
Streaming Telemetry

Study Thesis

Department Computer Science
HSR University of Applied Sciences Rapperswil

Author(s): Matthias Dunkel, Ra�ael Vögeli
Advisor: Prof. Laurent Metzger
Project partner: Cisco System (Switzerland) GmbH, Marcel Witmer

Semester Thesis: Streaming Telemetry

Contents

Contents

I Exercise description 4

II Abstract 6

III Management Summary 7

IV Technical Report 9

1 Problem Analysis 10

1.1 Requirement Analysis . 10

1.1.1 Actors . 11

1.1.2 Functional Requirements . 11

1.1.3 Non-Functional Requirements . 12

1.2 Domain Analysis . 14

1.2.1 Domain Model . 14

1.2.2 Domain Description . 14

2 Evaluation 16

2.1 Streaming data receiver . 16

2.2 Database . 16

2.2.1 Apache Kafka . 16

2.3 Backend . 17

2.4 Frontend . 18

2.4.1 Web server . 18

2.4.2 Frontend Application . 18

2.4.3 Visualization . 18

December 20, 2018

Version 1.0

1

Semester Thesis: Streaming Telemetry

Contents

3 Conception and Design 20

3.1 Pipeline . 20

3.1.1 Yang-Models . 20

3.2 Apache Kafka . 21

3.2.1 Kafka Stream Workers . 21

3.2.2 Topics . 22

3.3 Backend . 23

3.3.1 Data transformation . 23

3.3.2 Find Segment Routing Path . 27

3.3.3 RESTful API . 30

3.4 Frontend . 33

3.5 Deployment & Installation . 35

3.5.1 Continuous Integration . 35

3.5.2 Deployment . 35

3.5.3 Maintenance . 36

3.6 Testing . 37

3.6.1 System Tests . 37

3.6.2 Performance Test . 44

4 Results & Conclusion 45

4.1 Target achievement . 45

4.2 Team retrospective . 45

5 Outlook 47

5.1 Trigger event based changes . 47

5.2 Extension of the architecture . 47

5.3 Frontend extensions . 48

5.4 Security . 48

December 20, 2018

Version 1.0

2

Semester Thesis: Streaming Telemetry

Contents

Acronyms 51

Glossary 52

V Attachments 54

A Personal re�ection 55

A.1 Matthias Dunkel . 55

A.2 Ra�ael Vögeli . 55

B Used time 57

December 20, 2018

Version 1.0

3

Semester Thesis: Streaming Telemetry

Part I

Exercise description

This is the exercise description we received from Prof. Laurent Metzger:

Classical network monitoring tools mostly manage the physical and data layer, and some network
monitoring tools are able to draw all the links where a protocol is running. The management protocol
used is SNMP, with traps and polling.

On the one hand, with the introduction of technologies like segment routing, the path that a �ow takes
in the network can depend on the service that the �ow is part of. A monitoring should be able to show
those paths per service.

On the other hand, streaming telemetry opens the door to a near real-time monitoring in a very e�cient
way.

The goal of this thesis is to innovate the way routing is monitored. The use case for this thesis is going
to be based on segment routing, even if other routing technologies could be the streaming telemetry
data source for future use cases. The technology involved is streaming telemetry.

The con�guration of the test network and the analysis of the relevant sensors is not part of the SA.
This falls under the responsibility of the Institute for Networked Solutions (INS). The infrastructure
and this information will be given to the students. The purpose of the SA is to develop a WebUI. The
main focus of this SA is on the frontend. Nevertheless, some backend functionality will be required
too. The WebUI is going to display paths of services which are provided by the network. The solution
architecture should scale well (100 routers and more).

About the backend:

• The backend should be able to receive the streaming telemetry data and store the information
in an e�cient way.

• Furthermore, it should be able to detect changes and store streaming telemetry data di�s.

• To provide traceability of network changes a history should be maintained.

• As an optional part, it should be possible to trigger events in case of a detected change.

About the frontend:

• The network topology should be displayed. Each router should be represented with an icon and
a connection between two routers with a line.

• By hovering over a link/device, the most relevant information should be displayed (e.g. metrics).
For example, the information with CDP/LLDP Yang Models received from streaming telemetry
could be used. A change in the physical topology should be recognized and the display refreshed
as real time as possible.

December 20, 2018

Version 1.0

4

Semester Thesis: Streaming Telemetry

• On that dynamic topology, the path that the �ow is following between routers should be indicated
with a change of color. To select a path for a �ow,

1. A speci�c router has to be selected.

2. Based on the selected router, the services which are hosted on this router should be displayed.

3. Select the date and time (e.g. now, 4 hours ago, 1 day ago or the exact date and time)

4. Optionally, there should be the possibility to select a destination router. If no destination
router is selected, all destinations of this service are shown (if possible).

• Besides the above-mentioned �ow, there could also be another way to choose what is displayed:

1. Select a speci�c service.

2. Based on the selected service, all routers which are hosting this service are shown. Next the
router can be selected.

3. Based on the already selected router, all possible destination routers are shown and one or
more can be selected.

4. Select the date and time (e.g. now, 4 hours ago, 1 day ago or the exact date and time)

The information from di�erent Yang models is received via streaming telemetry and the information
displayed is constantly refreshed.

Prof. Laurent Metzger

December 20, 2018

Version 1.0

5

Matthias

Semester Thesis: Streaming Telemetry

Part II

Abstract

When running a network, it is important for the operator to gain insight. They need to know which
routers are online, and which network routes are taken. Additionally, they need to know how the
network behaved in the past.

In order to obtain data from a network, Cisco added streaming telemetry to their routers. This is an
approach in which data is not polled from the routers, but is sent as a continuous stream to a server.

Although network monitoring tools already exist, they mostly display the physical and data layer of
the network. By introducing technologies such as segment routing into a network, the paths taken by
packets in the network may depend on the service these packets are part of.

In this thesis we developed a collection of services which consume the streaming telemetry data from
the routers. This data is then used to display a graph which represents the network with its routers
and neighbors. Moreover, the application displays information about the individual routers. However,
focus was placed on analyzing the segment routing paths. As a result the user can display the path
packets take, in conjunction with a service.

As the networks can get very big, emphasis was placed on scalability of the solution. This was achieved
by using a very scalable data stream-processing software, and by splitting the application into separate
stateless services.

December 20, 2018

Version 1.0

6

Semester Thesis: Streaming Telemetry

Part III

Management Summary

Initial Situation When maintaining a network as an operator, it is important to know which routers
are available and how the data packets move through the network. It also gives them the advantage
of being able to access past network topologies in case of problems and thus perform an error analysis.
In recent years, a new way of sending data packets has emerged: Segment Routing. With the help of
this new technology, packets are labeled with their forwarding path before they depart.

Existing monitoring systems currently mostly map the physical and data layers of a network. However,
this new application enables the operator to also display segment routing paths of several services.

Furthermore, one can move through time and get information about the network in the past. Moreover,
the network path that packets use between network nodes can display.

Procedure & Technologies The scope of this project was to receive data from the network, then
process it, store it and display it when needed.

To receive data we used an already existing project from Cisco called "Bigmuddy Network Telemetry
Pipeline" (or just "pipeline"). This pipelines job is to receive the streaming telemetry data and
forwarding it. In our case to an Apache Kafka cluster.

