
TLS 1.3 for strongSwan:

A Client-Side Prototype

Technical Documentation

Study Project, Spring Term 2020

Departement of Computer Science

University of Applied Sciences Rapperswil (HSR)

www.hsr.ch

Authors:

Pascal Knecht (pascal.knecht@hsr.ch, @ryru foo)

Méline Sieber (meline.sieber@hsr.ch, @MelineSieber)

Advisors:

Prof. Dr. Andreas Steffen; Tobias Brunner, HSR

Date: 29th May 2020

https://www.hsr.ch/
pascal.knecht@hsr.ch
https://twitter.com/ryru_foo
meline.sieber@hsr.ch
https://twitter.com/MelineSieber

Contents

1. Abstract 6

2. Introduction 7

2.1. Overview . 7

2.2. The Transport Layer Security Protocol (TLS) 8

2.3. strongSwan and TLS . 12

2.4. Project Scope . 14

3. Implementation 19

3.1. Architecture Overview of libtls . 19

3.2. Design Choices . 23

3.3. HMAC-based Key Derivation Function . 25

3.4. Range-Based Version Handling . 31

3.5. Handshake and State Machine: Notable Changes 32

3.6. Sequence Numbers . 35

3.7. Tests . 36

4. Results 38

A. List of Abbreviations 41

B. Bibliography 42

C. Compile and Execution Instructions 44

C.1. Set up Test Infrastructure with OpenSSL 44

C.2. Set up strongSwan . 45

D. Source Code 47

E. Test Data 49

E.1. Local Connection: TLS 1.3 Client to TLS 1.3 Server 49

E.2. External Connection: TLS 1.3 Client to TLS 1.3 Server 52

E.3. Local Connection: TLS 1.2 Client to TLS 1.3 Server 54

E.4. Local Connection: TLS 1.2 Client to TLS 1.2 Server 58

E.5. Local Connection: TLS 1.3 Client to TLS 1.2 Server 61

2

List of Figures

2.1. The location of TLS 1.3 and strongSwan in the OSI model. 7

2.2. Full handshake in TLS 1.2 with server authentication. 8

2.3. Full handshake in TLS 1.3 with server authentication. 9

2.4. Package diagram: strongSwan components that rely on a TLS stack 13

2.5. Client-side state machine for a minimal viable product 15

2.6. Server-side implementation . 16

2.7. Client-side authentication with certificate 17

3.1. Class diagram of libtls at the start of the project. 21

3.2. Sequence diagram of libtls when the project started. 22

3.3. Each HKDF-Extract signals a one-way state transition. 26

3.4. The state machine for our HKDF implementation with the four phases. . . . 28

3.5. UML class diagram of our current HKDF implementation. 29

3.6. Basic concept of authenticated encryption with associated data (AEAD). . . 30

3.7. A full TLS handshake with server authentication. 32

3.8. Transitions from unencrypted to encrypted traffic in TLS 1.2 and 1.3. 32

3.9. Successful TLS negotiation test cases. 36

3.10. Screenshot of a handshake between a TLS 1.3 server and a strongSwan client 37

4.1. Affected files . 38

E.1. Wireshark: Handshake between a strongSwan TLS 1.3 client and an OpenSSL

server supporting TLS 1.3 . 49

E.2. Wireshark: Handshake between a TLS 1.3 server and an external Google server 53

E.3. Wireshark: Handshake between a strongSwan TLS 1.2 client and an OpenSSL

server supporting TLS 1.3 . 55

E.4. Wireshark: Handshake between a strongSwan TLS 1.2 client and an OpenSSL

server supporting only TLS 1.2 in Wireshark 58

E.5. Wireshark: Handshake between a strongSwan TLS 1.3 client and an OpenSSL

server supporting only TLS 1.2 . 61

3

INS -Institute for Networked Solutions 17.02.2020 Steffen

Semester Project 2020

TLS 1.3 for strongSwan

Students: Pascal Knecht, Méline Sieber

Advisor: Prof. Dr. Andreas Steffen

Issue Date: Monday, February 17th 2020

Submission Date: Friday, May 29th 2020

Introduction

The strongSwan open source VPN solution has a Transport Layer Security (TLS) stack of its

own implemented by the strongSwan libtls library [1]. TLS is used by the strongSwan IKEv2

daemon for EAP-based authentication (EAP-TLS, EAP-TTLS, EAP-PEAP) as shown in the

figure below but libtls could potentially be employed by any stand-alone TLS application.

Due to several deficiencies the TLS 1.2 version supported by strongSwan has been deprecated

and therefore an upgrade to the latest TLS 1.3 standard defined by RFC 8446 [2] is urgently

required.

The task for the semester project defined by this document is to extend the strongSwan libtls

library with a minimal viable TLS 1.3 implementation.

Semester Project 2020 2

INS -Institute for Networked Solutions 17.02.2020 Steffen

Objectives

Mandatory:

• Getting acquainted with the existing TLS source code written in the C programming

language and using some strongSwan-specific object-oriented macros as implemented

by the strongSwan libtls library [1].

• Understanding the TLS 1.3 standard as defined by RFC 8446 [2] and identifying the

basic differences and extensions relative to TLS 1.2.

• Implementation of a minimal viable TLS 1.3 client without client-side authentication.

• Negotiation of fallback to legacy TLS 1.x versions.

• Testing of minimal viable TLS 1.3 client against TLS 1.3 OpenSSL server.

• Interoperability of minimal viable TLS 1.3 client with TLS 1.3-enabled web sites

(Google, Facebook, etc.).

Optional:

• Implementation of a minimal viable TLS 1.3 server

• Implementation of X.509 certificate-based TLS 1.3 client authentication

Links

[1] strongSwan libtls library, github source code repository
https://github.com/strongswan/strongswan/tree/master/src/libtls

[2] RFC 8446 “The Transport Layer Security (TLS) Protocol Version 1.3”, August 2018
https://tools.ietf.org/html/rfc8446

Rapperswil, February 17th 2020

Prof. Dr. Andreas Steffen

1. Abstract

Introduction: The Transport Layer Security protocol (TLS) secures network connections

between a client and a server. It encrypts and authenticates data from higher-level proto-

cols such as the Hypertext Transfer Protocol (HTTP), and guarantees that the information

transmitted remains confidential and unmodified. The most widely used TLS version today

is still version 1.2 from 2008 (RFC 5246), even though 1.3 has been released in 2018 (RFC

8446). The strongSwan project, which is maintained by the University of Applied Sciences

Rapperswil (HSR), is an open-source IPsec implementation written in C. strongSwan features

its own TLS stack in the library libtls. It enables client-authentication via various EAP au-

thentication methods (TLS, TTLS, PEAP), which is used to establish an IKEv2 connection.

However, libtls supports only TLS up to version 1.2.

Objective: This project aims to implement the client-side of TLS 1.3 in libtls and to update

the TLS stack. The concrete goal is to successfully perform a minimal handshake and then

exchange application data between a strongSwan client and a server running TLS version

1.3. As part of this minimal handshake, it is necessary to integrate new or adapt existing

messages that are exchanged between client and server. In addition, TLS 1.3 requires fun-

damental changes to the cryptographic mechanisms that enable a secure and authenticated

encryption.

Until a connection is established, the handshake passes through various states in a state

machine. This has considerably changed in the new version, which also implies that the

handshake flow and state machine must be adapted too. Our scope includes three optional

features: The server-side in a TLS handshake, client-side authentication and remaining non-

mandatory extensions.

Result: The updated client implementation in libtls can successfully perform a minimal

handshake with a server running TLS 1.3. It has been successfully and extensively tested

with external TLS 1.3 servers such as those from Google or Facebook, but also with a local

OpenSSL server. During implementation the new cryptographic mechanisms proved to be

more difficult that originally anticipated. Especially the HKDF (HMAC-based Extract-and-

Expand Key Derivation Function, RFC 5869) was an unexpected major challenge, especially

since it is only marginally described in the TLS specification. Due to these difficulties, only

the minimal handshake was implemented, the client-side authentication and the server-side

was omitted.

For future work, the HKDF implementation needs attention: It is functional, but the code

needs to be refactored. The features defined as optional, i.e. the server-side and client-side

authentication, were not implemented due to time constraints. Still, they are relevant to the

strongSwan project and will hopefully be completed as a Bachelor thesis.

6

2. Introduction

2.1. Overview

Rome wasn’t built in a day, and the Transport Layer Security (TLS) in version 1.3 neither.

TLS is the standard that secures connections between a server and a client and is just above

layer four of the OSI model, the transport layer (see figure 2.1).1 The most popular TLS

version 1.2 was defined in 2008 (RFC 5246), but only found broad adoption around 2014.2

In that same year, work on TLS 1.3 started. After several revisions, it was written down

in RFC 8446 (2018), with significant departures from its predecessor. It took thus roughly

ten years to introduce a new version of the TLS protocol. Rome took longer to build, but

to be fair, TLS is no city. The strongSwan project spans a similar time frame and secures

communications on networks as well. Its IPSec implementation authenticates and encrypts

network traffic on layer three, the network layer. Originally, strongSwan was a 2005 fork of

the disconintued FreeS/WAN project by John Gilmore.3 The project features its own TLS

stack, yet only up to TLS version 1.2. The present work aims to implement RFC 8446 in

strongSwan on the client-side and thus provides an update to the latest TLS version 1.3.

Application

Client

Transport

Internet

Link

Application

Server

Transport

Internet

Link

IPsec

TLS

Figure 2.1.: The location of TLS 1.3 and

strongSwan in the OSI model.

In the remaining sections of this chapter we

shortly introduce the main features of TLS

1.3 and its major differences to its prede-

cessor. We also describe the strongSwan

project in greater detail and why there is a

need for a TLS stack in an IPsec solution.

Lastly, to comply with the time frame given,

we must narrow down our goals to a man-

ageable scope.

After the introduction, we turn to our imple-

mentation of RFC 8446. The strongSwan

code is well-documented and follows its own

coding style. However, architecture inform-

ation is lacking, especially in the form of dia-

grams and illustrations. This encouraged us

to document the existing architecture of the TLS stack code. We then justify our design

decision that had a greater impact on the overall code. The next sections describe how new

cryptographic processes are now part of the TLS stack in strongSwan and other notable

changes to the existing code.

Lastly, we present our final product in the remaining chapter and how our design decisions

and the overall construction process have influenced the outcome.

1If not indicated otherwise, all illustrations are our own.
2Sch17.
3Ste05.

7

2.2. The Transport Layer Security Protocol (TLS)

The Transport Layer Security protocol (TLS) secures communication between client and

server and is one of the fundamental elements in today’s internet. It encrypts and authen-

ticates data from higher-level protocols such as the Hypertext Transfer Protocol (HTTP),

and guarantees that the information transmitted from one endpoint to another remains con-

fidential and unmodified.4

Communication between client and server is achieved by exchanging messages of the Re-

cord Protocol, which in itself encapsulates the Handshake protocols, the Alert protocol, the

ChangeCipherSpec protocol and the Application Data protocol.5 In order to establish a se-

cure connection and transmit encrypted data, the protocol passes through three stages. In

a first stage, a handshake establishes how client and server want to communicate with each

other. This is the task of the Handshake protocol of TLS, which “authenticates the com-

municating parties, negotiates cryptographic modes and parameters, and establishes shared

keying material.”6 During the second stage, the actual data is sent, for example the content

of a website. This, on the other hand, is the task of the Application Data protocol, which

uses the parameters established during the handshake to protect the traffic.7 This third stage

is marked by the termination of the connection by either one of the peers.

The project presented here focuses on the handshake process. Figure 2.2 shows a handshake

in TLS version 1.2:

Client Server
ClientHello

ServerHello

[ChangeCipherSpec]

Certificate*

ServerKeyExchange*

ServerHelloDone

Finished

Application DataApplication Data
encrypted traffic

ClientKeyExchange

[ChangeCipherSpec]

Finished

* Optional Message
[] ChangeCipherSpec protocol message

Figure adapted from from Ristić 2017:27

Figure 2.2.: Full handshake in TLS 1.2 with server authentication.

In short, the client initiates a connection with a ClientHello message and sends its crypto-

graphic capabilities to the server, notably the protocol version and cipher suites it supports.

4Cf. [Aum18, p. 236] and [Fal12, p. 876].
5Fal12, p. 877.
6Res18, p. 6.
7Res18, p. 6.

8

The server sends its own information back in several messages and signals the end of the

negotiation with a ServerHelloDone. Then the client sends its cryptographic information

in a ClientKeyExchange message. Note that the messages exchanged up to this point are

still sent in plaintext.

If the handshake was successful so far, enough cryptographic material is available to encrypt

the ensuing traffic. The client signals this state with a message from the ChangeCipherSpec

protocol. A Finished message concludes the handshake. After the server has responded

with the same messages, encrypted application data can flow between the two endpoints,

sent using the Record protocol.8

TLS 1.2 was an important step towards securing communication over the Internet, yet has

its flaws and disadvantages. The handshake flow above is only one out of many and the

complexity of TLS 1.2 made its implementation prone to errors, bugs and security issues.9

The current version of TLS 1.3 presents a major overhaul of the previous TLS version 1.2.

The two most notable changes relate to the handshake process, and the encryption and

authentication schemes to be used.

The handshake, which establishes a connection between client and server, has been greatly

simplified in TLS 1.3. This becomes most apparent when we compare the state machines of

the two TLS versions: The official specification does not list any state machine at all, with the

various possible state machines leading to some messy graphics and faulty implementations.10

On the other hand, TLS 1.3 devotes a whole appendix chapter that lists the various possible

state machines.11

In comparison to figure 2.2, server and client exchange fewer messages:

Client Server
ClientHello

ServerHello

Application Data

Encrypted Extensions

Certificate

CertificateVerify

Finished

Finished

Application DataApplication Data

en
cr

yp
te

d
tra

ffi
c

Figure 2.3.: Full handshake in TLS 1.3 with server authentication.

8We presume a basic knowledge of TLS here and note only the most important aspects, and major differences

and improvements in TLS 1.3 that are also relevant to our work. More detailed changes that became

apparent during implementation are described in the following chapter. A good introduction to TLS 1.2

can be found in [Ris17].
9A cursory search lists 655 security vulnerabilities in Mitre’s CVE database, including Crime (2012), the no-

torious Heartbleed (2014), Poodle (2015) and other attacks. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=TLS, visited 2020-04-23.
10Beu17.
11Res18, p. 120.

9

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TLS
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TLS

The client basically announces “Hello, I want to establish a connection” and provides the

necessary key material, the server answers with its own key material and other information

needed, and the handshake is over. Essentially, this is a major speed-up, since it eliminates a

full round-trip between client and server. The ChangeCipherSpec message, which formerly

announced the transition to encrypted application data, is now eliminated. It has only been

preserved to enable TLS 1.3 connections over middleboxes such as firewalls and intrusion

detection systems and is not processed further.12 In addition to this speed-up, TLS 1.3 even

allows for a zero-round-trip (0-RTT) if the client has previously connected to the server.

The other important improvement in figure 2.3: Data is encrypted much earlier in the whole

client-server message exchange. The encryption happens right after the ServerHello, since

the key material is earlier ready than in TLS 1.2. All following information such as the server

certificate are now encrypted, while being sent in plaintext in previous TLS versions.

What is not visible in the figure above is the expanded use of extensions. They already existed

in previous TLS versions, but with the latest one a lot of information has been moved to new

or pre-existing extensions, notably also the supported TLS versions of client and server.

The major change in TLS 1.3 is only visible under the hood, however: Encryption algorithms,

hashing and signature algorithms have been pruned and re-organized. This change is most

visible in the list of cipher suites of which a client can offer a selection to the server. The

page-long cipher suite combinations13 have been reduced to just five recommended cipher

suites.14 Cipher suites in TLS 1.2 are of the following format, with an example just below:

TLS˙[key exchange]˙[authentication]˙with˙[cipher]˙[mac or prf]

TLS˙ECDHE˙RSA˙WITH˙AES˙128˙GCM˙SHA256

This is thus a cipher suite that uses ECDHE for the key exchange, RSA for authentication,

128bit-AES in GCM mode as bulk cipher to decrypt the application data, and SHA-256

as hash function. In TLS 1.3, there remain only five cipher suites using Authenticated

Encryption with Associated Data15 (AEAD):

TLS˙[AEAD]˙[hash]

TLS˙AES˙128˙GCM˙SHA256

This is the 128bit AES-GCM authenticated encryption algorithm together with a SHA256-

based pseudo-random function (PRF).16 The key exchange and signature algorithm field

have been moved to their own respective extension. In addition, the recommended ciphers

for key exchange all support forward secrecy. If an attacker gains the private key of a server

or client, she is not able to decrypt past TLS sessions.

Another notable change is the key derivation: TLS 1.3 uses a new HMAC-based Key De-

rivation Function (HKDF) that has been defined in RFC 5869 in 2010.17 We discuss the

consequences of the new AEAD cipher suites and the new HDKF in the chapter 3.3.

12Res18, pp. 77, 140.
13The IANA lists over more than 300 cipher suites: https://www.iana.org/assignments/tls-parameters/

tls-parameters.xhtml, visited on 2020-04-23.
14Res18, p. 133.
15For a detailed description of AEAD see [Aum18, p. 148]
16To be more precise: The hashing algorithm is used to build an HMAC (Keyed-Hash Message Authentication

Code) within the HKDF (Hash-based Key Derivation Function). Both concepts are explained in the

implementation chapter.
17Kra10.

10

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

TLS 1.3 brings many new advantages and implies a quick adoption. Holz et al. note that

a couple of providers and big internet corporations were able to quickly implement TLS 1.3,

e.g. Cloudflare, Google and Facebook.18 Yet smaller providers have been rather slow in

adopting the new TLS version as the authors note. We hope to speed up the process and

at least lay the foundation for the strongSwan project for TLS 1.3 support.

18Hol19.

