembler for the ARMv8 AArch64 architecture is delivered too. The advantages and

therefore the decisive reason to work with this compiler are the supported languages (including the Ada

GNAT toolchain), the excellent documentation, the ability to generate ARM ADS AXD 64-bit compatible

formats for code simulation on the ARM Fast Model and the large number of existing cross compiler

binaries. The preferred cross compiler for this project is the Linaro AArch64 ELF cross compiler 12.

3.1.2 Code Execution and Debugging

There are basically two possibilities available for an informative debugging: on the one hand, one can

debug the code over the JTAG interface directly on the target hardware and, on the other hand, the

debugger integrated in the DS-5 IDE on a simulated ARMv8 hardware model, the so called Foundation

Model, can be used.

To be able to debug the code under consideration directly on the target platform, a JTAG hardware

adapter is needed. The JTAG setup was tested with a Segger J-Link Edu Version 10.1 adapter 13 and

the Raspberry Pi 3. Detailed instructions for such a setup can be found in the corresponding Develop-

ment Environment Setup evaluation case for the programming language C/C++. The disadvantages of

a JTAG debugging in the context of this chapter are the complicated and time consuming wiring as well

as the exclusive view of the processor as one always has to test the peculiarities of the hardware too.

Figure 3.1: JTAG adapter with Raspberry Pi 3

12https://www.linaro.org, December 21, 2017
13https://www.segger.com/products/debug-probes/j-link/models/j-link-edu, December 21, 2017
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The second alternative using the debugger integrated into the DS-5 IDE was really persuasive. Not

only the good documentation provided by ARM but also the clear, informative presentation in the IDE

as well as the easy handling of the tools convinced to choose this setup. The only disadvantages are

the limitations for the freely available community edition - the code can only be debugged on one core,

the implementation defined aspects of a SoC cannot be emulated and some restrictions for peripheral

devices have to be accepted 14.

Figure 3.2: DS-5 Community Edition restrictions

A first good insight into the ARM developer tools can be gained in the videos published on Youtube 15.

In addition to the standard project view (cf. figure 3.3), the debugger view (cf. figure 3.4) is automatically

presented during debugging. In the upper left-hand window one can find the debug controls, that show

the limitation to only one core. The command window in the middle of the upper half shows the current

exception levels and executed commands including line numbers. The most interesting tab „Registers“

in the upper right window shows the general purpose and other registers whereby the currently used

registers are shaded in yellow. In addition to the executed code in the lower left corner, the window on

the right-hand side contains information about the memory and the stack(s), if defined.

An important note in this context: In order to be able to execute self-written code in the DS-5 debugger,

the compiler command line option

aarch64 -elf -gcc --specs=aem -ve.specs ...

has to be added to load the specification file for the AArch64 baremetal newlib and libgloss appropriate

for the foundation model. A good tutorial can be found on the ARM developer page for the DS-5

Community Edition on the tab page „Resources“ 16.

14https://developer.arm.com/products/software-development-tools/ds-5-development-studio, December 21, 2017
15https://www.youtube.com/watch?v=_tXWrHD8shs, December 21, 2017
16https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/getting-

started-with-ds-5-ce-and-armv8-foundation-platform, December 21, 2017
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Figure 3.3: DS-5 Community Edition project view

Figure 3.4: DS-5 Community Edition debug view

Last but not least, ARM Limited provides a fully functional code example for a single-core AArch64

Startup sequence with basic vectors, MMU, caches and GICv3 (cf. section 3.5.1) initialization based on

the GCC C/C++ Compiler suite including all the necessary page tables and memory layout definitions.

This code example is provided with the installation of the DS-5 Community Edition 17.

17https://developer.arm.com/products/.../community-edition, December 21, 2017
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3.2 Fundamentals

3.2.1 Exception Levels

Instead of rings used by the Intel architecture (cf. section 2.1), the ARMv8-A architecture refers to

privilege levels as Exception Levels. It is important to note, that, unlike on Intel x86 architecture, code

execution at a higher Exception Level (i. e. an Exception Level ELn with a larger value for n) has more

privileges than code execution at a lower one18. With these Exception Levels, the ARMv8 architecture

provides a logical separation for software execution privileges. Typically, the Exception Levels can be

assigned to the following software examples:

• EL0 - normal user applications

• EL1 - operating system kernel (usually described as privileged level execution)

• EL2 - hypervisor software

• EL3 - low-level firmware and secure monitor 19

In addition to the horizontal subdivision into Exception Levels, the ARMv8-A architecture also physi-

cally partitions the upper three Exception Levels into the Normal World and the Secure World. With this

separation, an ARMv8-A processor supports a secure and a non-secure state and allows an operating

system to run in parallel with a so called trusted operating system 20. A trusted OS denotes the oper-

ating system running in the Secure World and is responsible to provide secure services to the Normal

World. Further details on the TrustedZone technology can be found on the official ARM homepage 21.

The following diagram shows the subdivisions as well as the partitions for the AArch64 execution state:

Figure 3.5: ARMv8-A Exception Levels in AArch64

18[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-1.
19ARM Trusted Firmware that takes care of the switching between the non-secure and the secure worlds. The code is

available as open source on Github, cf. https://github.com/ARM-software/arm-trusted-firmware, December 21, 2017
20The interaction (e.g. access rights) between the secure and non-secure world can be defined using the system monitor

and corresponding registers (e.g. for physical address spaces in chapter 12, section 12.9 in [8])
21https://www.deepl.com/translator, December 21, 2017
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The only differences between the Exception Levels in AArch64 and the AArch32 execution state are,

that in the AArch32 execution state there does not exist an Exception Level 2 in the Secure World

and that the privilege levels defined for the ARMv7 architecture are mapped to the Exception Levels

accordingly. But as the Muen SK needs to be executed in a 64-bit environment, the details of the

Exception Level organisation in AArch32 execution state can be omitted.

Even though, the details for changing the Exception Level depend on the execution state of the pro-

cessor, it can be generally stated that such a change can only take place during the occurrence of an

exception (cf. section 3.5), the returning from an exception (i.e. the ERET instruction), a supervisor call

or hypervisor call. While changing the Exception Level in AArch32 execution state remains the same

as with the ARMv7 architecture22, for the AArch64 execution state the following rules apply2324:

(i) Rule 1: An exception causes a change of program flow by executing an exception handler

function from a predefined vector. Exceptions flow from lower Exception Level to higher ones.

That means, that an exception cannot be taken to a lower Exception Level (e.g. EL2 to EL1).

(ii) Rule 2: Exception Handling at EL0 is not possible, i.e. exceptions must be handled at a higher

Exception Level than EL0.

(iii) Rule 3: To end an exception handling and return to the previous Exception Level is performed

by executing the ERET.

(iv) Rule 4: Returning from an exception handler cannot move to higher Exception Levels. There-

fore, returning from an exception can stay at the same Exception Level or enter a lower one.

(v) Rule 5: The security state changes according to the rules in the section D1.4 of the ARM

Architecture Reference Manual [7].

As a practical example, the procedure for changing Exception Level from EL3 to EL1 by using the ERET

instruction (returning from an exception) is described in this paragraph 25. According to the rules men-

tioned above, the only possibility to switch to a lower Exception Level is to execute the ERET instruction.

When performing such an exception return (for this example at EL3), the processor restores the state

using the system registers ELR_EL3 (i.e. the address to return to) and SPSR_EL3 (i.e. the state to be

restored including the targeted Exception Level). These two registers are writeable, thus allowing the

desired entry point and state (the Exception Level EL1 for this practical example) to be programmed

manually.

22[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-5 ff.
23[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-7 f.
24[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.1,

page D1-1776.
25Another example for changing the Exception Level from EL3 to EL2 hypervisor mode can be found on the ARM developer

pages in this discussion, December 21, 2017
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(i) Step 1: In this first step, the entry point, i.e. the start address of the code to be executed at EL1,

has to be loaded into a general purpose register.

(ii) Step 2: The address from step (i) is then stored in the Exception Link Register ELR_ELn of the

current Exception Level (i.c. EL3).

(iii) Step 3: After that, the Program Status Register at EL3 SPSR_EL3 has to be set accordingly26. In

the context of the ARMv8 startup code example it has to be noticed, that only a dummy return

state for EL1 is loaded. Note, that usually the SPSR_ELn register holds the value of the Programm

State PSTATE before taking the exception27.

(iv) Step 4: Finally, the Exception Return instruction ERET has to be executed, using the two registers

set in the previous steps for the current Exception Level. When executed, the processor core

restores the PSTATE from the SPSR_EL3 register (in this case the Execution Level is set to EL1) and

branches to the address held in the ELR_EL3 register28.