Figure 1: Architecture diagram

We use Apache Kafka not only as a message que but also as a data storage. All messages from the
network are processed and distributed in corresponding topics.

This job is done by the streaming worker, which uses the Apache Kafka Streaming API to receive,
process and produce messages.

After the data is 0processed, the backend can display the network. To do so, the Spring Boot framework
is used. The backend provides an API to provide the data needed by the frontend.

December 20, 2018

Version 1.0

7

Semester Thesis: Streaming Telemetry

The frontend is a single page web application which uses Vue.js as a framework. We use single �le
components, which makes it very easy to change or extend the frontend. To display the network as a
graph, we use the D3.js library.

Furthermore, we use GitLab's CI to create Docker containers out of all the above mentioned services.

Result The result is a very scalable application which can be used to display very big networks that
use segment routing.

Thanks to the stateless applications like the Pipeline or the Kafka Streaming Worker, which are
available as Docker containers, one can easily start new instances if needed. Also the Kafka cluster
is made for a lot of data, and is also very scalable. Of course the same is true for the frontend and
backend.

Outlook While developing this application, we made sure that it is easily extendible.

This is bene�cial because there is a lot of room for new functionalities. One could display more useful
data per network node. Aggregating data for this, maybe to display a graph, can be done in the
Streaming Worker.

Furthermore, we were not able to implement one optional requirement "trigger event based changes".
The idea is to change the network when certain changes are detected. Apache Kafka streaming API
has a lot of tools to detect changes and aggregate data. So one would need to implement a way to
communicate back to the network, then de�ne rules and aggregate data to check those rules. If they
are broken, changes in the network could then be triggered.

December 20, 2018

Version 1.0

8

Semester Thesis: Streaming Telemetry

Part IV

Technical Report

December 20, 2018

Version 1.0

9

Semester Thesis: Streaming Telemetry

1 Problem Analysis

1 Problem Analysis

This section of the technical report deals with the problem the system has to solve.

1.1 Requirement Analysis

The requirements described below are categorized into MUST and CAN, whereas MUST is the highest
priority and has to be ful�lled by the end of the project scope.

Figure 2: Function requirements model

Legend Blue: Prio 1 | Green: Prio 2

December 20, 2018

Version 1.0

10

Semester Thesis: Streaming Telemetry

1 Problem Analysis

1.1.1 Actors

User Interacts over the frontend with the system

System Backend services

Table 1: Actors

1.1.2 Functional Requirements

ID FR1

Title View topology overview

Priority MUST

Description The user is able to view the topology overview in a graphical way.

Table 2: FR1 - View topology overview

ID FR2

Title View segment routing path by service

Priority MUST

Description A user selects the nodes and the service he wants to show the path
by a speci�c time.

Table 3: FR2 - Select service to display

ID FR3

Title Receive Streaming Data

Priority MUST

Description The system receives streaming data of di�erent routers.

Table 4: FR3 - Receive Streaming Data

December 20, 2018

Version 1.0

11

Semester Thesis: Streaming Telemetry

1 Problem Analysis

ID FR4

Title Store streaming data

Priority MUST

Description The system stores the received streaming data in an e�cient way.

Table 5: FR4 - Store Streaming Data

ID FR5

Title Provide historical data

Priority MUST

Description The system provides traceability of network changes within a history.

Table 6: FR5 - Provide historical data

ID FR6

Title Trigger topology-changing-events

Priority CAN

Description The system triggers events based on changes in the topology.

Table 7: FR6 - Trigger topology-changing-events

1.1.3 Non-Functional Requirements

ID NFR1

Title Scalability

Description The system must be able to track 100 routers.

Measurability Set up a system with 100 routers to check the scalability of the system

Table 8: NFR1 - Scalability

December 20, 2018

Version 1.0

12

Semester Thesis: Streaming Telemetry

1 Problem Analysis

ID NFR2

Title Usability

Description The system provides options to adjust the visualization of the topol-
ogy in a self-explanatory way. In addition, there are usability hints
for the user to give support.

Measurability Usability tests

Table 9: NFR2 - Usability

ID NFR3

Title Performance

Description The system should visualize the topology and the path of a selected
service within 5 seconds.

Measurability Performance tests

Table 10: NFR3 - Performance

December 20, 2018

Version 1.0

13

Semester Thesis: Streaming Telemetry

1 Problem Analysis

1.2 Domain Analysis

The following part describes the domain analysis. It supports the understanding of the problem domain.

1.2.1 Domain Model

Figure 3: Domain model

1.2.2 Domain Description

Router

A router is a physical device, which should be displayed in the topology of the network.

Interface

The interface is the point of interconnection to another router. The interface de�nes what neighbours
a router has.

December 20, 2018

Version 1.0

14

Semester Thesis: Streaming Telemetry

1 Problem Analysis

VRF

Virtual routing and forwarding (VRF) is a technology that allows multiple customers to use the same
router without interrupting each other.

Policy

The policy describes which route through the network a VRF takes to an other router.

Label

A label represents a segment in the segment routing path. They are provided by the IS-IS protocol.

Routing

The routing describes the path packets take when there is no policy de�ned.

December 20, 2018

Version 1.0

15

Semester Thesis: Streaming Telemetry

2 Evaluation

2 Evaluation

During the evaluation phase in our project, we decided on which systems and technologies to use. In
the following section we outline what alternatives we evaluated, and which decision we made.

2.1 Streaming data receiver

Cisco already developed a piece of software which parses telemetry data and pushes the packages to
Kafka or databases. Because it was made by Cisco and was recommended to us by the supervisor of
this thesis, we decided to use this Pipeline1 for the system. Therefore, no further evaluation had to be
made on this component.

The job of this pipeline is to receive data from the router, and then to forward it to one or multiple
downstream consumers. Furthermore, it includes practical features for debugging and developing. For
example, one can tap into the data that passes through the pipeline to see what is send by the routers.

Moreover, the pipeline can be easily scaled because it does not depend on other components. So
one could deploy multiple instances, and then use a load balancer to distribute the load to multiple
pipelines.

An other advantage of the cisco pipeline was the support for UDP, because in our meetings our
supervisors decided to send the data over UDP to decrease the load on the network.

2.2 Database

The receiving data, that the system has to store, is a never-ending stream of data. So the system must
have the ability to handle streams in an e�cient way.

2.2.1 Apache Kafka

Apache Kafka is basically a message broker, which describes itself as follows: 2

Kafka R© is used for building real-time data pipelines and streaming apps. It is horizon-
tally scalable, fault-tolerant, wicked fast, and runs in production in thousands of companies.

It is very fast and fault-tolerant and, more importantly, scalable to thousands of instances. The next
thing we thought we needed was a database. We use Kafka to �lter, transform and aggregate the data
we get, but where do we put it? Also we needed to access the history of the data. How did the network
look two months ago? We looked into di�erent databases. We thought a graph database would make
sense because we want to store a network graph. But we did not �nd an e�cient way to deal with the
history. An other option was a classic relational database. But then we stumbled over an article called

1https://github.com/cisco/bigmuddy-network-telemetry-pipeline
2https://kafka.apache.org/

December 20, 2018

Version 1.0

16

https://github.com/cisco/bigmuddy-network-telemetry-pipeline

Semester Thesis: Streaming Telemetry

2 Evaluation

"It's Okay To Store Data In Apache Kafka"3 and we discovered that we could just leave the data on
Kafka.