11

2.3. strongSwan and TLS

The strongSwan project is an open-source IPsec implementation. Originally, it was based

on FreeS/WAN, but was completely rewritten in an object-oriented coding style in the pro-

gramming language C.19 IPsec features so-called “Security Associations” (SA), with which

two peers establish security attributes, for example encryption algorithm and keys. In strong-

Swan, IKE and IKEv2 (Internet Key Exchange) are the protocols to create these Security

Associations. In strongSwan, the charon library implements the IKEv2 protocol and acts as a

keying daemon.20 Since strongSwan version 4.5.0, charon supports EAP-TLS21 to mutually

authenticate client and server with certificates.22

The Extensible Authentication Protocol (EAP)23 is a framework that allows a broad set of

methods to authenticate peers. In terms of TLS, the methods EAP-TLS, EAP-TTLS and

EAP-PEAP are relevant:

• EAP Transport Layer Security (EAP-TLS) as defined in RFC 5216 uses the hand-

shake protocol of TLS to authenticate both peers with certificates, while the TLS

encryption functionality itself is not used.24 A Public Key Infrastructure (PKI) is re-

quired and must be able to provide a client certificate.25

• EAP Tunneled Transport Layer Security (EAP-TTLS) as defined in RFC 5281 first

establishes a TLS connection between client and server and then authenticates each

other in a second step over this encrypted channel. A certificate is only mandatory for

the server, but optional for the client. After the secured tunnel is established, other

authentication mechanisms can be used such as EAP.26

• Protected EAP (PEAP) as developed by Cisco Systems, Microsoft and RSA Secur-

ity27, is similar to EAP-TTLS and only requires a server-side certificate and optionally

client-side certificate to establish a secure TLS connection. Afterwards EAP messages

are sent encrypted over the connection.28

strongSwan itself implements a range of EAP methods and currently supports all TLS meth-

ods that are offered by EAP and listed above. The TLS library of strongSwan is further used

for the “Posture Transport Protocol over TLS” (PT-TLS).29 These use cases are the main

reason why a TLS stack is present in strongSwan.

The TLS stack has been explicitly written from scratch for strongSwan as the library libtls.

TLS version 1.0, 1.1 and 1.2 and most of the associated cipher suites and cryptographic

primitives are currently supported.

Figure 2.4 shows which components rely on this TLS stack:

19str18.
20str17.
21Sim08.
22str15.
23Wik.
24Sta17, p. 165.
25Fal12, p. 838, Note that EAP-TTLS and PEAP do not need client certificates for authentication.
26Sta17, p. 165.
27https://en.wikipedia.org/wiki/Extensible˙Authentication˙Protocol#PEAP, visited 2020-05-23.
28https://security.stackexchange.com/questions/147344/eap-tls-vs-eap-ttls-vs-eap-peap/

149643, visited on 2020-05-23.
29San15.

12

https://en.wikipedia.org/wiki/Extensible_Authentication_Protocol#PEAP
https://security.stackexchange.com/questions/147344/eap-tls-vs-eap-ttls-vs-eap-peap/149643
https://security.stackexchange.com/questions/147344/eap-tls-vs-eap-ttls-vs-eap-peap/149643

libtls

libcharon / eap tls_test libpttls

pt-tls-client

Figure 2.4.: Package diagram of the components libcharon, libpttls and tls test which

rely on libtls.

• The eap plug-in within the library libcharon uses TLS to implement mutual authen-

tication over TLS (EAP-TLS, EAP-TTLS and PEAP).

• tls test is a simple command-line executable that allows to set up a TLS connection

as client or server. Once a TLS channel is set up, it allows each side to transfer data

to each other similar to a Telnet session.

• libpttls is the library that implements the Posture Transport Protocol over TLS

(PT-TLS).

• pt-tls-client is a concrete client that uses libpttls and libttls.

The last three components use TLS in a “regular” way, which means a client builds an

encrypted connection to a server and then communicates over this secured channel.

13

2.4. Project Scope

TLS 1.3 is defined in an extensive RFC standard30 to achieve a minimal viable product (MVP),

we mostly follow the compliance requirements as detailed in chapter 9 of the RFC.

2.4.1. Minimal Viable Product

The goal of this work is to implement the client-side components of a minimal TLS 1.3

handshake to a TLS 1.3-compliant server such as OpenSSL 1.1.1c.

This includes the mandatory new cryptographic computations, state machine, messages and

extensions. The code to be written resides mainly in the strongSwan TLS library libtls.

The code is written for strongSwan version 5.8.4.

Messages

Our minimal implementation uses the following messages:

• ClientHello

• HelloRetryRequest

• ServerHello

• EncryptedExtensions

• Certificate

• CertificateVerify

• Finished

Extensions

The RFC standard defines these mandatory extensions which must be implemented for a

valid TLS 1.3 client:31

• server˙name(0): Defined in RFC 6066 and already implemented in strongSwan

• supported˙versions(43): New in TLS 1.3, chapter 4.2.1

• cookie(44): New in TLS 1.3, chapter 4.2.2

• signature˙algorithms(13) and signature˙algorithms˙cert(50): New in TLS

1.3, chapter 4.2.3

• supported˙groups(10), chapter 4.2.7

• key˙share(51): New in TLS 1.3, chapter 4.2.8

30Res18.
31Res18, p. 103.

14

State Machine

The state machine below shows which part we implement to achieve a minimal viable product,

drawn in green colour.32

WAIT ServerHello

WAIT EncryptedExtensions

WAIT CertificateRequest

WAIT Certificate

WAIT CertificateVerify

WAIT Finished

Connected

Send ClientHello

Receive EncryptedExtensions

Receive HelloRetryRequest

Receive ServerHello

Using PSK

Receive CertificateRequest

Receive Certificate

Receive CertificateVerify

Receive Finished

Using certificate

Send Finished

Receive Certificate

Legend:
green = minimal viable product

Can send app data

INIT

Figure 2.5.: Client-side state machine for a minimal viable product (green).

32Res18, 120ff, The state machines shown are slightly simplified to improve readability.

15

2.4.2. Optional Features

There are three optional features that can be added to the MVP, listed in order of prior-

ity: server-side implementation, client-side authentication, and the remaining non-mandatory

TLS 1.3 extensions.

Option 1: Server-Side Implementation

The existing TLS library in strongSwan also provides the server role of TLS 1.2 and plays a

vital part in how strongSwan is used. Figure 2.6 shows the server-side state machine to our

client-side MVP in orange colour.

RECEIVED ClientHello

NEGOTIATED

WAIT Flight2

Connected

Receive
ClientHello

Send ServerHello

Send EncryptedExtensions

Send CertificateRequest

Send Certificate + CertificateVerify

Send Finished

Send HelloRetryRequest

Legend:
orange = server-side implementation
blue = client-side authentication with certificate

No 0-RTT (No PSK)

Select parameters

WAIT Certificate

WAIT CertificateVerify

No client auth

WAIT Finished

Receive Finished

Client-side authentication

Receive Certificate

Receive CertificateVerify

Receive empty
certificate

... 0-RTT
(using a PSK, out of scope)

INIT

Figure 2.6.: Server-side implementation (orange color).

16

Option 2: Client-Side Authentication with Certificate

EAP entails the concept of mutual authentication, where EAP-TLS provides the client-side

authentication via a X.509 certificate that is used in a TLS connection. Figures 2.7 and 2.6

show the path through the client and server state machines in blue colour.

WAIT ServerHello

WAIT EncryptedExtensions

WAIT CertificateRequest

WAIT Certificate

WAIT CertificateVerify

WAIT Finished

Connected

Send ClientHello

Receive EncryptedExtensions

Receive HelloRetryRequest

Receive ServerHello

Using PSK

Receive CertificateRequest

Receive Certificate

Receive CertificateVerify

Receive Finished

Using certificate

Send Finished

Receive Certificate

Legend:
blue = client-side authentication
black and bold = mvp

Send Certificate

INIT

Figure 2.7.: Client-side authentication with certificate (blue color).

17

Option 3: Further TLS 1.3 Extensions

The following extensions are new in TLS 1.3, but not mandatory to be compliant.

• early˙data(42)

• certificate˙authorities(47)

• oid˙filters(48)

• post˙handshake˙auth(49)

2.4.3. Out of Scope

In order to keep the scope small, we defined these points to be out of scope:

• Middleboxes (for example reverse and forward proxies, firewalls, load balancers etc.)

• Pre-Shared Key (PSK) that allows a zero-roundtrip (0-RTT)

18

3. Implementation

In the following sections we describe how the minimal viable product was incorporated in the

existing TLS stack of the strongSwan project. We start with a short description of the existing

code base in libtls and explain our main design choice. The remaining sections show our

major additions to and adaptations of the code base: The new HMAC-based key derivation

function (HKDF) and the Authenticated Encryption with Associated Data (AEAD), as well

as the new handshake and state machine. The chapter closes with a section on sequence

numbers.

3.1. Architecture Overview of libtls

Our implementation extends the libtls-library of the strongSwan project. The library en-

compasses roughly 11‘200 lines of code, spread over 17 .c- and 19 h-files.1 In order to make

informed decisions about the implementation and to seamlessly integrate the new TLS stack,

it was necessary to map and visualise the existing code.

3.1.1. Class Diagram

The existing code follows a special C-syntax that allows a pseudo-object-oriented coding

style.2 The object-oriented code is achieved in the following way: Every .h- and corres-

ponding .c-file is a class, e.g. the Crypto class corresponds to the files tls crypto.c and

tls crypto.h. Header-files without a corresponding .c-file are treated as interfaces, e.g.

the interface Handshake (tls handshake.h) is implemented by the classes Peer and Server.

Every class follows the same structure, using the Crypto-class as an example:

Private data of a class is indicated by the prefix private as in struct private tls crypto t.

An object is instantiated using the create-function and a special macro called INIT, e.g.

tls crypto t *tls crypto create(tls t *tls, tls cache t *cache). Since it is cre-

ated on the heap, destroy() takes care of the memory management when the object is no

longer needed.

The public methods of the Crypto class are of type struct tls crypto t and implemented

using a macro called METHOD. It has the following schema:3

METHOD([class name], [method name], [return value], [private this],

[list of arguments]...)

1Measured using the Statistic plugin for IntelliJ CLion.
2The project’s own coding guidelines have more detailed descriptions about the chosen style. The explana-

tions here only describe what is necessary to understand the diagrams [Hut05, p. 56].
3For the sake of simplicity we chose to only list the relevant parts of those methods in the diagram, i.e.

name of the method, arguments and return value.

19

Diagram 3.1 shows how libtls was organised at the start of the project. Relationships

between classes are indicated by an arrow. If an arrow points from class X to class Y, it

means that class X has a reference of type Y in its private part. Thus the line tls aead t

*aead in in struct private tls crypto t, which is the AEAD transformation for inbound

traffic, uses something from the AEAD class, i.e. from tls aead.c.

3.1.2. Sequence Diagram

The UML sequence diagram on page 22 illustrates the call order and object lifetime in a

simple client-side TLS handshake situation.

The first call made by tls test represents the libtls executable, which calls the function

tls socket create of class Socket. Note this is a simplified diagram that emphasises the

call order regarding the libtls library, removing the return arrows usually found in sequence

diagrams. The vertical white beam represents the object life-time, which ends when the

object’s destroy function is called, as explained in the previous section.

20

TLS

- public: tls_t
- is_server: bool
- version: tls_version_t
- purpose: tls_purpose_t
- input: chunk_t
- inpos: size_t
- output: chunk_t
- outpos: size_t
- headpos: size_t
- head: tls_record_t

+ tls_create(bool, identification_t,
 identification_t, tls_purpose_t,
 tls_application_t, tls_cache_t): tls_t
+ process(void, size_t): status_t
+ build(void, size_t, size_t): status_t
+ is_server(): bool
+ get_server_id(): identification_t
+ get_peer_id(): identification_t
+ get_version(): tls_version_t
+ set_version(tls_version_t): bool
+ get_purpose(): tls_purpose_t
+ is_complete(): bool
+ get_eap_msk(): chunk_t
+ get_auth(): auth_cfg_t
+ destroy(): void

AEAD

- public: tls_aead_t
- aead: aead_t
- salt: size_t

+ tls_aead_create_explicit(integrity_algorithm_t, encryption_algorithm_t, size_t): tls_aead_t
+ tls_aead_create_implicit(integrity_algorithm_t, encryption_algorithm, size_t): tls_aead_t
+ tls_aead_create_null(integrity_algorithm_t): tls_aead_t
+ tls_aead_create_aead(encryption_algorithm_t, size_t): tls_aead_t
+ encrypt(tls_version_t, tls_content_type_t, uint64_t, chunk_T): bool
+ decrypt(tls_version_t, tls_content_type_t, uint64_t, chunk_T): bool
+ get_mac_key_size(): size_t
+ get_mac_encr_key_size(): size_t
+ get_vi_size(): size_t
+ set_keys(chunk_t mac, chunk_t encnr, chunk_t): bool
+ destroy(): void

Alert

- public: tls_alert_t
- warnings: linked_list_t
- fatal: bool
- consumed: bool
- desc: tls_alert_desc_t

+ tls_alert_create(): tls_alert_t
+ add(tls_alert_level_t, tls_alert_desc_t): void
+ get(tls_alert_level_t, tls_alert_desc_t): bool
+ fatal(): bool
+ process(tls_alert_level_t, tls_alert_desc_t): status_t
+ destroy(): void

Cache

- public: tls_cache_t
- table: hashtable_t
- list: linked_list_t
- lock: rwlock_t
- max_sessions: u_int
- max_age: u_int

+ tls_cache_create(u_int, u_int): tls_cache_t
+ create_(chunk_t, identification_t, chunk_t, tls_cipher_suite_t): void
+ lookup(chunk_t, identification_t, chunk_t): tls_cipher_suite_t
+ check(identification_t): chunk_t
+ destroy(): void

Compression

- public: tls_compression_t

+ tls_compression_create(tls_fragmentation_t, tls_alert_t): tls_compression_t
+ process(tls_content_type_t, chunk_t): status_t
+ build(tls_content_type_t, chunk_t): status_t
+ destroy(): void

EAP

- public: tls_eap_t
- type: eap_type_t
- identifier: uint8_t
- is_server: bool
- supported_version: uint8_t
- include_length: bool
- first_fragment: bool
- frag_size: size_t
- processed: int
- max_msg_count: int

+ tls_eap_create(eap_type_t, tls_t, size_t, int, bool): tls_eap_t
+ initiate(chunk_t): status_t
+ process(chunk_t, chunk_t): status_t
+ get_msk(): chunk_t
+ get_identifier(): uint8_t
+ set_identifier(uint8_t): void
+ get_auth(): auth_cfg_t
+ destroy(): void

Fragmentation

- public: tls_fragmentation_t
- state: alert_state_t
- application_finished: bool
- input: chunk_t
- inpos: size_t
- output: chunk_t
- output_type: tls_content_type_t
- purpose: tls_purpose_t

+ tls_fragmentation_create(tls_handshake_t, tls_alert_t,
 tls_application_t, tls_purpose_t
): tls_fragmentation_t
+ process(tls_content_type_t, chunk_t): status_t
+ build(tls_content_type_t, chunk_t): status_t
+ application_finished(): bool
+ destroy(): void

PRF

- public: tls_prf_t
- prf: prf_t

+ tls_prf_create_12(pseudo_random_function_t): tls_prf_t
+ tls_prf_create_10(): tls_prf_t
+ set_key12(chunk_t): bool
+ get_bytes12(char, chunk_t, size_t, char): bool
+ destroy12(): void
+ set_key10(chunk_t): bool
+ get_bytes10(char, chunk_t, size_t, char): bool
+ destroy10(): void

Server

- public: tls_server_t
- server: identification_t
- peer: identification_t
- peer_auth_optional: bool
- state: server_state_t
- client_random: char[32]
- server_random: char[32]
- peer_auth: auth_cfg_t
- server_auth: auth_cfg_t
- private: private_key_t
- dh: diffie_hellman_t
- suite: tls_cipher_suite_t
- client_version: tls_version_t
- session: chunk_t
- resume: bool
- hashsig: chunk_t
- curves: chunk_t
- curves_received: bool

+ tls_server_create(tls_t, tls_crypto_t, tls_alert_t,
 identification_t, identification_t): tls_server_t

Socket

- fd: int

+ tls_socket_create(bool, identification_t,
 identification_t, int,
 tls_cache_t, tls_version_t,
 bool): tls_socket_t
+ process(bio_reader_t): status_t
+ build(bio_writer_t): status_t
+ read(void, size_t, bool): ssize_t
+ write(void, size_t): ssize_t
+ splice(int, int): bool
+ get_fd(): int
+ get_server_id(): identification_t
+ get_peer_id(): identification_t
+ destroy(): void

<<Interface>>
Handshake

+ process(tls_handshake_type_t, bio_reader_t): status_t
+ build(tls_handshake_type_t, bio_writer_t): status_t
+ cipherspec_changed(bool): bool
+ change_cipherspec(bool): void
+ finished(): bool
+ get_peer_id(): identification_t
+ get_server_id(): identification_t
+ get_auth(): auth_cfg_t
+ destroy(): void

<<Interface>>
Application

+ process(bio_reader_t): status_t
+ build(bio_writer_t): status_t
+ destroy(): void

Peer

- public: tls_peer_t
- peer: identification_t
- server: identification_t
- state: peer_state_t
- hello_version: tls_version_t
- client_random: char[32]
- server_random: char[32]
- peer_auth: auth_cfg_t
- server_auth: auth_cfg_t
- private: private_key_t
- dh: diffie_hellman_t
- resume: bool
- session: chunk_t
- hashsig: chunk_t
- cert_types: chunk_t

+ tls_peer_create(tls_t, tls_crypto_t, tls_alert_t,
 identification_t, identification_t): tls_peer_t

Protection

- public: tls_protection_t
- version: tls_version_t
- seq_in: uint64_t
- seq_out: uint64_t

+ tls_protection_create(tls_alert_t): tls_protection_t
+ process(tls_content_type_t,
 chunk_t): status_t
+ build(tls_content_type_t,
 chunk_t): status_t
+ set_cipher(bool, tls_aead_t): void
+ set_version(tls_version_t): void
+ destroy(): void

Crypto

- public: tls_crypto_t
- suites: tls_cipher_suite_t
- suite_count: int
- suite: tls_cipher_suite_t
- rsa: bool
- ecdsa: bool
- handshake: chunk_t
- msk: chunk_t
- msk_label: char

+ tls_crypto_create(tls_t, tls_cache_t): tls_crypto_t
+ get_cipher_suite(tls_cipher_suite_t): int
+ select_cipher_suite(tls_cipher_suite_t, int, key_type_t): tls_cipher_suite_t
+ get_dh_group(): diffie_hellman_group_t
+ get_signature_algorithms(bio_writer): void
+ create_ec_enumerator(): enumerator_t
+ set_protection(tls_protection_t): void
+ append_handshake(tls_handshake_type_t, chunk_t): void
+ sign(private_key_t, bio_writer_t, chunk_t, chunk_t): bool
+ verify(public_key_t, bio_reader_t, chunk_t): bool
+ sign_handshake(private_key_t, bio_writer_t, chunk_t): bool
+ verify_handshake(public_key_t, bio_reader_t): bool
+ calculate_finished(char, char[12]): bool
+ derive_secrets(chunk_t, chunk_t, identification_t, chunk_t, chunk_t): bool
+ resume_session(chunk_t identification_t, chunk_t, chunk_t): tls_cipher_suite_t
+ get_session(identification_t): chunk_t
+ change_cipher(bool): void
+ get_eap_msk(): chunk_t
+ destroy(): void

Figure 3.1.: Class diagram of libtls at the start of the project.

