

LifeDrop Media Manager

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2020

Author(s): Robin Elvedi, Lukas Schiltknecht

Advisor: Thomas Corbat

Project Partner: LifeDrop, Davos

Lifedrop Media Manager

LifeDrop Media Manager term 2020 Page 2 of 78

Table of Contents
1 Abstract ... 6

2 Management Summary ... 7
2.1 The Pod .. 7
2.2 Existing Solution ... 7
2.3 Motivation ... 8
2.4 Goals ... 8
2.5 Results .. 8

3 Introduction .. 9
3.1 Supervisor and Advisor ... 9
3.2 Client .. 9
3.3 Students .. 9
3.4 Introduction... 9
3.5 Goals ... 10

3.5.1 Redesign Pod Control UI ... 10
3.5.2 Media Management UI .. 11
3.5.3 Remote Media Management ... 11
3.5.4 Hood lens .. 11

3.6 Administrative .. 11
3.6.1 Format ... 11
3.6.2 Dates ... 11

4 Analysis ... 12
4.1 Hardware Infrastructure ... 12
4.2 Pod Control UI .. 13

4.2.1 Use Cases of Pod Control UI ... 13
4.2.2 Tests ... 14
4.2.3 Connectivity... 14
4.2.4 Redux Data Store ... 15
4.2.5 Material UI ... 15

4.3 Media Manager UI ... 15
4.3.1 Manual Workflow .. 15
4.3.2 Media Catalog ... 17

4.4 Remote Media Management .. 17
4.5 Lens Hood .. 17
4.6 Media Service ... 18

4.6.1 OS Interaction ... 18
4.6.2 Tasks and Communication ..19

4.7 Controller .. 21
4.8 Media Client ... 22
4.9 State Machine .. 22

LifeDrop Media Manager term 2020 Page 3 of 78

5 Design ... 24
5.1 System Architecture .. 24
5.2 Use Cases .. 25

5.2.1 CRUD Media Entries .. 25
5.2.2 CRUD Media Collections .. 25
5.2.3 Show Statistics .. 25
5.2.4 Media Manager .. 26

5.3 Domain Model ... 27
5.3.1 MediaCollection .. 27
5.3.2 MediaEntry ... 27
5.3.3 MediaFile ... 27
5.3.4 Notification ... 27

5.4 Pod Control UI ... 29
5.5 Design Media Manager ... 29

5.5.1 Design Media Manager Frontend ... 29
5.5.2 Backend Media Manager .. 30
5.5.3 NFRs... 30

5.6 Controller .. 31
5.7 Media Service ... 31

5.7.1 Messages ... 31
5.8 Remote Media Management ..32

6 Implementation ... 33
6.1 Overview .. 33
6.2 Media Manager .. 33

6.2.1 Technology Stack.. 33
6.2.2 Architectural Overview ... 33
6.2.3 List of Features .. 34

6.3 Pod Control UI ... 36
6.3.1 Overview .. 36
6.3.2 Goals .. 36
6.3.3 Technology.. 36
6.3.4 Frontend redesign .. 38

6.4 Media Service .. 39
6.4.1 Overview .. 39
6.4.2 Goals .. 39
6.4.3 Technology.. 39
6.4.4 Context ... 39
6.4.5 Components .. 40
6.4.6 Hot Plugging ... 44

6.5 Media Manager UI .. 45
6.5.1 Overview .. 45
6.5.2 Technology.. 45
6.5.3 Components .. 45

6.6 Media Server .. 47
6.6.1 Overview .. 47
6.6.2 Goals .. 47
6.6.3 Technology.. 47
6.6.4 Components .. 47
6.6.5 Trying it together ... 53

6.7 Testing.. 53
6.7.1 Media Manager .. 53
6.7.2 Media Server ... 54
6.7.3 Media Service ... 55

6.8 Continuous Integration .. 56

LifeDrop Media Manager term 2020 Page 4 of 78

7 Results ... 57
7.1 Media Manager UI .. 57

7.1.1 File upload ... 57
7.1.2 Update Media Entry ... 57
7.1.3 Delete Media Entry... 57
7.1.4 Create Collections ... 57
7.1.5 Manage Media of a Collection .. 57
7.1.6 Statistics ... 57

7.2 Media Server .. 58
7.2.1 Media catalog ... 58
7.2.2 File storage .. 58
7.2.3 Automatic Synchronization ... 58

7.3 Pod Control UI ... 59
7.3.1 Pause Function .. 59
7.3.2 Skip Function ... 59
7.3.3 General Redesign .. 59
7.3.4 Automatic Synchronization ... 59

7.4 Media Service .. 59
7.4.1 Player control ... 59
7.4.2 Skipping ... 59

7.5 Usability Test ... 60
7.5.1 Upload Media ... 60
7.5.2 Update Media ... 60
7.5.3 Create and Update Collection ... 60

7.6 Controller .. 61
7.6.1 Hood lens ..61

7.7 Unfinished tasks .. 61
7.7.1 Bugs ..61
7.7.2 UI Changes ...61
7.7.3 Various ...61

8 Conclusion .. 62
8.1 Media Manager UI .. 62

8.1.1 File Handling .. 62
8.1.2 Collection Handling ... 62
8.1.3 Statistics View .. 63
8.1.4 Code Review .. 63

8.2 Media Server .. 64
8.2.1 Future updates ... 64

8.3 Pod Control UI ... 64
8.3.1 Playing Media... 64
8.3.2 Pod Control UI Side Navigation ... 65
8.3.3 Seat Heater .. 65

8.4 Media Service .. 65
8.4.1 Future updates ... 65

8.5 Controller ... 66
8.5.1 Future updates ...66

LifeDrop Media Manager term 2020 Page 5 of 78

9 Project Management .. 67
9.1 Meetings ... 67
9.2 Milestones .. 67

9.2.1 M1 Project plan .. 67
9.2.2 M2 Requirements ... 68
9.2.3 M3 End of Elaboration .. 68
9.2.4 M4 Architecture .. 68
9.2.5 M5 Alpha ..69
9.2.6 M6 Beta...69
9.2.7 M7 Polish ...69

9.3 Development Workflow .. 70
9.4 Project Communication .. 70
9.5 Time Management .. 71
9.6 Repository ... 71
9.7 Lines of code .. 72

9.7.1 Media Manager .. 72
9.7.2 Media Service ... 72
9.7.3 Tablet Frontend... 72

9.8 Contributions ... 73
9.8.1 Media Manager .. 73
9.8.2 Media Frontend ... 73
9.8.3 Media Service ... 73

9.9 Test Coverage ... 73
9.9.1 Media Server ... 73
9.9.2 Media Frontend ... 74

10 Glossary .. 75

11 References ... 76

12 List of Figures ... 77

13 Appendix ... 78
Original Review Mirko Stocker ... Error! Bookmark not defined.

LifeDrop Media Manager term 2020 Page 6 of 78

1 Abstract
We extend the features of the lifedrop pod, a deck-chair like device with a closable hood,
large screen and speakers, by adding a web based media management user interface, called
the media manager. As part of that process we also remodel the media service, the component
responsible for playing media inside the pod.

The goal is to enable easy management and playback of videos and music inside the pod,
and to a smaller extent, the goal is to redesign of the pod controller user interface used
to control the pod.

We incorporate a continuous integration workflow with automatic test execution and
coverage reporting for code stability. Integration tests are used to guarantee the
interoperability of various components.

The end result is an intuitive media management user interface with an appealing design as
well as a drop in replacement for the existing media service.

We finish our work by integrating the media manager and the media service into the existing
lifedrop pod on site.

LifeDrop Media Manager term 2020 Page 7 of 78

2 Management Summary
This chapter will sum up the project activity in a less technical fashion. The first chapter
deals with the existing system called the LifeDrop pod. Then the existing software and its
features will be described, motivation and goals of the project are explained and the results
are presented in a commonly comprehensible manner.

2.1 The Pod

The LifeDrop pod is a device that aims at giving refuge from stress to people in crowded
areas. It is a chair contained in a hooded compartment that shields the user from visible and
partly audible outside influences to create a relaxing environment detached from the hectic
outside world. To help a person letting go of the current thought process, there is a media
library with movies and songs that can be played. This creates a small bubble of peace in an
otherwise stressed environment like for example in an airport, on a harbor, in a sky scraper
or other places with few retreat options.

This device is comparable to other media pods, with the unique selling proposition of
comfort and luxury. The prototype was already up and running at the start of the project and
the requirements analysis started with a test run. Then management and the development
team set up a list with priorities to work on for the term project. On the top of this list was a
software to manage the media on the pod. To achieve this feature the media manager ui and
the media server were created over the course of 14 weeks.

2.2 Existing Solution

As mentioned previously, the pod control ui had already been implemented. In the original
version, the application developer had to update the list of media links manually and deploy
the application again every time the media material was changing. This was taking a lot of
time, since the deployment had to be done on site. Additionally, the design of the application
was kept functional and organized just as the visual appearance was.

In the implementation of the software there were minor details that were implemented in a
quick and functional way, which could have lead to bigger problems in the future. The whole
security concept is based on a WPA2 password. The system consists of two raspberry pi
devices linked together via a router. One of these devices handles the engine of the pod and
one handles the audio and video experience.

LifeDrop Media Manager term 2020 Page 8 of 78

2.3 Motivation

The main motivation of improving the existing solution was to enable the pod admin to
manage media without knowledge of programming languages, JSON syntax or the
deployment process. Additionally, the design was reworked, so that the two applications
appeared more luxurious, less functional and still recognizable as one unit. This meant that
some of the features had to be displayed in a different way.

Cleaning up the code base was part of the process and applying the principles taught at OST
was also an implied advantage of developing the solution as a term project. This included the
structure of software as well as the communication among software components.

2.4 Goals

The project had two main goals, the first was to develop an application to manage the media
on the pod via web browser called media manager ui and the second one was to redesign the
pod control ui to communicate the unique selling proposition more accurately. This implied
setting up a second backend to handle the media files, media entries and collections called
media server, developing a frontend application offering the features requested and
redesigning both frontend appearances to represent a uniform design.

Additionally, the team agreed to clean up the existing application so that maintenance
would be less time consuming and writing tests for the newly implemented parts of the
application.

2.5 Results

This resulted in the media manager ui, the media server, the redesign of the pod control ui and
a structured and easy to maintain code base of the controller. These results are briefly
outlined below and described in depth in the following chapters.

For the media manager ui we created a browser application using the JavaScript library React
with the datastore library redux. It enables the pod administrator to create, update and
delete media entries and collections.

The media server is the backend component for the media manager ui, offering a way to
retrieve the media files, entries and collections to the media manager ui and the pod control
ui.

