
SA

Googletest to CUTE Converter

University of Applied Sciences Rapperswil

HS 2018

Author: Sascha Gschwind & Renato Venzin
Advisor: Peter Sommerlad & Hansruedi Patzen
Industry Partner: Institute for Software (IFS) HSR

1. Abstract

Googletest is a widely used C++ testing framework. CUTE is a testing framework
developed by Peter Sommerlad and integrated into the Cevelop IDE through the
CUTE plugin. There should be an easy way for developers to switch from Googletest
to CUTE, so that more projects test and hopefully switch to CUTE. This project
aims to fill this gap and provide a plugin which helps convert Googletest projects
into CUTE projects.
The goal was to create a refactoring that can be used to convert entire projects
or at least provide a foundation on which a future project can build upon. The
result is a refactoring able to convert projects consisting of a single source file. The
most commonly used assertions are supported, with a few exceptions which do not
have an equivalent assertion in CUTE. This project acts as a basis for converting a
simple project. The project can be easily extended in order to support converting
bigger projects.

2. Management Summary

The management summary contains a brief description of the project. It contains
the initial position, the approach to the project, the results and a demonstration.

2.1. Initial position

Googletest is a widely used testing framework. CUTE is a testing framework
developed by Peter Sommerlad, the framework is included in the CUTE plugin
for Cevelop. Today there is no way to simply switch from Googletest to CUTE.
If a developer wants to convert an entire project from Googletest to CUTE they
would need to do lots of manual conversions. This should be automated using a
refactoring, which should be the result of this project.

2.2. Approach, Technologies

Since we were completely new to plugin-development and the ILTIS framework,
as well as quite unexperienced in regards to the Abstract Syntax Tree (AST), we
had to work highly agile using Scrum constructs [Ken Schwaber, 2018] (Sprints,
Backlog) since we could not plan much in advance.

Technologies
Technology-wise there was not much to decide, the CUTE plugin is written in Java
[Oracle, 2018b], therefore our addition to it is written in Java as well. Since we
wrote an Eclipse plugin it only made sense to use the Eclipse IDE for development
[Eclipse, 2018a].
For coordination of work and meeting protocols we used gitlab, provided by the
IFS [GitLab, 2018].
Continuous Integration & Deployment was handled already, since we are in the
CUTE environment [IFS, 2018b].

2.3. Results

A plugin which succesfully converts a project consisting of a single file containing one
or more testsuites (or testcases in Googletest). This allows for an easy conversion
of a simple project. The entire process is automated, from the creation of the
headers and suitefiles of CUTE to the deletion of the old Googletest files. There
are still some constructs that are not yet supported in this plugin. They will be be
added in future work and will be described in detail in the technical report.

2.4. Demonstration

This section is meant to illustrate the refactoring of a simple sample project. We
chose a project with two testsuites (TestCases in Googletest) and two namespaces,
to show most of the features already implemented.

2.4.1. Before

Figure 2.1.: Googletest example project

This depicts a very simple Googletest project consisting of a single file. This project
contains two testcases (suites in CUTE), two tests and two namespaces, a named
and an anonymous namespace.

2.4.2. Starting the refactoring

Figure 2.2.: Where the refactoring can be found

The refactoring can be found in the CUTE menu when right-clicking on a C++
file in the project explorer. The selected file is the one which gets converted.

2.4.3. Refactoring wizard

Figure 2.3.: Refactoring Wizard showing the changes

In this wizard all the changes are visualized. Here individual changes can be
deselected and the changes can be viewed before applying them.

2.4.4. Result

Figure 2.4.: The converted project which now uses the CUTE plugin

After the refactoring concludes, the CUTE files get created and the no longer
needed files get removed. After adding the CUTE nature, the project can be built
and executed as a CUTE test suite.

2.5. Outlook

These are the constructs that should be implemented, if and when the plugin is
extended:

• Projects with several testfiles will be the first update that is needed. For
more information about this, see chapter ”Notes for updating the plugin”
11.1

• The remaining unsupported Asserts should be implemented where possible
(e.g. where an equivalent or similar CUTE Assert exists). Otherwise a
workaround should be found (for example when a project contains Deathtests
or case equal comparison of strings)

• TEST F testcases can be supported as well but would need additional logic
so that they are handled correctly.

i

Contents

1. Abstract

2. Management Summary
2.1. Initial position .
2.2. Approach, Technologies .
2.3. Results .
2.4. Demonstration .

2.4.1. Before .
2.4.2. Starting the refactoring .
2.4.3. Refactoring wizard .
2.4.4. Result . i

2.5. Outlook . i

3. Assignment 2
3.1. Context . 2
3.2. Problem . 2
3.3. Task . 2
3.4. Concrete task . 3
3.5. Specifics . 3

3.5.1. Existing infrastructure . 3
3.5.2. Omittable documentation 4

3.6. Expected results . 4
3.7. Appointments . 4
3.8. Supervision . 5

4. Introduction & Overview 6
4.1. Problem scope . 6
4.2. Introduction . 6
4.3. Preparation . 8
4.4. Motivation . 8

5. Projectplan 9
5.1. Project overview . 9

5.1.1. General conditions . 9

ii

5.1.2. Project organisation . 9
5.1.3. Time planning . 10
5.1.4. Project phases . 10
5.1.5. Milestones . 11

5.2. Risk management . 12
5.3. Work packages . 12
5.4. Infrastructure . 12
5.5. Quality assurance . 13

5.5.1. Process . 13
5.5.2. Sprint planning . 13
5.5.3. Meeting protocols . 14
5.5.4. Code quality . 14
5.5.5. Code style guidelines . 14
5.5.6. Continuous Integration . 14
5.5.7. Error tracking . 15
5.5.8. Testing . 15

6. Analysis 16
6.1. Basic AST Analysis . 16

6.1.1. Variables . 17
6.1.2. Function without parameters 18
6.1.3. Function with parameters 19
6.1.4. Function with multiple statements 20

6.2. Googletest to CUTE . 21
6.2.1. Documentation . 21
6.2.2. Open Source Projects using Googletest 21
6.2.3. Mappings . 22
6.2.4. Test Runner . 26
6.2.5. Advanced concepts . 27
6.2.6. Examples . 29

7. Design 31
7.1. SingleSuite Case . 31
7.2. MultiSuite Case . 31

8. Implementation 32
8.1. Markers . 32
8.2. Writing the AST to a new file . 33
8.3. Nontest constructs . 34
8.4. Constructs which block the refactoring 34
8.5. Testing the Refactoring . 35

iii

8.6. Deletion of Googletest files . 36

9. Result 37
9.1. Reached . 37
9.2. Not reached . 37

9.2.1. Reasoning . 37

10.Problems 39
10.1. Solved . 39

10.1.1. Indexer running permanently, blocking the refactoring 39
10.1.2. Named Namespaces lead to redefinition 39

10.2. Unsolved . 39
10.2.1. Projects that include several testing files 39
10.2.2. Same definition in anonynomous namespace and outside of it 40

11.Conclusion 41
11.1. Notes for updating the plugin . 41

11.1.1. Multifile Case . 41
11.1.2. TEST F tests . 41
11.1.3. Remaining assertions and other Googletest constructs 42
11.1.4. More defensive programming 42
11.1.5. Remove namespace duplication 42

11.2. Time analysis . 42
11.2.1. Overall time per label . 43
11.2.2. Comparison of estimates and actual time 43
11.2.3. Comparison between teammembers 45

12.Glossary 47

Appendices 51

A. Usage manual 52

B. Demonstration 60

1

3. Assignment

In this chapter the assignment will be defined. The chapter contains the context,
problem description, tasks, expected results, appointments and the supervision of
this project.

3.1. Context

Googletest is a widely used testing framework for C++. The IFS has developed
their own testing plugin called CUTE. To help developers using Googletest to
convert their tests to CUTE a plugin for Cevelop (IDE for C++ development
based on Eclipse) should be developed. This gives developers using Googletest an
additional motivation to migrate to CUTE. Another use for it is at conventions to
show how easy it is to migrate from Googletest to CUTE.