In the beginning we only wanted to use it for transforming and �ltering the streams. But then we
decided that we can also store our data directly on Kafka. Kafka is usually deployed as a cluster
of many Kafka nodes, and the data is distributed between them. So the data is always redundantly
stored.

A big advantage for us is also the integrated log compaction. If this is activated, Kafka automatically
thins out old messages. This saves storage space, but is still retaining historical data. Although the
resolution of this data will be less.

Historical data With the Stream API that Kafka provides, there is a function called "Windowing"4,
which allows the system to group the data into time windows with a speci�ed time period (f.e. �ve
minutes, one hour).

This makes it easy to use history data out of the telemetry.

2.3 Backend

The backend is responsible to o�er a API for the frontend.

There are a lot of programming languages and frameworks which we could have used for the backend.
We discussed Node.js and PHP. But based on our knowledge, we decided to use Java as the main
programming language. This is because Java is one of the few languages that we are both very familiar
with. And because Java is still very popular and is most likely still supported in the future.

Spring.io Because we knew we would have to consume Kafka streams, we looked for a framework
that can natively consume them in an easy way. What we found was the Spring framework. There is
a project called spring-kafka5 which implements core functions to interact with a Kafka-Stream from a
Spring application. However, we decided on that framework not only because of the easy integration
with Kafka, but also because Spring-Boot makes it very easy and fast to develop a REST API.

Furthermore, Spring exists for 16 years (2002)6, and is very well tested. Also Spring is very popular and
well documented. This makes it easy for new developers, if it is ever decided to extend the application
in the future.

3https://www.confluent.io/blog/okay-store-data-apache-kafka/
4https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#windowing
5https://spring.io/projects/spring-kafka
6https://en.wikipedia.org/wiki/Spring_Framework

December 20, 2018

Version 1.0

17

https://www.confluent.io/blog/okay-store-data-apache-kafka/
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#windowing
https://spring.io/projects/spring-kafka
https://en.wikipedia.org/wiki/Spring_Framework

Semester Thesis: Streaming Telemetry

2 Evaluation

2.4 Frontend

2.4.1 Web server

The web server has to handle user requests and provide static �les as a response.

Apache Apache HTTP Server is around for 23 years. It is very well tested and used by a lot of
applications.

NGINX NGINX is a bit younger than apache (14 years old), but is also well tested and very powerful.

There were no real advantages or disadvantages from one over the other. In the end we decided to use
NGINX, because it was very easy to use in an docker container, and needed very little con�guration.

2.4.2 Frontend Application

Because we could display all the functionality of the app on one page, we wanted to create a single-page
application. It was obvious that we had to use JavaScript for this. But we had the choice of a lot of
JavaScript frameworks.

Vue.js Vue.js is a very intuitive framework. It is young, but very popular and used by many people.
Therefore we could assume that the application is well supported. Also in Vue.js it is possible to
develop components which are reusable.

AngularJS AngularJS is a bit longer on the market than Vue.js. It is also very popular and very
well supported. AngularJS inspired the developers of Vue.js. But the API of AngularJS is a bit more
complex.

In the end we decided to use Vue.js. This was because Matthias Dunkel was already familiar with it,
and because the API of Vue.js is easier to learn. It also allows us to structure the application into
components, which makes the application extendible, and components reusable.

2.4.3 Visualization

Because we need to visualize a graph, we wanted to use a pre made JavaScript library which can handle
this task.

d3.js d3.js binds any desired data to the DOM of the web page, and applies data-driven transforma-
tions to the document. It is widely used, and well tested.

There are a lot of examples, including several topology and network graphs that can be reused and
customized.

December 20, 2018

Version 1.0

18

Semester Thesis: Streaming Telemetry

2 Evaluation

neXt UI neXt UI is a JavaScript/CSS toolkit centered around displaying networks, created by Cisco.

We decided to use d3.js. It is used by far more people, resulting in a well tested code and a lot of
examples. Also it integrated very well with vue.js.

December 20, 2018

Version 1.0

19

Semester Thesis: Streaming Telemetry

3 Conception and Design

3 Conception and Design

One requirement of this project was the scalability, and that it should work with 100 routers. Addi-
tionally the telemetry data is potentially sent quite often (at least every �ve minutes).

Based on these requirements we decided to use di�erent micro-services which can be scaled individually
if more processing power is needed.

Figure 4: Architecture diagram

3.1 Pipeline

Pipeline is a piece of software developed by Cisco 7. The use of this code is under free license. The
Pipeline consumes directly the telemetry data from the routers. It could transform the data, but we
use it to push the telemetry data directly and unmodi�ed to a Apache Kafka topic named telemetry.

The pipeline is used within a Docker container, with a simple con�guration �le which manages the
settings. This allows us to spin up multiple more instances if they are needed. Henceforth, the pipeline
is very scalable.

3.1.1 Yang-Models

Yang-Models are de�ned on the routers and they determine what data is sent over streaming telemetry.
The following Yang-Models8 are used to get the relevant streaming data for the application:

Cisco-IOS-XR-ethernet-lldp-oper:lldp Get the network topology out of the LLDP-neighbours
information

7https://github.com/cisco/bigmuddy-network-telemetry-pipeline
8https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/651

December 20, 2018

Version 1.0

20

Semester Thesis: Streaming Telemetry

3 Conception and Design

opencon�g-network-instance:network-instances Vendor independent information of VRF and
the segment routing path.

Cisco-IOS-XR-�b-common-oper:mpls-forwarding Get the global routing table information

Cisco-IOS-XR-ipv4-io-oper:ipv4-network Get the di�erent VRF information of every router

3.2 Apache Kafka

The system uses Docker to run the individual instances of Kafka. This allows the administrator to
easily extend the Kafka cluster when needed.

A Kafka instance receives the streaming data from the pipeline over the topic telemetry.

3.2.1 Kafka Stream Workers

The Kafka Stream Workers component acts as a micro-service and uses the Stream API provided by
Kafka to �lter and aggregate the main stream of data into speci�c topics. The aggregation of data
is needed, because the data packages from the pipeline are split and sent within multiple messages,
which all share a common ID. Furthermore, this separation makes using the data later more e�cient
and easier.

See �gure 5 for the data�ow diagram.

December 20, 2018

Version 1.0

21

Semester Thesis: Streaming Telemetry

3 Conception and Design

Figure 5: Data�ow between Kafka topics

3.2.2 Topics

These topics are produced by the Streaming Worker service:

telemetry-lldp-grouped This topic includes streaming data of the Yang Model Cisco-IOS-XR-
ethernet-lldp-oper:lldp and contains data used to determine the neighbours of a node.

telemetry-nodes This topic includes streaming data of the Yang Model Cisco-IOS-XR-ethernet-
lldp-oper:lldp and contains information about the nodes (routers).

December 20, 2018

Version 1.0

22

Semester Thesis: Streaming Telemetry

3 Conception and Design

telemetry-sr-path This topic includes streaming data of the Yang Model opencon�g-network-
instance:network-instances and contains the policy label stack.

telemetry-mpls-table This topic includes streaming data of the Yang Model Cisco-IOS-XR-�b-
common-oper:mpls-forwarding and contains global MPLS routing table data.

telemetry-node-interface-table This topic includes streaming data of the Yang Model Cisco-IOS-
XR-ipv4-io-oper:ipv4-network and contains the interfaces of each node.