With the pod control ui the media inside the pod can be played and the seat position can be
adjusted. This requires access to the media server over the integrated private network. This
application already existed and was merely redesigned and enhanced with features like
skipping or pausing media.

The controller is responsible for adjusting the seat position and in combination with the
prototype also for opening the hood. Later versions may not offer that feature anymore. This
part of the system already existed and was refactored to be less time consuming when new
features are requested.

LifeDrop Media Manager term 2020 Page 9 of 78

3 Introduction

3.1 Supervisor and Advisor

The LifeDrop term project is conducted in collaboration with LifeDrop GmbH and supervised
by Thomas Corbat (thomas.corbat@ost.ch) from the OST Institute für Software.

3.2 Client

The client for this term project is LifeDrop GmbH with its CEO Noe Tüfer (noe.tuefer@life-
drop.ch) and CTO Enzo Scossa-Romano (enzo.scossa.romano@gmail.ch).

3.3 Students

The LifeDrop term project is conducted as part of the course Studienarbeit Informatik in the
fall semester of 2020 by:

• Lukas Schiltknecht (lukas.schiltknecht@ost.ch)

• Robin Elvedi (robin.elvedi@ost.ch)

3.4 Introduction

LifeDrop offers a one of a kind multisensorial pod experience - LifeDrop GmbH

Built by LifeDrop GmbH in Switzerland, the pod resembles a comfortable deck chair with a
closable hood. Inside, one can find a beamer as well as a set of powerful speakers. At the start
of our term project, the product is in its prototype stage. It is designed to offer a unique
visual and auditive experience. It is intended to be used in office spaces, providing a relaxing
retreat for employees, or alternatively, as a show case device, enabling exciting product
displays.

LifeDrop Media Manager term 2020 Page 10 of 78

Figure 1: lifedrop chair (source: life-drop.ch)

3.5 Goals

The LifeDrop term project consists of two main goals. The redesign of the react app that
steers the pod, and the implementation of a new react app, used to manage the media
available to be played inside the pod. Two additional minor goals consist of enabling remote
management of the pods media and the steering of a hood used to cover the beamer’s lens.

3.5.1 Redesign Pod Control UI

At the start of this term project, the pod is controlled by a react web app running on a tablet.
The tablet is used by the person inside the pod to adjust the seating position, close and open
the hood as well as play media. Its visual design and user experience is to be enhanced by
this term project.

LifeDrop Media Manager term 2020 Page 11 of 78

3.5.2 Media Management UI

When the term project began, the media available to be played inside the pod is managed
manually by copying files to the raspberry pi installed within the pod. This process is to be
replaced by a new react app, offering functionality to upload and manage the media
available to the pod.

3.5.3 Remote Media Management

An optional goal of this term project consists of enabling the remote management of media
for the pod. This includes making the media manager accessible from the internet.

3.5.4 Hood lens

Another optional goal of this term project consists of enabling the steering of a lens hood for
the beamer inside the pod.

3.6 Administrative

3.6.1 Format

The LifeDrop term project follows the documentation guidelines published by the OST[1] on
Microsoft Teams. As agreed upon between the students and the supervisor, the
documentation is written in English.

3.6.2 Dates
Date Event

14.09.2020 Start of the term project.

30.11.2020 On site integration.

07.12.2020 On site demo.

14.12.2020 Abstract hand-in on http://eprints.rj.ost.ch and to supervisor.

18.12.2020 Term project hand-in to supervisor and upload to https://archiv-
i.hsr.ch/Overview/All. Deadline is at 5pm.

https://teams.microsoft.com/_#/school/files/Studieninformationen?threadId=19:88ac24bbee8e4682a73e81839cd2103c@thread.tacv2&ctx=channel&rootfolder=%252Fteams%252FTS-StudiengangInformatik%252FFreigegebene%2520Dokumente%252FStudieninformationen%252FStudien-%2520und%2520Bachelorarbeiten%252FInformationen

LifeDrop Media Manager term 2020 Page 12 of 78

4 Analysis
In this chapter we describe the existing solution for the LifeDrop Pod.

Figure 2: Initial system diagram

4.1 Hardware Infrastructure

Enclosed within the walls of the wooden pod shell are two raspberry pi computers. One of
them is responsible for sending and receiving the signals that control the pods functions.
This includes sending commands to the mechanical motors powering the pod hood, turning
on and off the seat heating as well as turning on and off the beamer. This raspberry pi is
called control pi hereinafter. The control pi also hosts the media manager, which is the
interface displayed on the tablet for the user inside the pod.

The other one is responsible for storing the media available to the pod. This raspberry pi is
called media pi hereinafter. The media pi hosts the media service, which is the service
responsible for accepting, handling and returning media events such as a play video or stop
playing video.

The two raspberry pi computers are connected to a portable router which acts as the
gateway to the internet. It is itself connected to another local router via LAN connector or
WLAN.

LifeDrop Media Manager term 2020 Page 13 of 78

4.2 Pod Control UI

The frontend running on the control pi and operated from the tablet is referred to as pod
control ui hereinafter. The pod control ui is a react web app. At the time of writing the
analysis, it is able to control all mechanical movements of the pod as well as play all media
present on the media pi. The pod control ui has a bare bones design with missing contrast and
limited considerations towards the user experience.

Figure 3: Initial user interface design

4.2.1 Use Cases of Pod Control UI

The use cases of the existing pod control UI are the following:

4.2.1.1 Play Media

Clicking the play button below a media topic element, plays the media on the beamer.

4.2.1.2 Open and Close

Opening and closing the hood of the pod is done remotely by the pod front-end. (This will
not be the case in future pods.)

4.2.1.3 Control Seat and Seat Heater

Seat position can be adjusted and seat heater can be turned on and off by the pod front-end.

4.2.1.4 Control Volume

The volume of the audio system can be adjusted by the pod front-end.

LifeDrop Media Manager term 2020 Page 14 of 78

Figure 4: Initial use case diagram

4.2.2 Tests

When the term project started, no tests of any kind exist for the pod control ui, therefore
choosing appropriate testing environment is an implicit requirement of the project.

4.2.3 Connectivity

The pod control ui connects to the control pi by using a WebSocket connection. This is
initiated in the index.js by instantiating a new WebSocket, connecting it to the host of the
control pi and passing the instance into the redux data store as a reduxWebsocket.

const ws = new WebSocket('ws://lifedropcontrol:6799/');
const composeEnhancers = window.__REDUX_DEVTOOLS_EXTENSION_COMPOSE__ || co
mpose;
const store = createStore(rootReducer,
 initialState,
 composeEnhancers(applyMiddleware(reduxWebsocket(ws))),
)

At the beginning of the project the host configuration, protocol and host name, was done
directly in the file, where the WebSocket was instantiated and forwarded to the redux data
store.

LifeDrop Media Manager term 2020 Page 15 of 78

4.2.4 Redux Data Store

The redux data store of the pod control ui initializes the state of the state machine described
in the corresponding chapter as well as the states for seat, door, media and LED. The new
state returned by the reducer is instantiated via the static assign method of the object class.
All state transitions are caught by the rootReducer.

4.2.5 Material UI

The CSS is applied via the material design library. All the export statements wrap the
exported component into a withStyles(styles)(App) function. Also every class unwraps
classes prop in the parameters to access the CSS styles. These styles are usually directly
defined in the components that use them and rarely cascade through to other components.

4.3 Media Manager UI

The media pi hosts a selection of media available to be played inside the pod. At the start of
term project, there is no media manager ui that would allow media management. Therefore,
this workflow was done manually at that point.

4.3.1 Manual Workflow

To add and remove media for the pod, the media pi is accessed manually via SSH. The
necessary video, audio and image files are then added or removed from the media pi’s file
system.

Next, a configuration file that acts as the media catalog is updated manually to reflect the
new state of files available on the media pi. This file contains entries for each media file,
including its path on the file system as well as some metadata.

Lastly, the react application needs to be rebuild and redeployed onto the control pi, where it
is hosted. This step is necessary because the media catalog configuration file is a part of the
application.

LifeDrop Media Manager term 2020 Page 16 of 78

Figure 5: Manual media management workflow diagram

LifeDrop Media Manager term 2020 Page 17 of 78

4.3.2 Media Catalog

As mentioned, the media catalog consists of a javascript configuration file containing the
necessary metadata for the media. Catalog entries are referred to as cards. An example of a
card is shown below. The section titled LifeDrop contains three cards. Each card has a fixed
set of fields. The image and video file paths point to the location of the media files on the
control pi, which is the same device that the pod control ui is running on, hence the relative
file paths.

[{
 title: 'LifeDrop',
 cards: [
 {
 name: 'LifeDrop',
 title: 'LifeDrop',
 text: '',
 image: require('./images/lifedrop.png'),
 video: 'lifedrop.mp4',
 },
 {
 name: 'LifeDrop2',
 title: 'LifeDrop2',
 text: '',
 image: require('./images/LifeDrop V3.1 NoVoice.JPG'),
 video: 'LifeDrop V3.1 NoVoice.mov',
 },
 {
 name: 'GKB 2020',
 title: 'GKB 2020',
 text: '',
 image: require('./images/GKB 2020 1min.JPG'),
 video: 'GKB 2020 1min.mp4',
 },
]
}]

4.4 Remote Media Management

In the beginning of this term project, there is no option to manage a pods media remotely
over the internet.

4.5 Lens Hood

At the start of the term project, there is no hardware in place that would allow for the
manipulation of a lens hood covering the beamer via the pod control ui.

LifeDrop Media Manager term 2020 Page 18 of 78

4.6 Media Service

The existing media service is implemented in Python and interacts very closely with the
underlying operating system on the media pi and its installed system software. The systems
software deals with outputting sound and video via HDMI and an ALSA sound interface,
respectively.

The following is a list of system software that is called by the media service:

Nr. Software Description Used for

1. fbi Linux frame-buffer image-viewer Displaying a static background
image when no video is played on
the pod.

2. omxplayer An accelerated command line
media player

Used to play video and music on
the pod.

3. mpd Music Player Daemon (MPD).
Server-side application for
playing music

Used to play background music on
the pod when idle.

4. mpc Program for controlling Music
Player Daemon (MPD)

Used to control mpd.

5. amixer command-line mixer for ALSA
sound-card driver

Used to control the ALSA sound-
card driver.

4.6.1 OS Interaction

As seen in the table above, the media service calls a variety of systems software. This is
implemented by spawning shell processes with the corresponding system command and
required parameters. The system commands with parameters are coded as strings.