3.2. Problem

The Googletest framework uses some bad practices when it comes to testing. For
developers using Googletest and wanting to migrate to CUTE it should be possible
to do this without rewriting all the tests manually. This is where the plugin comes
into play. It converts the most common Googletest features to the CUTE syntax.

3.3. Task

The students doing this SA have to write an Eclipse plugin which migrates
Googletest tests to CUTE tests. The conversions need to be tested with unit
tests to confirm they are working.

2

3.4. Concrete task

The following list contains all the necessary tasks for the students:

• Familiarize themselves with the Eclipse plugin development.

• Familiarize themselves with the Googletest framework.

• Familiarize themselves with the CUTE plugin.

• Define a list of features that can be converted using the plugin. These
conversions will be the core scope that needs to be developed by the students,
hence it needs to be documented and approved.

• Integrate an extension to the CUTE project which does the Googletest to
CUTE convertions defined in the list above.

• Prepare the weekly meetings with a Wiki page describing the tasks done /
open and questions that need to be answered.

• Write a document describing the scope. This document needs to be approved
by the supervisors.

• Write a final report describing the project in its final state including an
abstract and a management summary (see the SA documents from the HSR
for more details).

• Create a poster which gives an overview of the project (see the SA documents
from the HSR for more details).

• Demonstrate the functionality of the implementation on an existing open-
source project.

3.5. Specifics

3.5.1. Existing infrastructure

The students doing this SA are extending the already existing CUTE plugin. CI is
already in place and does not need to be set up.

3

3.5.2. Omittable documentation

The following list describes the things that can be omitted:

• No architecture needs to be documented because the CUTE project is already
documented. Only how the extension is integrated into the existing project
should be documented.

3.6. Expected results

The expected results are the following:

1. Analysis document describing which Googletest functions can be converted
to CUTE

2. CUTE extension that lets the developer convert existing Googletest tests to
CUTE.

3. A final report including the problem description, an abstract, a management
summary, a technical report, the time analysis and what goals have been
reached.

4. A poster giving an overview of the project.

3.7. Appointments

Appointment Description

17.09.2018 Begin SA
18.12.2018 Upload abstract to the online tool https://abstract.

hsr.ch

21.12.2018 until 12:00 Submission of the final report.
21.12.2018 Upload the documents to archiv-i.hsr.ch

Every Wednesday 15:30 Weekly meeting with the supervisors

Table 3.1.: Appointments

4

https://abstract.hsr.ch
https://abstract.hsr.ch
archiv-i.hsr.ch

3.8. Supervision

Peter Sommerlad The main supervisor. He will be in most of the meetings (if
he has time to attend them) and will have the final word on most decisions.

Hansruedi Patzen The second supervisor. He will be in all the weekly meetings
and is the main person to get help from and ask questions during the SA.

Additional help:

Thomas Corbat Main contact point for C++ related questions. He will help if
there are questions and/or problems related to C++ specifics.

AnneMarie O’Neill Language advisor reviewing our documentation in terms
grammatic and orthography.

5

4. Introduction & Overview

This chapter should give the reader an overview of the project. The reader should
know the problem scope of this project and how the solution was approached.

4.1. Problem scope

Write an Eclipse plugin which refactors Googletest files into CUTE compatible
files. The plugin shall convert the assertions, which are similar but not identical,
in a way to keep the functionality of the tests as before. The plugin also needs to
convert the Googletest TEST macros into ordinary functions. In order for this to
work, the plugin needs to be able to handle the test registration. The refactored
files should follow the cute guidelines (one header & implementation file per suite,
test-registration in suite-file, one main file which runs all tests).

4.2. Introduction

The goal of this project was to convert Googletests [Google, 2018b, Google, 2018a]
to CUTE tests [IFS, 2018b] using a refactoring. We added a plugin to the already
existing CUTE project, which is a part of the Cevelop IDE developed by the
Institute for Software at the HSR. [IFS, 2018a]
Using the ILTIS framework [IFS, 2016] developed by the Institute for Software and
the Eclipse CDT core features, we had to manipulate the abstract syntax tree and
save the changes in a refactoring.
There were multiple hurdles we had to overcome in order for us to be able to convert
an existing Googletest based file. First we needed to get the abstract syntax tree
using the frameworks available. This was quite easy since the ILTIS framework
already provided a function for this.
The second task was to find the nodes in the abstract syntax tree using a vis-
itor. [Erich Gamma, 1997] This was quite tricky because we had to identify
what characteristics were unique in the nodes created by the Googletest macros.
[Stroustrup, 2015] We decided to use mulitple visitors to find different types we
needed to convert. We used a visitor for the TEST macros itself, a visitor for
the ASSERT and EXPECT statements a visitor for the namespaces and a visitor

6

for other definitions like variables, classes, structs, enums and functions. We also
needed to capture all the preprocessor statements because we needed to include
them in the new files as well. To help identify the nodes and to get the parameters
we wrote a parser using the function getSyntax(). Because of a bug in the CDT we
had to split the parser because the TEST macro node could not be parsed using
the framework. Since the usage of the TEST macros is very restricted we were able
to implement the parsing of these nodes using regex. Everything else we were able
to parse using an actual parser mechanism.
Having collected all the nodes that need to be manipulated, we refactored them
to the CUTE syntax. Because the CUTE plugin differentiates between a single
testsuite project and one with multiple testsuites we had to differentiate the refac-
toring too. For the single testsuite we manipulated the file abstract syntax tree
of the file directly using the ASTRewrite [Oracle, 2018a]. In the other case, when
multiple testsuites were present, we had to copy the abstract syntax tree because
the original one is always frozen. On this copied abstract syntax tree we were able
to manipulate nodes directly. For example for the TEST macros we had to change
the Declarator to one complying with the CUTE syntax. Since those changes are
not visible in the abstract syntax tree unless the tree is written and the copy still
targets the original file we had to use an Eclipse core class which is not open API,
the ASTWriter [CCTLSU, 2018]. With this ASTWriter we were able to write down
manipulated nodes to a string which could then be used to insert them at the right
place in a template file. We then collected all these changes based on the template
file and the original tree in a string which was used to create a file change that
got added to a ModificationCollector. This made it possible that we get a preview
of the new file during the refactoring and undo the changes if needed. In case of
multiple testsuites we created new files, one for each suite, and a new main file
which runs the testsuites.
The old file was still lying around though. Because there can never be two main
functions and it is bad practice to leave dead code lying around, we needed to
remove the old file using a DeleteFileChange that also got added to the Modifica-
tionCollector.
Because it was known from the start that we would not be able to implement
every little detail of these testing frameworks during the SA period we had to
make certain checks to prevent failing refactorings. For this we used so called
Checkers [Checkerframework, 2018]. We implemented two visitors which report
problems detected in the file. The checkers register these problems and show the
user a marker inside his IDE. Before we start the refactoring we check if any of our
problems are present and if so we abort the refactoring displaying an error message.

7

4.3. Preparation

To prepare ourselves for this SA we completed the tutorials from Vogella [Vogella, 2018].
These tutorials helped us understand how the plugin development works in Eclipse
and what parts are needed to achieve our goal. Additionally, we refreshed our
C++ skills with a book from Mr. Stroustrup [Stroustrup, 2015] and the slides from
the C++ module we already visited. For the abstract syntax tree manipulation
we read through an online article [Thomas Kuhn, 2006] published by the Eclipse
foundation to get some idea of how AST manipulation works. We also read through
the ILTIS documenation [IFS, 2016] to get an overview of the framework that we
were using a lot during the project.