The example can be reproduced with the official startup code of ARM Limited (line 261 to 270) with

the debugger included in the DS-5 Community Edition. The result in the debugger view can be found

in figure 3.6.

Figure 3.6: ARMv8-A Exception Level Switch debugger view

26[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C5.2.20,

page C5-385.
27[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.7,

page D1-1791.
28[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C6.2.71,

page C6-622.
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3.2.2 Execution States

The ARMv8 architecture defines two Execution States, i.e. the AArch64 Execution State using 64-

bit wide and the AArch32 Execution State using 32-bit wide general purpose registers. While the

instruction set and the privilege level mapping in the AArch32 Execution State stays the same as in

the ARMv7 architecture, the AArch64 Execution State is organised as shown in figure 3.5 and has a

different instruction set A64.

Changing between Execution States on the same level is not possible. That means, the system has to

first switch to the higher exception level as shown in the previous section, then perform the requested

change of the upper exception level and switch back to the original exception level. Of course, such

a change between the Execution States has to meet some rules - the most important one is, that

changing to AArch64 Execution State requires switching from a lower exception level to a higher one.

The following figure 3.7 summarises this rules stated in the ARM Programmer’s Guide29:

Figure 3.7: ARMv8-A Execution States rules

An example of a correct Execution State change would be an application running in a 32-bit Execution

State at EL0 on a 64-bit Operating System executing at EL1 and a second application, that needs

to be executed in a 64-bit execution state at EL0, on the same Operating System. In such a case,

the 32-bit application can change to the OS exception level in AArch64 execution state by calling the

Supervisor Call instruction or by receiving an interrupt. Then the OS can change the execution state of

the exception level EL0 to AArch64 and switch back to EL0.

The two most important limitations in the context of Execution States are that it is not possible to check

the execution state of the actual code running on a specific exception level but only for higher exception

levels 30 and that code running at EL3 cannot take an exception to a higher exception level. Therefore,

code executing at EL3 cannot change its execution state, except by going through a reset31.

29[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-8 f.
30cf. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16146.html, December 21, 2017
31[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-9.
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3.2.3 Startup and Reset

The ARM documentation refers to the startup, i.e. powering on the CPU, as cold reset32. A processor

based on the ARMv8 architecture always starts execution at the highest exception level, provided that

the SoC manufacturer does not apply any additional firmware code to the boot process. In contrast, the

Execution State, in which a processor is running immediately after powering it up, is IMPLEMENTATION

DEFINED 33. This means that the SoC manufacturer defines this explicitly with a hardware based signal

being either logic zero or logic one as an input to the corresponding AA64nAA32 pin of the processor .

As already mentioned, code executing at EL3 can only change its execution state by going through

a so called warm reset34. Every core has its own reset input and executes the according exception

immediately after their reset. In addition, this exception cannot be masked35. While the execution state

after a warm reset is software defined by setting the AA64 bit in the RMR_EL3 register, the reset vector for

the highest Exception Level (i.e. the location of the instruction that the ARM processor jumps to when

an exception is raised) is again IMPLEMENTATION DEFINED36.

Further details on resetting an ARMv8 processor can be found in the ARM Architecture Reference

Manual37 as well as in the processors Technical Reference Manuals38.

The first requirement (cf. REQ-0 in section 2) for porting the Muen SK is that the target processor

architecture supports a 64-bit execution state. According to the previously explained mechanism, the

following qualification can be stated:

REQ-0 - IMPLEMENTATION DEFINED: The ARMv8 architecture principally supports a

64-bit execution mode. But as the initial execution state as well as the reset vector are

defined by the manufacturer of the specific SoC, the fulfilment of this requirement can

only be qualified on the basis of the target hardware.

32[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9,

page D1-1795.
33https://community.arm.com/processors/f/discussions/2874/aarch32-in-armv8 and

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16239.html, December 21, 2017
34[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9,

page D1-1795.
35[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, page 10-2.
36[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D7.2.85,

page D1-2448.
37[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9.2,

page D1-1797 f., provides for example a code sequence to request a warm reset, followed by a pseudocode description

in section D1.9.3.
38[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 2, section 2.3.3, page 2-14, and

chapter 4, section 4.3.76, page 4-114 as well as appendix A.3.
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3.3 Virtualization Basics

Unlike Intel’s VT technology, the ARMv8-A Virtualization Extension consists of a number of additional

extensions to existing ARM architecture technologies. Accordingly, only one of the ARM documents

mentioned above contains a short section dedicated to virtualization39. However, the ARM Developer

Community provides a summarising document on virtualization40.

Two of the main features of the ARMv8-A Virtualization Extension are a dedicated Exception Level

EL2 for the hypervisor code (cf. section 3.2.1), support for trapping exceptions that change the core

context or state and an additional exception type generated by the Hypervisor Call instruction HVC with

a 16-bit payload targeting the exception level EL241. These features are explicitly intended for the

implementation of a type I hypervisor42.

REQ-1 - FULFILLED: The ARMv8-A architecture explicitly provides the demanded mech-

anisms to run a type I hypervisor.

With respect to the second requirement of the Muen SK in the area of virtualization (cf. section 2.1),

it can in advance be stated that the ARM virtualization technology does not support any automatic

storing or loading of the guest’s state. On the contrary, the hypervisor code has to load both its and

the guest’s context completely into memory or from memory respectively when performing a context

switch. At least, the ARMv8 architecture supports a performance optimized possibility for handling the

corresponding registers with the Store and Load Pair instructions43. Depending on the guest system,

the hypervisor and the specific processor type (e.g. ARMv8 Cortex-A53) as well as the current exe-

cution state and the exception level, the following registers could belong to the context and have to be

treated accordingly:

• System Registers: This category of registers includes different counter, physical timer, MMU,

second level address translation and cache registers as well as the Saved Program Status Reg-

ister SPSR_ELn. An overview can be found in the ARM Programmer’s Guide44.

• Special Purpose Registers: The two most important registers of this category are the Stack

Pointer Register SP_ELn and the special exception return registers. A list of any registers to be

stored can be found in the ARM Architecture Reference Manuel45.

39[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.5,

page D1-1782.
40[6] n.a. AArch64 Virtualization. 2017.
41[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, page 10-2.
42[6] n.a. AArch64 Virtualization. 2017, chapter 1, page 4.
43[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C3.2.2

f., page C3-161 ff.
44[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.3, page 4-7 ff.
45[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C5.2,

page C5-336 ff.
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• General Purpose Registers: Even though there exist some guidelines for the usage of the gen-

eral purpose registers, the hypervisor has to store and load all these register to ensure a com-

plete handling of the guest’s context. As the Muen SK also supports Virtual Machines executing

in a 32-bit environment, it is important to store and load the banked registers too. Banked regis-

ters are special purpose registers for exceptions in the AArch32 execution state that are stored

in the upper general purpose registers to reduce latency for exception handling46.

• Floating Point and NEON Registers: If enabled, the SIMD and floating point registers have to be

stored and loaded as well47.

• General Interrupt Registers: If supported by the SoC and enabled by the hypervisor, the ac-

cording GICD registers have to be considered. Therefore, all pending and active states of private

interrupts on the core have to be handled too.

• Generic and Virtual Timer Registers: In the case of guests using virtual timers, the timer reg-

isters must be saved and restored so that they generate interrupts at the expected intervals.

The physical memory, that is assigned to a guest, does not have to be handled. By using more than

one stage of memory translation, the physical memory that the guest uses stays private and distinct

from any others.

To get an impression of how the storing and loading of general purpose registers and system registers

could look like, the following code snippet presents two examples:

; s t o r i n g and load ing the two general purpose r e g i s t e r s x0 and x1 i n AArch64 execut ion s ta te
s tp x0 , x1 , [ memory_address ]
. . .
ldp x0 , x1 , [ memory_address ]

; s t o r i n g and load ing system r e g i s t e r s f o r except ion Level 1
mrs x2 , ESR_EL1
mrs x3 , ELR_EL1
stp x2 , x3 , [ memory_address ]
. . .
ldp x02 x3 , [ memory_address ]
msr ESR_EL1, x2
msr ELR_EL1 , x3

Taking the above explanations into account, the following can be stated with respect to the requirement

demanded by Muen SK:

REQ-2 - FULFILLED: Even though a context switch has to be implemented manually in

the hypervisor code, it is possible to save and restore all the required registers of a guests

context. Therefore, this requirement is qualified as fulfilled by the ARMv8-A architecture.
46[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.5.1, page 4-13 ff.
47[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.6, page 4-17.
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3.4 Memory

Normally, processors implementing the ARMv8-A architecture have two or more levels of cache. These

are usually organized in such a way that one Level 1 cache per core with different areas for instructions

and data is available, one unified level 2 cache is shared by two or more cores and an external level 3

cache is used by the entire cluster. The Main Memory can be accessed over the internal bus48.