3.3 Backend

To separate and aggregate the streaming data received in Kafka, and transform them for the needs of
the frontend, there is a backend application. The backend application provides a RESTful interface
for the frontend application to get the data.

3.3.1 Data transformation

The backend receives the data from Kafka via the Stream API (which also runs on the backend) and
accesses the topics, which have been created by the Kafka Stream Workers. Every topic is windowed
by 1 hour. For every hour, the newest record entry is taken and stored in a KTable. That allows the
application to access the data by date and time.

A KTable (abstraction of the Kafka Stream itself) ensures that every record is always up-to-date.
KTables always contain the newest record per key for a stream of data.

The topics created by the Kafka Stream Workers will be transformed as follows:

Nodes (Topic: telemetry-nodes-table-windowed) The node information (Name, Global IP Ad-
dress, supported VRFs) is created as a KTable for every node.

Topology (Topic: telemetry-lldp-table-windowed) To display the topology, the topic telemetry-
nodes will be transformed with the relevant neighbour information.

Global Routing Table (Topic: telemetry-mpls-table-windowed) The global routing table is
needed to discover node labels on routers. They show the relations between nodes over these node
labels.

Node Interfaces Table (Topic: telemetry-node-interfaces-table-windowed) Every node holds
several physical and virtual interfaces. Any interface has a unique IP-address in the system, therefore
each interface ip-address can be mapped to a speci�c node.

December 20, 2018

Version 1.0

23

Semester Thesis: Streaming Telemetry

3 Conception and Design

Policy Label Stack Table (Topic: telemetry-policy-path-windowed) Every path has its own
policy on the departure node to get to a de�ned destination node over segment routing. This policy
information is separated into node & adjadency labels.

To get to this label stack, there are three di�erent paths involved on the opencon�g-network-instance:network-
instances sensor path. The way to get through these paths is as follows:

1.) Find a speci�c unique policy label.

Figure 6: Find policy label

December 20, 2018

Version 1.0

24

Semester Thesis: Streaming Telemetry

3 Conception and Design

2.) Get the BGP tunnel interface with this policy label as key

Figure 7: Find tunnel interface

December 20, 2018

Version 1.0

25

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.) Find the shortest label stack for this tunnel interface. The next-label-information-hop-string gives
us a hint, which is the next node to follow.

Figure 8: Find label stack

With the logic described above, every con�gured policy in the network can be accessed.

December 20, 2018

Version 1.0

26

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.3.2 Find Segment Routing Path

The goal is to �nd the segment routing path for a speci�c VRF.

Every segment is encoded as an MPLS label and the label stack is a ordered collection of segments,
which creates the full segment routing path. There are two di�erent types of MPLS labels we distin-
guish:

• 16xxx (Node label): This is a global node label. The information of the next node can be found
in the Global Routing Table (Topic: telemetry-mpls-table-windowed). It can happen, that the
following label isn't the label referenced on the node label. Then the whole process has to be
repeated until the referenced node label has been reached.

• 24xxx (Adjacency Label): This is a local label for the adjacencies on the node itself. With a
combination of current node name (e.g. XR-01) and adjacency label (e.g. 24002), concatenated
as a key with a divider ":", the interface of the next node can be accessed. With this interface, it
is possible to get the node name on the Node Interfaces Table (Topic: telemetry-node-interfaces-
table-windowed)

With the help of the above-described created KTables it is possible to �nd the path as follows:

1. Start with the next hop interface as the �rst node of the path. The interface is a ip-address
whose node can be found with the help of the Node Interfaces Table (Topic: telemetry-node-
interfaces-table-windowed).

2. Process every label in the label stack received by the policy.

3. If the last visited node is the destination node, the path has been successfully created. Otherwise
some router or segment routing con�gurations are missing.

Example The user has selected the departure node XR-01 and wants to know, how the network
tra�c of the VRF Test is routed to the destination node XR-09 at the moment.

Step 1: The system retrieves the following policy information based on the user selection:

Figure 9: Path �nding example: policy

December 20, 2018

Version 1.0

27

Semester Thesis: Streaming Telemetry

3 Conception and Design

The data in the blue bracket is to identify the exact needed policy. The node_id_str �eld is the
departure node name, the primaryIp �eld is the global IP-Address of the destination node in the
network and the loopbackIp is the loopback ip-address of the in the speci�c service.

The data in the red bracket is used to determine the path. The nextHopIP �eld delivers the next node
of after the start and the label-stack includes a array of labels in reverse direction (read it from bottom
to top).

Step 2: Get the node for the next hop IP of the policy received, in this example 99.1.3.3. The
information is stored in the Node Interfaces Table (Topic: telemetry-node-interfaces-table-windowed):

Figure 10: Path �nding example: Find next hop interface node

We know that the path moves from our starting node XR-01 to node XR-03 and the process continues
there.

Step 3: Process the label stack and start with the �rst label 24020. This label is an adjacency label
(label description can be found in the beginning of this section) which means, the node is directly
connected over one of his own interfaces with this label. The system determines the interface name
with the help of the Global Routing Table (Topic: telemetry-mpls-table-windowed):

Figure 11: Path �nding example: Process 24*** label

December 20, 2018

Version 1.0

28

Semester Thesis: Streaming Telemetry

3 Conception and Design

Step 4: Process the next label in the label stack, 16009. This is a node label, therefore the system
has to go over every connected node with the label attached, until no routing logic with this label can
be found anymore (node with this global label is reached).

First the system �nds the following entry on XR-05:

Figure 12: Path �nding example: Process 16*** label on XR-05

Continue with the search on the discovered node XR-06:

Figure 13: Path �nding example: Process 16*** label on XR-06

Once more, continue on the new discovered node XR-10:

Figure 14: Path �nding example: Process 16*** label on XR-10

No further entry can be found now with the XR-09 node. In conclusion, the global label has been
reached.

Step 5: Since there are no further labels in the label stack, the destination node has been reached.

December 20, 2018

Version 1.0

29

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.3.3 RESTful API

This is the description of the API the backend provides for the frontend.

Title: Get all nodes
URL: /nodes
Method: GET
URL Params:
time=[long]
(required)
The time as milliseconds since unix epoch, at which the state of the nodes should be replied.
Success Response:
Status: 200
Response:

{

"XR-09": {

"node_id_str": "XR-09",

"systemID": "0000.0000.9999",

"label": "16009",

"vrfs": [

"default",

"VPN_FOO",

"HSR-INS",

"Test",

"SA"

],

"vrf-loopbacks": {

"default": "9.9.9.9",

"VPN_FOO": "172.16.2.1",

"HSR-INS": "10.20.0.111",

"Test": "10.0.1.9",

"SA": "20.0.1.9"

},

"primaryIp": "9.9.9.9"

},

"XR-05": {

"node_id_str": "XR-05",

"systemID": "0000.0000.5555",

"label": "16005",

"vrfs": [

"default",

"HSR-INS",

"VPN_BAA",

],

"vrf-loopbacks": {

"default": "99.5.6.5",

"HSR-INS": "10.20.0.107",

"VPN_BAA": "33.0.0.1"

},

"primaryIp": "5.5.5.5"

}

}

Error Response: A Statuscode that is not 200.