Socket TLS Crypto Alert Peer Fragmentationtls_test

tls_crypto_create

tls_socket_create

tls_create

TLS client

perspective

tls_crypto_create

tls_peer_create

tls_fragmentation_create

Compression

tls_compression_create

Protection

tls_protection_create

set_protection

set_version

splice

destroy
destroy

destroy

destroy

destroy

destroy

destroy

destroy

Figure 3.2.: Sequence diagram of libtls when the project started.

2
2

3.2. Design Choices

Before starting out with our implementation, we faced two possible paths:

1. Write the new TLS stack from scratch.

2. Extend the current TLS stack and distinguish the version where needed.

As described in the introduction, the handshake in TLS 1.3 has been greatly simplified. TLS

1.3 does away with a lot of old baggage from previous versions, so a fresh implementation

in new, separates files makes a lot of sense. In addition, the existing code is already highly

complex, and an integration into the existing stack means adding even more complexity. On

the other hand, this path implies that the team needs to thoroughly understand the current

implementation also in the context of the whole strongSwan project, even though both team

members have not worked with the code base before.

The second path reduces the need for the team to fully understand all the inner workings

of the libtls library and how it connects to the rest of the code. It does not change

the existing architecture and tries to apply changes and checks where needed. However,

this alternative introduces many new version distinctions in the shape of if-else branches.

Also, more complexity is the foe of good security, and a change in one place might introduce

vulnerabilities in another or just break the code.

After careful deliberation, we chose the second path, in view of the new-to-us code and the

limited time frame given. We therefore tried to work with the existing code where possible.

This also has the advantage that it respects existing structures. New functions or files were

only introduced where the new RFC deviated form the previous versions. In the code, this is

mostly visible as this check:

if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

–

/* existing code, TLS 1.2 */

˝

else

–

/* code for TLS 1.3 */

˝

The maximum version is the highest version supported by the client and the version on which

client and server have agreed.

Our initial decision led to many subtle and more obvious code changes scattered through-

out the code base, mostly in tls peer.c and tls crypto.c. The most apparent change

is visible in the list of cipher suites, which used to fill pages in TLS 1.2 and has been

boiled down to just five in TLS 1.3.4 The list with the old and new cipher suites is loc-

ated in the file tls crypto.c as static suite algs t suite algs[]. Initially, we added

the five new cipher suites to this list, but they were all filtered out by the private method

filter˙unsupported˙suites. In TLS 1.3, the cipher suite structure stays the same, but

the key exchange and authentication fields have been turned into extensions. If we set them

to default values only, they were filtered out. This is why we had to distinguish the new and

old TLS versions in the cipher suite list and enhanced the existing suite algs t struct

with a TLS version field.

4See section 2.2.

23

By using this new field we were able to apply only the filters relevant to the desired TLS

version:

typedef struct –

tls˙cipher˙suite˙t suite;

key˙type˙t key;

diffie˙hellman˙group˙t dh;

hash˙algorithm˙t hash;

pseudo˙random˙function˙t prf;

integrity˙algorithm˙t mac;

encryption˙algorithm˙t encr;

size˙t encr˙size;

tls˙version˙t tls˙version; /* new field */

˝ suite˙algs˙t;

Further consequences of our design choices became apparent when we had to intertwine

the new TLS 1.3 state machine with the existing one and establish a connection to send

application data.5

5See section 3.5.

24

3.3. HMAC-based Key Derivation Function

In TLS it is necessary to generate keys which encrypt the traffic exchanged by the peers.

However, the algorithm differs between TLS versions. TLS 1.2 uses a pseudo-random func-

tion (PRF) to generate keys from the Master-Key.6 TLS 1.3 on the other hand uses an

HMAC-based Key Derivation Function (HKDF) to generate traffic keys.7 strongSwan does

not bring a ready-to-use HKDF implementation the way TLS 1.3 requires. We had to add

this functionality based on provided HKDF boilerplate code described in appendix D.0.2.

This section describes the theoretical details of the HKDF in TLS 1.3 and our concrete

implementation.

3.3.1. Theory

An HKDF has two fundamental functions: HKDF-Extract and HKDF-Expand.8 However, TLS

1.3 introduces two new additional functions, HKDF-Expand-Label and Derive-Secret.9

This results in these four functions:

• HKDF-Extract extracts a pseudo-random key (PRK) from the source key10. The

extraction function is based on an HMAC, hence the name HKDF. This function takes

two parameters: An input key material IKM and a salt.

• HKDF-Expand is a second step in which the generated pseudo-random key is fed to an

HMAC. The HMAC in turn acts as a pseudo-random function to extract the required

amount of bits. This function takes three parameters: A Secret, a HkdfLabel and

the desired output key material (OKM) Length.

• HKDF-Expand-Label transforms Label and Context into a HkdfLabel structure11

and calls HKDF-Expand to derive an OKM. This function takes the four arguments

Secret, Label, Context and Length.

– Context contains the handshake messages of the current state or an empty string

as a hash.

– Length specifies the desired output length in bytes.

• Derive-Secret hashes the raw handshake message bytes and calls HKDF-Extract-Label

to derive an OKM. This function takes the three arguments Secret, Label and

Messages.

– Secret: The PRK secret from the HKDF-Extract function.

– Label: Relevant to our implementation are these labels.12

∗ “tls13 c hs traffic”

6Res08, p. 26.
7Res18, p. 95.
8Kra10.
9The basic concepts of an HKDF are described in chapter 7.1, “Key Schedule”, and chapter 7.3, “Traffic

Key Calculation” [Res18, 91ff].
10Dan Boneh has an excellent video explaining HKDF in detail. See [Bon20].
11Res18, p. 91.
12For all eleven labels see the overview on page 93 [Res18].

25

∗ “tls13 s hs traffic”

∗ “tls13 c ap traffic”

∗ “tls13 s ap traffic”

∗ “tls13 derived”

– Messages specifies the unencrypted handshake bytes, without record headers, of

client and server up to the current state of the TLS handshake.

The hashing algorithm used for the HKDF is specified in the negotiated TLS cipher suite.

Since the number of cipher suites in TLS 1.3 are reduced to five, only two possible hashing

algorithms currently remain: SHA-256 or SHA-384.

Figure 3.3 illustrates how the HKDF is used in TLS, and is directly drawn from the illustration

in RFC 8446.13 It suggests that the HKDF in TLS 1.3 can also be interpreted as a state

machine: Starting from a phase 0, every call to HKDF-Extract is a one-way transition into

the next phase. This results in a state machine with four phases.14

Figure 3.3.: Each HKDF-Extract signals a one-way state transition.

13Res18, p. 93.
14The illustration in figure 3.3 is courtesy of David Wong, https://www.davidwong.fr/tls13/#section-7.

1, visited on 2020-05-23.

26

https://www.davidwong.fr/tls13/#section-7.1
https://www.davidwong.fr/tls13/#section-7.1

The above-mentioned labels play an important role in the HKDF. Unfortunately, RFC 8446

does not provide a single overview and description of all possible labels. It is therefore

important to mention these other labels and where they can be used as well.

As mentioned, eleven labels are defined in section 7.1 of the RFC and associated to different

stages in the HKDF state machine.15 The label “tls13 derived” is only used during state

transitions. These labels are all passed as arguments to the Derive-Secret function:

• Four PSK keys are derived from the Early Secret:

– “tls13 ext binder”

– “tls13 res binder”

– “tls13 c e traffic”

– “tls13 e exp master”

• Two handshake traffic secrets are derived from the Handshake Secret:

– “tls13 c hs traffic”

– “tls13 s hs traffic”

• The last four secrets are used for application traffic secrets and other use cases of TLS

1.3. They are derived from the Traffic Secret:

– “tls13 c ap traffic”

– “tls13 s ap traffic”

– “tls13 exp master”

– “tls13 res master”

There are a couple of labels that are used directly on HKDF-Expand-Label and can be called

on all states of the HKDF state machine except phase 0:

• Provide actual keying material16:

– “tls13 key”

– “tls13 iv”

• Generate the key to authenticate the handshake Finished messages17:

– “tls13 finished”

Key and initialisation vector (IV) are used in the AEAD ciphers to actually encrypt and

decrypt traffic, be it for the handshake or application data. The label “tls13 finished” is

only called once on each side, after a Finished message is received.

15Res18, p. 93.
16Section 7.3 of [Res18, p. 95].
17Section 4.4.4 of [Res18, p. 71].

27

3.3.2. Implementation

The HKDF is used in different stages of the handshake process and functions like a state

machine itself. We therefore called these internal states of the HKDF “phases”:

• Phase 0: the initial state

• Phase 1: generate pre-shared keys (not in our scope)

• Phase 2: generate handshake keys

• Phase 3: generate application data keys

Figure 3.4 illustrates the link between the HKDF in figure 3.3 and our phases.

Phase 0

Phase 1

Phase 2

Phase 3

HKDF-Extract(IKM, Salt) -> PRKEarly Secret
IKM == PSK

Salt == 0...

HKDF-Extract(IKM, Salt) -> PRKHandshake Secret

HKDF-Extract(IKM, Salt) -> PRKMaster Secret

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv], Length) -> OKM

Derive-Secret(PRK, "derived", "") -> OKM

Derive-Secret(PRK, "derived", "") -> OKM

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv], Length) -> OKM

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv | finished], Length) -> OKM

IKM == 0...

Salt == OKM

IKM == (EC)DHE

Salt == OKM

Labels: ext binder,
res binder, c e
traffic, e exp
master

Labels: c hs traffic,
s hs traffic

OKM for both labels are
cached to reuse on labels
key and iv

Labels: c ap traffic,
s ap traffic, exp
master, res master

OKM for c ap traffic
and s ap traffic are
cached to reuse on labels
key, iv and finished

Figure 3.4.: The state machine for our HKDF implementation with the four phases.

These two aspects – repeated use and internal states – encouraged us to encapsulate our

whole implementation in an HKDF class. We designed the public interface of the HKDF

class as visualised in figure 3.5:

28

HKDF

+ tls_hkdf_create(hash_algorithm_t, chunk_t): tls_hkdf_t
+ set_shared_secret(tls_hkdf_t *, chunk_t *): void
+ generate_secret(tls_hkdf_t *, tls_hkdf_labels_t, chunkt, chunk_t *): bool
+ derive_key(tls_hkdf_t *, bool, size_t, chunk_t *): bool
+ derive_iv(tls_hkdf_t *, bool, size_t, chunk_t *): bool
+ derive_finished(tls_hkdf_t *, bool, chunk_t *): bool
+ destroy(tls_hkdf_t *): void

Figure 3.5.: UML class diagram of our current HKDF implementation.

The class is implemented in tls hkdf.h and tls hkdf.c. We verify its functionality with

unit tests in test hkdf.c based on static data and keying material.18 The constructor

tls hkdf create as well as all methods are documented using Doxygen, in accordance with

the rest of the documentation.

The main idea of this design is to encapsulate all the HKDF functionality and internal state

logic and provide an easier-to-use interface. A user may set a PSK secret when initialising

a concrete HKDF object or leave it blank when not using secrets from the first phase. By

providing one of the ten labels defined in enum tls hkdf labels t, a user sets the HKDF

state machine into the appropriate state using the function generate secrets.

As one may notice from figure 3.4, a state transition always consists of the two steps

Derive-Secret with the derived label and HKDF-Extract using the OKM from the former

function. In our implementation we considered this fact and encapsulated these steps into

the function generate secret. Therefore, the label derived is not exposed to the caller

and is solely used as internal label.

The states, as described earlier, provide different encryption keys and IVs derived with the

corresponding public methods derive key and derive iv. To verify handshake authentica-

tion, the public method derive finished is used. While derive key and derive iv can be

called in all three non-zero states, derive finished is only called in phase 3 of the internal

HKDF state machine.

3.3.3. HKDF and AEAD

The idea behind Authenticated Encryption with Associated Data (AEAD) is to encrypt the

payload of a message and additionally authenticate the plaintext packet headers used to

route the packet.19 This allows the receiver to discover if the whole packet has been secretly

modified in transit. All five cipher suites in TLS 1.3 are AEAD ciphers.20 The key and

initialisation vector (IV) is provided by the HKDF.

strongSwan has already built-in support for AEAD, since TLS 1.2 standardised it.21 However,

TLS 1.3 uses AEAD somewhat differently, and one of the maintainers adapted the code to

18We use the handshake bytes and keying material provided by The New Illustrated TLS Connection ([Dri]).

The unit tests also give a good idea on how to the class is used in the code.
19See also illustration 3.6. It is heavily inspired by Dan Bonehs video explaining authenticated encryp-

tion.[Bon15]
20This can also be recognised by the block cipher mode CCM and GCM respectively ChaCha20-Poly1305 for

the stream cipher.
21Res08, p. 24.

29

Associated Data Encrypted Data

encrypted

authenticated

Figure 3.6.: Basic concept of authenticated encryption with associated data (AEAD). .

allow the current AEAD implementation to work with TLS 1.3. A new class was added,

tls aead seq.c, and other changes happened in:

• The public interface tls aead.h

• All AEAD implementations of the interface:

– tls aead.c

– tls aead.c

– tls aead expl.c

– tls aead impl.c

– tls aead null.c

• tls protection.c with implements tls aead.h

Because TLS 1.3 encrypts the actual content type within the TLSInnerPlaintext struc-

ture and always sets the TLSCiphertext structure content type to Application Data, the

interface had to be modified.22 This led to changes in all current existing AEAD implement-

ations. Because tls protection.c also uses the concrete AEAD object, it also required

minimal changes there.

The new tls aead seq.c class is to be used with TLS 1.3 and its constructor has been

added to the public interface in tls aead.h. The class mainly differs in the the way how

key material is handled. According to RFC 8446, the nonce and initialisation vector (IV) is

calculated differently than in the prior TLS version.23

22Res18, p. 81.
23Res18, p. 83.

30

3.4. Range-Based Version Handling

Prior to TLS 1.3, each peer sent its supported TLS version in the handshake version field.

This was a single value: A client offered its highest possible version as a two-byte value in

its ClientHello message, for example 0x0303 for TLS 1.2. The server responded with its

highest supported version that was equal or smaller to the client, also a two-byte value in

the ServerHello message. If both peers supported this, the handshake continued with this

agreed-on TLS version.

TLS 1.3 deprecates this mechanism in favour of a more extensible approach. The new

protocol version negotiation is outsourced to the supported versions TLS handshake ex-

tension. This allows to specify a range of supported versions instead of a single value. If a

client supports TLS 1.0 up to TLS 1.3, it sends the four corresponding hex values with the

most preferred listed first.

The original value field from earlier TLS versions has been preserved, however: A TLS-

1.3-capable client sets the ClientHello.legacy version field to 0x0303 (TLS 1.2) due

to backward compatibility, but always sends the supported versions extension along.24

This means also that the hex value of TLS 1.3 (0x0304) is never set in a ClientHello.

legacy version or ServerHello.legacy version field.

In addition, the TLS Record header, which contains legacy record version, is set to

the value of TLS 1.2 for all TLS 1.3 connections. The RFC makes one exception due to

compatibility reasons and requires an implementation to set the record that contains a TLS

1.3 ClientHello message to the value of TLS 1.0.25

To address this new negotiation mechanism, we replaced the current TLS version interface

get version in tls.h with the two methods get version min and get version max. The

latter has a dual function: It announces the highest supported TLS version of a peer, but

later in the handshake returns the TLS version on which the peers agreed. This new version

range capability is then used to create the ClientHello message within tls peer.c.

Due to the fact that we omitted the whole compatibility topic, our current implement-

ation does not quite conform to the RFC. Our implementation sets the ClientHello.

legacy version correctly to 0x0303 but also uses this value for the legacy record version

in the record value, where 0x0301 would be the correct value.

24Res18, p. 139.
25Res18, p. 79.

31

Client Server
ClientHello

ServerHello

[ChangeCipherSpec]

Certificate*

ServerKeyExchange*

ServerHelloDone

Finished

Application DataApplication Data
encrypted traffic

ClientKeyExchange

[ChangeCipherSpec]

Finished

* Optional Message
[] ChangeCipherSpec protocol message

Figure adapted from from Ristić 2017:27

(a) TLS 1.2

Client Server
ClientHello

ServerHello

Application Data

Encrypted Extensions

Certificate

CertificateVerify

Finished

Finished

Application DataApplication Data

en
cr

yp
te

d
tra

ffi
c

(b) TLS 1.3

Figure 3.7.: A full TLS handshake with server authentication.

3.5. Handshake and State Machine: Notable Changes

Until client and server can exchange encrypted application data, they go through a handshake

to agree on the specifics of the connection. As mentioned in the introduction, the RFC for

the new TLS version lists state machines for server and client, information that was missing

in the previous RFC for TLS 1.2. This section details how we incorporated these changes in

handshake and state machine into the existing code.

In comparison to its earlier version, TLS 1.3 simplifies the handshake, removes a round-trip

and some old messages:26

• Obsolete: ServerHelloDone, ServerKeyExchange, ClientKeyExchange

• New: HelloRetryRequest, EncryptedExtensions

The other, less notable change is the transition to encrypted data. In TLS 1.2, the transition

from plaintext traffic to encrypted application data is announced by the ChangeCipherSpec

protocol message. It signals the peers that they are now both ready to transition to encrypted

traffic. In the end, there are only two states: unencrypted and encrypted traffic.

On the other hand, TLS 1.3 has three states and no dedicated messages that signal a

transition (see figure 3.8). The transition from state 0 to state 1 happens after the client

receives the ServerHello message: At that point, the peers have agreed on the TLS version

and the cipher suite for all the remaining handshake messages. All further messages are now

encrypted with the handshake traffic secret – a notable change to TLS 1.2, which sent nearly

all handshake messages in plaintext.27

State 0 State 1 State 2

TLS 1.2 plaintext handshake encrypted application data not applicable

TLS 1.3 plaintext handshake encrypted handshake encrypted application data

Figure 3.8.: Transitions from unencrypted to encrypted traffic in TLS 1.2 and 1.3.

26See also figure 3.7
27The ServerFinished message is encrypted.

32

In our implementation, the handshake proceeds as follows:

Client sends ClientHello: The client generates the necessary keys specific to TLS 1.3 via

the command lib-¿crypto-¿create˙dh(lib-¿crypto, CURVE˙25519).28 It also sends a

range of extensions including the supported TLS versions.29

Client receives ServerHello: After the Client has processed the message, it initialises the

agreed-on cipher suite and generates the key material needed for the rest of the handshake.