Figure 3.8: ARMv8-A standard memory organisation

3.4.1 Caches

The concrete implementation of the caching structures is not defined in more detail by the ARMv8-A

architecture. The only requirement in this context is that the level 1 cache must always be designed as

a set of associative caches. This type of cache divides the corresponding memory area into a certain

number of equally-sized pieces, called ways. The number of such ways depends on the specific pro-

cessor architecture - e.g. the ARMv8 Cortex-A53 uses a 2-way set associative instruction cache. Also

not defined for the Level 1 cache is the cache addressing mode, i. e. whether a virtual address is first

converted into a physical address and then a cash lookup is performed (Physically Indexed Physically

Tagged PIPT) or whether the virtual address and the cache lookup are performed in parallel and finally

the correctness of the found cache entry is checked against the physical address (Virtually Indexed

Physically Tagged VIPT) 49. To continue the example of the last paragraph, the Cortex-A53 MPCore

instruction cache (level 1) uses Virtually Indexed Physically Tagged (VIPT) addressing mode50.

48[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 11, page 11-1 ff.
49https://www.youtube.com/watch?v=3sX5obQCHNA, December 21, 2017
50[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 2, section 2.1.1, page 2-2.
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The organisation and structure of the remaining cache levels is left to the manufacturers of the re-

spective SoC. However, the ARMv8-A architecture establishes some rules in the form of policies and

specifies a minimum set of cache maintenance functions for the level 1 cache:

• Cache Policies: There exist two categories of policies for caching structures, the allocation

and the update policies. The allocation policies are Write Allocation (WA), i.e. a cache line is

allocated on a write miss, and Read Allocation (RA), i.e. a cache line is allocated on a read

miss. The update policies consist of the Write Back (WB), i.e. a write updates the cache only

and marks the cache line as dirty, and the Write Trough (WT), i.e. a write updates both the

cache and the external memory system. Additionally, the ARMv8-A architecture provides some

preload hint instruction. If a cache structure supports one of this features is IMPLEMENTATION

DEFINED by the manufacturer. But in contrast to other implementation defined aspects of the

caches, the support of this features must be set in the Cache Size ID Register of the processor51.

• Cache Maintenance: The ARMv8-A architecture demands three different ways to clean or inval-

idate the level 1 cache - (a) invalidation of a cache or cache line, i.e. to clear it of data by clearing

the valid bit; (b) cleaning a cache or cache line, i.e. writing the contents of cache lines, that are

marked as dirty, out to the next level of cache or to main memory and clearing the dirty bits in

the cache line; (c) zeroing, i.e. zero a block of memory within the cache (only for data cache). All

three operations must either be applicable to the entire cache (mandatory for instruction cache

only) or can be applied based on a virtual address, a set index or a way number. In addition

to a list of all operations, the ARM Programmer’s Guide also contains some code examples for

cache handling52. It should be noted that after the corresponding cache operations, a data or

instruction synchronisation barrier always has to be called to apply the cache operations that

are otherwise executed in any relative order.

According to the explanations above and compared to Intel’s x86 cache management, the following

qualification can be stated:

REQ-3 - FULFILLED: Since the cache maintenance of the Intel architecture seems to be

quite similar to the one of the ARMv8-A architecture and in particular a cache invalidation

can explicitly be performed, this requirement has to be seen as fulfilled by the ARMv8-A

architecture.

51[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 4, section 4.3.22, page 4-42 f.
52[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 11, section 11.5, page 11-13 ff.

studentresearchstudy.pdf version: 1.0

42

date: December 21, 2017



Student Research Project

Muen on ARM - an Evaluation

3.4.2 Memory Management

The ARMv8-A architecture provides one Memory Management Unit (MMU) per core. In addition to

the transparent translation of virtual addresses, the MMU also controls and enforces memory access

permissions, memory ordering and cache policies for each memory region. Every Exception Level EL3

to EL1 has its own virtual address space53.

The official startup code of ARM Limited also provides some code for setting up the MMU and the

translation tables. In the DS-5 debugger, the code can either be traced step by step or the MMU setup

result can be viewed directly in the debugger’s MMU view. For the second alternative, the debugger

settings must first be adjusted in order to be able to start debugging directly in the main method. To do

so, the debugger must be switched to debug from symbol main in the Debug Configurations. As soon

as the debugger stops at the corresponding breakpoint, the MMU view can be opened with Windows

→ Show View→ MMU. This view contains a top-level view of the virtual memory layout (cf. figure 3.9)

as well as the associated translation tables (cf. figure 3.10).

Figure 3.9: DS-5 Debugger MMU memory map

As already mentioned, the support for cache policies is implementation defined. If a SoC provides this

feature the according attributes can be set in the translation table entries as defined in the Memory

Attribute Indirection Register MAIR. In contrast to caching, the access permissions controlled through

the translation table entries are enforced by the MMU. The access permissions can therefore be set

separately on a per exception level basis. The ARMv8-A architecture defines three different types

of access permissions - readable, writeable and executable. All possible combinations for a specific

53[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, page 12-1.
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exception level are listed in the ARMv8 Programmer’s Guide54 and the details on the registers, that

have to be set accordingly, can be found in the ARMv8 Architecture Reference Manual55.

Figure 3.10: DS-5 Debugger MMU translation tables

The ARMv8-A architecture supports two different translation table formats for the AArch32 execution

state, i.e. a long descriptor format with Large Physical Address Extension (LPAE) and a short descriptor

format. In the AArch64 execution state, however, only the long descriptor format is available, that

allows addressing with up to 48-bits. The remaining bits 63:48 of the 64-bit virtual address are used

for selecting one of two registers containing the base address of the translation table and optionally

the upper 8-bits can be used for tagging the virtual address 56. The ARMv8-A architecture supports

up to three levels of translation tables with granule sizes of 4KB, 16KB and 64KB. It is implementation

defined, which of the three sizes actually are supported by a processor. However, processors of the

Cortex-A53 series must support all three formats. The addressable memory areas and sizes resulting

from the different combinations of page size and translation level can be found in the list provided by

the ARMv8 Programmer’s Guide57.

The Translation Lookaside Buffer (TLB) is used as a cache of recently accessed page translations

(cf. section 2.2.2). However, a ARMv8-A TLB can not only store and look up physical and virtual

addresses, but is also able to handle attributes such as memory types, cache policies and access

54[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.7, page 12-23 f.
55[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, e.g. executable regions at

EL0 and EL1 in chapter D, section D7.2.88, page D7-2456 ff.
56The ARMv8-A architecture does not specify or mandate a specific use case for tagged addressing. A use case example

can be found in chapter 12, section 12.5.1, page 12-18, of the ARMv8-A Programmer’s Guide [8]
57[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.4, page 12-14 ff.
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rights. In addition and in the context of virtualization, the TLB also stores the Address Space ID (ASID)

and the Virtual Machine ID (VMID). Enabling and disabling as well as a minimal TLB maintenance are

also supported. This means that TLB entries can be invalidated using the VMID, the virtual address or

a specific exception level. The ARMv8 Programmer’s Guide provides some code examples for the TLB

maintenance58 and details for the ARMv8-A processor in the Technical Reference Manual59.

According to the above explanations, the requirements in the context of memory management stated

by the Muen SK can be judged as follows:

REQ-4 - FULFILLED: The ARMv8 architecture provides a Memory Management Unit per

core with the following features:

(i) With the possibilities of setting up translation tables on a per exception level ba-

sis and defining the according base addresses in different registers, the ARMv8

architecture meets this requirement.

(ii) As the ARMv8 architecture provides access permissions controlled through the

translation table entries, this requirement can also be rated as fulfilled.

(iii) The MMU provided with the ARMv8 architecture has to enforce the access permis-

sions and hence must also be able to check them. This requirement can therefore

be qualified as fulfilled.

(iv) Even though the supported page sizes are implementation defined by the processor

specification, all of the ARMv8-A processor series support at least the 4KB sizes.

Therefore, this requirement is met too.