4.4. Motivation

Googletest is widely used and has many supporters, nevertheless there are some
aspects of Googletest which are subject to discussion regarding best practices.
For example, non-fatal assertions (EXPECT) can be quite useful when testing
for several inputs or aspects of a function, but when looking at unit- or even
microtesting best-practices, every test should only test for one specific case. When
using nonfatal assertions one is quickly tempted to test for as much as possible in
a single test, breaking exactly this. [Microsoft, 2018c]
Another point which might be up for discussion is the way Googletest handles
test-registration, because tests are registered automatically through the macros
used. This may be quite simple and easy to use, but having this functionality
locked behind macros by using static initializers may sometimes lead to confusion
or even problems. [Denim, 2012]
Developers should have the option to try out different testing environments, without
the need to change code for hours. With our plugin, developers get the chance to
try out CUTE and see if it might fit their project and if not, simply revert the
changes.
Lastly, when you try to debug Googletest code, be it because of an unexpected
behaviour or out of curiousity, you will quickly find yourself lost or confused, as
the code is often unorganized and some functions seem to be spread over several
places in order to obfuscate some implementations. Additionally, there are many
code smells, making the code unpleasant to read and follow. This includes but is
not limited to: Large class and deodorant comments.

8

5. Projectplan

The projectplan chapter contains some general information of the project as well
as the milestones defined with a timeline. It also gives an overview of the steps we
implemented to assure the quality of the work done.

5.1. Project overview

5.1.1. General conditions

Official project duration 14 weeks
Project members 2
Hours per week per person 17.14
Total hours 480
Official project start 19. September 2018
Official project end 21. December 2018

Table 5.1.: General conditions

5.1.2. Project organisation

We used a flat organisation for this project since we are only two members. Both
of us had certain responsibilites. The responsible person had to make sure that
the quality of his responsibilites is at least acceptable and make suggestions if it
is not. Although we split the responsibilites we helped each other out with them.
Everyone was part of the whole process.

Person Responsibilities

Sascha Gschwind Code quality, Testing, Implementation
Renato Venzin Time analysis, Documentation, Implementation

Table 5.2.: Responsibilites

9

5.1.3. Time planning

Figure 5.1.: Time planning

5.1.4. Project phases

We decided to use the RUP project phases which were recommended to us during
the software engineering modules.

Inception During this phase we gather knowledge about the frameworks and set
up the development environment.

Elaboration During this phase we elaborate on the gathered knowledge and
expand on it. We make sure the project and documentation is set up correctly and
set up the time tracking.

Construction In this phase the actual code for the project is written. We work
on implementing the features and assure the code quality.

Transition The last phase of the project. In this phase we document our work
and finish the project.

10

5.1.5. Milestones

Nr Title Date Description

M0 Briefing 05.9.2018 Project briefing with Mr. Sommerlad.
Gather information about the project
and what we can do to prepare ourselves.

M1 Kick-Off 23.9.2018 Kick-Off Meeting with Mr. Sommerlad
and Mr. Patzen. Official start of the
project.

M2 End of Elaboration 07.10.2018 All the open questions are cleared. The
development environment is set up and
the tools are known and installed.

M3 MVP 21.10.2018 A minimum viable product (MVP) can
be presented. The product should be
able to convert one simple case.

M4 Single suite case 04.11.2018 The single suite case can be refactored
with most of the specialties already han-
dled correctly.

M5 Multi suite case 18.11.2018 The multi suite case can be refactored
with most of the specialties already han-
dled correctly.

M6 Feature freeze 25.11.2018 There will be no additional features
added after this point. Most of the code
is refactored and in a good state.

M7 Documentation 21.12.2018 All of the documentation is done, up-
loaded and handed out. The code is com-
pletely refactored and in a good state.

Table 5.3.: Responsibilites

11

5.2. Risk management

The biggest risk during the project is illness. All of the other risk factors can be
neglected. The infrastructure runs on the servers from the HSR and should be
backed up by them automatically.
If a team member gets sick for several weeks there is not much we can do. We will
try to finish the work as early as possible so the other person can compensate in
case of illness.

5.3. Work packages

We will use Gitlab [GitLab, 2018] as our work package container. You can create
milestones and issue as well as document the time estimated and spent on those
issues.
Our work packages will be grouped so we can later use these groups for the time
analysis. We decided to use the following groups:

• Priority labels (High, Medium-high, Medium, Medium-low, Low)

• Phase labels (Inception, Elaboration, Construction, Transition)

• Documentation

• Environment Familiarization

• Implementation

• Meeting & Preparation

• QA

• Toolchain

5.4. Infrastructure

Most of the infrastruture decisions were already given by the IFS beforehand. We
will be using LaTeX [LaTeX, 2018] for the documentation, Java [Oracle, 2018b] as
our programming language, Gitlab [GitLab, 2018] for the work packages, as our
git repository and for the continuous integration. The IDE we will be using is
Eclipse Plugin Development Environment (PDE) [Eclipse, 2018b]. We decided to
use Excel [Microsoft, 2018a] for the time analysis and Visio [Microsoft, 2018b] for
other graphics needed. Our Git Tool will be Sourcetree [Atlassian, 2018] and we will

12

work on the LaTeX documents with either TeXstudio [Benito van der Zander, 2018]
or Visual Studio Code [Microsoft, 2018d].

5.5. Quality assurance

5.5.1. Process

To assure the quality of our process we work one and a half days together and
about half a day alone on the project. Even though we work together most of the
time we decided to further define our process.

• Meetings

1. Sprint planning meeting every Wednesday

2. Meeting with our advisors afterwards also every Wednesday

• When working on an issue:

1. Assign the issue to yourself

2. Pull the source code from the git repository

3. Create a branch for your work

4. Commit regularly onto the branch

5. Make a pull request (which triggers the continuous integration) when
you are done with the issue.

6. Record the time spent

7. Close the issue once the continuous integration ran successfully and the
work is reviewed by the other team member.

5.5.2. Sprint planning

At the end of every sprint we will discuss what went good and what went bad. We
will discuss the next step and plan the next sprint accordingly. We will send the
wiki with the current sprint and the outlook to the next sprint to the advisors
including open questions that need to be answered during the meeting.

13

5.5.3. Meeting protocols

For every meeting there will be a protocol which will be uploaded to the Wiki in
GitLab. The wiki will always have a certain structure which might change sligthly
depending on what is needed for the meeting:

• Participants

• Open tasks after last meeting

• Relevant documents

• Current sprint

• Next sprint

• Open questions

5.5.4. Code quality

To assure a certain code quality we try to review our code as much as possible.
Every pull request has to be reviewed before it will be merged into the master
branch. Additionally we try to get code reviews from our advisors which will
happen sporadically.

5.5.5. Code style guidelines

To make sure our code confirms with the guidelines from the Institute for Software
we will be using their code style guidelines including the code styling template
which will automatically format the code to confirm with the guidelines.

5.5.6. Continuous Integration

Since we have a fork of the CUTE plugin the continuous integration is already
set up for us on the repository. Every pull request gets checked by the continuous
integration so we can make sure the master branch is always working correctly.

14

5.5.7. Error tracking

Upcoming errors will be recorded in our sprint planning tool on GitLab and handled
with the priority they need. This way we have all our issues in the same place and
have a good grip of them.

5.5.8. Testing

We wanted our tests to be long living and secure to changes. Since it does not make
much sense to write many unit tests for our project we decided to use integration
tests only with sporadic manual tests.
If we find some bugs in our software during the system tests we will write an
integration test for the scenario to make sure the bug will stay fixed.
During development we try to write tests as early as possible so they can help us
refactor the code later.

15

6. Analysis

When beginning this project, both of us were mostly or even completely new to
plugin development as well as working with an AST. So we spent the first three
weeks setting up our toolchain, reading tutorials and analyzing both Googletest
and the CUTE plugin. This includes analyzing the AST of a simple class and the
comparison between the two AST representations.

6.1. Basic AST Analysis

We wanted to analyze some common AST constructs to see how the AST of these
code constructs looks like. Our goal was to better understand the AST and beeing
able to predict AST constructs seeing code and vice versa. With this knowledge we
expected to better understand what our refactoring has to do and how we could
approach it.

16

6.1.1. Variables

We wanted to see how a simple variable declaration and assignment looks like in
the AST. We expected this to be one of the simplest constructs and wanted to find
out how we could approach finding these variables in the AST.