December 20, 2018

Version 1.0

30

Semester Thesis: Streaming Telemetry

3 Conception and Design

Title: Get graph
URL: /historicalGraph
Method: GET
URL Params:
time=[long]
(required)
The time as milliseconds since unix epoch, at which the graph should be replied.
Success Response:
Status: 200
Response:

{

"nodes": [

{

"name": "XR-01",

"hasInfo": true

},

{

"name": "XR-02",

"hasInfo": true

},

{

"name": "CE-01",

"hasInfo": false

}

],

"links": [

{

"source": "XR-01",

"target": "CE-01"

},

{

"source": "XR-01",

"target": "XR-02"

},

{

"source": "XR-01",

"target": "XR-03"

}

]

}

Error Response: A Statuscode that is not 200.

December 20, 2018

Version 1.0

31

Semester Thesis: Streaming Telemetry

3 Conception and Design

Title: Get path
URL: /path
Method: GET
URL Params:
departureNodeName=[string]
(required)
The name of the node from where the path should be drawn.

destinationNodeName=[string]
(required)
The name of the node at which the path should end.

destinationGlobalIp=[string]
(required)
Primary Ip of destination node.

loopbackIp=[string]
(required)
Loopback IP of the vrf for which the path should be drawn.

time=[long]
(required)
The time as milliseconds since unix epoch, at which the path should be replied.

Success Response:
Status: 200
Response:

[

{

"source": "XR-01",

"target": "XR-03"

},

{

"source": "XR-03",

"target": "XR-05"

},

{

"source": "XR-05",

"target": "XR-06"

},

{

"source": "XR-06",

"target": "XR-10"

},

{

"source": "XR-10",

"target": "XR-09"

}

]

Error Response: A Statuscode that is not 200.

December 20, 2018

Version 1.0

32

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.4 Frontend

Figure 15: Frontend

We used a component based approach in the frontend. This means that the frontend consists of
individual components. We used 4 of those components:

The App component is responsible of arranging the other three components. Those child components
are marked with a red border in �gure 16. Furthermore, it manages events from its child components,
and makes API calls when appropriate.

In the top left there is a DateTimePicker component with which one can control the date and time at
which the data should be displayed. On change, it communicates the new date and time to its parent.

The whole right part of the website contains the Topology component which displays the network graph.
It contains all the logic to draw the graph. When clicking a node, the clicked node is communicated
to it's parent. The parent (the App component) then displays the node information.

The NodeDetails component is responsible for displaying the node information for a single node. It
also contains a form with which the user can choose which network path should be drawn.

All those last three components are completely separate. That results in the big advantage that they
can easily be reused, in this project or an other. Moreover, they can be used multiple times in a project
in case one would like to add new features that use the same functionality.

December 20, 2018

Version 1.0

33

Semester Thesis: Streaming Telemetry

3 Conception and Design

Figure 16: Frontend where Vue.js components are marked

December 20, 2018

Version 1.0

34

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.5 Deployment & Installation

3.5.1 Continuous Integration

We use GitLab`s Continuous Integration (CI) to build the projects every time when there is a push to
the master branch. The CI then create a Docker container, and publishes it in the GitLab registry.

This has the advantage that one can always get the latest version as a Docker container. This makes
deployment very easy.

3.5.2 Deployment

For easy deployment we decided to use Docker Compose, which describes all the containers and their
con�guration.

Before you can pull these containers, you need to log in to the GitLab registry. This has only to be
done once on the host machine:

docker login registry.gitlab.com

Installation The containers will write their volumes to "/opt/data", so make sure this directory
exists and is writable.

Then, once you have checked out the "sa-streaming-telemetry" project, you can start up the containers:

docker-compose up -d

Now make sure that the routers are sending the telemetry data to the host machine on port 5432 using
UDP. To check if data is arriving you can look at the GUI of this application. Or directly tap into the
Kafka topic to look at the raw data, by using the commands described later on.

Update To update the containers with the new version from the registry, execute either the `up-
date.sh` �le, or run:

docker-compose rm -s -f

docker-compose pull

docker-compose up -d

If you would like to update just one container, just append its name to the commands:

docker-compose rm -s -f sa-backend

docker-compose pull sa-backend

docker-compose up -d sa-backend

December 20, 2018

Version 1.0

35

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.5.3 Maintenance

Debugging There are a few practical commands that can be used to debug the application. To
inspect the data from a Kafka topic (in this example the topic "telemetry"), run this command
on the host machine:

clear && docker run \

--net=sa-streaming-telemetry_default \

--rm confluentinc/cp-kafka:5.0.0 \

kafka-console-consumer --bootstrap-server kafka1:29092 --topic telemetry \

--property print.key=true --property print.timestamp=true

This command only show new incoming messages. If you want to look at older messages, you �rst
have to get the current o�set:

docker run \

--net=sa-streaming-telemetry_default \

--rm confluentinc/cp-kafka:5.0.0 \

kafka-run-class kafka.tools.GetOffsetShell \

--broker-list kafka1:29092 --topic telemetry

This will give you a number after the second column, like this: telemetry:0:10725705

The o�set here is 10725705, now just subtract how many messages back you wanna go, and use this
new number in this command (here I used 10725000 to go 705 messages back):

docker run \

--net=sa-streaming-telemetry_default \

--rm confluentinc/cp-kafka:5.0.0 \

kafka-console-consumer --bootstrap-server kafka1:29092 --topic telemetry --partition 0 \

--offset 10725000 --property print.key=true --property print.timestamp=true

To check the con�guration of a Kafka topic, use:

docker run \

--net=sa-streaming-telemetry_default \

--rm confluentinc/cp-kafka:5.0.0 \

kafka-configs --zookeeper zookeeper:32181 --entity-type topics \

--entity-name telemetry --describe

December 20, 2018

Version 1.0

36

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.6 Testing

3.6.1 System Tests

The system consists of several di�erent components that are working with each other. This collabo-
ration must work to provide a visualization for the user at the end. The communication between the
individual components and the correct execution of their tasks is tested in this section.

Pipeline This test uses a dump �le to analyze whether any data from the routers reaches the pipeline.

ID ST1 - System receives telemetry data

Test objective The system receives telemetry data via the Pipeline

Preconditions • Pipeline-Docker is set up

Execution 1. Start docker service Pipeline
2. Track the dump-�le: tail -f dumpFile.txt

Expection Data in dump �le existing and �le enlarges over time

Result Ful�lled

Table 11: ST1 - System receives telemetry data

Kafka This test cases are responsible for the connection of Kafka with the Pipeline itself and to test
the �lter functions.

The commands described in section Maintenance can be used to check the topics data.