3.4.3 Advanced Memory Virtualization

To be able to run complex virtual machines, the Muen SK relies on the Second Level address translation

provided by Intel’s EPT technology. The ARMv8-A Virtualization Extension explicitly provides a similar

mechanism for nested page tables to isolate the guest operating systems60.

Using the ARMv8 Virtualization Extension, the hypervisor is responsible for both its own memory

management and that of the guest OS. In a first step, the MMU of the exception level EL2 with the

corresponding hypervisor vector tables has to be configured to translate the virtual addresses of the

hypervisor correctly. In a second step, the hypervisor must set up and manage the second level ad-

dress translation mechanism for each virtual machine by enabling the ARMv8-A SLAT mechanism and

setting up the corresponding translation tables61. A correctly applied SLAT then translates the interme-

58[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.1, page 12-5.
599, e.g. chapter 4, section 4.2.6, page 4-7 f.
60[6] n.a. AArch64 Virtualization. 2017, chapter 1, page 5.
61[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.6, page 12-20.
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diate physical memory addresses of the VM to physical memory addresses. The exception handling of

aborts during SLAT address translations has to be done by the hypervisor on exception level EL2.

Figure 3.11: ARMv8-A Second Level Address Translation

Code examples for enabling the ARMv8 Second Level Address Translation can be found in the AArch64

Virtualization documentation provided by ARM Limited62. Additionally, two practical examples of the

usage of nested page tables in the context of a separation kernel can be found in the Phidias hypervisor

code 63 written by Jan Nordholz64 and the HASPOC source code 65 by Vinnova 66. Therefore, the

following can be stated:

REQ-5 - FULFILLED: The ARMv8-A architecture provides a Second Level Address Trans-

lation mechanism and hence meets this requirement.

3.4.4 Multicore Environment

Neither the ARMv8 Cortex-A57 nor Cortex-A53 are Simultaneous Multithreading (SMT) microarchitec-

tures, so at any time there is only one thread executing on one core. As there is not any multithreading

support for all currently used processors of the ARMv8-A architecture, the following requirement is

always fulfilled.

REQ-6 - FULFILLED: fulfilled per definition

To synchronise the execution in multicore environment, the Muen SK implements a barrier realized with

a spinlock using the atomic XCHG processor swapping instruction. The ARMv8-A architecture provides

62[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.1, page 7 f.
63http://phidias-hypervisor.de/repos/core.git, December 21, 2017
64[15] Nordholz. Design and Provability of a Statically Configurable Hypervisor. 2017, chapter 4, section 4.5, page 30.
65https://haspoc.sics.se/source.html, December 21, 2017
66https://www.vinnova.se/en, December 21, 2017
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some synchronisation primitives that can be used to implement such a barrier67. As an example, the

Phidias hypervisor implements a spinlock in its assembler file lock.S 68.

REQ-7 - FULFILLED: The ARMv8 architecture provides different synchronisation primi-

tives to fulfil this requirement.

3.5 Exception Handling

As already mentioned in the last chapter 2, the various processor architectures and the corresponding

literature use different terms (e. g. exception, interrupt, signal, event) for the temporary interruption of

a running process by an interruption cause. In the ARM terminology, such an interruption is referred

to as an exception. The ARM documentation defines an exception as a condition or system event

that requires some action by privileged software (i.e. an exception handler) to ensure the continuous

functioning of the system and differentiates between the following four types of exceptions - interrupts,

aborts, resets and exception generating instructions.

The exception handling is about the same for all types of exceptions. As soon as an event occurs that

causes an exception, the processor hardware automatically performs the following actions:

(i) Update Processor State: The processor automatically stores the processor state PSTATE into the

System Processor State Register SPSR_ELn of the exception level where the exception is taken.

That means - if an exception occurs at EL0 it is taken to EL1 (as long as there is not any

hypervisor at EL2 and the exception handling is set to be done by the next higher exception

level) and therefore the processor state would be stored to SPSR_EL1.

(ii) Store Return Address: In a second step, the processor stores the return address to be used

at the end of the exception into the register ELR_ELn of the exception level (again) where the

exception is taken.

(iii) Exception Syndrome: After storing the return address, the processor writes all the information

needed to allow the exception handler to determine the reason for the exception to the so called

Exception Syndrome Register ESR_ELn. Note, that this register is updated only for synchronous

and SError exceptions - status informations on (external) interrupts (i.e. IRQ or FIQ, cf. section

3.5.1) have to be generated and handled by an external interrupt controller (preferable a GIC, cf.

section 3.5.6).

(iv) Exception Handler: The next action, that the processor performs, is branching to a vector table

that contains entries for each exception type. Each exception level has its own exception vector

table containing up to 16 instructions in AArch64 execution level to handle and eventually branch

67[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter B, section B2.9,

page B2-121.
68http://phidias-hypervisor.de/repos/core.git, December 21, 2017
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to a more sophisticated exception handler. A detailed description of such an exception table

used in AArch64 execution state can be found in the ARMv8 Programmer’s Guide69. Warning:

even though the described registers are automatically updated, they are not automatically stored

to memory when the exception level is changed within the exception handler. A change of the

exception level has to be implemented manually, as described in section 3.3.

(v) Returning and Restoring: As soon as the exception handler is done and calls the ERET instruc-

tion, the processor restores the processor state of the application, in which the exception oc-

curred, according to the state values stored in the SPSR_ELn register. After completion, the appli-

cation continues its normal program flow at the location stored in ELR_ELn.

The following section describes the registers used to handle exceptions. In addition, the ARMv8-A

Virtualization Extension provides a separate register HCR_EL2 that allows a hypervisor to handle all ex-

ceptions by routing or trapping them all to the exception level EL2. A detailed view of this register with

explanations to the settable bit positions can be found in the ARM AArch64 Virtualization documenta-

tion70 as well as in the ARM Technical Reference Manual71.

Another feature in the context of virtualization provided by the ARMv8-A architecture are virtual ex-

ceptions. If the hypervisor is given full responsibility for handling exceptions, it can forward virtual

exceptions to its guest systems. The ARMv8-A architecture supports the three exception types: Vir-

tual SError, Virtual IRQ and Virtual FIQ. Further information can be found in the AArch64 Virtualzation

documentation72.

Taking into account the explanation on exception handling and, in particular, the features of the ARM

Virtualization Extension, it can be stated:

REQ-9 - FULFILLED: The ARMv8-A Virtualization Extension explicitly provides interrup-

tion handling that guarantees the exclusive treatment of interrupts by the hypervisor.

Therefore, this requirement is fulfilled.

In this context, it is also worth mentioning that the ARMv8-A architecture automatically masks all exter-

nal interrupts after an exception is taken to an upper exception level. However, the exception handler

can explicitly allow nested exceptions. The ARM Programmer’s Guide contains some more details

including a code example73.

69[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.4, page 10-12.
70[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.4, page 9 f.
71[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D7.2.34,

page D7-2302.
72[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.6, page 10 f.
73[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.5, page 10-14.
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3.5.1 Interrupts

The ARMv8 architecture refers to external, asynchronous interruptions as interrupts and defines two

different types - the interrupt request IRQ and the fast interrupt request FIQ. An FIQ is just a higher

priority interrupt request that is handled „faster“ by disabling IRQ and other FIQ handlers during its

exception handling 74. Both interrupt types are physical signals to the core that are usually connected to

an external interrupt controller. Since all asynchronous exceptions can principally be masked, also IRQ

and FIQ can be handled accordingly by setting the DAIF exception mask bits in the SPSR_ELn register75.

However, a General Interrupt Controller GIC is required for further control of interrupts (cf. section

3.5.6).

As the ARMv8-A architecture provides an exception handling register on a per exception level basis

(including EL2 for running the hypervisor), the according requirement can be qualified as follows:

REQ-10 - FULFILLED: The ARMv8-A architecture provides an enabling and disabling

mechanism for asynchronous, external interrupts for every exception level and therefore

fulfils this requirement.

3.5.2 SErrors

Another asynchronous exception type is the System Error (SError). This type of exception can have

a number of possible causes depending on the SoC and the processor implementation, because in

all of the Cortex-A5x processor series there is a separate physical signal to the core specified for the

SError. The most common cause for an SError are asynchronous data aborts76. An example would

be a mistake in a translation table that marks a ROM as read/write. If the corresponding memory is

also marked as write-back cacheable, an attempt to write to the address region would initially go into

the cache. At some point later the cache line(s) will get evicted, trigger a write-back of the dirty data

and the memory system returns a fault (write to read-only slave), which is classed as an asynchronous

SError. As already mentioned, all asynchronous exceptions can be masked and the same applies for

the SError (cf. section 3.5.1).