Code

1 int x = 13;

Listing 6.1: Variable declaration

AST

Figure 6.1.: Variable AST

Description

Code AST Part

int x = 13; A SimpleDeclaration will be made. The return type will be the
first child of this element.

x = 13 A Declarator will be made. The variable name will be the first
child of this element.

= 13 This is an EqualsInitializer with the value as its only child.

Table 6.1.: AST variable analysis

17

6.1.2. Function without parameters

Next we were interested how the simplest function possible looks like in the AST.
We decided to take a look at a void foo() function and inspect the resulting AST.

Code

1 void foo() {

2 return;

3 }

Listing 6.2: Function without parameters

AST

Figure 6.2.: Function without parameters AST

Description

Code AST Part

Whole function A FunctionDefinition will be made. The return type will be
the first child of this element.

foo() A FunctionDeclarator will be made. The function name
will be the first child of this element.

Function body A CompoundStatement will be made for the part inside
the brackets holding the body of the function as its children.

Table 6.2.: AST function without parameters analysis

18

6.1.3. Function with parameters

The next logical step was to take a look at a function which also has some parameters.
We were especially intersted in the representation of the parameters in the AST
because we needed them for the conversion.

Code

1 void foo(int x) {

2 return;

3 }

Listing 6.3: Function with parameters

AST

Figure 6.3.: Function with parameters AST

Description

Code AST Part

Parameter For each of the parameters there will be a ParameterDeclaration
with its type as the first child. Inside the ParameterDeclaration
there will always be a Declarator holding the variable name.

Table 6.3.: AST function with parameter analysis

19

6.1.4. Function with multiple statements

Next we wanted to see how a function which has multiple statement looks like in
the AST. We wanted to know if these statements were unrelated nodes and if the
they were children of the body of the function. This was important because if our
assumptions would hold true we would be able to convert the statements itself
without having to know to which function they belong.

Code

1 void swap(int& x, int& y) {

2 int temp = x;

3 x = y;

4 y = temp;

5 }

Listing 6.4: Function with multiple statements

AST

Figure 6.4.: Function with multiple statements AST

20

Description

Code AST Part

Body In this case we have a single DeclarationStatement (int temp = x;)
which holds a SimpleDeclaration (which we already described in the
variables section) and two ExpressionStatement (x = y; and y =

temp;) nodes with a BinaryExpression which assign some value to a
variable. There are many different types of statement nodes which can
be seen in the Eclipse documentation [Eclipse, 2018a].

Table 6.4.: AST function with multiple statements analysis

6.2. Googletest to CUTE

This section shows some Open Source projects using Googletest and will give
the reader an overview of the Googletest functionality with the corresponding
functionality in CUTE. It will also describe some key concepts in these test
environments. This section is designed to help the reader understand the differences.

6.2.1. Documentation

Links to the documentation of the Googletest project and the CUTE plugin. The
information provided here was compiled using these resources.

Googletest Documentation
Googletest Documentation [Google, 2018b]
Googletest advanced Documentation [Google, 2018a]

CUTE Documentation
CUTE Documentation [IFS, 2018b]

6.2.2. Open Source Projects using Googletest

The following Open Source Projects are currently using Googletest and could be
possible customers to this plugin. Some of them will be way too big to be a target
customer at first.

21

Name Link to project

Chromium project http://www.chromium.org/

LLVM compiler http://llvm.org/

Protocol buffers https://github.com/google/protobuf

OpenCV http://opencv.org/

tiny-dinn https://github.com/tiny-dnn/tiny-dnn

Talcoin https://github.com/talt5/Talcoin

Uni10 https://gitlab.com/uni10/uni10/tree/master

Netbackup https://github.com/tetofonta/NetBackup

Jyocoin https://github.com/kamuluprashanth/jyocoin

Table 6.5.: Open source projects using Googletest

6.2.3. Mappings

Assertions

List the assertions available in Googletest and (when applicable) the corresponding
CUTE assertion to which they can be mapped.

Notable Behaviours & Differences between Googletest and CUTE
List differences between the two testing environments which need to be considered
when rewriting projects.

Fatal assertions (ASSERT) Fatal assertions are the usual assertions you see in
every language. In Googletest these assertions begin with ASSERT_. If one of these
assertions fails, the test will fail also. The first assertion that fails triggers the test
failure hence the following assertions will not be checked anymore.

Non fatal assertions (EXPECT) Non fatal assertions are a concept used in
Googletest for assertions that do not force the test to fail immediately. The test
will continue, until the first fatal assertion fails or the end of the test is reached.
Afterwards, if a non fatal assertion failed the test will fail too. This concept is
not supported in CUTE, therefore these statements be converted to ordinary fatal
assertions.

22

http://www.chromium.org/
http://llvm.org/
https://github.com/google/protobuf
http://opencv.org/
https://github.com/tiny-dnn/tiny-dnn
https://github.com/talt5/Talcoin
https://gitlab.com/uni10/uni10/tree/master
https://github.com/tetofonta/NetBackup
https://github.com/kamuluprashanth/jyocoin

String comparison In Googletest there are multible assertions targeted at string
comparison. It would still be possible though to compare strings using the
ASSERT_EQ(actual, expected) assertion which would compare the strings using their
address. Since you should never compare strings using the address, this behaviour
will not be supported after the conversion to CUTE.

User Defined assertions Googletest allows users to define their own assertions.
These could be hard to find and need to be analyzed further, take a look at the
reference projects to get a grasp of them and if these are even used in actual
projects.

Naming in Documentation Googletest has a different naming for testcases and
suites than other testing frameworks. This only applies to their documentation
but should still be considered when reading through it.

Meaning Googletest Term ISTQB
Term

exercise a particular program path
with specific input values and verify the
results

TEST() Test Case

A set of several tests
related to one component TestCase TestSuite

Table 6.6.: Naming in Googletest

Naming of tests Googletest has a different way of naming their tests: TEST(TestCaseName,
TestName){} where CUTE uses: TestName(args)

Stream message into Assertion Googletest allows the programmer to stream a
message into the assertion. Anything that can be streamed to an ostream can also
be streamed to an assertion-macro.
Example: ASSERT_EQ(x.size(), y.size())<< "vectors x and y are of unequal length";

(wide strings are translated to UTF-8)

Invoking Tests Googletest implicitly registers their tests, RUN_ALL_TESTS runs all
tests in the unit, including those from different source files.

23

Mapping overview

Basic assertions
These are the basic concepts from the Googletest documentation that might be
interesting in the scope of the project. Most of them should be implemented in the
Googletest to CUTE converter.

Googletest CUTE

ASSERT_TRUE(condition) ASSERT(condition)

ASSERT_FALSE(condition) ASSERT(!condition)

ASSERT_STREQ(str1, str2) ASSERT_EQUAL(str1, str2)

ASSERT_STRNE(str1, str2) ASSERT_NOT_EQUAL_TO(str1, str2)

ASSERT_EQ(actual, expected) ASSERT_EQUAL(expected, actual)

ASSERT_NE(val1, val2) ASSERT_NOT_EQUAL_TO(left, right)

ASSERT_LT(val1, val2) ASSERT_LESS(left, right)

ASSERT_GT(val1, val2) ASSERT_GREATER(left, right)

ASSERT_LE(val1, val2) ASSERT_LESS_EQUAL(left, right)

ASSERT_GE(val1, val2) ASSERT_GREATER_EQUAL(left, right)

ASSERT_STRCASEEQ(str1, str2) No equivalent

ASSERT_STRCASENE(str1, str2) No equivalent

ASSERT_THROW(stm,exc_type) ASSERT_THROWS(code, exc)

ASSERT_FLOAT_EQ(val1, val2) ASSERT_EQUAL(val1, val2)

ASSERT_DOUBLE_EQ(val1, val2) ASSERT_EQUAL(val1, val2)

ASSERT_NEAR(val1, val2, abs_err) ASSERT_EQUAL_DELTA(exp, act, delta)

Table 6.7.: Basic mapping overview

Assertions written in italic are deprecated but should still be handled with the
converter since they could still exist.