Name ST2 - Kafka receives Pipeline data

Test objective Kafka receives telemetry data over the Pipeline

Preconditions • ST1 sucessfully executed
• Kafka-Docker is set up (Zookeeper as well)

Execution 1. Start docker services Zookeeper & Kafka
2. Run maintenance command "Debugging" with topic telemetry

Expection Topic telemetry receives data over time

Result Ful�lled

Table 12: ST2 - Kafka receives Pipeline data

December 20, 2018

Version 1.0

37

Semester Thesis: Streaming Telemetry

3 Conception and Design

Name ST3 - Kafka-Stream-Workers running

Test objective Kafka-Stream-Workers �ltering packets and creating new topics

Preconditions • ST2 sucessfully executed
• Stream-Workers-Docker set up as customized

Execution 1. Start docker services Stream-Workers

Expection Docker Kafka-Stream-Workers running and consuming Kafka data-stream

Result Ful�lled

Table 13: ST3 - Kafka-Stream-Workers running

Name ST4 - Filter LLDP packets

Test objective Kafka-Stream-Workers �ltering LLDP packets into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Start docker services Stream-Workers
2. Run maintenance command "Debugging" with topic telemetry-lldp-

grouped

Expection Topic telemetry-lldp-grouped created and receives data over time

Result Ful�lled

Table 14: ST4 - Kafka-Stream-Workers �ltering LLDP packets

Name ST5 - Filter node information packets

Test objective Kafka-Stream-Workers �ltering node information packets into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-node-
table

Expection Topic telemetry-node-table created and receives data over time

Result Ful�lled

Table 15: ST5 - Filter node information packets

December 20, 2018

Version 1.0

38

Semester Thesis: Streaming Telemetry

3 Conception and Design

Name ST6 - Filter segment routing policy packets

Test objective Kafka-Stream-Workers �ltering segment routing policy packets into new
topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-sr-path

Expection Topic telemetry-sr-path created and receives data over time

Result Ful�lled

Table 16: ST6 - Filter segment routing policy packets

Name ST7 - Filter global routing table packets

Test objective Kafka-Stream-Workers �ltering global routing table patckets into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-mpls-
table

Expection Topic telemetry-mpls-table created and receives data from time to time

Result Ful�lled

Table 17: ST7 - Filter global routing table packages

Name ST8 - Filter node interfaces packets

Test objective Kafka-Stream-Workers �ltering packets information about node interfaces
into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-node-
interface-table

Expection Topic telemetry-node-interface-table created and receives data over time

Result Ful�lled

Table 18: ST8 - Filter node interfaces packages

December 20, 2018

Version 1.0

39

Semester Thesis: Streaming Telemetry

3 Conception and Design

Backend These tests are important to ensure that the data is made available to the frontend and
that historical data storage is introduced.

Name ST9 - Backend consuming Kafka data

Test objective Backend running and consuming Kafka data

Preconditions • ST2 sucessfully executed

Execution 1. Start docker service SA-Backend

Expection Docker service SA-Backend is up and running

Result Ful�lled

Table 19: ST9 - Backend consuming Kafka data

Name ST10 - Window LLDP-Packages

Test objective Backend windowing topic telemetry-lldp-grouped

Preconditions • ST3 sucessfully executed
• ST9 sucessfully

Execution 1. Run maintenance command "Debugging" with topic telemetry-lldp-
table-windowed

Expection Topic telemetry-lldp-table-windowed created and receives data over time

Result Ful�lled

Table 20: ST10 - Window LLDP packets

December 20, 2018

Version 1.0

40

Semester Thesis: Streaming Telemetry

3 Conception and Design

Name ST11 - Window node information packets

Test objective Backend windowing topic telemetry-nodes-table into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-node-
table-windowed

Expection Topic telemetry-nodes-table-windowed created and receives data over time

Result Ful�lled

Table 21: ST11 - Window node information packets

Name ST12 - Windowing segment routing policy packets

Test objective Backend windowing topic telemetry-sr-path into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-policy-
path-windowed

Expection Topic telemetry-policy-path-windowed created and receives data over time

Result Ful�lled

Table 22: ST12 - Window segment routing policy packets

Name ST13 - Window global routing table packets

Test objective Backend windowing topic telemetry-mpls-table into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-mpls-
table-windowed

Expection Topic telemetry-mpls-table-windowed created and receives data over time

Result Ful�lled

Table 23: ST13 - Window global routing table packets

December 20, 2018

Version 1.0

41

Semester Thesis: Streaming Telemetry

3 Conception and Design

Name ST14 - Window node interfaces packets

Test objective Backend windowing topic telemetry-node-interface-table into new topic

Preconditions • ST3 sucessfully executed

Execution 1. Run maintenance command "Debugging" with topic telemetry-node-
interface-table-windowed

Expection Topic telemetry-node-interface-table-windowed created and receives data
over time

Result Ful�lled

Table 24: ST14 - Window node interfaces packets

Frontend These tests are to ensure, that the frontend is accessible and usable for the user.

Name ST15 - Frontend running and usable

Test objective Frontend running and accessible

Preconditions • ST9 sucessfully executed

Execution 1. Start docker service SA-Frontend
2. Open web-browser and call ip-address, where the Docker Service are

hosted

Expection Docker service SA-Frontend is running and web page can be opened

Result Ful�lled

Table 25: ST15 - Frontend running and usable

December 20, 2018

Version 1.0

42

Semester Thesis: Streaming Telemetry

3 Conception and Design

Name ST16 - Frontend displays topology

Test objective The user can view a topology with node information

Preconditions • ST10 sucessfully executed

Execution 1. Open web-browser and call ip-address, where the Docker-Services are
hosted

Expection A network topology is displayed

Result Ful�lled

Table 26: ST16 - Frontend displays topology

Name ST17 - Frontend displays historical topology

Test objective The user can adjust the date and time to display historical topologies and
paths

Preconditions • ST10 sucessfully executed

Execution 1. Open web-browser and call ip-address, where the Docker Service are
hosted

2. Use the date-time text-box or the slider to change the date and time
of the topology

Expection A network topology is always displayed. In case of network changes the
viewed topology gets adjusted

Result Ful�lled

Table 27: ST17 - Frontend displays historical topology

December 20, 2018

Version 1.0

43

Semester Thesis: Streaming Telemetry

3 Conception and Design

3.6.2 Performance Test

This test is to ensure, that the quality requirement of the frontend performance can be ful�lled.

Name PT1 - Frontend displays topology within the speci�ed time

Test objective The frontend displays the topology within 5 seconds after start.

Preconditions • System is set up and running

Execution 1. Open web-browser and call ip-address, where the Docker Service are
hosted

Expection A network topology is displayed within 5 seconds.

Result Ful�lled

Table 28: PT1 - Frontend displays topology within 5 seconds

December 20, 2018

Version 1.0

44

Semester Thesis: Streaming Telemetry

4 Results & Conclusion

4 Results & Conclusion

4.1 Target achievement

The developed components meet the requirements expected by the customer.

The following points were achieved:

• Reception and storage of streaming data over Pipeline

• Visualization of the network topology

• Visualization of the segment routing path between two routers

• The ability of historical data tracking within a topology or a segment routing path to detect
changes

Unfortunately there was no time left to implement the optional requirements:

• Trigger events in case of a detected change

On the basis of this work, the customer can easily extend the application according to his requirements,
because we made sure that the components are ready for this and well separated.

4.2 Team retrospective

In the following section we would like to discuss the problems we had during this project and how we
solved it.

To begin with, we are satis�ed with the achieved result, as we both immersed ourselves in a new world
and have never worked with the processing of streaming data or segment routing. Therefore, we had
to deal with several di�culties during this project.

The speci�cation of the architecture turned out to be the biggest hurdle. Without the necessary prior
knowledge, it is di�cult to �nd the most suitable components to solve the problem. The project
managers were able to support us with their knowledge and recommend the best tools from their
experience with data streaming processing.