3.5.3 Aborts

In the ARMv8 terminology, an abort is a synchronous exception generated either on a failed instruction

fetch (instruction aborts) or a failed data access (data aborts). As synchronous exceptions cannot be

masked, they have to be handled as described above. Further information on synchronous exception

handling can be found in the ARM Technical Reference Manual77.

74In AArch32 execution state, the FIQ has its own set of banked registers, cf. also 3.3)
75[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.14.2,

page D1-1836 ff.
76[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.2, page 10-7.
77[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.13,

page D1-1826.
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3.5.4 Exception Generating Instructions

The execution of certain instructions can generate exceptions. On the one hand, this includes all re-

quests for software running at a higher exception level, i.e. the Supervisor Call SVC, Hypervisor Call HVC

and Secure Monitor Call SMC. On the other hand, the exception handling can also be configured in such

a way that various other instructions are disabled or cause a trap exception. As an example, cache

maintenance instructions can be trapped to EL1 from EL0 by setting the according bit SCTLR_EL1.UCI in

the System Control Register at EL1. The ARM Technical Reference Manual provides a complete sec-

tion on all possible modifications and adjustments of the exception handling with respect to exception

generating instructions78.

As already mentioned, all exceptions can be trapped or routed to a hypervisor running at exception

level EL2 by selecting the according bits in the Hypervisor Control Register. In addition, the ARM Vir-

tualization Extension also provides a mechanism for trapping certain instructions that are often used in

the context of virtualization, i.e. access to virtual memory control registers, certain system instructions

(mostly maintenance instructions for caches), access to the Auxiliary Control register etc.79. When

an instruction has trapped, the hypervisor code can read the Exception Syndrome Register ESR_EL2 to

obtain the necessary information about the trapped instruction.

Due to the combination of the ARM Virtualization Extension and the handling of exception generating

instructions, the following requirements of the Muen SK can be considered fulfilled:

REQ-11 - FULFILLED: The ARMv8-A architecture supports the configuration of excep-

tion generating instructions resulting in an exit of the guest subject and therefore fulfils

this requirement.

REQ-13 - FULFILLED: This requirement only demands that a target architecture can dis-

tinguish between the four exit reasons used by the Muen SK80. This means in particular

that the Muen SK does not require detailed status information regarding external inter-

rupts in the context of a guest exit. Therefore, even though the exact state of an external

interrupt can only be determined using a General Interrupt Controller GIC, the ARMv8-A

architecture fulfils this requirement as a hypervisor can read the demanded four different

reasons of a guest exit from the Exception Syndrome Register ESR_EL2.

78[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D.1.15,

page D1-1842.
79[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.5, page 10.
80[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, chapter 4, section 4.4.5,

page 49 f.
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3.5.5 Resets

The ARMv8-A architecture does not support non-maskable interrupts81. As already described in sec-

tion 3.2.3, reset exceptions cannot be masked and hence are the only non maskable exceptions. Since

every reset exception is guaranteed to be executed by the core receiving it, it can be stated that:

REQ-12 - FULFILLED: The only non maskable interrupt (NMI) not only leads to an exit

of a guest subject but also to a restart of the core from EL3. Therefore, this requirement

can be qualified as fulfilled.

3.5.6 Generic Interrupt Controller

The Muen SK relies on the I/O APIC and LAPIC mechanism provided by the Intel x86 architecture

(cf. chapter Muen, section 2.3.2). The ARMv8-A architecture implements a similar technology, called

Generic Interrupt Controller (GIC), based on an internal GIC CPU Interface (corresponds conceptually

to the LAPIC) and an external GIC Distributor (corresponds conceptually to the I/O APIC). This mecha-

nism not only supports routing of software generated, private and shared peripheral interrupts between

cores in a multicore environment but also the routing of external interrupts to (an) individual core(s).

Furthermore, it enables software to mask, enable and disable interrupts, to prioritise individual sources

and to generate software interrupts82. Additionally, the GIC technology simplifies the virtualization of

exceptions for hypervisor implementations in a multicore environment83.

The first major function block of the Generic Interrupt Controller technology is the GIC CPU Interface,

through which the core receives an interrupt. Every core in a multicore environment has its own CPU

Interface that hosts registers to identify, mask and control the states of interrupts forwarded to that core.

The second main function block of the Generic Interrupt Controller technology is the Distributor. This

external component has to be implemented by the SoC manufacturer. It controls all the properties of

a specific interrupt by according registers, especially the routing information and the enable status for

the attached CPU Interfaces.

The details of the configuration, the initialisation and the exception handling as well as the available

features are determined by the version of the implemented GIC architecture on the one hand by the

respective processor according to the internal GIC CPU Interface and on the other hand by the SoC

manufacturer with regard to the external GIC Distributor. For example, Locality Specific Peripheral

Interrupts (LPI), i.e. message-based interrupts, are not supported with GICv1 and GICv2, whereas this

mechanism can be used in all higher versions84. The ARMv8 Cortex-A53 processor supports all GIC

81[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.14.2,

page D1-1836.
82[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, cf. chapter 10, section 10.6, page 10-17.
83[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.4 f., page 9 ff.
84[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.6, page 10-17.
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architectures up to version 485. A good example for the initialisation and configuration of a Generic

Interrupt Controller GICv3 running on the ARMv8 Foundation Model can be found in the ARM Limited

startup code example delivered with the DS-5 Community Edition.

Accordingly, the two requirements 8 and 14 of the Muen SK can be evaluated as follows:

REQ-8 - IMPLEMENTATION DEFINED: The ARMv8 architecture principally supports the

programmatical handling of interruptions. However, since the possibilities and the extent

of this handling depend on the implementation of a GIC distributor by the SoC manufac-

turer, this requirement is qualified as implementation defined.

REQ-14 - IMPLEMENTATION DEFINED: The ARMv8 architecture only provides hard-

ware assisted routing of interruptions to individual cores through the implementation of

a GIC by the SoC manufacturer. Therefore, this requirement has to be judged as imple-

mentation defined.

3.6 Timers

The ARMv8 architecture prescribes the implementation of a system timer for processors of the Cortex-

A series (cf. section 2.4). This system timer provides up to four timer channels per core - a secure

and a non-secure physical timer as well as two timers for virtualization purposes. Each of these timer

channels has at least one comparator, to configure the timers to generate an interrupt when the count

is greater or equal to the programmed comparator value86. The concrete implementation of the timer is

determined by the respective processor type. An example would be the Generic Timer of the ARMv8

Cortex-A53 processor series described in the ARM Cortex-A53 Technical Reference Manual87. The

following steps are usually necessary to configure the timer:

(i) Comparator Value: In a first step, the comparator value for the timer has to be written to the

CNTP_CVAL_ELn according to the exception level, the timer should be used for.

(ii) Enabling Counter: Then, the counter and the interrupt generation have to be enabled in the

register CNTP_CTL_ELn.

(iii) Reporting: In the last step, the code can poll the CTP_CTL_ELn register to report the status of the

according exception level timer interrupt.

85[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 9, section 9.1, page 9-2.
86[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 14, section 14.1.3, page 14-5 f.
87[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 10, page 10-1 ff.
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The virtual timers and counters provided by the ARMv8-A architecture are explicitly designed for the

scheduling of guest systems. Even though written in the programming language C, one can find a

valuable example of the usage of the timer mechanism supported by the ARMv8-A architecture in the

source code of the xvisor hypervisor 88. Therefore, the following can be stated:

REQ-15 - FULFILLED: The ARMv8-A architecture explicitly supports at least a timer and

a counter per core that can be configured to generate an interrupt. Even though the

context switch has to be implemented manually (cf. section 3.3), this mechanism can be

qualified as preemptive in the sense that it triggers an appropriate exception handling.

3.7 Device Handling

Even though out of scope for this study, it has to be mentioned that the ARMv8-A supports device em-

ulation as well as device assignment through the already described features of the ARM Virtualization

Extension, i.e. the second level address translation and the (virtual) exception handling89.

However, in order to get full device handling support, a SoC manufacturer also has to implement

and provide an SMMU (corresponding to Intel’s IOMMU) that meets the ARMv8 SMMU architecture

specifications for the SMMU interface90. Therefore, the corresponding requirement can be qualified as

follows:

REQ-16 - IMPLEMENTATION DEFINED: The ARMv8 architecture only provides a fully

featured device handling through the implementation of a SMMU by the SoC.