24

Advanced assertions
These are some concepts from the Googletest advanced documentation that might
be interesting in the scope of the project. The concepts listed here are more ad-
vanced and might not fit into the scope or might not even be used in actual projects.
This is why they are low-priority and will only be implemented if necessary and if
there is enough time.

Googletest CUTE

ASSERT_ANY_THROW(statement) No equivalent

ASSERT_NO_THROW(statement) No equivalent

ASSERT_PRED1(pred, val1) ASSERT(pred(val1))

ASSERT_PRED2(pred, val1, val2) ASSERT(pred(val1, val2))

ASSERT_PRED_FORMAT1(pred, val1) ASSERT(pred(val1))

ASSERT_PRED_FORMAT2(pred, val1, val2) ASSERT(pred(val1, val2))

ASSERT_THAT(value, matcher) No equivalent

ASSERT_HRESULT_SUCCEEDED(exp) No equivalent

ASSERT_HRESULT_FAILED(exp) No equivalent

Table 6.8.: Advanced mapping overview

25

Key mapping differences

EXPECT_X All the non-fatal assertions use the same syntax as the fatal ones with the
same suffix but instead of ASSERT the keyword EXPECT is used. Non-fatal assertions
are not supported in CUTE and will consequently be converted to fatal assertions
(see above).

ASSERT_FALSE(condition) Since there is no direct mapping possible the variable
needs to be negated in the resulting CUTE assertion.

ASSERT_EQ(actual, expected) In the CUTE test environment the variables are
swapped. Most testing frameworks use the parameter order (expected, actual),
hence the variables need to be swapped here.

ASSERT_STRCASEEQ(str1, str2) There is currently no direct support for case in-
sensitive string comparison. There are many possibilities how to approach this
conversion. One would be to use a macro which compares the strings using C++’s
lexicographical compare. Another possibility would be to add this kind of test to
the CUTE plugin making a direct mapping possible.

ASSERT_STRCASENE(str1, str2) Same as ASSERT_STRCASEEQ(str1, str2), and as a re-
sult it should be handled similar for consistency reasons.

6.2.4. Test Runner

Googletest Test Runner

In Googletest the test runner consists of a single function called RUN_ALL_TESTS()

where tests register themselves through the TEST and TEST F macro.

CUTE Test Runner

In CUTE the test runner also consists of a single method
runAllTests(int argc, char const * argv[]) but the tests need to manually be
added. For this the method
s.push_back(CUTE(testMethodName)) is used. If tests are spread across multiple files,
all header files of these tests have to be included in the Test.cpp file (or wherever
your runAllTests method is) so you can register the test methods.

26

6.2.5. Advanced concepts

This section contains advanced concepts available in Googletest. These are mostly
concepts not available in CUTE. For further information about any of those
constructs, check the Googletest documentations [Google, 2018b, Google, 2018a]

TEST F TEST F is a test-macro which is meant for cases where a test fixture
makes sense, as in several tests need the same type of object. It takes the same
arguments as ordinary TEST macros, with the only difference, that the TestCase
needs to be the name of a test fixture class (derived from ::testing::Test). The macro
creates a fresh fixture for each TEST F test, initialize it by calling its SetUp(), run
the test, call the classes TearDown() and then delete the fixture. Each test has its
own test fixture, if this were not the case, it would violate the basic principle, that
all tests run independently from each other.

AssertionResult using ::testing::AssertionSuccess / ::testing::AssertionFailure

one can add information to Assertion messages by returning those instead of bool
values.

Type assertions using ::testing::StaticAssertTypeEq<T1, T2>(); one can test if
two types are the same. This will do nothing if they match, otherwise the function
call will fail to compile and the compiler error message will (likely) show the actual
values of the Types. mainly useful inside template code.

Assertion placement Assertions that create a fatal failure (FAIL & ASSERT)
can only be placed in void-returning functions.

Death test Googletest has some macros that address death tests. These are
assertions that check if a certain statement causes the process to die. These are:
ASSERT_DEATH(statement, regex)

ASSERT_DEATH_IF_SUPPORTED(statement, regex) and
ASSERT_EXIT(statement, predicate, regex)

with their corresponding EXPECT_ counterparts. statement is a statement that is
expected to cause the process to die, predicate is a function or function object
that evaluates an integer exit status, and regex is a (Perl) regular expression that
the stderr output of statement is expected to match.

27

Assertions in sub-routines Googletest has a concept for using assertions in sub-
routines. When a fatal assertion in a sub-routine fails, the sub-routine will be
cancelled but not the entire test. If a developer wants the entire test to fail they can
use the macro ASSERT_NO_FATAL_FAILURE(statement) (with an EXPECT counterpart).
The macro forces the test to fail but only if the sub-routine is executed within the
same thread.

Concepts of CUTE missing in Googletest

Unconditional fail The FAIL() and FAILM() make the test fail unconditionally.

Range equality The ASSERT_EQUAL_RANGES(expbeg, expend, actbeg, actend) and
ASSERT_EQUAL_RANGESM(msg, expbeg, expend, actbeg, actend) fail if the ranges de-
fined by expbeg, expend and actbeg, actend are different.

28

6.2.6. Examples

Simple assert test

Googletest Code

1 #include "gtest/gtest.h"

2

3 TEST(SimplestTest, AssertTrue) {

4 ASSERT_TRUE(true);

5 }

6

7 int main(int argc, char **argv) {

8 ::testing::InitGoogleTest(&argc, argv);

9 return RUN_ALL_TESTS();

10 }

Listing 6.5: Googletest ASSERT TRUE(cond)

Googletest AST

Figure 6.5.: Googletest AST

29

CUTE Code

1 #include "cute.h"

2 #include "ide_listener.h"

3 #include "xml_listener.h"

4 #include "cute_runner.h"

5

6 void thisIsATest() {

7 ASSERT(true);

8 }

9

10 bool runAllTests(int argc, char const *argv[]) {

11 cute::suite s { };

12 //TODO add your test here

13 s.push_back(CUTE(thisIsATest));

14 cute::xml_file_opener xmlfile(argc, argv);

15 cute::xml_listener<cute::ide_listener<>> lis(xmlfile.out);

16 auto runner = cute::makeRunner(lis, argc, argv);

17 bool success = runner(s, "AllTests");

18 return success;

19 }

20

21 int main(int argc, char const *argv[]) {

22 return runAllTests(argc, argv) ? EXIT_SUCCESS : EXIT_FAILURE;

23 }

Listing 6.6: CUTE ASSERT(cond)

CUTE AST

Figure 6.6.: CUTE AST

30

7. Design

Since the goal was to change code in an existing project, the only way to achieve this
without heavy string-manipulation is to use the AST. This allows for a structured
analysis of the code as well as a means to replace specific constructs easily, since the
AST-nodes can be rewritten or replaced entirely. There were 2 major scenarios in
our project, which get handled differently. Singlesuite and Multisuite (i.e. projects
with only a single testsuite and those with several).

7.1. SingleSuite Case

Files which contain a single suite (or TestCase in Googletest) belong to this case.
They can be refactored directly in the file. This was our starting point, being able
to convert a single test in a single suite/testcase. First of all, the AST has to be
combed for Nodes which need to be replaced/changed. This is done with a visitor,
which visits all nodes. In the visitor we check if a node contains an assertion or
is a TEST macro. The visitor collects those for the refactoring which takes these
lists and performs the actual refactoring on them. These changes can be done
directly on the AST, with an ASTRewrite inbetween which replaces the Nodes
with a newly created Node containing the correct code.

7.2. MultiSuite Case

This was the next step to tackle. Since every suite should have its own header-
and implementation-file [IFS, 2018c] there needs to be one AST per suite. In this
case it is not possible so simply rewrite the AST. Therefore another approach
was necessary. Here templates are used to put together the correct structure of
the files. The Nodes are directly changed on a nonfrozen copy of the AST, then
the ASTWriter is used to write the code into the template. When finished, the
template is written to a new File using a resourcechange, in order for it to be
reversible. After the files are created, the old Googletest files need to be deleted,
since these would lead to redefinitions.