Once the architecture was evaluated, there were troubles with the integration of the Kafka component
into our solution. First, we had to understand, how Kafka is installed within a docker container, how it
can receive the data, what a topic is, how they can be created and how we can �lter the data received
by the system. Fortunately, there is a documentation9 which helped us a lot.

Another problem was the space consumption of the Pipeline and Kafka docker services on the server.
The Docker �le system was initially full for inexplicable reasons, interfering with the execution of
Docker services and resulted in not processing any more streaming data. The analysis of this problem

9http://kafka.apache.org/documentation.html

December 20, 2018

Version 1.0

45

http://kafka.apache.org/documentation.html

Semester Thesis: Streaming Telemetry

4 Results & Conclusion

showed that the volume provided by the Docker �le system was not large enough. In addition, the
pipeline created a dump �le of all incoming data from the network devices, which can be used for
debugging or data analysis purposes. But it �lled the disk space very fast. With the help of an
additional, larger volume (capacity: 200 GB) we mounted the data volumes of the Docker Services to
this drive. Additionally, we terminated the creation of the pipeline dump �le.

In the end it turned out that we suddenly weren't able to display the path in the network any more.
That was very frustrating because we wanted to show that it works in our �nal presentation. Because
we did not change our code, it had to be the data we received. So we analyzed it, and wrote a document
outlining which data is missing and what does not match anymore.

To conclude, we had some di�culties but we managed to solve all of them and learned a lot in the
process. And we would happily do it again.

December 20, 2018

Version 1.0

46

Semester Thesis: Streaming Telemetry

5 Outlook

5 Outlook

5.1 Trigger event based changes

Unfortunately, we did not have enough time to implement this optional requirement.

The idea is to change the network when certain changes are detected. Apache Kafka streaming API
has a lot of tools to detect changes and aggregate data, so this feature can be implemented in little
time in the future when needed.

So one would need to implement a way to communicate back to the network, then de�ne rules and
aggregate data to check those rules. If they are broken, changes in the network can be triggered.

5.2 Extension of the architecture

To ensure the stability of the architecture in case the network grows, there are a couple of points to
introduce:

Multiple Kafka Producers In case there are more than 100 routers and the processing of the
streaming data need more capability, there is the possibility to start more instances of the Kafka-
Streaming-Workers and therefore have multiple Kafka workers at one time.

Backend with Load Balancer At the moment it is assumed that only a few users access the
application at the same time. In the event of an increase, the system should still be performant. As a
bottleneck, the backend would be overwhelmed by the number of requests and slow down the system
accordingly. As a solution, you can aim for load balancing on several backend instances. However, you
need to synchronize the data that the backend instances process for Apache Kafka.

Change historical data granularity The ability to track historical data is one strength of the
application. There is a one hour window created for every topic. Over time, i.e. over several months or
years, this implementation logic leads to a high demand for data storage and could lead to a capacity
problem. It would be possible to combine individual windows, which are further back in time, no
longer hourly, but daily into one window. To do this, a worker would have to be implemented that
would combine all windows of one day into one separate window.

December 20, 2018

Version 1.0

47

Semester Thesis: Streaming Telemetry

5 Outlook

5.3 Frontend extensions

The topology is currently based on the width of the topology component and the screen size. For
a smaller number of nodes, the network graph is clearly understandable. But a network with a lot
network devices may look a bit overloaded. Therefore the following points could present a solution:

• Dynamically fade out the settings component and enlarge the topology component when needed

• Adding the ability to zoom the graph

• Adding the ability to move the nodes within the component

Additionally, the information shown per router or a path could be extended, e.g. by next hop time,
tunnel interface name, processed label names and many more.

5.4 Security

The project has not yet addressed the issue of security.

On the one hand, access to the application itself could be restricted. This can be achieved with the
help of a login with user name and password or a connection to an external login service (e.g. Cisco
login).

Another important point would be the integration of security on Apache Kafka. By default, Kafka
is used without any security mechanisms. This means that any consumer who has the Kafka Docker
network information could read or write data and manipulate them.

Kafka Security provides the following three components10:

Data encryption using SSL/TLS The data �ow between Kafka and its producers and consumers
can be encrypted.

Authentication Client authentication can be used to restrict access to Kafka to individual applica-
tions.

Authorization with Access Control Lists (ACL) With the help of Access Control List you can
distribute read & write permissions to the individual authenticated applications. These rights are set
to individual Kafka topics.

10https://kafka.apache.org/10/documentation/streams/developer-guide/security.html

December 20, 2018

Version 1.0

48

https://kafka.apache.org/10/documentation/streams/developer-guide/security.html

Semester Thesis: Streaming Telemetry

List of Figures

List of Figures

1 Architecture diagram . 7

2 Function requirements model . 10

3 Domain model . 14

4 Architecture diagram . 20

5 Data�ow between Kafka topics . 22

6 Find policy label . 24

7 Find tunnel interface . 25

8 Find label stack . 26

9 Path �nding example: policy . 27

10 Path �nding example: Find next hop interface node 28

11 Path �nding example: Process 24*** label . 28

12 Path �nding example: Process 16*** label on XR-05 29

13 Path �nding example: Process 16*** label on XR-06 29

14 Path �nding example: Process 16*** label on XR-10 29

15 Frontend . 33

16 Frontend where Vue.js components are marked . 34

17 Working hours per week per person . 57

18 Working hours per phase . 58

December 20, 2018

Version 1.0

49

Semester Thesis: Streaming Telemetry

List of Tables

List of Tables

1 Actors . 11

2 FR1 - View topology overview . 11

3 FR2 - Select service to display . 11

4 FR3 - Receive Streaming Data . 11

5 FR4 - Store Streaming Data . 12

6 FR5 - Provide historical data . 12

7 FR6 - Trigger topology-changing-events . 12

8 NFR1 - Scalability . 12

9 NFR2 - Usability . 13

10 NFR3 - Performance . 13

11 ST1 - System receives telemetry data . 37

12 ST2 - Kafka receives Pipeline data . 37

13 ST3 - Kafka-Stream-Workers running . 38

14 ST4 - Kafka-Stream-Workers �ltering LLDP packets 38

15 ST5 - Filter node information packets . 38

16 ST6 - Filter segment routing policy packets . 39

17 ST7 - Filter global routing table packages . 39

18 ST8 - Filter node interfaces packages . 39

19 ST9 - Backend consuming Kafka data . 40

20 ST10 - Window LLDP packets . 40

21 ST11 - Window node information packets . 41

22 ST12 - Window segment routing policy packets . 41

23 ST13 - Window global routing table packets . 41

24 ST14 - Window node interfaces packets . 42

25 ST15 - Frontend running and usable . 42

26 ST16 - Frontend displays topology . 43

December 20, 2018

Version 1.0

50

Semester Thesis: Streaming Telemetry

List of Tables

27 ST17 - Frontend displays historical topology . 43

28 PT1 - Frontend displays topology within 5 seconds . 44

December 20, 2018

Version 1.0

51

Semester Thesis: Streaming Telemetry

Acronyms

Acronyms

INS Institute for Networked Solutions. 4

IS-IS Intermediate System to Intermediate System. 15

LLDP Link Layer Discovery Protocol. 4, 20

MPLS Multiprotocol Label Switching. 23, 27

SA Studienarbeit. 4

SNMP Simple Network Management Protocol. 4

VRF Virtual routing and forwarding. 15

December 20, 2018

Version 1.0

52

Semester Thesis: Streaming Telemetry

Glossary

Glossary

Apache Kafka topic Is a stream of messages. A Kafka cluster can have multiple topics, which a
distinguished by name. 20

Yang Is a data modeling language. 4, 5, 22, 23, 56

December 20, 2018

Version 1.0

53

Semester Thesis: Streaming Telemetry

Part V

Attachments

December 20, 2018

Version 1.0

54

Semester Thesis: Streaming Telemetry

A Personal re�ection

A Personal re�ection

A.1 Matthias Dunkel

In our �rst meeting we realized that we had the wrong knowledge about the task that was given to
us. We never applied to this project, because we wanted something that was focused on software
developing. And this project was intended to be about segment routing, which is network technology.
Additionally we both had spent very little time on this in our studies.