This happens by way of the new HKDF which is described in the previous section.

Client receives ChangeCipherSpec: This message still exists in TLS 1.3, but it is only

there for middlebox compatibility, devoid of the original purpose. It can be sent or received

nevertheless at any point after the ClientHello messages.30 If the strongSwan TLS client

receives a ChangeCipherSpec message, the state STATE CIPHERSPEC RECEIVED is set but

nothing happens whatsoever.

Client receives EncryptedExtension: This is the first message encrypted with the hand-

shake traffic secret generated by the HKDF. None of the extensions pertaining to this mes-

sage are within our scope, so a skeleton was just implemented in a new method called

process˙encrypted˙extensions in tls peer.c.

Client receives Certificate: The message31 has two additions in comparison to TLS 1.2: A

certificate request context is prepended to the list of certificates, and each certificate entry

ends with extensions. Since we did not include the latter in our minimal viable product, the

data is just read, but not further processed.

Client receives CertificateVerify: In TLS 1.2, it is used for client-side authentication only32

and the TLS 1.2 client in strongSwan is only able to send such a message. In TLS 1.3, this

message is now mandatory for server-side authentication via certificate: “To prove that

the server owns the server certificate (giving the certificate validity in this TLS session), it

signs a hash of the handshake messages using the certificate’s private key. The signature

can be proven valid by the client by using the certificate’s public key.”33 The new method

process cert verify processes now such a message.34

Client receives Finished: The new Finished differs greatly from TLS 1.2. It uses the new

HKDF and its output is of variable length, whereas in TLS 1.2 it had a fixed length of 12

bytes. A new public method calculate finished tls13 that calculates the data to be

verified by the client or sent to the server for verification, both by way of the HKDF.

Client sends Finished: This concludes the handshake35 and marks the transition to applica-

tion data. The HKDF is now used to generate the application traffic keys to de- and encrypt

28For an explanation of the chosen curve see the results chapter in 4.
29Our implementation sends server name, supported versions, signature algorithms, supported

groups (elliptic curve extension in TLS 1.2), and key share.
30Res18, p. 77.
31Res18, p. 64.
32Res08, p. 62.
33Annotation to “Server Certificate Verify” in [Dri].
34On a side note, the RFC for TLS 1.3 does not comply to its own description of the transcript

hash as defined earlier in section 4.4.1 of the RFC. For CertificateVerify, the transcript hash is

Transcript-Hash(Handshake Context, Certificate)[Res18, p. 69]. Certificate is ambiguous, since

it is listed separately from Handshake Context: Is it material from the server certificate (its public key)

or is it part of the transcript hash, i.e. the transcript hash including the Certificate message? It turns

out that it is the latter.
35Res18, p. 71.

33

application data. Note that in TLS 1.3, the Finished messages are exchanged in the exact

opposite order as in TLS 1.2 (see also figure 3.7): The server sends the Finished message

first, then the client sends its own. Again the HKDF is used with the “finished” label to

compute the message.

Client sends and receives Post-Handshake Messages: After the actual handshake, client

and server can still exchange Handshake messages. They are also encrypted with the applic-

ation traffic key.36 Since our OpenSSL test server sent a NewSessionTicket message, we

simply parsed it but did not further process its contents.

The messages above transition through a state machine that is implemented in the public

methods build (outgoing traffic) and process (incoming traffic) in tls peer.c As detailed

in section 3.2, we made the conscious decision to distinguish between the TLS version within

the code and not re-implement everything from scratch.

Initially, we did not distinguish the state machines, since so many states are similar to TLS

1.2. The more we processed in our implementation, the more we faced problems due to the

rising complexity. Only when we clearly split the state machines by version did we achieve a

bug-free implementation.

36Res18, p. 73.

34

3.6. Sequence Numbers

Client and server separately maintain a sequence number of reading and writing records.37 If

the sequence numbers are not initialised and incremented properly, the messages sent back

and forth cannot be decrypted. In contrast to TLS 1.2, the nonces are initialised twice in TLS

1.3: Once when the unencrypted traffic switches to encrypted handshake traffic, and once

when the encrypted handshake traffic switches to encrypted application data traffic.38

In our implementation, the sequence number is first set to zero when the aead object is

created after the ServerHello. Also note tls˙aead˙create˙seq, which actually creates

the newly implemented aead object39:

/* File: tls˙crypto.c*/

static bool create˙aead(private˙tls˙crypto˙t *this, suite˙algs˙t *algs)

–

if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

–

this-¿aead˙in = tls˙aead˙create˙aead(algs-¿encr, algs-¿encr˙size);

this-¿aead˙out = tls˙aead˙create˙aead(algs-¿encr, algs-¿encr˙size);

˝

else

–

this-¿aead˙in = tls˙aead˙create˙seq(algs-¿encr, algs-¿encr˙size);

this-¿aead˙out = tls˙aead˙create˙seq(algs-¿encr, algs-¿encr˙size);

/* call resets sequence numbers: */

this-¿protection-¿set˙cipher(this-¿protection, TRUE, this-¿aead˙in);

this-¿protection-¿set˙cipher(this-¿protection, FALSE, this-¿aead˙out);

˝

/* ... [error messages] */

return TRUE;

˝

/* File tls˙protection.c */

METHOD(tls˙protection˙t, set˙cipher, void,

private˙tls˙protection˙t *this, bool inbound, tls˙aead˙t *aead)

–

if (inbound)

–

this-¿aead˙in = aead;

this-¿seq˙in = 0; /* sequence number reset */

˝

else

–

this-¿aead˙out = aead;

this-¿seq˙out = 0; /* sequence number reset */

˝

˝

The sequence number is reset to zero when the Finished message is sent by the client

to conclude the handshake: As soon as the state STATE˙FINISHED˙SENT is set, a call to

this-¿crypto-¿change˙cipher resets the sequence numbers.

37Res18, p. 82.
38“Each sequence number is set to zero at the beginning of a connection and whenever the key is

changed”[Res18, p. 82]. Since TLS is built on top of TCP, packet loss or disorder is not a problem.
39See section 3.3.3.

35

3.7. Tests

3.7.1. Test Environment

The TLS library in strongSwan comes with a set of basic unit test suites. test socket.c

specifies six client-server tests, which test both peers for the TLS protocol version 1.0 to TLS

1.2. test suites.c tests the cipher suite names. We left both test suites untouched as dis-

cussed with our advisors since test socket.c is unable to complete because of our changes

on the client-side TLS implementation. Further we added test hkdf.c to verify the func-

tionality of our newly-implemented HKDF feature.40 Except for the HKDF implementation,

we excluded memory leak detection due to time constraints.

It has to be noted that we only implemented the client-side TLS 1.3 stack, so we were not

able to write unit tests similar to test socket.c to automatically verify the functionality

of our implementation. We had to test everything semi-automated with self-written shell

scripts. The basic test setup consists of an OpenSSL server as described in appendix C and

the freshly compiled tls test binary.

We also manually tested the functionality of our TLS 1.3 client with servers on the Internet,

e.g. www.google.com on port 443 as described in appendix E. It has to be mentioned that

this approach is very error-prone, because the server certificate validation is non-deterministic.

tls test requires the --cert parameter to point to the server’s public key to verify authen-

ticity of the connection. Since Google runs many servers with different server certificates we

were not able to establish a connection with every attempt.41

In table 3.9 we provide an overview of our semi-automated test cases for successful TLS

version negotiation of various combinations. Test data of all our test cases can be found in

appendix E.

Client Server Negotiated Test

max TLS version max TLS version TLS version Result

TLS 1.3 TLS 1.3 TLS 1.3 3

TLS 1.2 TLS 1.3 TLS 1.2 3

TLS 1.2 TLS 1.2 TLS 1.2 3

TLS 1.3 TLS 1.2 TLS 1.2 3

Figure 3.9.: Successful TLS negotiation test cases.

3.7.2. Successful Handshake

On the next page we see a successful TLS 1.3 handshake between an OpenSSL server (left)

and a strongSwan client (right). On the client side, the list of offered ciphers suites is visible

at the top, albeit cut-off for brevity.

40The HKDF implementation passes all tests: https://travis-ci.org/github/bytinbit/strongswan/

builds/689415018, visited on 2020-05-23.
41This happens because on a first connection, the server certificate from www.google.com is downloaded via

a browser, and in a second step our client uses the certificate to connect to www.google.com. It is not

guaranteed that the client then connects to the same server with the same certificate as in the first step.

36

https://travis-ci.org/github/bytinbit/strongswan/builds/689415018
https://travis-ci.org/github/bytinbit/strongswan/builds/689415018
www.google.com
www.google.com

Figure 3.10.: Screenshot of a handshake between a TLS 1.3 server (left) and a strongSwan client (right, 2020-05-21).

4. Results

Figure 4.1.: Affected files

The project entailed complex code, the terseness of an RFC

and cryptographic operations which had to be understood and

implemented. It was a wise decision to define modest goals and

everything else as optional. In the end, we were able to imple-

ment the minimal viable product: We are able to successfully

establish a TLS 1.3 connection between a client and a server

and thus wrote the client-side of a TLS 1.3 connection. Fig-

ure 4.1 shows all files that were affected by our project, where

green color indicates new files. Even if tls aead seq.c was

added, its code affected all other aead files.1

TLS 1.3 uses the new HKDF scheme to derive cryptographic

keys. We had to implement this functionality while drawing

on existing cryptographic primitives in strongSwan. The newly

created implementation works fine from a functional perspect-

ive, unit tests with known traffic data and keying material

are successful. Since RFC 8446 scatters explanations of the

HKDF’s application throughout the text, our implementation

of the HKDF grew organically along as we worked our way

through the handshake. It must be left to future work to re-

factor the existing code and introduce a more simple and com-

plete way to generate key material via the HKDF.

During the integration of our HKDF into the client-side hand-

shake, it became clear that our initial concept of an HKDF

implementation was not ideal and has some flaws. We there-

fore suggest the following implementation that is more robust

and easier-to-use.

The public method generate secret controls the flow of the

internal state machine by the label it is called with. The method

returns the secrets Early Secret, Handshake Secret and

Master Secret. However, they are never used directly to de-

rive concrete secrets. The code can therefore be improved as

follows:

• Remove return value parameter in generate secret,

since the secrets are never used. This would simplify

the API to callers.

• Remove the whole function and control the internal state

machine flow directly with the other methods. This would reduce the amount of

1See also section 3.3.3.

38

public methods, but would lead to additional parameters for the functions derive key,

derive iv and derive finished.

The public method derive key and derive iv may be refactored to one method to simplify

the interface even more. The public method derive finished uses the same private function

to compute its secret as derive key and derive iv and has no validity check if it is in phase

3. This could be improved by guaranteeing that the function only provides a secret when it

is called in the correct state.

The above list is a set of (incomplete) suggestions which may not work well with each other

and must be reviewed with the maintainers in more detail before they are implemented.

We did not implement the server side (option 1) and neither the client-side authentication

with a certificate (option 2).2 What prolonged our implementation process were the HKDF

itself, the complexities of extending the existing state machine and the final transition to

an established connection. Future work must implement the two missing options that are

relevant to strongSwan – since the server-side is still missing, our implementation only works

with an (external) TLS 1.3-server.3

In section 2.4.1 we defined all mandatory extensions that our client should support. In the

end, we implemented all except one, the cookie extension, after the maintainers agreed that

it was unneeded in the strongSwan project. The HelloRetryRequest message, which is also

listed in our scope, was not implemented.

Regarding the cryptographic primitives, we added support for all new five cipher suites defined

in RFC 8446. Our HKDF implementation supports both hashing algorithms.4 As key ex-

change method we currently only support Elliptic Curve Diffie-Hellman (ECDHE) with curve

X25519.5 The reason for this is how key exchange mechanisms differ between TLS versions.

TLS 1.2 and prior used information from the ClientKeyExchange message to calculate key

material, TLS 1.3 calculates the client key material at the beginning and then sends it in

the ClientHello message, thus in the first message of the client to the server. In addition,

older TLS implementations only calculated one key pair using a negotiated algorithm. A

TLS 1.3 client initially sends its key material generated with different algorithms and simply

hopes that the server supports one of these. Therefore, other TLS 1.3 implementations

usually calculate two key pairs.6 The existing code base currently does not offer a uniform

way to calculate and store key exchange material from multiple algorithms. Because of this,

we decided to support curve X25519 only.7

As signature hash algorithms, we send these six in the signature algorithms extension:

• ecdsa secp256r1 sha256 (0x0403)

• ecdsa secp384r1 sha384 (0x0503)

2See also section 2.4.2
3See appendix C on how to generate the key material and setup an OpenSSL server to see our code in

action.
4RFC 8446 specifies SHA-256 and SHA-384
5See also RFC 7748, “Elliptic Curves for Security”: https://tools.ietf.org/html/rfc7748, visited on

2020-05-24.
6Mozilla Firefox for example calculates and offers key exchange for secp256r1 and X25519, and the server

picks its preference of the two.
7According to the RFC, a TLS 1.3-compliant application must support secp256r1 and should support

X25519. We chose the latter due to personal preferences although secp256r1 is also supported by strong-

Swan and should work as well, though we never actually tested this.

39

https://tools.ietf.org/html/rfc7748

• ecdsa sha1 (0x0203)

• rsa pkcs1 sha256 (0x0401)

• rsa pkcs1 sha384 (0x0501)

• rsa pkcs1 sha1 (0x0201)

This is a subset of all the definitions on page 42 in RFC 8446. The implementation of the

extension is dynamic, which means that the amount of supported signature hashes varies

depending on how the compilation flags have been set.

In section 3.2 we decided to do an in-place TLS version distinction rather than write everything

from scratch. As expected, it added complexity to the current code, and it is not easily to

distinguish which code accounts for which TLS version. It may be another task to refactor

the code to the point that files distinguish the TLS versions and not if-else branches.

Finally, this study project was a project like no other: Even though we faced a global pandemic

thanks to COVID-19 with drastic changes to our daily lives, we are proud to have achieved

our main goal nevertheless. Even though we did not build Rome in a day, we at least built a

client-side TLS 1.3 stack.

40

A. List of Abbreviations

AEAD Authenticated Encryption with Associated Data

CA Certificate Authority

CSR Certificate Signing Request

EAP Extensible Authentication Protocol

EAP-PEAP EAP with Protected Extensible Authentication Protocol

EAP-TLS EAP with Transport Layer Security

EAP-TTLS EAP with Tunneled Transport Layer Security

GCM Galois/Counter Mode

HKDF HMAC-based Extract-and-Expand Key Derivation Function (RFC 5869)

ECDHE Elliptic-Curve Diffie-Hellman Ephemeral

HMAC Keyed-Hash Message Authentication Code

IKE Internet Key Exchange

IKM Input Key Material

IV Initialisation Vector

MVP Minimal Viable Product

OKM Output Key Material

OSI Open Systems Interconnection Model

PKI Public Key Infrastructure

PRF Pseudo-Random Function

PSK Pre-Shared Key

PT-TLS Posture Transport Protocol over TLS

RFC Request For Comment

RSA Rivest-Shamir-Adleman

RTT Round-Trip Time

SA Security Association

TLS Transport Layer Security

41

B. Bibliography

[Aum18] Aumasson, Jean-Philippe. Serious Cryptography. No Starch Press, 2018.

[Beu17] Beurdouche, Benjamin and Bhargavan, Karthikeyan et al. “A messy state of the

union: taming the composite state machines of TLS”. In: Commun. ACM 60.2

(2017), pp. 99–107. DOI: 10.1145/3023357. URL: https://doi.org/10.

1145/3023357.

[Bon15] Boneh, Dan. Cryptography: Authenticated Encryption. 2015. URL: https://

www.youtube.com/watch?v=40m3gcdGDu0 (visited on 22/05/2020).

[Bon20] Boneh, Dan. Key Derivation. 2020. URL: https://www.coursera.org/lecture/

crypto/key-derivation-A1ETP (visited on 12/05/2020).

[Dri] Driscoll, Michael. The New Illustrated TLS Connection. URL: https://tls13.

ulfheim.net/ (visited on 21/03/2020).

[Fal12] Fall, Kevin R. and Stevens, Richard W. TCP/IP illustrated, Volume 1. The Pro-

tocols. 2nd ed. Addison-Wesley, 2012.

[Hol19] Holz, Ralph et al. The Era of TLS 1.3: Measuring Deployment and Use with

Active and Passive Methods. 2019. arXiv: 1907.12762 [cs.CR].

[Hut05] Hutter, Jan and Willi, Martin. strongSwan II. Eine IKEv2-Implementierung für

Linux. Diplomarbeit. Hochschule für Technik Rapperswil, Dec. 2005, pp. 1–186.

URL: http://security.hsr.ch/theses/DA˙2005˙IKEv2.pdf.

[Kra10] Krawczyk, Hugo. HMAC-based Extract-and-Expand Key Derivation Function (HKDF).

RFC 5869. IETF Tools, May 2010, pp. 1–14. URL: https://tools.ietf.org/

html/rfc5869.

[Res18] Rescorla, Eric. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446. IETF Tools, Aug. 2018, pp. 1–160. URL: https://tools.ietf.org/

html/rfc8446.

42

https://doi.org/10.1145/3023357
https://doi.org/10.1145/3023357
https://doi.org/10.1145/3023357
https://www.youtube.com/watch?v=40m3gcdGDu0
https://www.youtube.com/watch?v=40m3gcdGDu0
https://www.coursera.org/lecture/crypto/key-derivation-A1ETP
https://www.coursera.org/lecture/crypto/key-derivation-A1ETP
https://tls13.ulfheim.net/
https://tls13.ulfheim.net/
http://arxiv.org/abs/1907.12762
http://security.hsr.ch/theses/DA_2005_IKEv2.pdf
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

[Res08] Rescorla, Eric and Dierks, Tim. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5216. IETF Tools, Aug. 2008, pp. 1–104. URL: https://

tools.ietf.org/html/rfc5246.

[Ris17] Ristić, Ivan. Bulletproof SSL and TLS. Understanding and Deploying SSL/TLS

and PKI to Secure Servers and Web Applications. Feisty Duck, 2017.

[San15] Sangster, Paul. A Posture Transport Protocol over TLS (PT-TLS). RFC 6876.

IETF Tools, Oct. 2015, pp. 1–44. URL: https://tools.ietf.org/html/

rfc6876.

[Sch17] Schmidt, Jürgen. “Weniger ist mehr. Was die anstehende Version TLS 1.3 bringt”.

In: c’t 4 (2017), pp. 172–174.

[Sim08] Simon, Dan et al. The EAP-TLS Authentication Protocol. RFC 5216. IETF Tools,

Mar. 2008, pp. 1–34. URL: https://tools.ietf.org/html/rfc5216.