31

8. Implementation

In this chapter we describe what features were implemented as well as how we
implemented them. It will contain a section for every implemented feature with a
short problem description and the implemented solution.

8.1. Markers

There are some constructs in Googletest, for which there is no equivalent in CUTE.
If a project contains one of those the plugin needs to be able to handle it, without
crashing or leaving the code in an inconsistent state.

Solution Quite early on we decided to not go through with the refactoring if
there is a single unsupported construct. Since this would lead to broken code.
Now we were in need of a way for this issue to be communicated to the user. For
this we were told to use markers depicting a problem. When the user tries to
start the refactoring, check whether any of those markers exist, and if they do,
the whole process is cancelled. In order to set and check for those markers, we
chose to use the marker-category ”codanProblem”. This seemed to work just fine
until we were reminded that basically all markers inherit from this class. So we
needed to create a subcategory (subclass) of codanProblem which we would set
and check for. We decided to go with a sort of ”3-tier” inheritance model. Using a
marker called gConverterMarker which we test for and then two submarkers which
we actually set. One for each type of unsupported construct (currently TEST F
and the unsupported assertions). This way we can give the user feedback and a
visual helper to show why the refactoring is not possible and where the offending
code-part is.

32

8.2. Writing the AST to a new file

We started by only supporting a single suite. In this approach we were able to
simply rewrite the AST of the containing file. When we extended our logic to
support multiple suites we ran into a problem. According to CUTE best-practice,
every suite should have its own header and implementation file. Now we needed to
create two files per suite and our previous approach did no longer work seeing as
new files do not contain an AST until they are processed by the preprocessor.

Solution We needed to somehow change the nodes and collect them into a single
string which we could then write into the newly created files.
We began by reading the AST into a string on which we executed the refactoring as
string manipulation. This is obviously very error-prone and ill-designed. Therefore,
another way was necessary. Here our advisers told us to work on a copy of the
AST, which is non-frozen, allowing us to directly replace the corresponding nodes.
Afterwards we can write this ”correct” AST with an ASTWriter which translates
the given AST to a single String we can then write to the new file. We had one
more obstacle with this approach, since Googletest is heavily based on macros we
then had the problem that some constructs were still standing after the refactoring.
Consequently, it was necessary to find another way to eliminate those. We already
experimented with templates before and decided that these would work for the
given problem. So instead of rewriting the entire AST, we rewrite single nodes,
write those with the ASTWriter and then put them in a map. After refactoring
all nodes we use the templates to create the suite files and fill in the node strings
from the map.

33

8.3. Nontest constructs

The source files which we want to refactor, can contain code which does not belong
to a test specifically. This includes: variables, functions, namespaces and others.
These need to be moved to the new files as well. One specific problem here was
that we have no way of knowing which functions or variables are needed for which
tests.

Solution Since we do not know which tests use which variables/functions, we
need to copy them once for every file we create. This would lead to nameclashes.
Hence we decided to use an anonymous namespace for each file in which we pack
all of the nontest constructs. With this we only have one more (quite specific)
problem: When the file already contains an anonymous namespace which in itself
contains a definition of a function or variable with the same name as one outside of
the namespace. Also see the subsection ”Same definition in anonymous namespace
and outside of it” in the problem-section below.

8.4. Constructs which block the refactoring

As mentioned before, if there are any constructs which are not supported (yet)
the refactoring cannot be executed. It would be possible to leave the assertions
standing an only refactor what is currently possible, since the Googletest header is
not getting removed.

Solution These assertions are checked but do not lead to test failures if they do
not succeed. Therefore, it was decided to not go through with the refactoring if
there are any unsupported constructs at all.

34

8.5. Testing the Refactoring

One essential part of every software, is testing the logic. In order to test the
refactoring, there needs to be a way to specify the files before and after the
refactoring. These need to be compared to check if the correct files with the correct
content exist.

Solution ILTIS provides an easy way of doing with its highlevel testing. this is
done via RTS-Files. Those specify the files and their content before and after the
refactoring. The test then reads those files and creates the specified content in a
”current” project. On these created files, the refactoring takes place. Additionally
an ”expected” project gets created, containing the files specified as result of the
refactoring. After the refactoring concludes, the testing framework compares the
two projects files one after one to see if the correct files with the correct content exist.
The same is done when testing for checkers and their blockage of the refactoring.
In case of markers, the testing framework creates the specified files and then checks
if markers get set on the specified lines. When testing for the blockage of the
refactoring, the framework creates the files and tries to execute the refactoring on
them. It then checks for a failure returned by the refactoring, implying that the
refactoring failed due to the markers. Since we are altering, creating and deleting
files, we decided not to write any microtests which only test one specific function
at a time. This would lead to large setups before each test in order to provide each
test with the exact data it would receive. Additionally, all parts of the refactoring
need to work together, in order for it to produce a workable AST.
In case of the multiSuite case, several files get created. The testing framework did
not have a specific way of testing this, so we had to specify the before as an empty
file. This lead to ResourceExceptions, since the files to be created already existed
when the refactoring was running. This was solved with an extension of the ILTIS
framework by Hansruedi Patzen, in order to allow for the testing of filecreation
and -deletion.

35

8.6. Deletion of Googletest files

The Googletest source file is no longer needed, after the refactoring has concluded,
and must be deleted in order to avoid nameclashes and compiler errors due to
the existence of two main functions. The ModificationCollector, which is used to
bundle all Modifications done in the refactoring, did not support ResourceChanges.
Thus, it was not possible to include the deletion of files in the refactoring. One
workaround would have been to simply delete the file. This would have led to
problems, as the deletion would not be reversed in case of the user cancelling the
refactoring.

Solution After an update to the ILTIS framework by Hansruedi Patzen, the
ModificationCollector allows for DeleteFileChanges to be added to it.

36

9. Result

9.1. Reached

• Filecreation according to the CUTE best-practice. (e.g. one file per suite
with the corresponding header)

• Conversion of most commonly used assertions supported

• Complete conversion of a simple project (with a single test source file)

9.2. Not reached

We reached everything we planned. The following points are aspects of the frame-
work which we knew, could not be implemented during this project:

• Projects which span over multiple files

• TEST F tests

• Deathtests

• Custom assertions

9.2.1. Reasoning

There were a few instances in which we implemented features twice, since our first
approach was not suitable. Additionally there were quite a few problems/misun-
derstandings when working with the Eclipse CDT. This is to expect when working
in a completely new environment but nonetheless led to some lost time. Especially
when we tried to solve a problem one way and were then informed of an easier
way. In the end we decided to focus on refactoring and documentation in order to
make sure the code and documentation we turn in are up to standard rather than
rush another feature. We already excluded many features of a ”finished product”
early on in the project, as these were bound to be complex or very time-consuming.
Therefore we will not be discussing the explicit reasoning for each.

37

Projects which span over multiple files We would have loved to implement this
feature, but were not able to due to time constraints. When we got to the point
where the rest of the code was working well enough for us to start working on this
feature, there were only 3 weeks left in the project, with lots of documentation
untouched. Thus we decided to note our findings and work on our documentation
and code-refactoring instead of starting to work on a new feature with so little time
left. The findings about this part can be found in the section ”Notes for extending
the plugin” 11.1.

38

10. Problems

10.1. Solved

10.1.1. Indexer running permanently, blocking the refactoring

When you started the refactoring, but then cancelled it, the read-lock on the AST
did not get released. This led the Indexer not being able to conclude, which blocked
any further attempts of running the refactoring. The workaround was to close and
reopen the IDE or stop the indexer manually.

Solution The read-lock on the AST and thus, the file, was not released when the
refactoringwizard was cancelled. This has since been fixed by the IFS.