3.8 SPARK

As already mentioned in section 2.7, the Muen SK is written in SPARK. Since SPARK is a true subset of

the Ada programming language and compilers ignore the SPARK inherent annotations, every correct

SPARK program is also a correct Ada program and can therefore be compiled with an existing Ada

compiler such as GNAT (part of the GNU compiler collection GCC).

To be able to qualify the requirement that there has to exist an Ada Cross Compiler for the ARMv8-A

AArch64 execution state, a separate evaluation case has been written (cf. Development Environment

Setup Ada Toolchain, appendix A). This document shows that it is possible to compile a custom Ada

Cross Compiler for the ARMv8-A architecture based on the GNAT Ada Compiler toolchain of the GNU

Compiler Collection GCC.

88cf. A general overview over the xvisor hypervisor can be found here. The source code is published under the GPL-2.0

license on github (https://github.com/xvisor/xvisor) and the mentioned generic timer code for ARMv8 AArch64 can be

found in the file generic_timer.c in the directory arm64 commen, basic, timer. December 21, 2017
89[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.2 f., page 8 f.
90[10] n.a. ARM System Memory Management Unit, Architecture Specification. 2017.
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Thus applies:

REQ-17 - FULFILLED: An Ada Cross Compiler for the ARMv8-A AArch64 architecture

can be compiled based on the GNAT Ada Compiler toolchain.

The Muen SK relies on a Zero Footprint Runtime for the SPARK 2014 programming language that is

provided with the source code of the Muen SK 91. According to the last meeting with the developers

of the Muen SK, the runtime should be independent of the target platform but was written for the Intel

x86/64 architecture. As expected, a first test with the custom Ada Cross Compiler for the ARMv8-A

AArch64 architecture showed that the Muen SK Zero Footprint Runtime has to be rewritten as it uses

Intel IA-32e specific assembly instructions.

Figure 3.12: gprbuild Muen SK ZFP output

Although ARM provides official guidelines for porting code from ARM A32 to ARM A64 assembly92 as

well as from IA-32 to ARM A32 93 and many freely available tutorials can be found online, the runtime

could not be translated during this study due to time constraints. Therefore, it is not possible to make a

final judgement regarding the corresponding requirement:

REQ-18 - TESTING REQUIRED: Even though it should be possible to build a Muen Zero

Footprint Runtime for the SPARK 2014 programming language and the ARMv8 AArch64

execution state with freely available software, the fulfilment of this requirement has to be

tested in a further study.

91https://git.codelabs.ch/?p=muen.git, December 21, 2017
92[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 8, page 8-1 ff.
93http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0274b/index.html, December 21, 2017
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3.9 Requirement Comparison

It has be shown that more than two thirds of the requirements of the Muen SK are directly supported

by the ARMv8-A architecture. None of the prerequisites had to be qualified as unsupported. The

fulfillment of the remaining requirements only depends on the target hardware and therefore on the

implementation of the ARMv8 architecture by the respective SoC manufacturer. The following require-

ments had to be judged as IMPLEMENTATION DEFINED and thus have to be qualified based on the

target hardware platform, i.e. the Raspberry Pi 3:

number requirement topic

REQ-0 The processor architecture has to support 64 bit data-

path widths, integer size and memory address widths

as well as to be able to execute 32 bit applications.

basics

REQ-8 A target processor architecture has to provide a mech-

anism to programmatically handle interruptions.

interruption handling

REQ-14 A target processor architecture should optionally pro-

vide a technique to fast process interruptions between

cores.

interruption handling

REQ-16 A target processor architecture must provide a mecha-

nism to virtualize I/O devices by completely isolating

the access to devices and providing support for ac-

cording interruption and memory features.

device handling

Table 3.1: IMPLEMENTATION DEFINED requirement summary
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4 Raspberry Pi 3

The Raspberry Pi 3 is the third generation of the Raspberry Pi series and the target platform for this

study. The first part of this chapter provides a general overview of the Raspberry Pi 3. In the following

sections, the hardware platform is discussed with respect to the requirements qualified as IMPLEMEN-

TATION DEFINED in the previous chapter 3.

4.1 Overview

The Raspberry Pi 3 Model B is the latest single board computer developed and released in February

2016 by the Raspberry Pi Foundation. The main component of this small computer is the BCM2837

System on Chip (SoC), which implements an ARMv8 Cortex-A53 processor with four cores. Also

worth mentioning in the context of this study are the 1GB RAM, the Micro SD port and the 40-pin GPIO

provided by the platform. Further details on the specifications can be found on the homepage of the

Raspberry Pi Foundation 1.

The Raspberry Pi 3 Model B was chosen as target platform for this study because it is the first Rasp-

berry Pi generation that is capable of running software written for the 64-bit execution state. In addition,

the Raspberry Pi single board computers are explicitly intended for experimentation and are therefore

almost not „brickable“ as well as inexpensive.

Figure 4.1: Raspberry Pi 3 Model B, c© by the Raspberry Pi Foundation

1cf. https://www.raspberrypi.org/products/raspberry-pi-3-model-b, December 21, 2017
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The architecture of the Raspberry Pi 3 does not quite come up to one’s expectations. In contrast to

most other ARM based SoC, not the ARMv8 Cortex-A53 processor but the Broadcom VideoCore is the

organising part and has full control over the initialisation of each component. In addition, the VideoCore

also contains and controls essential system architecture components such as the memory controller

or the level 2 cache. The latter is used almost exclusively by the VideoCore and is usually bypassed

when accessing the CPU2. The ARM processor is only attached to the organising VideoCore and

can be addressed via a corresponding CPU interface. Figure 4.2 shows a schematic overview for the

architecture of the Raspberry Pi 3 3.

Figure 4.2: Raspberry Pi 3 schematic

4.1.1 Documentation

First of all, it has to be stated that there exists neither a complete official documentation on the Rasp-

berry Pi 3 nor any official documentation on the changes with respect to the AArch64 mode of the

Raspberry Pi 3. On the website of the Raspberry Pi Foundation, it is only mentioned that nothing has

changed compared to the Raspberry Pi 2 SoC except for the ARMv8-A processor 4. The documenta-

tion for the Raspberry Pi 2 consists of two datasheets for the Raspberry Pi 1 5 and a supplementary

2[11] n.a. BCM2835 ARM Peripherals. 2012, chapter 1, section 1.2.3, page 6.
3https://www.heise.de/ct/ausgabe/2016-8-Wie-es-mit-dem-Raspberry-Pi-weitergeht-3150082.html, December 21, 2017
4https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md, December 21, 2017
5https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md, December 21, 2017
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document for the changes compared to the Raspberry Pi 1 6. Even though there obviously exist differ-

ences between the 64-bit and the 32-bit mode of the Raspberry Pi 7, most of the following statements

should apply to both execution states 8. Therefore this chapter is primarily based on the following

literature:

• VideoCore: The official VideoCore IV 3D Architecture Reference Guide9 for the Raspberry Pi 1

serves as the main source for boot related questions.

• Broadcom SoC: As the primary sources for ARM Peripheral related topics, the two official

BCM2836 ARM Peripherals10 and BCM2835 ARM Peripherals11 documents are used.

• Raspberry Pi Bare Metal Forum: A lot of explanations and findings in the context of the AArch64

development can be found on the official Raspberry Pi Bare Metal Forum 12.

• Raspberry Pi Repositories: The Raspberry Pi Foundation maintains several Github repositories.

In particular, the documentation repository was used for this chapter 13.

• Bare Metal Repositories: The most important Raspberry Pi Bare Metal repositories for this study

are the two Github repositories maintained by David Welch 14 and by Peter Lemon 15.

Because a detailed and with respect to the AArch64 architecture complete Raspberry Pi 3 hardware

reference manual as well as a comprehensive guide for Bare Metal Programming on the Raspberry Pi

3 did not exist at the time of writing, a separate Raspberry Pi 3 Beginner’s Guide has been started as a

collection of all the existing, but widespread sources on this topic. This guide is going to be continued

and developed by the author even after this Student Research Project and is going to be published

under an open source license.

6https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md, December 21, 2017
7David Welch and Peter Lemon could show with their code that not only the base address for the kernel image but also

some alternative modes for the peripherals change. A personal assumption in this regard is that these changes are

caused by the firmware of the VideoCore initialising the ARM processor in the AArch64 execution state.
8Of course, this would have to be proven in a continuing study (cf. section 5.3)
9[13] n.a. VideoCore IV 3D Architecture Reference Guide. 2013.