[Sta17] Stallings, William. Network Security Essentials. Applications and Standards. Pear-

son Education Limited, 2017.

[Ste05] Steffen, Andreas. Advanced Features of Linux strongSwan. Tech. rep. 2005. URL:

https://strongswan.org/docs/LinuxTag2005-strongSwan.pdf (visited on

25/05/2020).

[str18] strongSwan. About. 2018. URL: https://wiki.strongswan.org/about.html

(visited on 13/03/2020).

[str15] strongSwan. EAP-TLS. 2015. URL: https://wiki.strongswan.org/projects/

strongswan/wiki/EapTls (visited on 23/02/2020).

[str17] strongSwan. IKE keying daemon charon. 2017. URL: https://wiki.strongswan.

org/projects/strongswan/wiki/Charon (visited on 13/03/2020).

[Wik] Wikipedia. Extensible Authentication Protocol. URL: https://en.wikipedia.

org/wiki/Extensible˙Authentication˙Protocol (visited on 13/03/2020).

43

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6876
https://tools.ietf.org/html/rfc6876
https://tools.ietf.org/html/rfc5216
https://strongswan.org/docs/LinuxTag2005-strongSwan.pdf
https://wiki.strongswan.org/about.html
https://wiki.strongswan.org/projects/strongswan/wiki/EapTls
https://wiki.strongswan.org/projects/strongswan/wiki/EapTls
https://wiki.strongswan.org/projects/strongswan/wiki/Charon
https://wiki.strongswan.org/projects/strongswan/wiki/Charon
https://en.wikipedia.org/wiki/Extensible_Authentication_Protocol
https://en.wikipedia.org/wiki/Extensible_Authentication_Protocol

C. Compile and Execution Instructions

C.1. Set up Test Infrastructure with OpenSSL

We assume an OpenSSL version is installed, at least version 1.1.1 (September 2018).

(1) Generate a self-signed certificate authority (CA) with password 1337 (required). The

certificate authority can be created with a certificate signing request (CSR, step 2.1) or

without (step 2.2).

1. create key

$ openssl ecparam -genkey -name secp256r1 — openssl ec -out ca.key -aes128

2.1a create csr

$ openssl req -new -key ca.key -out ca.csr

2.1b sign ca certificate

$ openssl x509 -req -days 365 -in ca.csr -signkey fd.key -out ca.crt

2.2 self-signed ca without a csr

$ openssl req -new -x509 -days 365 -key ca.key -out ca.crt

(2) Server: generate a strong private key with password 7331:

$ openssl ecparam -genkey -name secp256r1 — openssl ec -out server.key

-aes128↪→

(3) Create a Certificate Signing Request (CSR) and send it to a CA, which is the one created

in (1):

$ openssl req -new -sha256 -key server.key -out server.csr

(4) Sign the certificate:

$ openssl x509 -req -CAcreateserial -in server.csr -sha256 -CA ca.crt

-CAkey ca.key -out server.crt↪→

In the end, the the following files exist in order of creation:

• Client side: ca.key, (ca.csr,) ca.crt

• Server side: server.key, server.csr, server.crt

Run the OpenSSL-server with password 7331:

$ openssl s˙server -accept localhost:8443 -key server.key -cert server.crt

-debug -pass pass:7331 -keylogfile keylogs↪→

44

The flag -keylogfile keylogs writes all the keys to a file called keylogs. It allows Wire-

shark to decrypt sniffed traffic.1

Run the strongSwan client:

$../strongswan˙root/scripts/tls˙test --connect localhost --port 8443

--cert server.crt --debug 2↪→

C.2. Set up strongSwan

The most simple steps to set up strongSwan for our purpose is described in the following

steps. Note that EAP-TLS and EAP-TTLS have to be explicitly enabled. Also the OpenSSL

back-end to support most of the cryptographic primitives has to be configured explicitly.

$ git clone https://git.strongswan.org/strongswan.git

$ cd strongswan/

$./autogen.sh

$ make clean

$./configure --enable-eap-tls --enable-eap-ttls --enable-openssl

$ make

$ make install

Verify functionality by running all unit tests:

$ make check

The client can then be started by the following command:

$./scripts/tls˙test

If only required plugins should be enabled, one can use the following configuration options:

$./configure --disable-aes --disable-des --disable-rc2 --disable-sha2

--disable-sha1 --disable-md5 --disable-pgp --disable-dnskey

--disable-sshkey --disable-gmp --disable-xcbc --disable-cmac

--disable-hmac --disable-random --disable-pkcs1 --disable-pkcs7

--disable-pkcs8 --disable-pkcs12 --disable-attr

--disable-kernel-netlink --disable-stroke --disable-vici

--disable-updown --disable-xauth-generic --disable-counters

--disable-resolve --disable-socket-default --disable-nonce

--disable-x509 --disable-revocation --disable-fips-prf --disable-drbg

--disable-constraints --disable-pubkey --disable-pem

--disable-curve25519 --enable-eap-tls --enable-eap-ttls

--enable-openssl

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Initially we tried to use valgrind to manually find memory leaks. Our advisors pointed

out the configuration flag --enable-leak-detective which provides the same validation

constraints also used by the automated unit tests. We strongly recommend to always set

this option while working on the strongSwan project. Now, when running unit tests by make

check, memory leaks are checked as well.

1Via the menu points Edit -¿ Preferences -¿ (Pre)-Master-Secret log filename.

45

Temporarily disabling memory leak detection can be achieved by setting the flag LEAK

DETECTIVE DISABLE. The following command also sets the flag TESTS VERBOSE to print

more verbose output to stdout.

$ make check TESTS˙VERBOSE=2 LEAK˙DETECTIVE˙DISABLE=0

46

D. Source Code

D.0.1. Code-Repository

The complete source code of our implementation can be found online here:

https://github.com/bytinbit/strongswan

Interesting branches are:

• sa-dev-libtls: the final code

• feature-mvp: complete commit history until code freeze

• feature-hkdf: complete commit history of the HKDF implementation until code

freeze

D.0.2. HKDF Boilerplate Code

The strongSwan maintainer Tobias Brunner1 provided the boilerplate code for an HKDF,

implemented in strongSwan’s code base. The implementation conforms to RFC 5869.2

#include ¡crypto/prf˙plus.h¿

prf˙t *prf;

prf˙plus˙t *prf˙plus;

chunk˙t salt, IKM, PRK, info, OKM;

size˙t L;

prf = lib-¿crypto-¿create˙prf(lib-¿crypto, PRF˙HMAC˙SHA2˙256);

/* HKDF-Extract(salt, IKM) -¿ PRK */

salt = chunk˙from˙chars(

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0a, 0x0b, 0x0c,

);

IKM = chunk˙from˙chars(

0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,

0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,

0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,

);

prf-¿set˙key(prf, salt);

prf-¿allocate˙bytes(prf, IKM, &PRK);

1Email from 26.3.2020
2For the implementation in TLS 1.3, see section 3.3.

47

https://github.com/bytinbit/strongswan

DBG1(DBG˙APP, ”=== %B”, &PRK);

/* HKDF-Expand(PRK, info, L) -¿ OKM */

info = chunk˙from˙chars(

0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,

0xf8, 0xf9,

);

L = 42;

prf-¿set˙key(prf, PRK);

prf˙plus = prf˙plus˙create(prf, TRUE, info);

prf˙plus-¿allocate˙bytes(prf˙plus, L, &OKM);

DBG1(DBG˙APP, ”=== %B”, &OKM);

chunk˙clear(&PRK);

chunk˙clear(&OKM);

prf˙plus-¿destroy(prf˙plus);

prf-¿destroy(prf);

48

Figure E.1.: Screenshot of a handshake between a strongSwan TLS 1.3 client and an

OpenSSL server supporting TLS 1.3 in Wireshark (2020-05-27).

E. Test Data

E.1. Local Connection: TLS 1.3 Client to TLS 1.3 Server

A successful TLS 1.3 handshake, server side

openssl s˙server -accept www.test.local:8443 -key tls˙ecdsa/server.key -cert

tls˙ecdsa/server.crt -debug -pass pass:7331 -keylogfile output/keylogs↪→

Using default temp DH parameters

ACCEPT

read from 0x5562d4480b40 [0x5562d448c753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 01 01

read from 0x5562d4480b40 [0x5562d448c758] (257 bytes =¿ 257 (0x101))

0000 - 01 00 00 fd 03 03 5e ce-6b 14 47 c6 c0 4a 5c b1ˆ.k.G..J“.

0010 - 07 ad bb 78 8c 7e ed 65-f0 ea 54 0d cd 85 f0 fa ...x.˜.e..T.....

0020 - 3f ae 7d 56 02 91 00 00-5c 13 01 13 02 13 03 13 ?.˝V....“.......

0030 - 04 13 05 c0 09 c0 23 c0-0a c0 24 c0 2b c0 2c c0#...$.+.,.

0040 - 13 c0 27 c0 14 c0 28 c0-2f c0 30 00 33 00 67 00 ..'...(./.0.3.g.
0050 - 39 00 6b 00 9e 00 9f 00-45 00 be 00 88 00 c4 00 9.k.....E.......

0060 - 16 00 2f 00 3c 00 35 00-3d 00 9c 00 9d 00 41 00 ../.¡.5.=.....A.

0070 - ba 00 84 00 c0 c0 08 c0-12 00 0a c0 06 c0 10 00

49

0080 - 02 00 3b 00 01 01 00 00-78 00 00 00 13 00 11 00 ..;.....x.......

0090 - 00 0e 77 77 77 2e 74 65-73 74 2e 6c 6f 63 61 6c ..www.test.local

00a0 - 00 0a 00 0e 00 0c 00 17-00 18 00 19 00 15 00 13

00b0 - 00 1d 00 0b 00 02 01 00-00 2b 00 09 08 03 04 03+......

00c0 - 03 03 02 03 01 00 0d 00-0e 00 0c 04 03 05 03 02

00d0 - 03 04 01 05 01 02 01 00-33 00 26 00 24 00 1d 003.&.$...

00e0 - 20 eb ed 56 16 fd 54 6c-b8 bb 12 aa d7 43 40 5d ..V..Tl.....C@]

00f0 - ac 30 72 61 41 42 ef 8a-8e f2 f7 77 06 59 70 32 .0raAB.....w.Yp2

0100 - 43 C

write to 0x5562d4480b40 [0x5562d4495a20] (773 bytes =¿ 773 (0x305))

0000 - 16 03 03 00 5a 02 00 00-56 03 03 df 77 b6 93 b9Z...V...w...

0010 - bc f1 89 4c d1 37 ab ec-e6 e5 30 ed aa 19 0f 60 ...L.7....0....`
0020 - 56 74 b2 b1 bb 0d 7a e2-e8 d8 31 00 13 01 00 00 Vt....z...1.....

0030 - 2e 00 2b 00 02 03 04 00-33 00 24 00 1d 00 20 19 ..+.....3.$... .

0040 - 24 02 ed e7 e5 ee 5f 9d-94 15 fb b2 bf 0e e1 b0 $.....˙.........

0050 - f8 11 70 e6 18 f9 8e c7-2b 3c 97 5f b2 b6 21 14 ..p.....+¡.˙..!.

0060 - 03 03 00 01 01 17 03 03-00 17 21 33 9d a5 00 8f!3....

0070 - a6 f3 5a 4a f0 92 9f b1-5f 14 1c f5 b0 45 4c 73 ..ZJ....˙....ELs

0080 - 14 17 03 03 01 e0 fc 8d-39 24 5d 68 e7 53 ac 279$]h.S.'
0090 - 11 75 18 e6 6e 3a f8 0f-3f 4d 2f 0f 0b 17 d4 be .u..n:..?M/.....

00a0 - 46 38 26 3f 5b b8 12 08-bb ae 8b 7a 48 e0 f8 4a F8&?[......zH..J

00b0 - e2 cf b9 ac cc 45 27 60-d6 e8 9f 82 9d a6 e5 62E'`.......b
00c0 - 3a 13 7a bf e1 60 f9 19-3e 5c c3 dd 1a 0c 85 1b :.z..`..¿“......
00d0 - 1c 25 ba 03 5b b1 42 4a-6f 3a 04 b7 24 d2 62 21 .%..[.BJo:..$.b!

00e0 - 1f 9b 34 fc ab 16 f1 96-2e 28 7a 53 7c 3f 21 13 ..4......(zS—?!.

00f0 - b0 62 9e f8 56 1b 66 d3-a4 8b 1e c1 9d 0e 06 5e .b..V.f........ˆ

0100 - ef 71 cb d6 25 85 1c 89-9f 0a 54 77 8c 4c 74 33 .q..%.....Tw.Lt3

0110 - d8 df 34 e0 b8 f1 62 4d-d3 f2 64 88 59 74 c5 77 ..4...bM..d.Yt.w

0120 - 72 53 f6 18 60 d2 ae 4c-0f 6e db c9 18 8f 8f 13 rS..`..L.n......
0130 - 0e 60 2f fc 41 05 97 be-92 13 29 a6 74 2b 82 93 .`/.A.....).t+..
0140 - 84 4b 7f e6 3a 46 64 f5-1f a8 f0 c0 45 d6 c7 b6 .K..:Fd.....E...

0150 - ae 8c c6 55 66 98 b6 03-25 e2 36 4a 68 de 8d fe ...Uf...%.6Jh...

0160 - 7b 94 a1 69 88 3a 20 f9-03 17 53 34 1a b3 24 53 –..i.: ...S4..$S

0170 - 51 9a 0d 15 9d 68 c9 b5-38 6a 80 d5 30 50 86 ac Q....h..8j..0P..

0180 - 6c 69 bf 9d bb 6b fe b1-06 c0 e2 9e 6e 61 f2 b3 li...k......na..

0190 - 38 20 75 8c 97 7e 6d 9e-9b e2 2b 5c fa 03 60 54 8 u..˜m...+“..`T
01a0 - fa 2d 60 d7 8f cc f8 1d-39 b8 71 ea 93 73 65 4e .-`.....9.q..seN
01b0 - 54 62 74 4d fd 48 c5 d2-13 22 b9 26 47 ad 72 e3 TbtM.H...”.&G.r.

01c0 - a7 04 8f 9d 33 3c 87 a8-f8 d5 a7 c3 82 cb 33 943¡........3.

01d0 - 28 3f dd 11 db 3e 67 17-0d d7 69 0d 47 e8 0a 40 (?...¿g...i.G..@

01e0 - 00 aa 2e 93 3d c8 ee 96-a8 08 94 2a 36 ad 88 26=......*6..&

01f0 - 40 25 b8 47 5a 16 6f 61-53 2f f1 ac 16 4e d3 b4 @%.GZ.oaS/...N..

0200 - 38 d9 56 06 d1 a2 95 2d-ce ec 95 be e1 d9 d2 d8 8.V....-........

0210 - 2a c0 11 ae 82 79 67 bc-99 f2 04 76 0c 4a 5b 64 *....yg....v.J[d

0220 - fb f1 89 3d 73 98 dc 08-c9 8d a7 50 42 ee ca 03 ...=s......PB...

0230 - 56 7c 59 54 20 75 28 b9-85 4e 1e eb 0d 70 ac 62 V—YT u(..N...p.b

0240 - 10 a4 73 d0 82 bc 88 80-33 55 28 86 6b 83 01 57 ..s.....3U(.k..W

0250 - 37 f3 f6 a0 7d f8 73 28-af 72 cc 95 e6 c8 14 6b 7...˝.s(.r.....k

0260 - 2e 42 a6 b1 36 c0 17 03-03 00 60 fe 36 13 64 79 .B..6.....`.6.dy
0270 - d4 5a 05 4a 44 40 ba 41-5b 75 05 76 be bb 82 64 .Z.JD@.A[u.v...d

0280 - 08 96 21 94 e1 33 bc a5-58 96 36 8d 15 24 ba 1c ..!..3..X.6..$..

0290 - 62 4e 0b 44 f1 6f e4 93-72 26 19 21 0d 63 09 fe bN.D.o..r&.!.c..

02a0 - ea 86 19 3a be 4a 55 cd-ab 7f 62 2b bb a9 0f b3 ...:.JU...b+....

02b0 - aa 80 54 fd df 8a 44 77-30 39 2d 59 08 03 d3 72 ..T...Dw09-Y...r

02c0 - 4e 77 d8 6f 8c 81 97 63-93 73 ed 17 03 03 00 35 Nw.o...c.s.....5

02d0 - fe 4e 27 96 f1 e9 38 b9-5a f5 a3 ca 50 81 7d f0 .N'...8.Z...P.˝.
02e0 - ef 89 98 90 8f 0b 52 c5-82 66 53 1f 1b 79 30 52R..fS..y0R

02f0 - b9 fe ee 74 9d 95 68 c7-6d 56 49 1c a2 cd 02 90 ...t..h.mVI.....

0300 - 83 75 07 0e f5 .u...

50

read from 0x5562d4480b40 [0x5562d448c753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 355

read from 0x5562d4480b40 [0x5562d448c758] (53 bytes =¿ 53 (0x35))

0000 - 24 d4 05 8c 40 3f f8 72-b1 4c 5d 91 a6 6f bf be $...@?.r.L]..o..

0010 - ca 2c e0 90 1b f6 24 60-a1 bc d7 34 d0 e9 98 51 .,....$`...4...Q
0020 - 8b 5e 83 25 08 ad 9e 18-7a 91 a3 d8 e6 ec d6 78 .ˆ.%....z......x

0030 - ec cb 12 22 41 ...”A

write to 0x5562d4480b40 [0x5562d4495a20] (223 bytes =¿ 223 (0xDF))

0000 - 17 03 03 00 da db b6 12-a5 9c 64 c8 8d 48 66 53d..HfS

0010 - fe b2 47 fd 17 46 7a 09-67 44 26 6c cf 26 54 e3 ..G..Fz.gD&l.&T.

0020 - 54 b4 99 80 ed be c7 29-ce b6 93 8e 2a f7 b5 1b T......)....*...

0030 - f0 2f a8 d8 c1 74 5f dc-5b d7 89 e4 aa e8 36 cd ./...t˙.[.....6.

0040 - 41 10 99 44 43 18 b7 4f-89 38 d8 ad af 6c db 5b A..DC..O.8...l.[

0050 - c8 bf f9 bd 24 d2 fe a1-63 5b 73 1f 78 f5 b6 e9$...c[s.x...

0060 - dd df 1a be c8 95 54 d6-6c 07 56 69 8a c7 f4 baT.l.Vi....

0070 - d9 a6 cd e1 1b f1 75 3d-dc f8 ad e2 fc d8 1c 57u=.......W

0080 - 5d fe 48 20 86 0a 02 68-21 0e 23 75 ef 18 c7 91].H ...h!.#u....