This takes the following form in the code (simplified):

async def _call_cmd(self, cmd):
 p = await asyncio.create_subprocess_shell(
 cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIP
E)

Various commands are sent to the operating system using this method, _call_cmd. This is
done as shown below in the case of stopping a video:

async def video_stop(self):
 await self._call_cmd('killall omxplayer.bin')

LifeDrop Media Manager term 2020 Page 19 of 78

Playing videos is handled slightly differently, as can be seen below in a simplified version of
the code:

async def video_play(self, video):
 args = ['-b', '--no-key', video_p]
 args.extend(['-o','alsa'])
 self.video_proc = await asyncio.create_subprocess_exec(
 'omxplayer', *args, stdout=asyncio.subprocess.PIPE, stderr=asyncio
.subprocess.PIPE)

In the code above, the create_subprocess_exec method is used directly instead of
_call_cmd, which in turn would have called create_subprocess_shell.

4.6.2 Tasks and Communication

The media service receives, processes and returns messages to the controller. Those messages
are transmitted by the ZeroMQ messaging library, both in synchronous and asynchronous
fashion, depending on the scenario.

This is implemented by opening two sockets. One of them is a synchronous ZeroMQ socket,
also referred to as a response socket. The other one is an asynchronous ZeroMQ socket, also
referred to as a publish socket.

To facilitate the co-existence of both sockets and the spawned shell processes, a setup using
Pythons asyncio package is used. To aid in this cause, a custom wrapper, called asyncio_tool
exists. It is used to spawn all shells as well as the server listening for synchronous messages
in the same asynchronous io-loop, which provided by Pythons asyncio package.

LifeDrop Media Manager term 2020 Page 20 of 78

The mentioned asyncio_tool helper contains various functions, the main ones used to control
the various threads and tasks are run_tasks and run_tasks2:

def run_tasks(loop,tasks,logger):
 for s in (signal.SIGHUP, signal.SIGTERM, signal.SIGINT):
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop,logger)))
 try:
 exception = loop.run_until_complete(exception_handler(tasks, loop,
logger))
 except asyncio.CancelledError as e:
 pass
 else:
 raise exception

def run_tasks2(loop,queue,logger):
 for s in (signal.SIGHUP, signal.SIGTERM, signal.SIGINT):
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop,logger)))
 try:
 exception = loop.run_until_complete(task_handler(queue, loop,logge
r))
 except asyncio.CancelledError as e:
 pass
 else:
 raise exception

In the case of the media service, a small helper, add_cb is used to add tasks, which are
asynchronous functions in Python:

loop = asyncio.get_event_loop()
def add_cb(task):
 def cb(arg):
 TASK_DONE.put_nowait(arg)
 task.add_done_callback(cb)

media = MediaService(loop, logger, add_cb)

add_cb(loop.create_task(media.setup()))
add_cb(loop.create_task(media.listen()))

if args['raise']:
 add_cb(loop.create_task(raise_err(logger)))

run_tasks2(loop, TASK_DONE, logger)

LifeDrop Media Manager term 2020 Page 21 of 78

The controller itself spawns its asynchronous tasks in a slightly different manner, using an
array of tasks and a helper method, run_controller:

loop= asyncio.get_event_loop()

async def run_controller(loop,logger,tasks):
 for s in (signal.SIGHUP, signal.SIGTERM, signal.SIGINT):
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop,logger)))
 try:
 async with websockets.serve(SM.ui_handler,'0.0.0.0', WS_PORT) as s
erver:
 exception = await exception_handler(tasks, loop,logger)
 except asyncio.CancelledError as e:
 pass
 else:
 raise exception

tasks.extend([
 loop.create_task(MEDIA.listen_for_state_change(SM.media_event)),
 loop.create_task(SM.consume_events()),
 loop.create_task(startup(args['enable'])),
])
loop.run_until_complete(run_controller(loop, logger, tasks))

4.7 Controller

The lifedrop pod has a fair amount of motors, sensors and actuators, which all send and
receive signals. The central component processing those signals is referred to as the
controller. The controller runs on a raspberry pi, called the control pi. The existing
implementation deals with a lot of lower-level signal processing and as such the domain of
the controller lies mostly outside the scope of this term project.

Additionally, almost the whole term project will be implemented without physical access to
the lifedrop pod due to the impracticality of shipping such a large object around. As a
consequence, large parts of the pod are treated as a black box, namely the motors, seat and
as mentioned, the controller.

Therefore, our aim is to keep modifications to the controller to a minimum.

LifeDrop Media Manager term 2020 Page 22 of 78

The following is a complete list of the services provided by the controller:

Nr. Service Description Out of
scope

1 door_service Controls motors responsible for opening and closing the
pod hood.

Yes

2 led Controls the led lights inside the pod. Yes

3 media_client Client for the media_service. Receives messages from the
pod control ui and routes them to the media service.

No

4 seat_service Controls the position of the seat. Yes

5 state_machine Controls the transitions between different states of the
pod.

No

Services labeled “Out of scope” are not relevant to the term project and are not explained in
more detail.

4.8 Media Client

The media client acts as an intermediary between the pod control ui and the media service.
User interactions on the pod control ui trigger messages that are sent via the WebSockets
protocol to the controller. There they are eventually delegated to the media client, where they
are relayed by ZeroMQ to the media service.

4.9 State Machine

The state machine handles transitions between different states of the pod. Most of these
states are not of significant importance to the term project and therefore not explained in
detail. The one relevant state is the READY state, which signals that the pod control ui can now
be operated by a person. Unless this is the active state, the pod control ui is not active.

A strongly simplified state machine diagram with all states looks as follows:

Figure 6: Initial state machine of the pod

LifeDrop Media Manager term 2020 Page 23 of 78

The main difference between the states lie in what functions the pod offers. The READY state
defines the following messages that activate those functions:

Nr. Message Description Out of scope

1. S_NEW_SET_STEP Control seat position Yes

2. S_NEW_SET Control seat position Yes

3. S_SET_HEATER Control seat heating Yes

4. EXIT Open the hood Yes

5. M_PLAY_VIDEO Play video No

6. M_STOP_VIDEO Stop video No

7. M_VOLUME Change volume No

8. L_BRIGHTNESS Control leds Yes

Again, messages marked “Out of scope” are not of significant relevance to the term project.

LifeDrop Media Manager term 2020 Page 24 of 78

5 Design
First the changes to the system of the existing life drop will be shown.

5.1 System Architecture

The designed changes do not change much about the physical architecture except for that a
database will be installed on the media Raspberry Pi device, so that the media information
can be queried dynamically, as can be seen in the system diagram and the system
architecture overview.

Figure 7: System diagram

LifeDrop Media Manager term 2020 Page 25 of 78

Figure 8: System architecture overview

5.2 Use Cases

5.2.1 CRUD Media Entries

To manage the media shown on the pod frontend is one of the core use cases that the media
manager achieves.

5.2.2 CRUD Media Collections

To manage the collections shown on the pod frontend is one of the core use cases as well.

5.2.3 Show Statistics

To show how many times the user interacted with the play button is an additional use case
achieved by the system.

The use case diagram displays use cases of the media manager as well as the existing use
cases for the pod frontend.

It is planned in the future to enable the possibility to upload applications to the pod and start
them on the frontend. However, this was outside the scope of this project and therefore it is
displayed in grey to indicate the potential of expansion.

LifeDrop Media Manager term 2020 Page 26 of 78

Figure 9: Use case diagram

5.2.4 Media Manager

The use cases for the media manager are very straightforward as can be seen in the figure
“use case diagram”. It enables the pod administrator to do CRUD on the media files and the
media collections, as well as displaying the play counter for each media entry on the pod.
The use case “show statistics” depends on the interaction of the pod user with the play
button of the media entry displayed on the frontend.

Due to technical limitations of the ZMQ architecture, it was not possible to reliably count the
time that a media file was played, so the mere clicking of the button is sufficient to trigger a
notification to the media manager backend and increase the play count as such, this is
explained in more detail in the chapter about the implementation of the media service.

LifeDrop Media Manager term 2020 Page 27 of 78

5.3 Domain Model

The domain model consists of the objects that carry the data of the media entries and the
notifications sent by the media service. It is important to note that on the initial approach of
saving the media, there was a title, description, thumbnail and a media file all in one entry.
This was a practical approach and if the data is manually uploaded, this is a great way to deal
with media files. However, the conscious decision was made to split the MediaFile from the
MediaEntry, so that the MediaEntry is more loosely coupled to the title, description,
thumbnail file entry and actual file entry.

Another decision to change the initial concept was made concerning the MediaCollection. It
now only contains an array of MediaEntryIDs, so it is easily possible for a MediaEntry to be
contained by several MediaCollections. This makes creating, storing, updating and loading
of the media collections really efficient.

The notification class was not yet established in the existing software, so it was logical to
connect the play count of a file with the hash of the file itself. This comes with the advantage
that the pod frontend can send the file entry and the time stamp and the media manager can
match the hash of the file of a MediaEntry, with the hash of the file in the notification. Like
this it is easy to identify how many times a file has been played. However, one thing to notice
is that if the file is uploaded twice for two different MediaEntries, both media entries will
share the same file source and the same play count as well, so even if the thumbnails of the
MediaEntries differ, this will not be taken into account for the play count.

5.3.1 MediaCollection

This domain object represents a collection that can be seen in the pod frontend. If a
MediaEntry is not contained by a MediaCollection it will not be shown in the frontend.

5.3.2 MediaEntry

This domain object represents a combination of a thumbnail and a file, both being
represented by a MediaFile object.

5.3.3 MediaFile

This domain object represents the actual file meta information behind a thumbnail and a
file.

5.3.4 Notification

This domain object represents the information that is sent from the pod controller to the
media manager, so that the play count can be calculated by the number of notifications
matching the file.

LifeDrop Media Manager term 2020 Page 28 of 78

Figure 10: Domain model

LifeDrop Media Manager term 2020 Page 29 of 78

5.4 Pod Control UI

This component is redesigned to match the look of the media manager ui. There were no
design decisions made specifically for this component worth mentioning.

5.5 Design Media Manager

This chapter deals with the design decisions for the media manager frontend.

5.5.1 Design Media Manager Frontend

There are 3 different types of data that the media manager frontend has to store. There is file
data, collection data and the state of the navigation, so the components can be loaded
accordingly. Therefore the media manager frontend includes three data stores for redux. The
stores include a fileloader datastore, a collectionloader datastore and a navigation datastore
with following objects:

const initialFileLoaderState = {
 loadedFilesArray: undefined,
 loading: undefined,
 statistics: undefined,
 fileID: null,
}

const initialCollectionsState = {
 loadedCollections: undefined,
 selectedCollection: undefined,
}

const initialNavigationState = {
 showNavigation: undefined,
 showError: undefined,
}

As can be seen in the initial states, the state objects are generally initialized as undefined
values and the actual values are loaded when the component is mounted via the UseEffect
event handler. This is a conscious design decision, so the loading process will always be
triggered on loading a new component. This comes at the cost of having to reload the
statistics component to see the updated view of the play count.