10[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014.
11[11] n.a. BCM2835 ARM Peripherals. 2012.
12https://www.raspberrypi.org/forums/viewforum.php?f=72, December 21, 2017
13https://github.com/raspberrypi, December 21, 2017
14https://github.com/dwelch67/raspberrypi, December 21, 2017
15https://github.com/PeterLemon/RaspberryPi, December 21, 2017
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4.1.2 Bare Metal Development

The development of bare metal programs differs greatly from software development on higher abstrac-

tion levels. The variety of development tools (compiler, IDE etc.) is relatively wide, but not all available

tools are suitable for a specific task. The setups for the Raspberry Pi 3 used in this study are therefore

briefly explained in this section.

The first inconvenience in bare metal development is loading newly built or rebuilt kernel images from

the IDE to the Raspberry Pi. Actually, there are four possibilities for this task:

(i) SD Card: For the AArch64 development, this option consists in formatting an SD Card to FAT32,

copying the corresponding kernel image kernel8.img together with the boot files bootcode.bin, start.elf

as well as config.txt to the card, inserting the card into the card slot of the Raspberry Pi and

restarting it. Further information and two code examples are recorded in the two evaluation

cases Hello Muen! on HDMI written in assembly and Hello Muen! on UART written in C (cf.

appendix A).

(ii) Bootloader: David Welch provides a bootloader that is capable of loading a kernel image to the

Raspberry Pi 3 over a serial connection. Both the bootloader and instructions for its usage can

be found on David Welch’s Github repository 16.

(iii) JTAG: The Joint Test Action Group JTAG interface can not only be used to load a kernel image

to the Raspberry Pi 3 but also allows to run a debugger like the freely available Open On-Chip

Debugger (OpenOCD). Therefore, this option has been chosen for this study. A complete guide

for setting up the hardware as well as the OpenOCD debugger in combination with the Eclipse

IDE is contained in the evaluation cases Development Environment Setup (cf. appendix A).

(iv) Netboot: Since the JTAG option seemed to be the most suitable one for this study, the Netboot

was not tested during this project. However, a guide for this option can be found on the official

Raspberry Pi Foundation homepage 17.

Of course, the compiler toolchain as well as the IDE depend on the programming language used in a

specific project. Nevertheless, the GNU MCU Eclipse IDE from Liviu Ionescu 18 has to be mentioned

here, because it has been used as a development environment in almost all experiments of this study

and can be adapted to different languages. The GNAT Programming Studio (GPS) 19 of the Community

Edition 20 provided by AdaCore was used for the development of code examples written in Ada.

16https://github.com/dwelch67/raspberrypi, December 21, 2017
17https://www.raspberrypi.org/blog/pi-3-booting-part-ii-ethernet-all-the-awesome, December 21, 2017
18https://github.com/gnu-mcu-eclipse/org.eclipse.epp.packages/releases, December 21, 2017
19https://www.adacore.com/gnatpro/toolsuite/gps, December 21, 2017
20https://www.adacore.com/community, December 21, 2017
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4.2 Boot Process

Due to the special architecture of the Raspberry Pi 3 (cf. section 4.1), the boot process also does not

correspond to the one of most other ARM development boards. As soon as the Raspberry Pi is turned

on, the VideoCore assumes control over the boot process while the ARMv8 Cortex-A53 processor is

still off and uninitialised 21. The VideoCore then takes the following actions 22:

(i) First Stage Bootloader: The VideoCore starts the boot process by executing the first stage

bootloader stored in ROM on the Raspberry Pi SoC. This bootloader initialises and reads the

SD card and loads the second stage bootloader from the SD card into the level 2 cache.

(ii) Second Stage Bootloader (bootcode.bin): This bootloader enables and initialises the SDRAM.

While for earlier versions of the Raspberry Pi it loads the third stage bootloader loader.bin from

the SD card into RAM, the second stage bootloader for the Raspberry Pi 3 supports loading

ELF files and therefore directly loads the GPU firmware from the SD card into RAM .

(iii) GPU firmware ( start.elf ): The start.elf first initialises the GPU, second loads, reads and executes

the CPU configuration file config.txt and finally loads the kernel image into RAM.

The above described boot process already suggests that there are basically two possibilities for con-

figuring the ARMv8 processor. The first option is to modify the configuration file accordingly 23. For all

non hardware dependent configurations, the processor can also be initialised manually.

As already explained in section 3.2.3, the initialisation of the ARMv8 processor into the AArch64 exe-

cution state depends on a hardware signal to a pin of the processor. Since the VideoCore starts the

ARMv8 processor by default in the AArch32 execution state and since a warm reset depends on a

hardware defined reset register with an unknown address in AArch64 execution state, the only way to

initialise the ARMv8 processor in 64-bit mode is to add the following lines to the config.txt file:

arm_control =0x200
kernel_old =1

Even though it seems that there exists only this option to start the ARMv8 Cortex-A53 processor on

the Raspberry Pi 3 in the AArch64 execution state, the corresponding requirement can be qualified as

fulfilled:

REQ-0 - FULFILLED: The Raspberry Pi 3 supports the initialisation of the ARMv8 pro-

cessor in a 64-bit execution state and hence fulfils this requirement.

21cf. boot process explained by David Welch on https://github.com/dwelch67/raspberrypi, December 21, 2017
22https://www.raspberrypi.org/documentation/.../bootflow.md, December 21, 2017
23Details to the configuration possibilities can be found on https://www.raspberrypi.org/documentation/configuration/config-txt

as well as on the Raspberry Pi Foundation Github repositories, December 21, 2017
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4.3 Exception Handling

First of all, it has to be stated that the interrupt controller provided by the Raspberry Pi 3 SoC is neither

programmable nor does it implement the Generic Interrupt Controller (GIC) interface specified by the

ARMv8 architecture.

The exception handling on the Raspberry Pi 3 is also special. The documentation distinguishes be-

tween two different types of interrupts, i.e. core related and core un-related interrupts. The category

of the core related interrupts includes the four timer interrupts, a performance monitor interrupt and

the four Mailbox interrupts for each core. The only thing that can be determined programmatically with

respect to core related interrupts is whether to send an interrupt to either the IRQ pin or the FIQ pin

as well as to disable the interrupt handling at all24. An example of a Mailbox interrupt handling can be

found in the evaluation case Hello Muen! on HDMI. All other interrupts and exceptions (GPU interrupts,

local timer interrupts, AXI error and Peripheral interrupts) are assigned to the core un-related interrupts

category25. These interrupts have to be enabled, configured and handled completely in code by setting

the according bits of an interrupt register of the corresponding interrupt type as well as by setting up

the processor correctly 26. An example for an UART interrupt handling can be found in the evaluation

case Hello Muen! on UART.

The question now arises as to whether the described exception handling meets the requirements of

the Muen SK. In order to be able to assess this question, one has to take a closer look at two practical

examples. Both the Xen hypervisor 27 and the Kernel Virtual Machine KVM 28 explicitly state that they

rely on an implementation of the GIC interface specified by ARM Limited. While the Xen hypervisor

therefore does not support the Raspberry Pi 3, KVM circumvents this problem by implementing the

GIC specification in a virtual GICv2 interface. The second option would also allow the Muen SK to

run on the Raspberry Pi 3. However, since the Muen SK requires a smallest possible code base and

the Raspberry Pi 3 does not implement the GIC interface, the corresponding requirements derived in

chapter 2 have to be qualified as not fulfilled.

REQ-8 - NOT FULFILLED: The Raspberry Pi 3 does neither support a fully programmable

interrupt controller nor the GIC interface specified by the ARMv8-A architecture. There-

fore, this requirement has to be judged as not fulfilled.

REQ-14 - NOT FULFILLED: Even though the Raspberry Pi 3 provides a mechanism to

enable fast interrupt requests FIQ, it does support an inter-core communication due to the

missing implementation of the GIC interface. Hence, this requirement has to be qualified

as not met by the target platform.

24[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014, chapter 3, section 3.2.1, page 5.
25[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014, chapter 3, section 3.2.2, page 5 f.
26cf. https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=38076, December 21, 2017
27https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper, December 21, 2017
28https://lwn.net/Articles/557132/, December 21, 2017
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4.4 Device Handling

Since this topic is out of scope for this study, the device handling on the Raspberry Pi 3 is not discussed

in detail. However, it can be stated that even though the Raspberry Pi 3 has a separate MMU for device

handling it does not implement the SMMU interface specified by ARM Limited29 30. Therefore, the

corresponding requirement derived in the second chapter is not met:

REQ-16 - NOT FULFILLED: The Raspberry Pi 3 does not support the SMMU interface

specified by the ARMv8-A architecture.