0090 - 76 0d fd bc b1 39 09 8e-9d d1 ac 21 cc ca b0 15 v....9.....!....

00a0 - e6 c4 7b 40 0e 2d 8a 76-4d e1 42 6d 83 c5 25 4e ..–@.-.vM.Bm..%N

00b0 - 13 bf 85 08 c2 b0 37 1d-28 34 c9 a4 22 62 45 dc7.(4..”bE.

00c0 - e1 a9 a8 17 cf 8f 9e 0c-e4 85 b5 61 3f 97 6e e2a?.n.

00d0 - b1 7f 47 e0 ef 95 fe 3a-a2 07 ff f3 59 6d b0 ..G....:....Ym.

write to 0x5562d4480b40 [0x5562d4495a20] (223 bytes =¿ 223 (0xDF))

0000 - 17 03 03 00 da 8e 3f e9-e5 73 8c 3c 7f 8f 82 03?..s.¡....

0010 - 1f 1b 49 9e 80 0d 15 c8-f8 5a 88 4f 46 08 56 cf ..I......Z.OF.V.

0020 - 40 b9 d0 06 70 36 38 25-10 4a 2b cc a3 cf 33 31 @...p68%.J+...31

0030 - ec 06 28 fd ab a9 7b 9e-f5 2c e9 2a d5 8c e7 3b ..(...–..,.*...;

0040 - 97 9b 56 3b 00 f7 3b e4-ab c7 5e 74 a0 e9 50 8e ..V;..;...ˆt..P.

0050 - 6a 42 d7 0a ae 66 a9 f7-d7 e1 45 d1 7d 51 25 ff jB...f....E.˝Q%.

0060 - fe ed 85 8c 0d 3d 2f ef-96 5a 4b 01 92 22 ff 74=/..ZK..”.t

0070 - aa 61 95 9d ba 3d 50 d6-01 ee b6 17 4b dc a6 b6 .a...=P.....K...

0080 - 43 ab 44 36 8b 4e cd 4c-18 95 c4 64 33 61 a3 57 C.D6.N.L...d3a.W

0090 - 46 2e 61 ee b9 ad f3 a6-4c e9 47 31 fd f6 ad 50 F.a.....L.G1...P

00a0 - 39 f1 10 84 0c af 63 92-7e 73 13 94 cb 8b bd fc 9.....c.˜s......

00b0 - a8 a9 dd 77 96 28 5d 65-31 d3 ae 73 f5 49 dc 55 ...w.(]e1..s.I.U

00c0 - 39 17 f8 e3 cc bc 42 d4-fa 0b 95 53 8a 66 78 1b 9.....B....S.fx.

00d0 - 47 f8 89 e2 3e aa a1 3b-8c 2f e0 06 d4 dd be G...¿..;./.....

-----BEGIN SSL SESSION PARAMETERS-----

MG0CAQECAgMEBAITAQQgsSDqsplaEIxW5CaQn+eATPg+Ii5zTWltXUSvl4hDEVAE

IHn1DkWBsz3g47ncOsQbjmJtwFGmN0eTMVRtgfypWLpRoQYCBF7OaxSiBAICHCCk

BgQEAQAAAK4GAgRKAKVP

-----END SSL SESSION PARAMETERS-----

Shared ciphers:TLS˙AES˙128˙GCM˙SHA256:TLS˙AES˙256˙GCM˙SHA384:

TLS˙CHACHA20˙POLY1305˙SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA256:

ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA384:

ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:

ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:

ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-GCM-SHA256:

ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES128-SHA256:

DHE-RSA-AES256-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-GCM-SHA256:

DHE-RSA-AES256-GCM-SHA384:AES128-SHA:AES128-SHA256:

AES256-SHA:AES256-SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384

Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA1:

RSA+SHA256:RSA+SHA384:RSA+SHA1

Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:

RSA+SHA256:RSA+SHA384

Supported Elliptic Groups: P-256:P-384:P-521:P-224:P-192:X25519

Shared Elliptic groups: P-256:P-384:P-521:X25519

CIPHER is TLS˙AES˙128˙GCM˙SHA256

51

Secure Renegotiation IS NOT supported

read from 0x5562d4480b40 [0x5562d448c753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 12

read from 0x5562d4480b40 [0x5562d448c758] (18 bytes =¿ 18 (0x12))

0000 - 52 55 ec 7f bb 6a 9e 0b-ec 5b ee ca 27 e6 b8 3c RU...j...[..'..¡
0010 - ee 3c .¡

read from 0x5562d4480b40 [0x5562d448c753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 16

read from 0x5562d4480b40 [0x5562d448c758] (22 bytes =¿ 22 (0x16))

0000 - e8 e3 a3 0e 9f 81 af 95-cf b0 95 dd 1e ba 41 86A.

0010 - 95 8f 8e 96 bf e2

ping

pong

write to 0x5562d4480b40 [0x5562d44908a3] (27 bytes =¿ 27 (0x1B))

0000 - 17 03 03 00 16 b9 fd 96-57 c6 54 f3 c4 e0 a2 90W.T.....

0010 - 11 da f3 33 f2 d0 32 7e-c4 a5 f2 ...3..2˜...

read from 0x5562d4480b40 [0x5562d448c753] (5 bytes =¿ 0 (0x0))

ERROR

shutting down SSL

CONNECTION CLOSED

A successful TLS 1.3 handshake, client side

scripts/tls˙test --connect www.test.local --port 8443 --cert

/home/pascal/Documents/Bildung/fh/hsr/sem6/SA/sa-strongswan-doku/

scripts/server-client/tls˙ecdsa/server.crt

↪→

↪→

negotiated TLS 1.3 using suite TLS˙AES˙128˙GCM˙SHA256

received TLS server certificate 'C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local'
no issuer certificate found for ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

issuer is ”C=AU, ST=Some-State, O=Internet Widgits Pty Ltd”

using trusted certificate ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

ping

pong

ˆC

E.2. External Connection: TLS 1.3 Client to TLS 1.3 Server

A successful TLS 1.3 handshake with a Google server

$../../../strongswan˙code/scripts/tls˙test --connect www.google.com --port 443 --debug 2

--cert 20200523˙www-google-com.pem↪→

46 supported TLS cipher suites:

TLS˙AES˙128˙GCM˙SHA256

TLS˙AES˙256˙GCM˙SHA384

TLS˙CHACHA20˙POLY1305˙SHA256

TLS˙AES˙128˙CCM˙SHA256

TLS˙AES˙128˙CCM˙8˙SHA256

TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙CBC˙SHA

TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙CBC˙SHA256

TLS˙ECDHE˙ECDSA˙WITH˙AES˙256˙CBC˙SHA

TLS˙ECDHE˙ECDSA˙WITH˙AES˙256˙CBC˙SHA384

TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙GCM˙SHA256

TLS˙ECDHE˙ECDSA˙WITH˙AES˙256˙GCM˙SHA384

TLS˙ECDHE˙RSA˙WITH˙AES˙128˙CBC˙SHA

TLS˙ECDHE˙RSA˙WITH˙AES˙128˙CBC˙SHA256

52

Figure E.2.: Screenshot of a handshake between a TLS 1.3 server and an external Google

server as shown in Wireshark (2020-05-23).

TLS˙ECDHE˙RSA˙WITH˙AES˙256˙CBC˙SHA

TLS˙ECDHE˙RSA˙WITH˙AES˙256˙CBC˙SHA384

TLS˙ECDHE˙RSA˙WITH˙AES˙128˙GCM˙SHA256

TLS˙ECDHE˙RSA˙WITH˙AES˙256˙GCM˙SHA384

TLS˙DHE˙RSA˙WITH˙AES˙128˙CBC˙SHA

TLS˙DHE˙RSA˙WITH˙AES˙128˙CBC˙SHA256

TLS˙DHE˙RSA˙WITH˙AES˙256˙CBC˙SHA

TLS˙DHE˙RSA˙WITH˙AES˙256˙CBC˙SHA256

TLS˙DHE˙RSA˙WITH˙AES˙128˙GCM˙SHA256

TLS˙DHE˙RSA˙WITH˙AES˙256˙GCM˙SHA384

TLS˙DHE˙RSA˙WITH˙CAMELLIA˙128˙CBC˙SHA

TLS˙DHE˙RSA˙WITH˙CAMELLIA˙128˙CBC˙SHA256

TLS˙DHE˙RSA˙WITH˙CAMELLIA˙256˙CBC˙SHA

TLS˙DHE˙RSA˙WITH˙CAMELLIA˙256˙CBC˙SHA256

TLS˙DHE˙RSA˙WITH˙3DES˙EDE˙CBC˙SHA

TLS˙RSA˙WITH˙AES˙128˙CBC˙SHA

TLS˙RSA˙WITH˙AES˙128˙CBC˙SHA256

TLS˙RSA˙WITH˙AES˙256˙CBC˙SHA

TLS˙RSA˙WITH˙AES˙256˙CBC˙SHA256

TLS˙RSA˙WITH˙AES˙128˙GCM˙SHA256

TLS˙RSA˙WITH˙AES˙256˙GCM˙SHA384

TLS˙RSA˙WITH˙CAMELLIA˙128˙CBC˙SHA

TLS˙RSA˙WITH˙CAMELLIA˙128˙CBC˙SHA256

53

TLS˙RSA˙WITH˙CAMELLIA˙256˙CBC˙SHA

TLS˙RSA˙WITH˙CAMELLIA˙256˙CBC˙SHA256

TLS˙ECDHE˙ECDSA˙WITH˙3DES˙EDE˙CBC˙SHA

TLS˙ECDHE˙RSA˙WITH˙3DES˙EDE˙CBC˙SHA

TLS˙RSA˙WITH˙3DES˙EDE˙CBC˙SHA

TLS˙ECDHE˙ECDSA˙WITH˙NULL˙SHA

TLS˙ECDHE˙RSA˙WITH˙NULL˙SHA

TLS˙RSA˙WITH˙NULL˙SHA

TLS˙RSA˙WITH˙NULL˙SHA256

TLS˙RSA˙WITH˙NULL˙MD5

hello

sending extension: Server Name Indication for 'www.google.com'
sending extension: supported groups

sending extension: supported versions

sending extension: signature algorithms

sending extension: key-share

sending TLS ClientHello handshake (237 bytes)

sending TLS Handshake record (241 bytes)

processing TLS Handshake record (90 bytes)

received TLS ServerHello handshake (86 bytes)

negotiated TLS 1.3 using suite TLS˙AES˙128˙GCM˙SHA256

processing TLS ChangeCipherSpec record (1 bytes)

processing TLS ApplicationData record (2478 bytes)

received TLS EncryptedExtensions handshake (2 bytes)

received TLS Certificate handshake (2336 bytes)

received TLS server certificate 'C=US, ST=California, L=Mountain View, O=Google LLC,
CN=www.google.com'↪→

received TLS CertificateVerify handshake (75 bytes)

no issuer certificate found for ”C=US, ST=California, L=Mountain View, O=Google LLC,

CN=www.google.com”↪→

issuer is ”C=US, O=Google Trust Services, CN=GTS CA 1O1”

using trusted certificate ”C=US, ST=California, L=Mountain View, O=Google LLC,

CN=www.google.com”↪→

verified signature with SHA256/ECDSA

received TLS Finished handshake (32 bytes)

sending TLS Finished handshake (32 bytes)

sending TLS ApplicationData record (53 bytes)

sending TLS ApplicationData record (23 bytes)

processing TLS ApplicationData record (1413 bytes)

processing TLS ApplicationData record (333 bytes)

HTTP/1.0 400 Bad Request

Content-Type: text/html; charset=UTF-8

Referrer-Policy: no-referrer

Content-Length: 1555

Date: Sat, 23 May 2020 09:19:42 GMT

¡!DOCTYPE html¿

¡html lang=en¿

... more html code follows

E.3. Local Connection: TLS 1.2 Client to TLS 1.3 Server

A successful TLS 1.2 handshake, server side

openssl s˙server -accept www.test.local:8443 -key tls˙ecdsa/server.key -cert

tls˙ecdsa/server.crt -debug -pass pass:7331 -keylogfile output/keylogs↪→

Using default temp DH parameters

54

Figure E.3.: Screenshot of a handshake between a strongSwan TLS 1.2 client and an

OpenSSL server supporting TLS 1.3 in Wireshark (2020-05-27).

ACCEPT

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 fd

read from 0x55f62dbb5b40 [0x55f62dbc1758] (253 bytes =¿ 253 (0xFD))

0000 - 01 00 00 f9 03 03 5e ce-67 13 46 16 ed 3a 5c 42ˆ.g.F..:“B

0010 - 24 0b 81 db cd 61 50 c4-72 c5 fe fe ad 49 19 a9 $....aP.r....I..

0020 - a1 b7 b3 3b 6b 6e 00 00-5c 13 01 13 02 13 03 13 ...;kn..“.......

0030 - 04 13 05 c0 09 c0 23 c0-0a c0 24 c0 2b c0 2c c0#...$.+.,.

0040 - 13 c0 27 c0 14 c0 28 c0-2f c0 30 00 33 00 67 00 ..'...(./.0.3.g.
0050 - 39 00 6b 00 9e 00 9f 00-45 00 be 00 88 00 c4 00 9.k.....E.......

0060 - 16 00 2f 00 3c 00 35 00-3d 00 9c 00 9d 00 41 00 ../.¡.5.=.....A.

0070 - ba 00 84 00 c0 c0 08 c0-12 00 0a c0 06 c0 10 00

0080 - 02 00 3b 00 01 01 00 00-74 00 00 00 13 00 11 00 ..;.....t.......

0090 - 00 0e 77 77 77 2e 74 65-73 74 2e 6c 6f 63 61 6c ..www.test.local

00a0 - 00 0a 00 0c 00 0a 00 17-00 18 00 19 00 15 00 13

00b0 - 00 0b 00 02 01 00 00 2b-00 07 06 03 03 03 02 03+........

00c0 - 01 00 0d 00 0e 00 0c 04-03 05 03 02 03 04 01 05

00d0 - 01 02 01 00 33 00 26 00-24 00 1d 00 20 86 c5 473.&.$... ..G

00e0 - 11 1c f5 c4 0e 5b 73 2a-fd d3 b8 db 1f 4c 86 1d[s*.....L..

00f0 - 71 36 54 7f 24 38 0f 96-de 48 b6 42 7d q6T.$8...H.B˝

write to 0x55f62dbb5b40 [0x55f62dbcaa20] (715 bytes =¿ 715 (0x2CB))

0000 - 16 03 03 00 54 02 00 00-50 03 03 1b c6 b5 89 4dT...P......M

0010 - dd b8 8d fc 48 fb f9 27-84 b3 c1 ae 30 52 45 daH..'....0RE.
0020 - 5c f7 28 44 4f 57 4e 47-52 44 01 20 db be 2b 9f “.(DOWNGRD. ..+.

0030 - 3e bf 6c ad 3a 87 fe c3-ee 23 bd 59 63 e4 18 e5 ¿.l.:....#.Yc...

0040 - 40 ba 96 0e cf 06 65 98-22 1b 5b 78 c0 09 00 00 @.....e.”.[x....

0050 - 08 00 0b 00 04 03 00 01-02 16 03 03 01 cc 0b 00

0060 - 01 c8 00 01 c5 00 01 c2-30 82 01 be 30 82 01 640...0..d

0070 - a0 03 02 01 02 02 14 43-e4 0e 1a c2 cb 53 e7 8aC.....S..

55

0080 - df 05 d5 94 68 bd e3 43-c3 13 6e 30 0a 06 08 2ah..C..n0...*

0090 - 86 48 ce 3d 04 03 02 30-45 31 0b 30 09 06 03 55 .H.=...0E1.0...U

00a0 - 04 06 13 02 41 55 31 13-30 11 06 03 55 04 08 0cAU1.0...U...

00b0 - 0a 53 6f 6d 65 2d 53 74-61 74 65 31 21 30 1f 06 .Some-State1!0..

00c0 - 03 55 04 0a 0c 18 49 6e-74 65 72 6e 65 74 20 57 .U....Internet W

00d0 - 69 64 67 69 74 73 20 50-74 79 20 4c 74 64 30 1e idgits Pty Ltd0.

00e0 - 17 0d 32 30 30 34 32 39-31 32 33 37 35 37 5a 17 ..200429123757Z.

00f0 - 0d 32 30 30 35 32 39 31-32 33 37 35 37 5a 30 5a .200529123757Z0Z

0100 - 31 0b 30 09 06 03 55 04-06 13 02 43 4e 31 0b 30 1.0...U....CN1.0

0110 - 09 06 03 55 04 08 0c 02-47 44 31 0b 30 09 06 03 ...U....GD1.0...

0120 - 55 04 07 0c 02 53 5a 31-18 30 16 06 03 55 04 0a U....SZ1.0...U..

0130 - 0c 0f 4d 61 67 72 61 74-68 65 61 2c 20 49 6e 63 ..Magrathea, Inc

0140 - 2e 31 17 30 15 06 03 55-04 03 0c 0e 77 77 77 2e .1.0...U....www.

0150 - 74 65 73 74 2e 6c 6f 63-61 6c 30 59 30 13 06 07 test.local0Y0...

0160 - 2a 86 48 ce 3d 02 01 06-08 2a 86 48 ce 3d 03 01 *.H.=....*.H.=..

0170 - 07 03 42 00 04 83 94 4a-8c 3c 2c a6 2e eb b1 34 ..B....J.¡,....4

0180 - 6e 56 37 43 47 20 5c e5-35 21 b2 9a 69 e5 42 0a nV7CG “.5!..i.B.

0190 - 4a 1a 73 ed cc b8 3a 61-a3 4a a9 ec 04 c5 3c 0d J.s...:a.J....¡.

01a0 - 03 3d 62 c7 2b f0 c0 68-3b 9a 2c 90 da d0 7f a9 .=b.+..h;.,.....

01b0 - 7e c4 8a 99 25 a3 1d 30-1b 30 19 06 03 55 1d 11 ˜...%..0.0...U..

01c0 - 04 12 30 10 82 0e 77 77-77 2e 74 65 73 74 2e 6c ..0...www.test.l

01d0 - 6f 63 61 6c 30 0a 06 08-2a 86 48 ce 3d 04 03 02 ocal0...*.H.=...

01e0 - 03 48 00 30 45 02 21 00-dd 3f 21 03 7c a7 9e d8 .H.0E.!..?!.—...

01f0 - 4b 07 65 a5 d8 4a c4 cc-d3 d5 3b a2 07 6d 98 d1 K.e..J....;..m..

0200 - bd 97 c3 9f 56 94 94 e2-02 20 34 07 8c 9e 14 1cV.... 4.....