LifeDrop Media Manager term 2020 Page 30 of 78

5.5.2 Backend Media Manager

5.5.3 NFRs

The non-functional requirements of the pod are of nonfatal nature mostly. The taxonomy
used for this project is FURPS. Not all of the non functional requirements are by definition
SMART, but they are designed to match as many of the SMART criteria as possible.

5.5.3.1 Functionality
1. As a user of the media manager, I can manage (CRUD) video files, audio files and image

files as thumbnails for the media pi, so they can be played from within the pod.

2. As a user of the media manager, I can manage (CRUD) collections of Media, so that the
media files can be organized.

3. As a user of the media manager, I can view the play count of each media entry.

5.5.3.2 Usability
1. As a user of the media manager, I can perform the media CRUD operations for all 2 types

of media from the same interface.

2. As a user of the media manager, I can see a status indicator above each media element,
confirming whether or not it is actually on the media pi.

5.5.3.3 Reliability
1. As a user of the media manager, I get a warning if the media pi is about to run out of disk

space in advance, and am denied upload of new media.

2. As a user of the media manager, I get a warning if media is deleted from the disk of the
pod.

3. As a user of the media manager, I can only upload images to the thumbnail and audio or
video files to the file entry of a media entry.

5.5.3.4 Performance
1. As a user of the media manager, I can upload one file at a time via local ethernet

connection at the speed of 100MB/s and get a response within 100ms when the upload is
done.

2. As a user of the media manager, I can upload one file at a time via VPN connection at the
speed of approximately 5MB/s and get a response within 300ms when the upload is done.

5.5.3.5 Supportability
1. As an admin of the media manager, I want to have the option to easily migrate the media

manager to a different device.

2. As an admin of the media manager, I want a straightforward update process.

LifeDrop Media Manager term 2020 Page 31 of 78

5.6 Controller

No design changes are made to the controller. One goal from the analysis was to modify the
controller as little as possible, due to reasons described in the analysis chapter.

5.7 Media Service

Following the analysis, the decision was made to modify various aspects of the media service
design.

The most important one being the interaction with omxplayer. After some research, a
suitable library emerged, omxplayer-wrapper, which controls the omxplayer over the
operating system’s dbus mechanism. This allows for a cleaner implementation without the
need to manually send system commands and spawn shells from within the python runtime.

As further research did not yield suitable library replacements for interacting with the other
system tools, namely mpc, fbi and amixer (see analysis), the decision was made to use sh.
This is a library which abstracts away the sending of system commands to the operating
system in a uniform way.

Those decisions are intended to eliminate manual spawning of shells and processes and the
sending of system commands to the operating system. In the case of the sh library, this is
ultimately still the case under the hood, but abstracted away from the developers working
with the code.

5.7.1 Messages

The current types of messages (see analysis) are not sufficient to handle additional
requirements for the term project. Specifically, skipping back and forth in a video as well as
pausing a video can not be implemented without extending the messages. Therefore, two
new messages are introduced (9. and 10.):

Nr. Message Description New

1. S_NEW_SET_STEP Control seat
position

No

2. S_NEW_SET Control seat
position

No

3. S_SET_HEATER Control seat
heating

No

4. EXIT Open the hood No

5. M_PLAY_VIDEO Play video No

6. M_STOP_VIDEO Stop video No

7. M_VOLUME Change volume No

8. L_BRIGHTNESS Control leds No

9. M_PAUSE_VIDEO Pause video Yes

10. M_SKIP Skip to
timestamp

Yes

LifeDrop Media Manager term 2020 Page 32 of 78

The addition of those new messages allows for the implementation of the according
features. Skipping forth and back while a video is playing as well as pausing and resuming it
at the current position.

5.8 Remote Media Management

During the integration phase of the term project a solution for remote media management
was put forward by Enzo Scossa Romano.

The approach is based on a specific router by the company gl-inet and uses its proprietary
software to facilitate a remote VPN connection between the router installed inside the pod
and a permanent router acting as a server, which will be installed inside the office space of
the lifedrop company.

Using the bundled VPN software, the gl-inet router inside the office can communicate with
the second 4G LTE capable gl-inet router inside the pod. Once this communication channel
has been established, access to the media manager can be facilitated.

Designing the remote access in this way allows for further addition of new pods using the
same gl-inet routers in a simple manner.

https://www.gl-inet.com/

LifeDrop Media Manager term 2020 Page 33 of 78

6 Implementation

6.1 Overview

In this chapter both the architecture of the media manager as well as the improvement of
the existing software for operating the pod will be discussed. This will be split up into two
sections. Each of them will be structured into a description of the technology stack,
architectural overview, list of features and a description of how the components were tested.
Then the integration workflow and the deployment are described in a brief and concise way,
leading to the last topic, the metrics of the project realization.

6.2 Media Manager

This part of software was inexistent before and had to be developed over the course of this
module from scratch. According to the first meeting with the client, this was the main goal
of the project.

6.2.1 Technology Stack

Management of the project was achieved with GitLab features. Ticketing, time tracking and
sprint management was largely achieved with issues and annotations (/spend etc.).

For developing the frontend and backend of the media manager the IDEs of choice were
Visual Studio Code and WebStorm.

To keep the number of different technologies used in the system at bay, it was logical to
implement frontend as well as backend purely with ECMAScript 6 in a react frontend and an
express backend running on node.js. For testing purposes cypress was used in the frontend
and mochajs in the backend. As a common agreement we did not use any additional software
to “eslinter” to ensure code quality but to trust in thorough code reviews.

For Continuous Integration and Continuous Delivery a docker container was set up and a
pipeline was configured. This was one of the major issues during the development process,
since the testing procedures required quite a number of external components to work
together seamlessly.

6.2.2 Architectural Overview

The media manager consists of a react-application as the frontend and a node application as
the backend.

The frontend app is divided into two main sections. One is the “sideControls”, which
contains the NavigationSidebar and the CollectionSidebar components. On the right side
there is the “mediaManager” main part, where the media tiles, the update form and the
media statistics are displayed. As an overlay, while uploading big files to the server, a loader
is displayed.

The backend app consists of an express server (node.js), a web socket for the play
notifications from the pod control ui, a router, a collectionController, a mediaController and a
mediaStore service, that connects to mongodb using mongoose.

LifeDrop Media Manager term 2020 Page 34 of 78

Figure 11: Component diagram

6.2.3 List of Features

The features of the media manager are as follows:

• CRUD for media assets like audio and video files (figure: create media
interaction)

• CRUD for media collections shown in the pod (same sequence as for
media assets)

• Displaying player stats (figure: notification interaction)

LifeDrop Media Manager term 2020 Page 35 of 78

Figure 12: Create media interaction

Figure 13: Notification interaction

LifeDrop Media Manager term 2020 Page 36 of 78

6.3 Pod Control UI

6.3.1 Overview

The pod control ui described in this section refers to the existing react ui for controlling the
pod via tablet. It sends the messages to the *

6.3.2 Goals

The pod control ui was touched as little as possible to achieve maximum recognition by the
original author. However, there were some changes to be made to the original software due
to the implementation of the new messages desired by the pod operator namely the
M_PAUSE_VIDEO, the M_SKIP and the S_NOTIFY. To automatically load the collections
from the media pi, it was also necessary to update the MediaTopic component and therefor
implement basic testing for the components rendering capability. Last but not least, the pod
control ui had to be redesigned so the media manager frontend and the pod control ui look
alike.

6.3.3 Technology

All components of the pod control ui were up and running as a react js application. All the
code is written in JSX and the data is stored using redux. Therefore it was logical to continue
using the existing code and the existing way to communicate between the python backend
and the pod control ui.

6.3.3.1 Actions

To support the new messages, new actions had to be defined to pause the media, to skip to a
specific point on the timeline, to request and to receive collections. The new actions are
named in camel case so that it is clear that they include the dispatch call and are to be
treated as functions not as action return values that have to be dispatched in the component.

LifeDrop Media Manager term 2020 Page 37 of 78

To achieve connectivity between the pod control ui and the media server we had to fetch data
using HTTP and the hostname.

function requestCollections() {
 return {
 type: REQUEST_COLLECTIONS
 }
}
function receiveCollections(json) {
 return {
 type: RECEIVE_COLLECTIONS,
 collections: json
 }
}
export function fetchCollections() {
 return dispatch => {
 dispatch(requestCollections())
 return fetch(`${hypertextProtocol}${mediaserver}/collections`)
 .then(response => response.json())
 .then(json => dispatch(receiveCollections(json)))
 }
}

As seen above the endpoint ‘/collections’ is requested and the response is dispatched on into
a function called receiveCollections(json), that passes the collections JSON into the redux
data store. This code implements one of the key features of the project, namely requesting
the collection data from the new media server and making the data accessible in the pod
control ui.

6.3.3.1.1 Challenges

The NewMediaTopic component displays the content of the media entries contained in the
collections above and has a slightly tweaked play button. This would lead to a problem at the
integration day, because the media did not seem to change when a different play button was
clicked. Only after pressing the stop button the other buttons would react as intended. This
was fixed using a state variable “isPlaying”, that is always saving the media, that has been
played last. Like this every time the play button of another media entry is used, the stop
message can be triggered automatically.

LifeDrop Media Manager term 2020 Page 38 of 78

6.3.4 Frontend redesign

The frontend of the pod was merely redesigned to look a little more like the media manager.
The media-manager uses only one CSS file to style the whole application, to keep the DRY
principle, the pod control ui redesign was done with the same tools it was originally designed
with, namely material ui. The react material ui specifications were originally placed at several
locations in the js-code and the inheritance of classes and tags were done accordingly.

To keep the structure intact and to alter as little as possible of the existing code was
important so that the original author would recognize the spots where the adjustments were
made to preserve maintainability.

Figure 14: Screenshot of the media manager frontend

Figure 15: Screenshot of the pod control ui

LifeDrop Media Manager term 2020 Page 39 of 78

6.4 Media Service

6.4.1 Overview

The media service described in this section refers to the component running on the media pi.
It is responsible for playing media, which it can do because it is connected to a beamer and a
set of speakers.

6.4.2 Goals

The main goal of the media service is to play media (mainly videos) on the raspberry pi its
running on. The video is outputted via HDMI to a beamer, which projects it onto the screen
inside the lifedrop pod.

The goal of the re-implementation of the media service is to turn it into a better maintainable
component. By doing so, the media service can act as a reference for future refactorings of
other components.