10.1.2. Named Namespaces lead to redefinition

When there are one or more named namespaces in the sourcefile, the refactoring
led to redefinitions. Since we cannot tell which functions are used in which tests,
we copy the namespace into every suitefile. This led to redefinitions, as the same
namespace then existed in several files.

Solution In order to avoid nameclashes, we copy the named namespaces of a file
into an anonymous namespace, just like any other nontest construct.

10.2. Unsolved

10.2.1. Projects that include several testing files

So far we are not able to support a project which spans over several source files. One
obstacle here is finding a way to create a single main file which contains links to all
suites in the project. For that we probably need another layer above the refactoring
which collects all files and suites in order to be able to link them all in the main
file. Additionally the upper layer would need to collect the refactorings as well, in
order to complete all the ”singlefile” refactorings in one big CompoundRefactoring.

39

10.2.2. Same definition in anonynomous namespace and
outside of it

Also see the paragraph 8.3 ”nontest constructs” in the architectural and imple-
mentational decisions. Since we pack both definitions into the same anonymous
namespace, the refactoring leads to a compilererror (redefinition) We do not yet
have a solution for this. Since this case is very unlikely to exist in a real project
(the definition in the namespace gets shadowed and is thus useless). This would
(according to our current knowledge) need quite an extensive workaround which is
(in our opinion) not worth the time needed to solve this.

40

11. Conclusion

In the end, the plugin is, despite some limitations, usable and can be used as base
which can be extended in the future. The solution provides the ability to convert a
project with a single Googletest sourcefile into a CUTE project. Projects which
span multiple files are not supported in the current version. There are several
features and improvements that will need to be implemented. The list with some
explanations can be found in the following section 11.1.

11.1. Notes for updating the plugin

This section shall act as a help for developers seeking to add features to the plugin.
Here we note some of our findings regarding possible features and problems that
arise with them.

11.1.1. Multifile Case

This should be the first feature that gets added when the plugin is extended. For
this to work there are some changes that need to be made.

Changes

• Create a simple refactoring (the one already existing) for every file and bundle
those into a single CompundRefactoring

• Implement a layer before the (current) refactoring, pull out the creation of
the main file. the Upper layer needs to know all suites and the name of the
implementation file thereof in order to include those.

11.1.2. TEST F tests

TEST F tests are used when a test fixture is needed, they are based on an existing
class of which an object gets created before the test and then deleted afterwards.
The class needs to support a setUp() and a tearDown() method. These are
automatically called through the Googletest macro. Analyze the macro some more
on what it actually does in order to execute those steps manually.

41

11.1.3. Remaining assertions and other Googletest constructs

There are still some assertions missing. Some of which are not easily mappable to
CUTE assertions, as well as some of which simply do not exist in CUTE. Deathtests
and custom assertions fall into this category. Deathtests might be possible with a
certain effort. Custom assertions on the other hand are pretty hard to even spot
automatically, according to our current knowledge. Custom assertions can inherit
from an existing assertion and expand the logic. Their name can be chosen more
or less freely. Some more research and testing is necessary here in order to find out
if it is possible to rebuild these in CUTE. Especially if and how it is possible to
automate the process.

Problems

• Study the remaining Googletest assertions and find a way to convert them

• Study other Googletest constructs and how to convert them (Deathtests for
example)

Next assertions One of the first assertions to add would be the ASSERT PRED(pred,
value), since this can easily be mapped to ASSERT(pred(value)).

11.1.4. More defensive programming

In the current scope, the refactoring assumes that the code given to it is proper,
working code. This is, so far, not a problem, since we are in a closed environment.
Thus breaking the refactoring does not provide any benefit to the ”breaker”.
Nevertheless, it would be nice to change the program to be more robust against
broken code.

11.1.5. Remove namespace duplication

As of now every nontest construct (functions, variables, namespaces et cetera) is
copied into each suitefile. This is necessary since we did not find a way to tell
which tests use which functions. Find out if this is possible in order to remove the
duplication.

11.2. Time analysis

This section shall bring some light into how the time in this project was spent.

42

11.2.1. Overall time per label

As visible in the graphic below, almost half the project time was spent on the
implementation, while just over a quarter was spent on documenting.

Figure 11.1.: Overall time spent per label

11.2.2. Comparison of estimates and actual time

This graph compares the time estimated and how much time we actually spent per
sprint in order to get a grasp of how good our estimates were. Additionally, in the
following images our effort over the course of the project is visible.

43

Figure 11.2.: Absolute time estimated and spent over the course of the project

As visible in the image above, we had quite a slow start. Over the course of the
project we steadily increased our time spent with a clear peak in the middle, where
most of the features were implemented. We also had most problems in the middle,
leading to the only two sprints where we were above our estimates. The drop at
the end of the project was due to illness. In the next figure we have a clearer
comparison between estimated and spent time, the positive values represent sprints
where our actual time exceeded the estimated time.

Figure 11.3.: Difference between estimated and actual time over the course of the
project

44

11.2.3. Comparison between teammembers

Here we compare the time spent between the team members.

Figure 11.4.: Overall time spent per person

As visible in the graphic above, Sascha Gschwind spent about 10 hours more on
this project than Renato Venzin. This is partly due to him being more experienced
and taking over some of the more difficult tasks which took more time.

45

The next image shows how much time each team member spent per sprint. This
graphic also shows that the two heaviest sprints were the ones where Sascha
Gschwind spent quite some time more than Renato Venzin. As mentioned before,
this is mainly due to him being more experienced and taking on harder tasks,
which in these sprints took longer than expected, due to unforeseen problems. Also
visible is that in sprint 11, Sascha Gschwind was quite a bit below the average
time, this is due to him falling ill and not being able to work.

Figure 11.5.: Comparison of teammembers over the course of the project

46

12. Glossary

AST Abstract syntax tree, the abstract notation of code, consisting of nodes
depicting Code-snippets

Googletest Google testing framework

CUTE The testing plugin which was developed and is being maintained at the
HSR

TEST F Tests Tests based on an existing class which has a setUp and a tearDown
method, special type of test in Googletest

Marker Tool to highlight a single, or multiple lines in a code-file

IFS Institute for Software

HSR University of Applied Sciences Rapperswil

HS Autumn semester

SA ’Studienarbeit’ representing the current project.

MVP Minimum viable product

RUP Rational Unified Process

47

Bibliography

[Atlassian, 2018] Atlassian (2018). Sourcetree. https://www.sourcetreeapp.com/.
accessed 12.12.2018.

[Benito van der Zander, 2018] Benito van der Zander, Jan Sundermeyer, D. B.
T. H. (2018). Texstudio. https://www.texstudio.org/. accessed 12.12.2018.

[CCTLSU, 2018] CCTLSU (2018). Astwriter
class. https://www.cct.lsu.edu/ rguidry/eclipse-
doc36/org/eclipse/cdt/internal/core/dom/rewrite/astwriter/ASTWriter.html.
accessed 05.12.2018.

[Checkerframework, 2018] Checkerframework (2018). Eclipse checker framework.
https://checkerframework.org/manual/. accessed 05.12.2018.

[Denim, 2012] Denim, A. (2012). An interview with peter sommerlad.
http://demin.ws/blog/english/2012/05/19/peter-sommerlad-interview/. ac-
cessed 17.12.2018.

[Eclipse, 2018a] Eclipse (2018a). Eclipse documentation.
https://help.eclipse.org/neon/index.jsp. accessed 26.11.2018.

[Eclipse, 2018b] Eclipse (2018b). Eclipse pde. https://www.eclipse.org/pde/. ac-
cessed 12.12.2018.

[Erich Gamma, 1997] Erich Gamma, Richard Helm, R. J. J. V. (1997). Design
Patterns : Elements of Reusable Object-Oriented Software, volume 1. Pearson
Education (US). ISBN 978-0-201-63361-0.

[GitLab, 2018] GitLab (2018). Gitlab website. https://about.gitlab.com. accessed
05.12.2018.