0210 - 3e ec a9 0b 38 51 3c 23-3f b4 08 03 1b b9 e3 66 ¿...8Q¡#?......f

0220 - f3 0e 9d f2 d8 39 69 a7-a9 23 16 03 03 00 93 0c9i..#......

0230 - 00 00 8f 03 00 17 41 04-12 bf 46 7d bd bb cc 4eA...F˝...N

0240 - b2 97 84 6f f2 80 58 b9-aa 9c 8d 2b 71 48 6a d1 ...o..X....+qHj.

0250 - 2e 59 0b 5b 6d 51 12 4b-89 fe e5 37 d9 bb a8 b6 .Y.[mQ.K...7....

0260 - ad 75 44 4b 52 42 ab d7-a6 e5 3b 53 7f 41 2f 62 .uDKRB....;S.A/b

0270 - b8 ac b8 32 f4 a0 80 dd-04 03 00 46 30 44 02 20 ...2.......F0D.

0280 - 7f ca c7 81 a6 84 a7 7f-d4 36 7d 75 03 2e 1c e46˝u....

0290 - 21 44 36 2d 25 2b c0 2c-2c 23 ae 71 3f 26 33 10 !D6-%+.,,#.q?&3.

02a0 - 02 20 14 2e 6e 75 f4 11-45 66 3c 13 57 d7 57 77 . ..nu..Ef¡.W.Ww

02b0 - fc a8 98 0c 4e f0 66 29-c0 81 4f df e5 49 1d 32N.f)..O..I.2

02c0 - fe 57 16 03 03 00 04 0e-00 00 00 .W.........

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 46F

read from 0x55f62dbb5b40 [0x55f62dbc1758] (70 bytes =¿ 70 (0x46))

0000 - 10 00 00 42 41 04 01 a0-b5 e8 94 1f aa 8d 92 9b ...BA...........

0010 - 13 12 27 cc ea 1d 3c f6-d8 41 f9 da f9 70 a1 e8 ..'...¡..A...p..
0020 - 92 ec 44 3a 56 9d 0e 72-2c 5b bc 3c f6 50 c0 0b ..D:V..r,[.¡.P..

0030 - 2d 24 b9 3f 1e 40 90 20-3f 8c 65 1d 1e 07 8f 9a -$.?.@. ?.e.....

0040 - 33 4f 69 88 d2 94 3Oi...

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 14 03 03 00 01

read from 0x55f62dbb5b40 [0x55f62dbc1758] (1 bytes =¿ 1 (0x1))

0000 - 01 .

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 40@

read from 0x55f62dbb5b40 [0x55f62dbc1758] (64 bytes =¿ 64 (0x40))

0000 - 1f bb 4b 78 16 1d 46 0b-52 19 72 0d a3 6c 0d cc ..Kx..F.R.r..l..

0010 - 9a 94 8a 1e 03 a0 33 a5-e6 00 8b 15 f2 a4 82 ad3.........

0020 - e6 39 1d 75 29 6d d9 c7-b6 20 3c b0 89 3f 0e 79 .9.u)m... ¡..?.y

0030 - f6 a4 72 1d 04 05 a8 e2-47 1a 73 ee 61 f4 c7 db ..r.....G.s.a...

write to 0x55f62dbb5b40 [0x55f62dbcaa20] (75 bytes =¿ 75 (0x4B))

0000 - 14 03 03 00 01 01 16 03-03 00 40 4a e4 af d3 75@J...u

0010 - 1a d4 74 cf af 76 68 cb-71 3f f9 20 8a e0 3f 9a ..t..vh.q?. ..?.

56

0020 - a8 cf fa aa f9 00 95 c7-5e 07 5f 79 5f 04 c3 26ˆ.˙y˙..&

0030 - 05 cf c1 99 20 d2 84 18-03 eb ed 15 ee 76 76 48vvH

0040 - de 7a 8f e4 84 03 85 a9-4c 2d 4a .z......L-J

-----BEGIN SSL SESSION PARAMETERS-----

MHUCAQECAgMDBALACQQg274rnz6/bK06h/7D7iO9WWPkGOVAupYOzwZlmCIbW3gE

MGe0uOl+0dTQ6fh0+rG/Bt0JJLopsIUYP6iq/Pr33tCN0DWPvQkhGW1gLP0fVQ5e

K6EGAgRezmcTogQCAhwgpAYEBAEAAAA=

-----END SSL SESSION PARAMETERS-----

Shared ciphers:TLS˙AES˙128˙GCM˙SHA256:TLS˙AES˙256˙GCM˙SHA384:

TLS˙CHACHA20˙POLY1305˙SHA256:ECDHE-ECDSA-AES128-SHA:

ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA:

ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:

ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:

ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES256-SHA384:

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-SHA:

DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-AES256-SHA256:

DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:AES128-SHA:

AES128-SHA256:AES256-SHA:AES256-SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384

Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA1:

RSA+SHA256:RSA+SHA384:RSA+SHA1

Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:RSA+SHA256:RSA+SHA384

Supported Elliptic Curve Point Formats: uncompressed

Supported Elliptic Groups: P-256:P-384:P-521:P-224:P-192

Shared Elliptic groups: P-256:P-384:P-521

CIPHER is ECDHE-ECDSA-AES128-SHA

Secure Renegotiation IS NOT supported

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x55f62dbb5b40 [0x55f62dbc1758] (48 bytes =¿ 48 (0x30))

0000 - ba b4 b2 f2 4f b8 5b 1d-e4 90 57 bf 40 12 51 1eO.[...W.@.Q.

0010 - 6b 26 cf 69 a3 ac e1 5e-70 27 9d 67 d1 c0 f7 8d k&.i...ˆp'.g....
0020 - 24 18 60 b3 47 0c 7b 71-98 ee 8a 79 46 f9 4b a6 $.`.G.–q...yF.K.

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x55f62dbb5b40 [0x55f62dbc1758] (48 bytes =¿ 48 (0x30))

0000 - 38 8a 58 54 3b b3 b3 c2-cd 5f bf 74 25 9e f3 00 8.XT;....˙.t%...

0010 - 64 e6 d5 77 f9 f6 97 5d-24 fc a6 cf a9 fe 44 4d d..w...]$.....DM

0020 - 64 cc 38 a3 8b 93 ee 4e-d6 8c 24 64 01 c4 22 e6 d.8....N..$d..”.

ping

pong

write to 0x55f62dbb5b40 [0x55f62dbc58a3] (53 bytes =¿ 53 (0x35))

0000 - 17 03 03 00 30 2c ef 8a-f3 a4 59 b9 1b 67 ce 6e0,....Y..g.n

0010 - 67 c5 93 13 99 f6 27 e8-9e d6 24 ec 9f 9c 5e 4c g.....'...$...ˆL
0020 - 8a 64 9c 54 33 19 16 dc-17 e7 d6 55 29 fe f5 7f .d.T3......U)...

0030 - ce 03 f0 d0 d8

read from 0x55f62dbb5b40 [0x55f62dbc1753] (5 bytes =¿ 0 (0x0))

ERROR

shutting down SSL

CONNECTION CLOSED

A successful TLS 1.2 handshake, client side

scripts/tls˙test --connect www.test.local --port 8443 --cert

/home/pascal/Documents/Bildung/fh/hsr/sem6/SA/sa-strongswan-doku/scripts/

server-client/tls˙ecdsa/server.crt

↪→

↪→

negotiated TLS 1.2 using suite TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙CBC˙SHA

received TLS server certificate 'C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local'
no issuer certificate found for ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

57

Figure E.4.: Screenshot of a handshake between a strongSwan TLS 1.2 client and an

OpenSSL server supporting only TLS 1.2 in Wireshark (2020-05-27).

issuer is ”C=AU, ST=Some-State, O=Internet Widgits Pty Ltd”

using trusted certificate ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

ping

pong

ˆC

E.4. Local Connection: TLS 1.2 Client to TLS 1.2 Server

A successful TLS 1.2 handshake, server side

openssl s˙server -accept www.test.local:8443 -key tls˙ecdsa/server.key -cert

tls˙ecdsa/server.crt -debug -pass pass:7331 -keylogfile output/keylogs -tls1˙2↪→

Using default temp DH parameters

ACCEPT

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 fd

read from 0x55a44e664b40 [0x55a44e670758] (253 bytes =¿ 253 (0xFD))

0000 - 01 00 00 f9 03 03 5e ce-65 61 e5 04 f4 39 2c e1ˆ.ea...9,.

0010 - 43 cb 65 d4 76 ea c7 26-fb bb fe 88 5d 19 47 35 C.e.v..&....].G5

0020 - e1 ef 5b 04 75 e6 00 00-5c 13 01 13 02 13 03 13 ..[.u...“.......

0030 - 04 13 05 c0 09 c0 23 c0-0a c0 24 c0 2b c0 2c c0#...$.+.,.

0040 - 13 c0 27 c0 14 c0 28 c0-2f c0 30 00 33 00 67 00 ..'...(./.0.3.g.
0050 - 39 00 6b 00 9e 00 9f 00-45 00 be 00 88 00 c4 00 9.k.....E.......

0060 - 16 00 2f 00 3c 00 35 00-3d 00 9c 00 9d 00 41 00 ../.¡.5.=.....A.

0070 - ba 00 84 00 c0 c0 08 c0-12 00 0a c0 06 c0 10 00

0080 - 02 00 3b 00 01 01 00 00-74 00 00 00 13 00 11 00 ..;.....t.......

0090 - 00 0e 77 77 77 2e 74 65-73 74 2e 6c 6f 63 61 6c ..www.test.local

58

00a0 - 00 0a 00 0c 00 0a 00 17-00 18 00 19 00 15 00 13

00b0 - 00 0b 00 02 01 00 00 2b-00 07 06 03 03 03 02 03+........

00c0 - 01 00 0d 00 0e 00 0c 04-03 05 03 02 03 04 01 05

00d0 - 01 02 01 00 33 00 26 00-24 00 1d 00 20 cd 2a 383.&.$... .*8

00e0 - 56 47 01 67 c3 aa ff 98-17 b6 8b c5 a9 cf 70 92 VG.g..........p.

00f0 - 79 63 b7 3d 5f d7 27 92-39 e5 fa 52 2f yc.=˙.'.9..R/
write to 0x55a44e664b40 [0x55a44e679a20] (715 bytes =¿ 715 (0x2CB))

0000 - 16 03 03 00 54 02 00 00-50 03 03 25 99 9b 24 95T...P..%..$.

0010 - 2d 50 d1 3f cc ec d8 b7-54 c5 f0 6e 1a e3 bb 27 -P.?....T..n...'
0020 - 4a 89 40 35 9d 8e 9b 2b-66 7c e1 20 51 a4 3f c3 J.@5...+f—. Q.?.

0030 - f9 8f c1 ad 78 c9 d1 ed-6c 80 31 22 8d 68 07 1ax...l.1”.h..

0040 - ea 0e bb 73 56 d4 85 67-95 e5 3d 3c c0 09 00 00 ...sV..g..=¡....

0050 - 08 00 0b 00 04 03 00 01-02 16 03 03 01 cc 0b 00

0060 - 01 c8 00 01 c5 00 01 c2-30 82 01 be 30 82 01 640...0..d

0070 - a0 03 02 01 02 02 14 43-e4 0e 1a c2 cb 53 e7 8aC.....S..

0080 - df 05 d5 94 68 bd e3 43-c3 13 6e 30 0a 06 08 2ah..C..n0...*

0090 - 86 48 ce 3d 04 03 02 30-45 31 0b 30 09 06 03 55 .H.=...0E1.0...U

00a0 - 04 06 13 02 41 55 31 13-30 11 06 03 55 04 08 0cAU1.0...U...

00b0 - 0a 53 6f 6d 65 2d 53 74-61 74 65 31 21 30 1f 06 .Some-State1!0..

00c0 - 03 55 04 0a 0c 18 49 6e-74 65 72 6e 65 74 20 57 .U....Internet W

00d0 - 69 64 67 69 74 73 20 50-74 79 20 4c 74 64 30 1e idgits Pty Ltd0.

00e0 - 17 0d 32 30 30 34 32 39-31 32 33 37 35 37 5a 17 ..200429123757Z.

00f0 - 0d 32 30 30 35 32 39 31-32 33 37 35 37 5a 30 5a .200529123757Z0Z

0100 - 31 0b 30 09 06 03 55 04-06 13 02 43 4e 31 0b 30 1.0...U....CN1.0

0110 - 09 06 03 55 04 08 0c 02-47 44 31 0b 30 09 06 03 ...U....GD1.0...

0120 - 55 04 07 0c 02 53 5a 31-18 30 16 06 03 55 04 0a U....SZ1.0...U..

0130 - 0c 0f 4d 61 67 72 61 74-68 65 61 2c 20 49 6e 63 ..Magrathea, Inc

0140 - 2e 31 17 30 15 06 03 55-04 03 0c 0e 77 77 77 2e .1.0...U....www.

0150 - 74 65 73 74 2e 6c 6f 63-61 6c 30 59 30 13 06 07 test.local0Y0...

0160 - 2a 86 48 ce 3d 02 01 06-08 2a 86 48 ce 3d 03 01 *.H.=....*.H.=..

0170 - 07 03 42 00 04 83 94 4a-8c 3c 2c a6 2e eb b1 34 ..B....J.¡,....4

0180 - 6e 56 37 43 47 20 5c e5-35 21 b2 9a 69 e5 42 0a nV7CG “.5!..i.B.

0190 - 4a 1a 73 ed cc b8 3a 61-a3 4a a9 ec 04 c5 3c 0d J.s...:a.J....¡.

01a0 - 03 3d 62 c7 2b f0 c0 68-3b 9a 2c 90 da d0 7f a9 .=b.+..h;.,.....

01b0 - 7e c4 8a 99 25 a3 1d 30-1b 30 19 06 03 55 1d 11 ˜...%..0.0...U..

01c0 - 04 12 30 10 82 0e 77 77-77 2e 74 65 73 74 2e 6c ..0...www.test.l

01d0 - 6f 63 61 6c 30 0a 06 08-2a 86 48 ce 3d 04 03 02 ocal0...*.H.=...

01e0 - 03 48 00 30 45 02 21 00-dd 3f 21 03 7c a7 9e d8 .H.0E.!..?!.—...

01f0 - 4b 07 65 a5 d8 4a c4 cc-d3 d5 3b a2 07 6d 98 d1 K.e..J....;..m..

0200 - bd 97 c3 9f 56 94 94 e2-02 20 34 07 8c 9e 14 1cV.... 4.....

0210 - 3e ec a9 0b 38 51 3c 23-3f b4 08 03 1b b9 e3 66 ¿...8Q¡#?......f

0220 - f3 0e 9d f2 d8 39 69 a7-a9 23 16 03 03 00 93 0c9i..#......

0230 - 00 00 8f 03 00 17 41 04-69 61 0b 02 df ce 4a b9A.ia....J.

0240 - 9e 67 ed 8d fe ff ff 55-db f2 81 6b 9b b1 ce 21 .g.....U...k...!

0250 - f2 38 5f e6 34 45 f0 ca-d2 55 89 bc 25 d7 e6 7e .8˙.4E...U..%..˜

0260 - b7 c5 09 69 da 86 94 12-12 94 a9 22 49 4b a5 87 ...i.......”IK..

0270 - 58 41 9a 19 87 de a1 4c-04 03 00 46 30 44 02 20 XA.....L...F0D.

0280 - 69 d7 7b bd 7d ca 85 82-53 71 ae ea 85 c1 f4 97 i.–.˝...Sq......

0290 - 19 6b e6 20 7a 3f cd c4-e2 8d ce 48 17 3b c7 a6 .k. z?.....H.;..

02a0 - 02 20 5e 99 36 a1 a4 ff-0d f3 11 13 f5 31 9a f1 . ˆ.6........1..

02b0 - de 2d 9a f7 8f a7 7c 04-e1 96 e7 80 d6 d2 d2 84 .-....—.........

02c0 - cb ba 16 03 03 00 04 0e-00 00 00

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 46F

read from 0x55a44e664b40 [0x55a44e670758] (70 bytes =¿ 70 (0x46))

0000 - 10 00 00 42 41 04 b7 e8-83 df b2 58 bb ef 6a b7 ...BA......X..j.

0010 - 13 e0 9b 65 3e 37 1a f1-75 18 41 6b 60 f1 88 18 ...e¿7..u.Ak`...
0020 - b1 5a 03 fd cd bd b5 a7-0b 52 ef 6a 09 7f 72 24 .Z.......R.j..r$

0030 - fc b5 77 59 57 fc 0a a8-bd 27 fd b9 17 ef d2 19 ..wYW....'......

59

0040 - 63 63 84 66 03 65 cc.f.e

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 14 03 03 00 01

read from 0x55a44e664b40 [0x55a44e670758] (1 bytes =¿ 1 (0x1))

0000 - 01 .

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 40@

read from 0x55a44e664b40 [0x55a44e670758] (64 bytes =¿ 64 (0x40))

0000 - 17 9f 7d 4d 77 a6 93 86-56 87 a0 5c 21 0b fe a8 ..˝Mw...V..“!...

0010 - 3c 7a 9e 7b 02 8e 64 4a-01 3a c1 c2 02 ba 5e 85 ¡z.–..dJ.:....ˆ.

0020 - f7 27 58 70 ec e2 3c 94-98 cd 4c 62 95 9a 2f 5d .'Xp..¡...Lb../]
0030 - 01 7c d6 4d 5c e1 0b b3-dd bc 74 c9 e7 a1 f3 bf .—.M“.....t.....

write to 0x55a44e664b40 [0x55a44e679a20] (75 bytes =¿ 75 (0x4B))

0000 - 14 03 03 00 01 01 16 03-03 00 40 ed b1 87 09 4a@....J

0010 - 91 7e 8d f9 73 3a 8f 04-fd 47 6e 88 3b f4 a1 75 .˜..s:...Gn.;..u

0020 - d7 86 1f 81 b8 b7 ca ca-28 3f 86 74 eb df d2 3a(?.t...:

0030 - 3c 08 f9 df fd 80 98 c5-fa 5e d7 14 99 a7 25 b3 ¡........ˆ....%.