6.4.3 Technology

Multiple components for handling interactions with the pod’s hardware were already in
place. They are all written in Python. Based on that, we decided to re-implement the media-
service in a clean and maintainable way using Python as well.

The existing solution features ZMQ based communication between the different
components. As such, we decided to continue using ZMQ for this purpose.

6.4.3.1 Player

Playing media on a raspberry pi comes with its challenges. One of which is the choice of an
adequate video player.

People familiar with the raspberry pi ecosystem might object that there are in fact a plethora
of available media players out there ready to choose from. This is only true however, when it
comes to players that are exposed by a web interface, such as plex, and therefore usually use
the browser’s default player or a custom javascript player.

The lifedrop pod necessitates a player that outputs its content directly over HDMI to be
picked up by the beamer, which severely limits the choice.

The existing solution uses the omxplayer, a fairly straightforward player with a CLI interface.
As such, controlling this player from software is done by spawning shells and emitting CLI
commands, which has multiple drawbacks. See Analysis for more.

After some consideration, we opted to keep the existing omxplayer, but only because we
found a wrapper-library for it after some searching. The aptly named omxplayer-wrapper
library for python exposes an API that talks to the omxplayer via the system’s dbus.

6.4.4 Context

The media service is a single component in a collection of many components, referred to as
the controller, whose purpose as a whole is to handle the interaction between the pod control
ui and the pod hardware.

LifeDrop Media Manager term 2020 Page 40 of 78

This includes playing media, controlling the seating position, opening and closing the hood
and adjusting the seat heating.

The media service is best understood by looking at it in the context of all the other
components.

Figure 16: Controller

The above image shows the context of the media service. A more detailed explanation is given
in the Analysis chapter.

6.4.5 Components

The media service itself is divided into two main components. The Player and the actual
service, referred to as media-service.

6.4.5.1 Player

The Player exposes the necessary functions for interacting with the omxplayer to the media
service.

def play(self, file_name):
def pause(self):
def seek(self, time):
def quit(self):
def set_volume(self, volume):
def current_volume(self):
def current_timestamp(self):
def current_video_name(self):
def video_length(self):

This interface capsules the player and presents a limited set of operations available to the
media service. As such, it is not too difficult to add new capabilities to the Player if necessary,
since the only place requiring change in such a case is the Player.

The Player itself uses the omxplayer-wrapper library to talk to the omxplayer installed on the
host OS.

LifeDrop Media Manager term 2020 Page 41 of 78

As an example, this is a simplified but representative version of the seek method, used to
jump to a particular timestamp in the video:

 def seek(self, time):
 if self.player is None or not self.player.can_seek():
 print("Video is not in a seekable state")
 return

 if time < 0:
 print("Seek time cannot be negative")
 return

 if time >= (self.video_length()):
 print("Cant seek past end of video")
 return

 position = int(self.player.position())
 seek = time - position

 self.player.seek(seek)

The instance variable self.player represents the omxplayer-wrapper player. This is a
significant improvement over the existing implementation both in regards to code
readability and maintainability.

6.4.5.1.1 Challenges

Although omxplayer-wrapper exposes a reasonable API, one particular aspect of it makes for
a challenge.

Because the player is spawned in a separate thread, managed by omxplayer-wrapper and not
exposed to the client, one is limited to interacting with it solely via API.

This came in as a stumbling stone when implementing the video progress feature. This
feature includes displaying a video progress bar in the pod controller ui. This required keeping
track of the video position (as in time position) and updating the pod controller ui periodically
(every second) about the new video position.

This requires periodically querying the player for its current position from a separate
asynchronous python routine in order to not block other requests from the pod controller ui.

So far, nothing unusual or challenging. The issue arises when trying to execute a callback
from within the player thread, such as publishing a message when the video is done playing.
In order to do so, one needs access to the ZMQ, which also runs as part of the main thread in
its own asynchronous routine. A callback given to the player can therefore not access
anything that is part of the main thread async loop, because it is not part of that loop.

The video progress feature plays insofar a role in this as that it is the reason an
asynchronous loop is needed in the first place.

One solution to this would be to fork the omxplayer-wrapper library and expose thread
information. We opted against this.

LifeDrop Media Manager term 2020 Page 42 of 78

Another solution is to let the asynchronous progress routine handle the publishing of “video
finished” messages, as it is part of the main thread async loop.

async def __progress(self):
 try:
 while True:
 self.timestamp = int(self.player.position())
 reply = # gather video progress and some state
 self.pub_socket.send_json(reply)
 await asyncio.sleep(1)

 except asyncio.CancelledError:
 pass

 finally:
 self.pub_socket.send_json(PUBLISH_EVENT_VIDEO_FINISHED)

The above code shows approximately how this is implemented. While the video is running,
an update is sent every second about the video’s position.

As soon as the video stops playing, a callback is executed, which as part of its cleanup also
cancels the __progress(self) routine. This is done by means of calling
self.progress_task.cancel().

The finally clause inside __progress(self) can now, as a final stage of the cleanup
process, publish the message that the video has stopped.

This solution is by no means perfect. It is fairly pragmatic though, and compared to forking
the whole omxplayer-wrapper library significantly less expensive.

6.4.5.2 Service

The media service does not so much export an API as it is rather a side effect defined service.
The rules it must follow are dictated by the messages it receives from the controller and by
extension the state_machine.

LifeDrop Media Manager term 2020 Page 43 of 78

The messages are listed below:

self.api = {
 "video_play": self.__play_video,
 "video_stop": self.__stop_video,
 "skip_video": self.__skip_video,
 "set_volume": self.__set_volume,
 "music_play": self.__play_music,
 "music_stop": self.__stop_music,
 "music_pause": self.__pause_music,
}

The code above is a complete implementation of the “interface” that the media-service has
to implement. Each message carries with it the appropriate payload to allow for its
execution.

The media service can the be designed as a simple server with both synchronous and
asynchronous communication patterns at the same time:

async def listen(self):
 while True:
 print("Listening...")
 message = await self.reply_socket.recv_json()
 self.dispatch(message)

Handling of a video_play message is then handled as follows:

def __play_video(self, msg):
 playing = self.player.play(msg['video_play'])
 if playing:
 reply = # prepare the reply
 self.reply_socket.send_json(reply)
 else:
 self.reply_socket.send_json(REPLY_PLAY_NONE)
 return

It should be noted that this will lead an immediate response, which is synchronous, to the
controller, indicating that the video_play request has been processed.

The actual video is then played by the Player. Also, the exitEvent is the last piece of the
puzzle concerning the asynchronous progress tracking and opaque player thread. If called, it
executes self.progress_task.cancel().

def play(self, file_name):
 self.player = OMXPlayer(video_file)
 self.player.exitEvent = self.__video_stop_cb
 self.progress_task = self.loop.create_task(self.__progress())
 return True

LifeDrop Media Manager term 2020 Page 44 of 78

6.4.5.2.1 Startup

The media service can be started as a normal python script, which is in line with the existing
implementation of the other services.

if __name__ == "__main__":
 media_service = MediaService(REP_ADDR, PUB_ADDR)
 loop = asyncio.get_event_loop()
 loop.run_until_complete(media_service.listen())

This is a significantly easier to read and understand procedure than the existing solution,
see Analysis for more.

6.4.6 Hot Plugging

As is the case with many ARM based systems, device handling is implemented in a non
uniform way, meaning that every system is free to do how it pleases. In the case of our
raspberry pi, the os, raspbian, implements device handling in a way that, by default, does
not support hot plugging. This means, connecting the HDMI cable to the raspberry after it
has booted won’t work.

To overcome this, one can set up a “forced” HDMI output. This can be achieved by editing
the /boot/config.txt:

Custom settings BEGIN
See https://www.raspberrypi.org/documentation/configuration/config-txt/v
ideo.md

uncomment if hdmi display is not detected and composite is being output
hdmi_force_hotplug=1

uncomment to force a specific HDMI mode (this will force VGA)
hdmi_group=2
hdmi_mode=82

Custom settings END

The drawback is that the ability to dynamically detect the resolution and aspect ration of the
targeted monitor or beamer is lost.

This requires manual configuration of the output format as shown above.

LifeDrop Media Manager term 2020 Page 45 of 78

6.5 Media Manager UI

6.5.1 Overview

The media manager ui described in this section refers to the react application that enables
media management of the pod.

6.5.2 Technology

Due to the fact that the pod control ui was already implemented with react and the knowledge
of this technology already exists in the company, the media manager ui was also
implemented as a react app. In contrast to the pod control ui, the media manager ui uses HTTP
requests to handle the functionality. The data of the application is stored in a redux store,
just as it is in the pod control ui.

The application is written in JavaScript, so there is no type safety. This makes it necessary to
use techniques like defensive programming, for example when implementing the callback
for the onChange event of the update file field.

const onUpdateFileHandler = async (event) => {
 event.preventDefault();
 if (!selectedUpdateMediaEntry) {
 return;
 }
 /* ... */
}

6.5.3 Components

The components are separated according to their function, their names are chosen
accordingly to improve the maintainability. In general the creation of components of the
media manager ui follows the principle “as few as possible and as many as necessary”. This
ensures that the amount of datasets in the redux data store is minimized and the data
managed via the use of useState hooks is maximized.

6.5.3.1 CollectionSidebar

This component enables collection management. It handles collection creation and deletion.
Adding and removing media is by design not part of its responsibility.

6.5.3.2 MediaCollection

This component displays the media entries of the currently selected media collection. When
no collection is selected, all media is displayed. It also contains an UploadForm component,
which uploads media to the pod. If a collection is selected, the media will be added directly to
the collection as well.

6.5.3.3 MediaContainer

This component displays title and thumbnail of the media entry. By default the thumbnail is
shown as an add image symbol, so that it is clear by clicking it, the user will be able to update
the entry.

LifeDrop Media Manager term 2020 Page 46 of 78

6.5.3.4 NavigationSidebar

This component got added later in the process due to the request of adding statistics to the
media manager ui. It enables the pod manager to switch between statistics window and the
media library.

6.5.3.5 StatisticsWindow

This component displays the count of interactions with the play button of a media entry on
the pod control ui. These counts are derived from the amount of notifications sent to the
media server containing time and media entry. The numbers are connected with the file
name, containing the md5 hash of the file. The upside of this procedure is, that if the same
file is contained by different media entries, the count remains the same. The downside is
that it may occur that two entries share the same number.

6.5.3.6 UploadForm

This component enables the initial file upload. It is displayed as a big plus, when clicking on
the plus, the local file system opens and a file can be selected. No matter what valid content
type is selected, audio, video or image, the media entry is created successfully. If a video or
audio file is selected, then the file is sent as file entry and otherwise as image entry.