Luckily, we could mention that in our �rst meeting when we realized what the project is about. Our
expert reacted very positively, and promised to create a new assignment which is focused on software
developing. Consequently we got an assignment that we are very happy about. The result was that
we had to start two weeks later than expected, but we made the best out of it.

I found it very interesting to work with people who specialize in network technologies, and I got to see
a part of informatics that I was not very familiar with.

The most interesting part for me was to learn about Apache Kafka and using it in this project. I had
heard about it before, but never knew what it does. Now I see use cases for it everywhere.

The construction phase was also very interesting. Although in the assignment it was speci�ed that
the focus was on the frontend, we spent most of the time developing the backend and the streaming
worker. This because aggregating the data was not easy. But I loved to do this kind of work, so that
was no issue at all for me. Because this was something new, even our expert and his team did not
know exactly which data we were going to need, so we had meetings every week discussing what we
needed and how to interpret the data. This was a very good experience, and the meetings were always
very constructive.

Additionally, I was very happy about the teamwork with my team partner Ra�ael Vögeli. We are both
on the same technical level, so discussions were always very constructive and e�cient. Furthermore,
Ra�ael always saw the big picture, and was excellent in planning this project.

In conclusion, I am very proud of the work we did. I think we created a great product for the time we
had, and also made sure it is very scalable. I think we learned a lot, and are now very well prepared
for the bachelor thesis next semester.

A.2 Ra�ael Vögeli

The start into the student research project proved to be quite bumpy for me. The work was assigned to
us due to an error in the HSR internal job administration tool (AVT). We did not have the necessary
knowledge for the original task, and we immediately admitted that at the beginning of the work.

However, the supervisor of the work, Prof. Laurent Metzger, was not aware of this and was surprised
by it himself. Nevertheless, together with us and the industry partner, he was able to react �exibly and
de�ne a new task, which was more tailored to our abilities. This also greatly increased my motivation
to successfully complete the project, which we could start with a delay of 2 weeks.

The elaboration phase with the evaluation of the individual architecture components represented the
greatest di�culty for me. I had never worked with streaming data and its processing before and

December 20, 2018

Version 1.0

55

Semester Thesis: Streaming Telemetry

A Personal re�ection

therefore I found the familiarization with these components (Yang Models, Pipeline, Apache Kafka)
very time-consuming and di�cult.

The cooperation with the project supervisors was very constructive and we received great help with
any problems that arose. The weekly meetings provided us with the information we needed to move
the project forward. It also resulted in constructive discussions which could be considered useful for
both sides.

I have already successfully worked alongside my project partner throughout my studies. Therefore I
did not expect anything to the contrary for this project. Throughout the whole project, problems arose
again and again, which we had to clear up, among other things, in the team. With the help of pair
programming, we were able to identify and solve these problems quickly. We complemented each other
with our individual know-how and both the motivation and incentive to work on this project were
always at a high level. The communication and the distribution of the project also worked excellently
throughout the entire project.

As a �nal conclusion, I can speak of a very successful and instructive work and am already looking
forward to the bachelor thesis, which I will do again with Matthias Dunkel.

December 20, 2018

Version 1.0

56

Semester Thesis: Streaming Telemetry

B Used time

B Used time

In this section we analyse the time spent on this project.

In the �rst �gure 17 we can see that we both spent almost the same time. Some weeks one person
worked more, but we always made sure that the other person then did something more in the following
weeks. This happened sometimes because it was easier when one person developed or learned something
alone and then briefed the partner. For example when we had to learn how Apache Kafka worked.

Figure 17: Working hours per week per person

Figure 18 shows what we expected. Most time was spent in the construction phase, where we developed
the application and wrote this report.

December 20, 2018

Version 1.0

57

Semester Thesis: Streaming Telemetry

B Used time

Figure 18: Working hours per phase

When we sum the time per person we get around 211 hours spent in total. This is a little bit under
the amount that was forseen for this project. This is due to the fact that we received the assignment
later than expected. We still managed to do some work without the assignment, such as setting up
the documentation tools, discussing technologies and reading about them.

In this regard, we spent even more in the elaboration and construction phase, to get the project done
within the estimated time.

December 20, 2018

Version 1.0

58

	I Exercise description
	II Abstract
	III Management Summary
	IV Technical Report
	Problem Analysis
	Requirement Analysis
	Actors
	Functional Requirements
	Non-Functional Requirements

	Domain Analysis
	Domain Model
	Domain Description

	Evaluation
	Streaming data receiver
	Database
	Apache Kafka

	Backend
	Frontend
	Web server
	Frontend Application
	Visualization

	Conception and Design
	Pipeline
	Yang-Models

	Apache Kafka
	Kafka Stream Workers
	Topics

	Backend
	Data transformation
	Find Segment Routing Path
	RESTful API

	Frontend
	Deployment & Installation
	Continuous Integration
	Deployment
	Maintenance

	Testing
	System Tests
	Performance Test

	Results & Conclusion
	Target achievement
	Team retrospective

	Outlook
	Trigger event based changes
	Extension of the architecture
	Frontend extensions
	Security

	Acronyms
	Glossary

	V Attachments
	Personal reflection
	Matthias Dunkel
	Raffael Vögeli

	Used time

	thesis.pdf
	I Exercise description
	II Abstract
	III Management Summary
	IV Technical Report
	Problem Analysis
	Requirement Analysis
	Actors
	Functional Requirements
	Non-Functional Requirements

	Domain Analysis
	Domain Model
	Domain Description

	Evaluation
	Streaming data receiver
	Database
	Apache Kafka

	Backend
	Frontend
	Web server
	Frontend Application
	Visualization

	Conception and Design
	Pipeline
	Yang-Models

	Apache Kafka
	Kafka Stream Workers
	Topics

	Backend
	Data transformation
	Find Segment Routing Path
	RESTful API

	Frontend
	Deployment & Installation
	Continuous Integration
	Deployment
	Maintenance

	Testing
	System Tests
	Performance Test

	Results & Conclusion
	Target achievement
	Team retrospective

	Outlook
	Trigger event based changes
	Extension of the architecture
	Frontend extensions
	Security

	Acronyms
	Glossary

	V Attachments
	Personal reflection
	Matthias Dunkel
	Raffael Vögeli

	Used time