4.5 SPARK

In the context of this study, it was also tried to build the official AdaCore Zero Footprint Runtime for the

ARMv8-A AArch64 execution state with hardware specific adaptations for the Raspberry Pi 3 from the

AdaCore Github Repository 31. However, this attempt also failed. A detailed description can be found

in the evaluation case Problem Description Toolchain.

29[11] n.a. BCM2835 ARM Peripherals. 2012, chapter 1, section 1.2, page 4 ff., and chapter 10, section 10.6.3, page 158 f.
30https://www.reddit.com/r/raspberry_pi/comments/4aonbh/why_are_there_two_mmus_on_the_bcm2835 and

https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=138108&p=920301, December 21, 2017
31https://github.com/AdaCore/bb-runtimes/tree/gpl-2017/aarch64/rpi3, December 21, 2017
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5 Conclusion

The aim of this feasibility study was to evaluate the ARMv8 Virtualization Extension for the porting of

the Muen SK to the ARMv8 architecture as well as to carry out a risk assessment on its portability to

the target platform Raspberry Pi 3 with regard to a possible bachelor thesis. This chapter is dedicated

to this two aspects of the study.

5.1 ARMv8 Architecture

Principally, the ARMv8 architecture and the ARMv8 Virtualization Extension can be considered suitable

for porting the Muen SK. Nevertheless, there are some risks involved that have to be addressed.

The first point and at the same time the one with the highest risk for the bachelor thesis is the context

handling. In contrast to Intel’s VT-x technology, the ARM Virtualization Extension does not provide

any automatic handling of a context switch (cf. section 3.3). In addition, the registers, that have to

be stored, depend to a certain degree on the respective guest system and the current execution state

of the subject. Therefore, the context switch has to be implemented completely by the hypervisor

developer.

As on the Intel x86/64 architecture, the caching structures of the ARMv8 architecture too have to be

considered as potential sources of side channels. Since the ARMv8 architecture does not specify the

implementation of the level 2 and an optional level 3 cache, it is also important to investigate the actual

implementation of the caching structures by the manufacturer of a target SoC.

The two specifications of the Generic Interrupt Controller and the System Memory Management Unit

by ARM Limited also pose a certain risk. Due to the large number of different versions and sometimes

only partial implementations of the interfaces by the manufacturers of a SoC, these two components

have to be examined particularly thoroughly when choosing a target platform.

5.2 Raspberry Pi 3

First of all, the missing documentation for the AArch64 mode of the Raspberry Pi 3 has to be considered

as problematic, since a precisely described and defined operation mode is essential, especially for

high-security applications.

The first problem could be mitigated by an open source firmware. Although Broadcom has published

the documentation for the Raspberry Pi 1, a large part of the firmware is still only available in a binary

format. Since the VideoCore also has complete control over the initialisation of the hardware, many

details can only be estimated (e.g. memory allocation VideoCore vs. CPU). This also has to be

qualified as a major risk for porting the Muen SK to the Raspberry Pi 3.
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The last two risks are related to the implementation of the GIC and the SMMU interfaces specified by

the ARMv8 architecture. Even though the two interfaces can be implemented in software, this involves

on the one hand a high risk with regard to the bachelor thesis and on the other hand it is fundamentally

contradictory to the requirement of a smallest possible code basis stated by the Muen SK.

Therefore the risk for choosing the Raspberry Pi 3 as the target platform is too high, especially without

any further investigations. As a conclusion, it cannot be qualified as suitable for porting the Muen SK

to the ARMv8-A architecture with respect to a possible bachelor thesis.

5.3 Further Investigations

In this final section of the study, an approach for further investigations is presented. In a first step, one

of the following reference kernels could be used as a starting point for the porting of the Muen SK to

the ARMv8-A architecture:

• HASPOC hypervisor: The HASPOC hypervisor is a high assurance security kernel for the

ARMv8 architecture that is available as open source software under the terms and conditions of

the Apache License 2.0. The documentation and the source code can be found on the HASPOC

homepage 1.

• seL4 microkernel: According to the official seL4 homepage 2, the seL4 microkernel is the most

advanced member of the L4 microkernel family. The source code is published under the GPLv2

and the BSD2 license on Github 3.

• Xvisor hypervisor: The Xvisor hypervisor is an open source type I hypervisor that supports full

virtualization also for the ARMv8-A architecture 4. The source code can be found on the Xvisor

Github repository 5.

• Phidias: As already mentioned, the Phidias hypervisor developed by Jan Nordholz follows the

same principle as the Muen SK but seems to support the ARMv8-A AArch64 architecture6. The

source code is published on the Phidias Repository 7.

1https://bitbucket.org/account/user/sicssec/projects/HASPOC, December 21, 2017
2https://sel4.systems, December 21, 2017
3https://github.com/seL4/seL4, December 21, 2017
4http://xhypervisor.org/, December 21, 2017
5https://github.com/xvisor/xvisor/tree/v0.2.10, December 21, 2017
6[15] Nordholz. Design and Provability of a Statically Configurable Hypervisor. 2017.
7http://phidias-hypervisor.de/repos/core.git, December 21, 2017
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In a second step, further classifications of the actual features used by the Muen SK in the context of

the Programmable Interrupt Controller and the System Memory Management Unit would have to be

carried out. In addition, the implementation of the interfaces in software has to be balanced against the

requirement of a smallest possible code base stated by the Muen SK.

Depending on the findings of the first two steps, an alternative ARMv8 platform may have to be consid-

ered. It is recommended to investigate the Hardkernel Odroid C2 based on an AMLOGIC S905 SoC

as the first alternative platform. This target platform seems to be documented in detail and to have

hardware support for the GICv2 as well as the SMMU interface.

As the last part of the investigation before porting the Muen SK to the ARMv8-A architecture, additional

clarifications of the registers, that have to be saved during a context switch, could be helpful.
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Appendix

A List of Related Documents

• Glossary

• Hello Muen! on HDMI - bare metal assembly code for Raspberry Pi 3

• Hello Muen! on UART - bare metal C code on Raspberry Pi

• Development Environment Setup - Assembly and C/C++ toolchain, JTAG debugger and IDE for

ARMv8 AArch64

• Development Environment Setup - Ada toolchain, JTAG debugger and IDE for ARMv8 AArch64

• Problem Description Toolchain - Ada toolchain ARMv8 AArch64

• Raspberry Pi 3 AArch64 - An Unofficial Bare Metal Beginner’s Guide (to be continued)
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B Project Assignment AVT (german)

Untersuchung der Portierung des Muen Separation Kernel auf
ARM

Studiengang: Informatik (I)

Semester: HS 2017/2018 (18.09.2017-18.02.2018)

Durchführung: Studienarbeit

Fachrichtung: Sicherheit

Institut: ITA: Internet-Techn. und Anwend.

Gruppengrösse: 1 Studierende(r)

Status: zugewiesen

Verantwortlicher: Steffen, Andreas

Betreuer: Rüegsegger, Adrian-Ken

Gegenleser: [Nicht definiert]

Experte: [Nicht definiert]

Industriepartner: [Nicht definiert]

Ausschreibung: Der Muen Separation Kernel (SK) ist ein spezialisierter Microkernel der als Plattform
für Hochsicherheitssysteme am INS entwickelt wird. Muen gewährleistet eine strikte
und zuverlässige Isolierung von Komponenten und schützt sicherheitskritische
Funktionen vor fehlerhafter Software, die auf dem gleichen physischen System läuft.
Um eine besonders hohe Vertrauenswürdigkeit zu erreichen, wird die
Programmiersprache SPARK 2014 ingesetzt.

Der SK wurde speziell für die Intel x86_64 Architektur entwickelt und verwendet Intel
VT-x und VT-d für die Separierung der Komponenten.

Diese Arbeit hat zum Ziel, die ARMv8/AArch64 Virtualisierungserweiterungen zu
untersuchen und zu evaluieren, wie die Technologie zur Portierung des Muen SK auf
ARM eingesetzt werden kann.

Als Zielhardware ist das Raspberry Pi 3 vorgesehen.

Voraussetzungen: Gute Linux-Kenntnisse
Interesse an systemnaher Entwicklung

Bewerbungen: Gruppe: Loosli 

Einschreibung: Studienarbeit

Status: Arbeit zugewiesen (Priorität Student: 1)

Studierende: Loosli, David

Kommentar: Zur Sicherheit bewerbe ich mich hiermit noch offiziell - ich bin
mir nach einem Gespräch mit einem Mitstudenten nicht mehr
ganz sicher, ob die Arbeit bereits mir zugeteilt ist.

Fenster schliessen
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