To check if the remaining disc space is sufficient to store the file, the api checks the
‘/discspace’ endpoint to compare beforehand, whether the file can be uploaded. This way it
is virtually highly unlikely to ever reach the error section of the apis upload function.

6.5.3.7 UpdateForm

This component enables the pod administrator to complete the information for the media
entry. It implements file size checks and error messages according to the specific
requirements of the fields.

6.5.3.8 api

This is the component that communicates to the media server. Every call to an HTTP
endpoint gets sent from this location. The error sections serve mainly to debug the code.
These sections should not ever be executed, therefore testing these sections was
intentionally omitted. The data exchange between the media manager ui and the backend is
achieved via asynchronously initiated and handled HTTP requests. If no appropriate data is
returned by the response, the default value for collections is an empty array and for a single
value it is “undefined”. This way it is easier to use defensive programming on the single
values and collections will always have static methods like “map”.

6.5.3.9 reducers

This component contains the three reducers of the redux data store. The fileloader, the
collectionloader and the navigation. The fileloader is responsible for everything that considers
media entries, files and thumbnails. The collectionloader manages the state of the collections
and the navigation is managing the global error state and the navigation state.

LifeDrop Media Manager term 2020 Page 47 of 78

6.5.3.10 actions

This component is responsible for dispatching the state changes to trigger a redux state
update procedure. It uses functions of the api to connect to the media server.

6.6 Media Server

6.6.1 Overview

The media server described in this section refers to the component responsible for handling
requests from the media manager ui.

6.6.2 Goals

The main goal of the media server is to manage the persistence of media files on the media pi.
This includes handling the CRUD operations for media files and maintaining a catalog of the
respective files with their metadata.

6.6.3 Technology

The decision was made to use Node.js for the implementation. The reasoning behind it is
that the media manager ui is a react web application written in JavaScript. Given the
circumstance that the media server primarily serves the media manager ui, using the same
language and ecosystem (Node.js, npm) is a reasonable choice.

6.6.4 Components

The media server follows a well known design taught to the students of OST in the courses
WED1 and WED2.

6.6.4.1 Router

All capabilities of the media server are exposed by a straightforward RESTful HTTP API. The
router is a component responsible for declaratively specifying the HTTP routes and linking
them to the corresponding controllers, which handle the request.

An example for such a declarative route definition:

router.get('/collections', collectionController.getCollections.bind(collec
tionController));

LifeDrop Media Manager term 2020 Page 48 of 78

The following table shows all the API endpoints exposed by the media server.

Method Path Parameters Functionality Controller

GET /collections - Returns a list of all

collections

CollectionControlle

r

GET /media - Returns a list of all

media entries

MediaController

GET /discspace - Returns the

remaining available

disk space

MediaController

GET /collection/:id id::collection_id Returns a collection

with id :id

CollectionControlle

r

GET /media/:id id::media_id Returns a media

entry with id :id

MediaController

POST /collection collection

payload

Creates a new

collection

CollectionControlle

r

POST /media media entry

payload

Creates a new

media entry

MediaController

PUT /collection/:id id::collection_id

collection

payload

Updates an existing

collection with id :id

CollectionControlle

r

PUT /media/:id id::media_id

media entry

payload

Updates an existing

media entry with

id :id

MediaController

DELETE /collection/:id id::collection_id Removes an existing

collection with id :id

CollectionControlle

r

DELETE /media/:id id::media_id Removes an existing

media entry with

id :id

MediaController

GET /thumbnails/

:thumbnail

thumbnail::

file_name

Returns a thumbnail

with file name

:thumbnail

MediaController

GET /playNotification

s

- Returns a list of play

events

MediaController

SUBSCRIB

E

/notifications - WebSocket.

Publishes events

when data changes

occur

-

LifeDrop Media Manager term 2020 Page 49 of 78

6.6.4.2 Controllers

As seen in the table in the previous sections, all API endpoints are handled by one of two
controllers. The design of the Controllers is such that they face one single responsibility,
that is, to extract all necessary data from the bare bones HTTP Request, sanitizing the data if
necessary, and passing the data on to the MediaStore.

An example of a Controller method:

 async createCollection(req, res) {
 console.log('createCollection()');

 let { title } = req.body;
 title = title.replace(/[\u00A0-\u9999<>\&]/gim, '');
 const { active } = req.body;
 const { mediaEntries } = req.body;

 const collection = await this.mediaStore.createCollection(title, activ
e, mediaEntries);
 res.send(JSON.stringify(collection));
 }

The above example shows the single responsibility of a controller method to extract data
from a Request and pass it on to the MediaStore.

6.6.4.3 MediaStore

After the router has passed the HTTP request to the controller method, the controller calls
the corresponding MediaStore method with the formatted parameters. In the previous
example, this would be the mediaStore.createCollection method.

The MediaStore is responsible for doing the actual work of maintaining the catalog and
storing media files on disk. It does this by interacting with the storage back-end, which is
Mongoose, and directly with the file system.

An example of a MediaStore method:

 async createCollection(title, active, mediaEntries) {
 const collection = new MediaCollection({
 title,
 active,
 mediaEntries,
 });
 const res = await collection.save();

 this.notify(new Notification('collection', res._id, 'create'));
 return MediaCollection.findOne({ _id: res._id })
 .populate('mediaEntries')
 .exec();
 }

LifeDrop Media Manager term 2020 Page 50 of 78

6.6.4.4 Catalog

Keeping track of all the collections and media entries, as well as files on the file system, is
done by a MongoDB database. Because MongoDB is schemaless by default, Mongoose is used
as a front-end to MongoDB. By doing this, it is possible to define a schema in JavaScript.

The following is the complete description of the media server database schema:

const mediaCollectionSchema = new mongoose.Schema({
 title: String,
 active: Boolean,
 mediaEntries: [{ type: Schema.Types.ObjectId, ref: 'MediaEntry' }],
});

const mediaEntrySchema = new mongoose.Schema({
 title: String,
 description: String,
 file: { type: Schema.Types.ObjectId, ref: 'MediaFile' },
 thumbnail: { type: Schema.Types.ObjectId, ref: 'MediaFile' },
});

const mediaFileSchema = new mongoose.Schema({
 originalFileName: String,
 filePath: String,
 contentType: String,
 hash: String,
});

const playNotificationSchema = new mongoose.Schema({
 time: {
 type: Date,
 default: Date.now
 },
 file: { type: Schema.Types.ObjectId, ref: 'MediaFile' },
});

The catalog consists of Collections which can have zero or more MediaEntries. A MediaEntry is
a type representing a single media file and its metadata. A MediaFile holds the path and
metadata of a media file persisted on disk. A PlayNotification holds information about a play
event.

LifeDrop Media Manager term 2020 Page 51 of 78

6.6.4.5 Notifications

The mechanism by which the pod controller ui is informed about new media available to be
played is handled by a WebSocket that publishes such updates on the /notifications
endpoint. The pod controller ui is subscribed to this endpoint.

By doing this, we achieve the goal of immediately updating the pod controller ui when new
media files or collections ar added or updated.

The notification format is specified as follows:

export default class Notification {
 constructor(entity, id, method) {
 this.entity = entity;
 this.id = id;
 this.method = method;
 }
}

This results in messages that look like the following:

{"entity":"mediaEntry","id":"5fae332238c716285ab9f18b","method":"update"}
{"entity":"mediaEntry","id":"5fb8d5e9e3f5967b9ed8b556","method":"create"}
{"entity":"collection","id":"5fb8d601e3f5967b9ed8b557","method":"create"}

This allows the pod controller ui to react accordingly, which can include reloading or
discarding the necessary data.

The notification format was intentionally designed to not include the names of the fields
inside a MediaEntry or Collection that were changed.

The argument could be made that doing so would allow for more granular re-fetching of
data by the pod controller ui. Although this would only be possible if there were such a
capability provided by the media server in form of an exposed RESTful HTTP route, which is
not the case.

Therefore, even if only the title of a MediaEntry or Collection changes, the whole entity is re-
fetched.

LifeDrop Media Manager term 2020 Page 52 of 78

6.6.4.5.1 Source of Notifications

The MediaStore is the component responsible for handling data changes, both to the
database and the file system. Because of this, it is reasonable to outfit the MediaStore with
the capability of publishing notifications about those changes.

This is done by the following method inside the MediaStore

 notify(notification) {
 if (this.wss == null) return;
 this.wss.clients.forEach((client) => {
 if (client.readyState === WebSocket.OPEN) {
 client.send(JSON.stringify(notification));
 }
 });
 }

We intentionally chose to give the MediaStore this capability, despite it being a violation of
the separation of concerns principle. We justify this by showing the whole implementation of
this feature in the code snippet above. Because it is so small and isolated, we deemed it
unnecessary to extract this into its own service, say a NotificationService.

However, it should be noted that, should the need for more sophisticated notifications ever
arise, extracting it into a service would be simple. That is because of the already
implemented dependency injection pattern, which could provide the MediaStore with such a
service.

6.6.4.5.2 Web Socket

The media server effectively runs a second, independent WebSocket server under the same
host-name, but reachable via a dedicated API endpoint (/notifications). This has one
implication that necessitates a sub optimal solution.

The code below is simplified but representative of what happens inside the media server on
startup:

/*1*/ const server = http.createServer(app);
/*2*/ server.listen(port, () => {});
/*3*/ const wss = new WebSocket.Server({ server, path: '/notifications' })
;
/*4*/ mediaStore.enableNotifications(wss);

It should be noted that line 3 depends on server, created on line 1. This is how one can
integrate a WebSocket server into an existing, non-web-socket server. Consequently, the
MediaStore, which somehow needs to obtain the notification WebSocket, has to get it after
server has been created.

The obvious solution would then be to initialize it after server and wss have been initialized.
This cannot be done however, because server itself transitively depends on the MediaStore
(via the router).

LifeDrop Media Manager term 2020 Page 53 of 78

We resolve this awkward situation by manually enabling notifications in the MediaStore after
it has been initialized (enableNotifications(wss)).

It sould be mentioned that the aforementioned possibility of extracting the notification
handling into its own service and injecting it into the MediaStore would not solve this issue.
The dependency would simply go through one more step of indirection.

6.6.5 Trying it together

The components explained above are integrated into the media server by means of
dependency injection. This can be seen in various places.

The router obtaining the controllers it needs:

app.use('/', routes(collectionController, mediaController));

The controllers obtaining the MediaStore:

const mediaController = new MediaController(mediaStore);
const collectionController = new CollectionController(mediaStore);

6.7 Testing

6.7.1 Media Manager

This chapter will document the testing approach for the media manager. To have less testing
overhead, only the server side was tested using unit tests and the react application was
tested using cypress. To be able to run the cypress tests it is required to have an instance of
both software components running on “localhost:3000” or on the specified port, that the
react app got started on.