0040 - d0 ee ab 64 44 3d 6f 8f-a4 4e 47 ...dD=o..NG

-----BEGIN SSL SESSION PARAMETERS-----

MHUCAQECAgMDBALACQQgUaQ/w/mPwa14ydHtbIAxIo1oBxrqDrtzVtSFZ5XlPTwE

MIAj7G/inefJ3nb4N5AnWIjna95GdSx3esSg7Aqu3sF+TtGzg4odI/SWp5EMRycW

KKEGAgRezmVhogQCAhwgpAYEBAEAAAA=

-----END SSL SESSION PARAMETERS-----

Shared ciphers:TLS˙AES˙128˙GCM˙SHA256:TLS˙AES˙256˙GCM˙SHA384:

TLS˙CHACHA20˙POLY1305˙SHA256:ECDHE-ECDSA-AES128-SHA:

ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA384:

ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:

ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:

ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-GCM-SHA256:

ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES128-SHA256:

DHE-RSA-AES256-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-GCM-SHA256:

DHE-RSA-AES256-GCM-SHA384:AES128-SHA:AES128-SHA256:AES256-SHA:

AES256-SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384

Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA1:

RSA+SHA256:RSA+SHA384:RSA+SHA1

Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:RSA+SHA256:RSA+SHA384

Supported Elliptic Curve Point Formats: uncompressed

Supported Elliptic Groups: P-256:P-384:P-521:P-224:P-192

Shared Elliptic groups: P-256:P-384:P-521

CIPHER is ECDHE-ECDSA-AES128-SHA

Secure Renegotiation IS NOT supported

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x55a44e664b40 [0x55a44e670758] (48 bytes =¿ 48 (0x30))

0000 - c6 91 87 83 2a d0 d5 31-30 1e 4b a3 67 ac d9 85*..10.K.g...

0010 - 60 68 29 18 21 4a aa b5-a0 e9 23 65 d2 37 4e df `h).!J....#e.7N.
0020 - 08 51 1f 49 84 46 5b 6d-f1 52 e9 04 91 dc ed 69 .Q.I.F[m.R.....i

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x55a44e664b40 [0x55a44e670758] (48 bytes =¿ 48 (0x30))

0000 - 2b ed bd 74 00 71 07 ad-38 76 44 9e e8 50 0f 04 +..t.q..8vD..P..

0010 - 27 5a e3 e6 61 20 cc b7-06 52 40 55 22 1d 4a c9 'Z..a ...R@U”.J.
0020 - 90 8d 8a 9e 28 33 23 f8-3d f6 01 8d 66 02 4a 86(3#.=...f.J.

ping

pong

write to 0x55a44e664b40 [0x55a44e6748a3] (53 bytes =¿ 53 (0x35))

0000 - 17 03 03 00 30 f6 01 98-0c 0d 64 85 8d 03 69 d60.....d...i.

0010 - fc e6 cd 45 fd ba 89 74-c8 7f 81 29 66 38 cb 49 ...E...t...)f8.I

60

Figure E.5.: Screenshot of a handshake between a strongSwan TLS 1.3 client and an

OpenSSL server supporting only TLS 1.2 in Wireshark (2020-05-27).

0020 - 60 73 ca 5a 70 68 13 9c-78 61 b3 a2 13 04 a7 b9 `s.Zph..xa......
0030 - 4f cb 4b ac 5d O.K.]

read from 0x55a44e664b40 [0x55a44e670753] (5 bytes =¿ 0 (0x0))

ERROR

shutting down SSL

CONNECTION CLOSED

A successful TLS 1.2 handshake, client side

scripts/tls˙test --connect www.test.local --port 8443 --cert

/home/pascal/Documents/Bildung/fh/hsr/sem6/SA/sa-strongswan-doku/scripts/

server-client/tls˙ecdsa/server.crt

↪→

↪→

negotiated TLS 1.2 using suite TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙CBC˙SHA

received TLS server certificate 'C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local'
no issuer certificate found for ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

issuer is ”C=AU, ST=Some-State, O=Internet Widgits Pty Ltd”

using trusted certificate ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

ping

pong

ˆC

E.5. Local Connection: TLS 1.3 Client to TLS 1.2 Server

A successful TLS 1.2 handshake, server side

61

openssl s˙server -accept www.test.local:8443 -key tls˙ecdsa/server.key -cert

tls˙ecdsa/server.crt -debug -pass pass:7331 -keylogfile output/keylogs -tls1˙2↪→

Using default temp DH parameters

ACCEPT

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 01 01

read from 0x564024a33b40 [0x564024a3f758] (257 bytes =¿ 257 (0x101))

0000 - 01 00 00 fd 03 03 5e ce-60 c3 9e 8f 48 3e 08 77ˆ.`...H¿.w
0010 - 15 44 4e cf 79 e9 e4 ee-82 a3 18 8d 68 44 ca 5b .DN.y.......hD.[

0020 - 7a 2f 6c fb 58 21 00 00-5c 13 01 13 02 13 03 13 z/l.X!..“.......

0030 - 04 13 05 c0 09 c0 23 c0-0a c0 24 c0 2b c0 2c c0#...$.+.,.

0040 - 13 c0 27 c0 14 c0 28 c0-2f c0 30 00 33 00 67 00 ..'...(./.0.3.g.
0050 - 39 00 6b 00 9e 00 9f 00-45 00 be 00 88 00 c4 00 9.k.....E.......

0060 - 16 00 2f 00 3c 00 35 00-3d 00 9c 00 9d 00 41 00 ../.¡.5.=.....A.

0070 - ba 00 84 00 c0 c0 08 c0-12 00 0a c0 06 c0 10 00

0080 - 02 00 3b 00 01 01 00 00-78 00 00 00 13 00 11 00 ..;.....x.......

0090 - 00 0e 77 77 77 2e 74 65-73 74 2e 6c 6f 63 61 6c ..www.test.local

00a0 - 00 0a 00 0e 00 0c 00 17-00 18 00 19 00 15 00 13

00b0 - 00 1d 00 0b 00 02 01 00-00 2b 00 09 08 03 04 03+......

00c0 - 03 03 02 03 01 00 0d 00-0e 00 0c 04 03 05 03 02

00d0 - 03 04 01 05 01 02 01 00-33 00 26 00 24 00 1d 003.&.$...

00e0 - 20 a6 6d b8 2e f7 71 d0-b3 f4 cb fc 4e d9 85 0d .m...q.....N...

00f0 - 50 20 62 be a8 f3 33 a7-1c 69 53 2b 1a 0d af a1 P b...3..iS+....

0100 - 1b .

write to 0x564024a33b40 [0x564024a48a20] (715 bytes =¿ 715 (0x2CB))

0000 - 16 03 03 00 54 02 00 00-50 03 03 e2 20 32 e3 89T...P... 2..

0010 - ab dd be a7 b2 43 c5 5c-63 6b 01 72 93 66 3b a9C.“ck.r.f;.

0020 - 02 8f c6 e6 01 89 77 bd-62 73 8f 20 a6 05 94 6bw.bs. ...k

0030 - a5 00 f2 f7 5e 05 df a7-db 38 32 1f 4f 06 98 6eˆ....82.O..n

0040 - a6 08 b2 16 d0 ba 91 31-21 ad 5d 13 c0 09 00 001!.].....

0050 - 08 00 0b 00 04 03 00 01-02 16 03 03 01 cc 0b 00

0060 - 01 c8 00 01 c5 00 01 c2-30 82 01 be 30 82 01 640...0..d

0070 - a0 03 02 01 02 02 14 43-e4 0e 1a c2 cb 53 e7 8aC.....S..

0080 - df 05 d5 94 68 bd e3 43-c3 13 6e 30 0a 06 08 2ah..C..n0...*

0090 - 86 48 ce 3d 04 03 02 30-45 31 0b 30 09 06 03 55 .H.=...0E1.0...U

00a0 - 04 06 13 02 41 55 31 13-30 11 06 03 55 04 08 0cAU1.0...U...

00b0 - 0a 53 6f 6d 65 2d 53 74-61 74 65 31 21 30 1f 06 .Some-State1!0..

00c0 - 03 55 04 0a 0c 18 49 6e-74 65 72 6e 65 74 20 57 .U....Internet W

00d0 - 69 64 67 69 74 73 20 50-74 79 20 4c 74 64 30 1e idgits Pty Ltd0.

00e0 - 17 0d 32 30 30 34 32 39-31 32 33 37 35 37 5a 17 ..200429123757Z.

00f0 - 0d 32 30 30 35 32 39 31-32 33 37 35 37 5a 30 5a .200529123757Z0Z

0100 - 31 0b 30 09 06 03 55 04-06 13 02 43 4e 31 0b 30 1.0...U....CN1.0

0110 - 09 06 03 55 04 08 0c 02-47 44 31 0b 30 09 06 03 ...U....GD1.0...

0120 - 55 04 07 0c 02 53 5a 31-18 30 16 06 03 55 04 0a U....SZ1.0...U..

0130 - 0c 0f 4d 61 67 72 61 74-68 65 61 2c 20 49 6e 63 ..Magrathea, Inc

0140 - 2e 31 17 30 15 06 03 55-04 03 0c 0e 77 77 77 2e .1.0...U....www.

0150 - 74 65 73 74 2e 6c 6f 63-61 6c 30 59 30 13 06 07 test.local0Y0...

0160 - 2a 86 48 ce 3d 02 01 06-08 2a 86 48 ce 3d 03 01 *.H.=....*.H.=..

0170 - 07 03 42 00 04 83 94 4a-8c 3c 2c a6 2e eb b1 34 ..B....J.¡,....4

0180 - 6e 56 37 43 47 20 5c e5-35 21 b2 9a 69 e5 42 0a nV7CG “.5!..i.B.

0190 - 4a 1a 73 ed cc b8 3a 61-a3 4a a9 ec 04 c5 3c 0d J.s...:a.J....¡.

01a0 - 03 3d 62 c7 2b f0 c0 68-3b 9a 2c 90 da d0 7f a9 .=b.+..h;.,.....

01b0 - 7e c4 8a 99 25 a3 1d 30-1b 30 19 06 03 55 1d 11 ˜...%..0.0...U..

01c0 - 04 12 30 10 82 0e 77 77-77 2e 74 65 73 74 2e 6c ..0...www.test.l

01d0 - 6f 63 61 6c 30 0a 06 08-2a 86 48 ce 3d 04 03 02 ocal0...*.H.=...

01e0 - 03 48 00 30 45 02 21 00-dd 3f 21 03 7c a7 9e d8 .H.0E.!..?!.—...

01f0 - 4b 07 65 a5 d8 4a c4 cc-d3 d5 3b a2 07 6d 98 d1 K.e..J....;..m..

0200 - bd 97 c3 9f 56 94 94 e2-02 20 34 07 8c 9e 14 1cV.... 4.....

0210 - 3e ec a9 0b 38 51 3c 23-3f b4 08 03 1b b9 e3 66 ¿...8Q¡#?......f

62

0220 - f3 0e 9d f2 d8 39 69 a7-a9 23 16 03 03 00 93 0c9i..#......

0230 - 00 00 8f 03 00 17 41 04-7c bb 4e eb 3e 14 b8 97A.—.N.¿...

0240 - e9 f6 6c 3c 0f a4 84 be-de 6c c6 47 f4 ca eb d3 ..l¡.....l.G....

0250 - 6b 92 34 c4 fc 95 c5 46-4a 67 a1 08 9f 99 0d 87 k.4....FJg......

0260 - b1 7c 4a a5 08 84 72 c9-dd 48 1d 63 7d 81 50 d3 .—J...r..H.c˝.P.

0270 - 7e ea df fa e8 79 85 d1-04 03 00 46 30 44 02 20 ˜....y.....F0D.

0280 - 69 48 4a c1 14 14 ff c3-43 2b 48 15 93 78 c6 5c iHJ.....C+H..x.“

0290 - 45 91 2d 06 0c 04 b4 1c-ea 7b de 62 f0 1d 92 d0 E.-......–.b....

02a0 - 02 20 5e ab cb ef 3a c0-0f f2 90 ce 2d 0f 98 11 . ˆ...:.....-...

02b0 - 46 bd d3 99 8c 54 0b 7e-6b 95 89 26 3f ca c0 91 F....T.˜k..&?...

02c0 - 64 0f 16 03 03 00 04 0e-00 00 00 d..........

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 46F

read from 0x564024a33b40 [0x564024a3f758] (70 bytes =¿ 70 (0x46))

0000 - 10 00 00 42 41 04 e4 3e-28 aa d8 88 56 b7 02 3b ...BA..¿(...V..;

0010 - 22 c6 76 bb b5 18 cd 4d-26 58 76 ce b1 14 92 28 ”.v....M&Xv....(

0020 - 78 9a d4 15 b6 1c da 3e-f8 28 3b fb 39 82 e6 6d x......¿.(;.9..m

0030 - 50 88 a3 bf 58 6d 89 13-67 6f 44 97 6d 4d 02 44 P...Xm..goD.mM.D

0040 - a8 aa 96 cc 04 dc

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 14 03 03 00 01

read from 0x564024a33b40 [0x564024a3f758] (1 bytes =¿ 1 (0x1))

0000 - 01 .

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 16 03 03 00 40@

read from 0x564024a33b40 [0x564024a3f758] (64 bytes =¿ 64 (0x40))

0000 - 64 2c 08 4b 6d c7 a5 36-18 20 98 ac ef 05 96 5d d,.Km..6.]

0010 - a1 b9 e7 be a2 40 c7 f0-52 e3 b9 9a dd 67 cf 15@..R....g..

0020 - 7e 5e 85 14 75 e1 ff 25-b1 11 fc 19 59 20 c5 05 ˜ˆ..u..%....Y ..

0030 - d0 9e f9 f3 d2 88 bd f5-76 40 8b 9b 2c 46 48 26v@..,FH&

write to 0x564024a33b40 [0x564024a48a20] (75 bytes =¿ 75 (0x4B))

0000 - 14 03 03 00 01 01 16 03-03 00 40 54 78 c6 4d 3d@Tx.M=

0010 - 05 69 fd 87 94 f5 0d cb-4b 02 cc 53 cc 0d cf 6d .i......K..S...m

0020 - 6c f2 fe e4 14 87 50 4b-e2 9c d6 ff 60 77 be 33 l.....PK....`w.3
0030 - 83 ed f5 4d 0d 7d 7c 04-ee 64 c6 92 43 bc 0c 8b ...M.˝—..d..C...

0040 - eb 77 58 3f e8 2b 03 a3-72 04 5c .wX?.+..r.“

-----BEGIN SSL SESSION PARAMETERS-----

MHUCAQECAgMDBALACQQgpgWUa6UA8vdeBd+n2zgyH08GmG6mCLIW0LqRMSGtXRME

MCe5f2t8lF1q+m6pt9g4ezEJFv9zIydYlWXrfBK5uesOTtNqWwsMz/88qI4YOX8w

RaEGAgRezmDDogQCAhwgpAYEBAEAAAA=

-----END SSL SESSION PARAMETERS-----

Shared ciphers:TLS˙AES˙128˙GCM˙SHA256:TLS˙AES˙256˙GCM˙SHA384:

TLS˙CHACHA20˙POLY1305˙SHA256:ECDHE-ECDSA-AES128-SHA:

ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA:

ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:

ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:

ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES256-SHA384:

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-SHA:

DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-AES256-SHA256:

DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:AES128-SHA:

AES128-SHA256:AES256-SHA:AES256-SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384

Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA1:

RSA+SHA256:RSA+SHA384:RSA+SHA1

Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:RSA+SHA256:RSA+SHA384

Supported Elliptic Curve Point Formats: uncompressed

Supported Elliptic Groups: P-256:P-384:P-521:P-224:P-192:X25519

Shared Elliptic groups: P-256:P-384:P-521:X25519

CIPHER is ECDHE-ECDSA-AES128-SHA

Secure Renegotiation IS NOT supported

63

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x564024a33b40 [0x564024a3f758] (48 bytes =¿ 48 (0x30))

0000 - 7b aa ca 02 ad e6 44 9d-11 5c e1 42 38 f0 19 dd –.....D..“.B8...

0010 - 30 61 34 d7 78 ff 8e ac-1e 44 6c d2 41 f2 56 17 0a4.x....Dl.A.V.

0020 - 8c 6b a0 a9 cd 01 cb 24-20 6b 39 54 40 9e 97 c5 .k.....$ k9T@...

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 5 (0x5))

0000 - 17 03 03 00 300

read from 0x564024a33b40 [0x564024a3f758] (48 bytes =¿ 48 (0x30))

0000 - ec 03 47 e7 63 cd 0e 2d-4e 14 6a da 46 be 6c e6 ..G.c..-N.j.F.l.

0010 - a3 d3 d0 8d 39 a8 d7 14-e4 d2 3c b0 54 fd f2 aa9.....¡.T...

0020 - 87 84 da 7d e5 f8 92 4a-48 85 11 1c fa c3 5a 7d ...˝...JH.....Z˝

ping

pong

write to 0x564024a33b40 [0x564024a438a3] (53 bytes =¿ 53 (0x35))

0000 - 17 03 03 00 30 73 93 88-2f 7f b2 db 66 e5 45 d10s../...f.E.

0010 - 66 d3 57 94 a9 d9 c9 8b-2c b1 f9 ed 8a 12 07 1d f.W.....,.......

0020 - 81 f8 71 08 cc bd 5d f6-dd e1 74 66 4b 76 8c bd ..q...]...tfKv..

0030 - f8 c8 c8 91 7e˜

read from 0x564024a33b40 [0x564024a3f753] (5 bytes =¿ 0 (0x0))

ERROR

shutting down SSL

CONNECTION CLOSED

A successful TLS 1.2 handshake, client side

scripts/tls˙test --connect www.test.local --port 8443 --cert

/home/pascal/Documents/Bildung/fh/hsr/sem6/SA/sa-strongswan-doku/scripts/

server-client/tls˙ecdsa/server.crt

↪→

↪→

negotiated TLS 1.2 using suite TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙CBC˙SHA

received TLS server certificate 'C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local'
no issuer certificate found for ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

issuer is ”C=AU, ST=Some-State, O=Internet Widgits Pty Ltd”

using trusted certificate ”C=CN, ST=GD, L=SZ, O=Magrathea, Inc., CN=www.test.local”

ping

pong

ˆC

64

	Abstract
	Introduction
	Overview
	The Transport Layer Security Protocol (TLS)
	strongSwan and TLS
	Project Scope

	Implementation
	Architecture Overview of libtls
	Design Choices
	HMAC-based Key Derivation Function
	Range-Based Version Handling
	Handshake and State Machine: Notable Changes
	Sequence Numbers
	Tests

	Results
	List of Abbreviations
	Bibliography
	Compile and Execution Instructions
	Set up Test Infrastructure with OpenSSL
	Set up strongSwan

	Source Code
	Test Data
	Local Connection: TLS 1.3 Client to TLS 1.3 Server
	External Connection: TLS 1.3 Client to TLS 1.3 Server
	Local Connection: TLS 1.2 Client to TLS 1.3 Server
	Local Connection: TLS 1.2 Client to TLS 1.2 Server
	Local Connection: TLS 1.3 Client to TLS 1.2 Server