[Google, 2018a] Google (2018a). Googletest advanced documentation.
https://github.com/abseil/googletest/blob/master/googletest/docs/advanced.md.
accessed 26.11.2018.

[Google, 2018b] Google (2018b). Googletest simple documentation.
https://github.com/abseil/googletest/blob/master/googletest/docs/primer.md.
accessed 26.11.2018.

48

[IFS, 2016] IFS (2016). ILTIS documentation. HSR.

[IFS, 2018a] IFS (2018a). Cevelop ide. https://www.cevelop.com/. accessed
26.11.2018.

[IFS, 2018b] IFS (2018b). Cute documentation. https://cute-test.com/guides/.
accessed 26.11.2018.

[IFS, 2018c] IFS (2018c). Cute eclipse plug-in guide. https://cute-
test.com/guides/cute-eclipse-plugin-guide/#sourcefileorganization. accessed
05.12.2018.

[Ken Schwaber, 2018] Ken Schwaber, J. S. (2018). The scrum guide.
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-
US.pdf. accessed 05.12.2018.

[LaTeX, 2018] LaTeX (2018). Latex website. https://www.latex-project.org/.
accessed 05.12.2018.

[Microsoft, 2018a] Microsoft (2018a). Microsoft excel.
https://products.office.com/en/excel. accessed 12.12.2018.

[Microsoft, 2018b] Microsoft (2018b). Microsoft visio.
https://products.office.com/en/visio/flowchart-software. accessed 12.12.2018.

[Microsoft, 2018c] Microsoft (2018c). Unit testing best practices with .net core
and .net standard. https://docs.microsoft.com/en-us/dotnet/core/testing/unit-
testing-best-practices. accessed 17.12.2018.

[Microsoft, 2018d] Microsoft (2018d). Visual studio code.
https://code.visualstudio.com/. accessed 12.12.2018.

[Oracle, 2018a] Oracle (2018a). Astrewrite class.
https://help.eclipse.org/luna/index.jsp?topic=accessed 05.12.2018.

[Oracle, 2018b] Oracle (2018b). Java website. https://www.oracle.com/ch-de/java/.
accessed 05.12.2018.

[Stroustrup, 2015] Stroustrup, B. (2015). Die C++ Programmiersprache, volume 4.
Hanser Fachbuchverlag. ISBN 978-3-446-43961-0.

[Thomas Kuhn, 2006] Thomas Kuhn, O. T. (2006). Abstract syntax tree.
https://www.eclipse.org/articles/Article-JavaCodeManipulation AST/. accessed
26.11.2018.

49

[Vogella, 2018] Vogella (2018). Eclipse ide plug-in develop-
ment: Plug-ins, features, update sites and ide extensions.
http://www.vogella.com/tutorials/EclipsePlugin/article.html. accessed
26.11.2018.

50

Appendices

51

A. Usage manual

52

1 Prerequirements

To use this manual certain prerequirements have to be given.

• You need an IDE for C++ development that can install Eclipse plugins. We
recommend using Cevelop as the IDE.

• The CUTE plugin has to be installed. You can read through the CUTE
plugin tutorial https://cute-test.com/guides/ for an installation guide.

• You should have a project using Googletest with a test file containing the
tests and the main function which you want to convert.

Your project should look something like this:

Figure 1.1: Project before (using Googletest)

1

2 How to use the Googletest
Converter

1. Open the project in the IDE and open the file you want to convert.

2. Make sure there are no Googletest Converter warnings present. These warn-
ings could be certain ASSERT / EXPECT statement that can not be con-
verted or if you are TEST F tests.

Figure 2.1: Warning example

2

3. Right click the file in the project explorer, choose the submenu ’CUTE’ →
’Convert to CUTE Project’. This will open up a refactoring wizard. If you
do not have any warnings the wizard will show you the changes, otherwise
you will see an error message that the conversion did not take place.

Figure 2.2: Menu location

3

Figure 2.3: Refactoring wizard

4

4. Once you inspected the changes you can click on ’Finish’. This will execute
the refactoring applying the changes to the project.

5. If you have not added the CUTE nature yet, you should right click the project
and select ’CUTE’ → ’Add CUTE Nature’. This adds the CUTE headers to
the project so you can run the changed code. If you have already added the
CUTE nature you can skip to step 3.

Figure 2.4: Add CUTE Nature

6. Once you have built the code you can right click the project to run the tests
which are now using the CUTE testing framework.

Figure 2.5: Run CUTE tests

5

Figure 2.6: Project after (using CUTE)

6

3 Problem solutions

This chapter shows some common problems that can occur during the conversion
and how to overcome these problems.

3.1 CUTE header not found

The one problem that occured for us was that the CUTE header could not be
found. The way to solve this problem was to remove and readd the CUTE nature.

3.2 Project can not be built after conversion

If this problem occurs, all you have to do is to clean the project and rebuild it
again. The problem is most likely due to old files, that do not get overwritten when
building the project. Once you have cleaned and rebuilt the project this problem
should not occur again.

7

B. Demonstration

60

1 Demonstration steps

To demonstrate the functionality of the plugin we chose to use a pretty simple
project. The reason for that is that complex projects usually consist of multiple test
files, which is a function that is not yet implemented. Additionally those projects
usually use one or more constructs that are not yet supported.
The chosen open source project for this demonstration is https://github.com/

guidohcosta/gtest-hello-world.

• First we cloned the repository and included it to Eclipse.

• The next step was to make sure the Googletest include is made. For more
information on how to do this check the Googletest manuals https://github.
com/google/googletest/blob/master/googletest/docs/.

• After that the project looked like this:

Figure 1.1: Project before (using Googletest)

1

• We then executed the tests to check if they run correctly:

Figure 1.2: Tests run with Googletest

• We then started the conversion through the corresponding menu:

Figure 1.3: Convert to CUTE project

2

• The refactoring wizard opened showing us the changes that will be made:

Figure 1.4: Refactoring Wizard

• After clicking on ’Finish’ the refactoring took place.

• After that we added the CUTE nature to the project:

Figure 1.5: Adding CUTE Nature

3

• We then executed the tests using the CUTE framework.

Figure 1.6: Run tests with CUTE menu

Figure 1.7: CUTE test runner

4

	Abstract
	Management Summary
	Initial position
	Approach, Technologies
	Results
	Demonstration
	Before
	Starting the refactoring
	Refactoring wizard
	Result

	Outlook

	Assignment
	Context
	Problem
	Task
	Concrete task
	Specifics
	Existing infrastructure
	Omittable documentation

	Expected results
	Appointments
	Supervision

	Introduction & Overview
	Problem scope
	Introduction
	Preparation
	Motivation

	Projectplan
	Project overview
	General conditions
	Project organisation
	Time planning
	Project phases
	Milestones

	Risk management
	Work packages
	Infrastructure
	Quality assurance
	Process
	Sprint planning
	Meeting protocols
	Code quality
	Code style guidelines
	Continuous Integration
	Error tracking
	Testing

	Analysis
	Basic AST Analysis
	Variables
	Function without parameters
	Function with parameters
	Function with multiple statements

	Googletest to CUTE
	Documentation
	Open Source Projects using Googletest
	Mappings
	Test Runner
	Advanced concepts
	Examples

	Design
	SingleSuite Case
	MultiSuite Case

	Implementation
	Markers
	Writing the AST to a new file
	Nontest constructs
	Constructs which block the refactoring
	Testing the Refactoring
	Deletion of Googletest files

	Result
	Reached
	Not reached
	Reasoning

	Problems
	Solved
	Indexer running permanently, blocking the refactoring
	Named Namespaces lead to redefinition

	Unsolved
	Projects that include several testing files
	Same definition in anonynomous namespace and outside of it

	Conclusion
	Notes for updating the plugin
	Multifile Case
	TEST_F tests
	Remaining assertions and other Googletest constructs
	More defensive programming
	Remove namespace duplication

	Time analysis
	Overall time per label
	Comparison of estimates and actual time
	Comparison between teammembers

	Glossary
	Appendices
	Usage manual
	Demonstration