6.7.1.1 Unit Tests Express

The unit tests for the express server mock away the user interface and therefore the user
input using chaiHttp. The two components mediaController and collectionController are
tested seperately.

6.7.1.2 React UI-Tests with Cypress

The integration tests are fully automated using the cypress framework. This was probably
one of the most challenging tasks during this project, since it meant that all the other
components were able to build and run successfully. Integration tests were the most
vulnerable part of the continuous integration, since whenever one component was added or
changed there was a big likelihood for the integration test suite to fail.

LifeDrop Media Manager term 2020 Page 54 of 78

6.7.2 Media Server

By using the chai-http package, testing can be done in an uncomplicated way. A media
server instance is spun up during every CI build by chai-http, which allows for realistic
tests that begin as HTTP requests and go all the way through the application until they end
up in the database.

This requires a database to be present in the CI environment as well.

An example for a test is given below:

it('it should GET all the media entries', (done) => {
 chai.request(server)
 .get('/media')
 .end((err, res) => {
 res.should.have.status(200);
 const mediaEntries = JSON.parse(res.text);

 mediaEntries.should.be.an('array');
 mediaEntries.should.have.lengthOf(2);
 mediaEntries.forEach((me) => me.should.have.property('_id'));

 done();
 });
});
});

This way of testing allows for the traversal of the whole application, beginning at the router,
through the controller and into the media store. By doing this, we can ensure that all pieces
fit together nicely. It also acts as a reasonable regression testing setup in the sense that if a
change is made somewhere in the application that has a dependency downstream, at least
one test covering that execution path should fail.

Those kinds of tests lies somewhere between unit tests and integration tests. It is obviously
not unit tests, because that would be a lot more isolated. It is also not integration tests,
because that would mean that the requests have to originate from the media manager ui.

LifeDrop Media Manager term 2020 Page 55 of 78

6.7.3 Media Service

Testing the media service requires a lot of mocking. The reason for that lies in the nature of
the service, essentially being a thin wrapper around various operating system utilities and
libraries. All of these operating system dependencies need to be mocked, as they are specific
to the raspberry pi hardware and its ARM architecture, which would even prohibit them to
work correctly in a containerized environment under an x86 architecture. The solution is a
heavily mocked test setup, abstracting away the player and all system utilities.

Once the necessary components are mocked, writing tests for the media service looks as
follows:

def test_skip_video(self):
 # Arrange
 reply_socket = SocketMock()
 player = PlayerMock()
 oc = None
 ms = MediaService(reply_socket, player, oc)

 # Act
 ms.dispatch({"skip_video": 25})

 # Assert
 expected = {'volume': 50, 'video': 'test.mp4', 'length': 30, 'timestam
p': 25}
 self.assertEqual(expected, reply_socket.output)

All dependencies of the MediaService which have an operating specific, and therefore ARM
specific, implementation are mocked. Only the basic requests and replies are tested. While
this test suite does not constitute a fully tested implementation, it nevertheless acts as a
useful regression testing setup in the case of future feature additions or refactorings.

LifeDrop Media Manager term 2020 Page 56 of 78

6.8 Continuous Integration

The CI is divided into two stages, a build and a test stage. We also divide the project into the
server and ui components so that they can be built and tested separately.

During a CI pipeline execution a database container is spun up in order to allow for the
cypress integration tests to run.

Coverage results as well as the video of browser interactions performed by cypress are made
available for download on each pipeline execution for the developers to inspect.

The following image shows the two stages, build and test:

Figure 17: Continuous Integration

We lack a deployment stage. This is due to the dynamic location of the pod and the fact that
it is neither available under a static IP address or host-name. It is not even guaranteed to be
turned on and connected to a network.

Because of this, the last step in the deployment is a manual pull, performed using git on the
pod itself, followed by a restart of the newly updated service.

This is not a perfect solution, but already an improvement compared to the previous method
of copying the files by hand onto the raspberry pi inside the pod.

LifeDrop Media Manager term 2020 Page 57 of 78

7 Results
In this chapter the results of the project are presented. Therefore the chapter is split up into
the different sections that represent the parts of the resulting system.

7.1 Media Manager UI

The media manager as the main result of this project, was the most crucial part of software
contributed to the existing system. As described in the chapter “Implementation”, the media
manager ui is composed of following components, that all have their own data
responsibilities. The appendix contains the user manual, describing the main use cases as
they are depicted in the chapter analysis.

7.1.1 File upload

The file upload process is started by clicking the plus, then selecting a file, either image,
audio or movie and then clicking “okay” and the onChange handler checks size and file type
to decide whether this is a media entry, if it is audio or video or if it is a thumbnail. Then the
entry is created either with the thumbnail and no current file or with a media entry and a
default thumbnail.

7.1.2 Update Media Entry

The update process of the media entry is achieved by clicking the media tile, changing title
and description, adding thumbnail or a new file and then pressing the update button to
confirm the changes. The file size of each file will be crosschecked again by looking up the
available disk space on the device and if the file is too big, an error message will be shown.

7.1.3 Delete Media Entry

A media entry can be deleted by clicking the “X” on the top right of each media tile. It is
important to notice that this button deletes the file from the pod and every collection, which
is why the warning message appears in case a user tries to delete the file from a collection.

7.1.4 Create Collections

A collection can be created by adding a collection title in the title field and then pressing the
plus button next to the title field. The collection that is created will be automatically selected
and every file uploaded, while the collection is selected will automatically be added to the
collection as well as to the media library.

7.1.5 Manage Media of a Collection

As mentioned before, media can be added to a collection by having the collection selected
when uploading the media or when the updating form is active, by checking the checkbox
next to the collection. To remove the media from the collection the update process can be
activated and the checkbox can be unticked.

7.1.6 Statistics

To view the play counter of the current system, the navigation link “statistics” can be
selected and the statistics view will be displayed. The width of the counter bar from the
media entry with the maximum count is always maximum size and all other counter bars are

LifeDrop Media Manager term 2020 Page 58 of 78

adjusted accordingly, so that the relative difference is easy to see and the widths never
expand over 100% of the view width.

This screenshot will give an example of how the count numbers are displayed.

Figure 18: Statistics view

7.2 Media Server

The media server, which is the back-end of the media manager, was implemented from
scratch and accomplishes the tasks listed in the following sections.

7.2.1 Media catalog

Persisting media entries, collections and file metadata is the main job of the media server.
This results in the so called media catalog, or media database. It supports the operations
listed by the media manager in the previous section.

7.2.2 File storage

The actual media files, which can be large in size, are stored by the media server on the
operating system’s file system. Files are stored under a filename resulting from their
computed hash, which prevents storing the same file under a different name twice, and
therefore taking up less disk space.

7.2.3 Automatic Synchronization

The media server pushes updates asynchronously to the pod control ui, where they are
updated instantly without additional user interaction. This enables an instant feedback loop
for the user of the media manager to design a compelling pod control look and feel with all
the different media collections and entries.

LifeDrop Media Manager term 2020 Page 59 of 78

7.3 Pod Control UI

The pod control ui was redesigned during the project. There are very few changes to the
actual functionality of the existing software. The changes are listed as follows:

7.3.1 Pause Function

The user base was requesting that the media playing could be paused on a specific point in
time. The play button that was static in the existing software now displays a pause icon
whenever the media is playing and if pressed again the media is paused at this point of the
timeline.

7.3.2 Skip Function

The user base also requested to be able to skip the media to a specific point on the timeline.
This is achieved in the new user interface by showing a progress bar in the bottom of the
media tile. When the progress bar is touched, the media skips to the specified point of the
timeline.

7.3.3 General Redesign

The background image, colors and fonts of the pod control ui now match the design of the
media manager ui. This makes the applications appear as one unit instead of appearing like
interfaces from different origins.

7.3.4 Automatic Synchronization

The pod control ui automatically synchronizes the media collections and entries with the
media manager ui so that the person managing the pod is already seeing all the entries that
the pod user will see on his screen. This way there is a maximum of consistency between
management software and end user interface.

7.4 Media Service

The media service ended up being a drop in replacement for the existing service, with
extended capabilities, which are listed in the next sections.

7.4.1 Player control

The media service implements the familiar playback pattern used by most media playback
devices, using the play, pause, resume and stop semantics. This results in a more intuitive
way of controlling the playback for the user of the pod.

7.4.2 Skipping

Skipping back and forth in a video is a common thing to do when watching videos and is
implemented by the new media service. A progress bar is updated every second to reflect the
new position of the video to the user and can be dragged left and right to skip the video back
and forth respectively.

LifeDrop Media Manager term 2020 Page 60 of 78

7.5 Usability Test

The media manager ui software was tested for its usability by the management. There was no
black box testing, due to management decision. The following use cases have been tested in
a white box test scenario.

7.5.1 Upload Media
• Task: The user has to upload a file to the system.

• Intended process: User clicks on the plus icon, the file system upload dialog shows, the
user selects the file and clicks okay.

• Actual outcome: User clicks on the plus icon, clicks cancel. User clicks plus again and
selects file, then clicks the upload button.

• Result: Cancel returns undefined file entry, this has to be caught by a defensive clause.

7.5.2 Update Media
• Task: The user has to update the meta information of a file on the system.

• Intended process: User clicks on the media tile, updates media information, uploads file
or thumbnail and presses update.

• Actual outcome: User clicks on the media tile, asks why thumbnail field is empty since
there already was a thumbnail in uploaded, updates media information, uploads file and
clicks update.

• Result: There must be some sort of feedback to the user, whether there is a thumbnail or
not.

7.5.3 Create and Update Collection
• Task: The user has to add a new collection and add media entries to the collection.

• Intended process: The user enters a title, the user presses the plus button next to the
title, the user adds media entries to the collection via the media update form.

• Actual outcome: The user presses the plus button, a nameless collection is created, the
user deletes the collection, the user enters a title and presses the plus button, the user
adds the media to the collection according to the user manual.

• Result: Empty strings should not be allowed in the collection creation form.

LifeDrop Media Manager term 2020 Page 61 of 78

7.6 Controller

As a result of the goal to modify the controller as little as possible, it ended up staying
virtually the same, except for the capability to process two more message types. On a higher
level though, no capabilities were added or removed from the controller.

7.6.1 Hood lens

The hood lens for the beamer, whose control via the pod control ui is specified as an optional
goal for the term project, has not been installed into the pod as of yet. Because of this, we did
not pursue this goal any further.

7.7 Unfinished tasks

After the demo day, where the final state of the term project was presented, a number of
outstanding tasks were collected and are listed below.

These open tasks are present as issues tagged with the label sa-lifedrop on the GitLab
repository of LifeDrop GmbH.

7.7.1 Bugs
• Play count statistics does not sync with the pod

• Services on the media pi don’t start after booting the minicomputer

7.7.2 UI Changes
• Ability to sort videos inside a collection

• Ability to rename a collection without recreating it

• Displaying a progress bar instead of a spinner during the upload of a file

• Improving the visual feedback of the thumbnail and file upload fields of the upload form
to clarify whether a file is present or not

7.7.3 Various
• Defining the properties of video files supported for playback by the raspberry pi

https://gitlab.com/groups/lifedrop/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name%5B%5D=sa-lifedrop

LifeDrop Media Manager term 2020 Page 62 of 78

8 Conclusion
This chapter deals with a constructive critical outlook on the results described in the chapter
results. It therefore has the same structure as the chapter results including additional
chapters for the individual experience during the project.

8.1 Media Manager UI

For implementing the media manager, many decisions had to be made and decisions always
have upsides and downsides. The main features can be separated into three different
categories, file handling, collection handling and the statistics view. Therefore the following
chapters will discuss these three categories in detail.

8.1.1 File Handling

How the file handling is implemented right now, has the advantage that a file of a media
entry can be exchanged. This has the upside that if the pod admin wants to change the file,
that is linked in the media entry he can do so easily. The files are renamed, using their hash,
to prevent remote code execution (RCE), if the same file would be in two different media
entries, the file could be deleted on one media entry and for the other media entry, the pod
control ui and the media manager ui would be trying to load an already removed file. This
error should not result in an exception, but it is not very convenient and the user may not
understand why all other entries are now missing the file as well. This problem was never
encountered and therefore of very low priority to fix, since there were much more urgent
matters to attend to.

A really important feature would have been a multi file upload. This would have made it way
easier to fill the media library and could have saved a lot of time for the pod admin.

8.1.2 Collection Handling

The collection handling at the moment is lacking a lot of features. The most important
feature that is missing is that it should be possible to order collections. This feature was
requested at the day of demonstration and since it would mean adjusting the media model of
the media server and adjusting the CollectionSidebar component as well as the
MediaCollection component, it was considered too big of a risk to implement before handing
the project in.

Another improvement would be if the media could be ordered in the collection as well. Right
now the media seems to appear in upload order. This can be useful, but for adjusting the
experience of the user and testing the effect the order of the media has it would be crucial to
define a different order and let the items appear in a specified order instead of in a
chronological order.

Also it would be incredibly time saving if the whole media library and the entire collection
set could be downloaded and imported on another pod. This would have cost way too much
time to implement but the potential time saved with this feature may have been worth it.

LifeDrop Media Manager term 2020 Page 63 of 78

8.1.3 Statistics View

The statistics view has the most potential. Unfortunately, this component was requested
very late into the project, so all it does now is count interactions with the play button.
However it would be great if it would show play time, date of plays and different diagrams to
display the user interaction with certain media entries.

8.1.4 Code Review

For the code review we would like to thank Mr. Stocker, who was showing support by having
a look at the implementation. React is his field of expertise and many implementation
details were inspired by his react class for the WE3 module. Unfortunately, the review took
place in a comparably late stage of the project. This led to a situation, where only few of the
points could be implemented. The rest of them are documented here for future
improvements.

The following text is an automatic translation of Mr. Stockers code review by deepl.com

I find the structure clear, however you might start to consider extracting code that is very similar
into own components. If you do it too early it can be tedious, but maybe now would be the time.
NavigationSidebar, for example, has the two divs that could be pulled out nicely.

The extraction of the components mentioned was noted and indeed, there are many parts in
the code, that were similar to each other. The extraction of the specified parts would have
had implied changes to other components. Unfortunately, the fixing of crucial bugs like the
pause bug was of higher priority. However, in a future refactoring, a more consequent way to
apply the DRY principle would be imperative.

Also the Redux code is starting to have a size that you could do multiple files with Actions and
Reducers in there as well.

The reducers.js file is approaching the 150 LOC mark, therefore it is of growing importance
to start separating the already separately implemented reducers. This would imply a change
in the folder structure. In the current situation, the risk of breaking links outweighs the
reward of a more compact and neat structure.

Then you have partly a lot of logic in the components, which could also be packed into an action.
E.G. UpdateForm. There I find it also difficult, because you have setXY methods which are State and
such which are Redux Actions. Maybe you could think about a naming scheme?

This crucial input was really important for the future understanding of the code, therefore
all set methods, that are also redux actions were renamed to clearly communicate, their
context (i.e. setXYAction).

Attention, “setLoading” seems to be a bug, you use the import and not the prop!

This bug was a real head scratcher. Fortunately, it was interpreted correctly in the end and
fixed during the writing of this chapter.

LifeDrop Media Manager term 2020 Page 64 of 78

MediaCollection is also a component that is connected to Redux, so you shouldn’t have to pass the
selectedCollection in App.

This redundancy was removed during the writing of the this chapter.

In the package.json there seem to be some dependencies which should be devDependencies.

Obvious devDependencies, like nyc and cypress coverage were moved to the
devDependencies.

The original text is contained in the appendix.

8.2 Media Server

The main advantage of the current media server implementation is how simple and non-
spectacular it is. Adding new features is as simple as adding a new controller and modifying
existing ones is straightforward too. Only basic JavaScript knowledge is needed to
accomplish this.

The media server has few dependencies, which results in very fast build and test times in the
CI. This makes for a smooth developer experience.

Because no advanced features were used, such as a static type system, a more expansive
framework, or a complex build tool, some static guarantees or configuration options are
lacking. This might become a problem once the project becomes significantly larger. The
future integration of at least some of those tools should however not prove a significant
challenge.

8.2.1 Future updates

The current statistics collection implementation only tracks the play count per video. It
could be expanded to collect more information, such as where in the video did the user
pause, or when were the lights turned back on manually.

Using the file system to store media files has many advantages, one drawback though is that
the disk space is finite. A future update could allow for an “overflow” mechanic that stores
files in the cloud, such as in an S3 bucket, as soon as the local disk is close to full.

8.3 Pod Control UI

The pod contol ui was not initially designed by the project team. Therefore all the
improvement potential is thought of as a constructive input to whoever will work on the
software in the future.

8.3.1 Playing Media

The current implementation allows to play the media pressing the play button in the middle
of the media tile. This could be improved by opening an entire play interface, where the
timeline would be an integral part of the UI. The upside of the current implementation is,
that the play button is bigger, more obvious, better visible and can also pause the media. The
downside is that the play button is slightly off center due to the Material-UI implementation
of the icon button and the pause button appears on every media tile, that shares the same
media file.

LifeDrop Media Manager term 2020 Page 65 of 78

Skipping media can be very challenging, since the skipping progress bar is on a y-scrollable
divider element. This was implemented due to management requirements. The upside is
that the scrolling of the collections now operates in a similar way, that the collections are
scrolled in netflix. The downside is, that when scrolling the collection you may also skip the
media or more likely, when trying to skip the media, you may also scroll the collection
containing the media.

8.3.2 Pod Control UI Side Navigation

The side control panel is now as slim as possible. This has the upside that the media
collections get more visual space and the downside that the range sliders are a challenge to
handle. A possible solution to the problem would be to make the side bar a toggle element.
This would require a deep restructuring of the existing code. Compared to the solution
before, that was using 30% of the width of the view window, this was an improvement
nonetheless. For future application it would be recommendable to add a navigation to the
pod control ui, so the extension of features can be easily achieved. Due to instructions from
management and for keeping as much of the existing code intact, this was not implemented
as such.

8.3.3 Seat Heater

Due to management decision, the seat heater control was removed from the pod control ui.
This part of code is not deleted however, in case the seat heater will be implemented in
future generations of the LifeDrop.

8.4 Media Service

Because much of the behavior of the media service is dictated by its surroundings, not much
room for flexibility exists for implementing it in a fundamentally new way. The current
implementations is a step-up in readability, maintainability and testability, which are
mostly technical and not so much functional aspects.

The close interplay between the media service and system utilities such as omxplayer and
the underlying hardware, in this case the HDMI controller, places additional constraints and
challenges onto the development of a new service. This goes even further, the 32bit
Raspberry Pi OS and the ARM architecture play a significant role in what hardware
acceleration for video playback is available and which tools work together and which ones do
not.

8.4.1 Future updates

Future updates to the media service depend upon whether the raspberry pi remains the
device of choice or whether a new minicomputer is used. The media pi runs the media
manager, the pod control ui and the media service, all of which need hardware resources to
work. To support higher than 4K video resolution a more powerful minicomputer would be
necessary, which changes the playing field and opens up new possibilities, all of which are
out-of-scope for our term project.

LifeDrop Media Manager term 2020 Page 66 of 78

8.5 Controller

As mentioned in previous chapters, not much was changed about the controller. In hindsight
this turned out to be the correct choice, as we would not have had enough time to re-
implement it. It also did not help that we had no access to the actual pod during most of our
development, which would have been necessary to get the different signals from the
hardware to test and debug the controller.

8.5.1 Future updates

Functionally, the controller implements all the necessary operations for the current
hardware configuration of the pod. Some code-improvements could be achieved by
refactoring parts of the code.

• The different ways in which asynchronous threads and tasks are launched and managed
could be unified into a single one. A move away from pythons relatively low-level
asyncio library to a more abstract library could help. We are not in a position to
recommend any specific library as of now.

• The controller has various system-wide dependencies such as the system’s python
installation and packages, this could be improved by taking advantage of a tool such as
poetry, which was used to re-implement the media service.

• The parallel usage of synchronous and asynchronous sockets for communication
between components could be replaced by a single, asynchronous socket to simplify the
code.

LifeDrop Media Manager term 2020 Page 67 of 78

9 Project Management
This chapter will deal with planning the work load and organizing the work force. The
planning process will include milestones like in a traditional approach but the time
management and the work packets will be somewhat flexible.

9.1 Meetings

The weekly report meetings are on Monday afternoon at 2 o’clock. Due to the situation of the
corona virus, the team will meet as often as possible on the teams channel to discuss the
weekly progress. The physical meeting of the development team, to check on the progress
and solve possible issues takes place on Tuesdays at 3 pm at campus of the former HSR
institution now named OST.

9.2 Milestones

The following is an overview of the time line that is setting the deadlines for the project. This
may be updated during the course of the project. The project has a time range of 14 weeks.
Two students spend around 16.5 hours each per week on the project.

Figure 19: Project timeline

9.2.1 M1 Project plan

In this phase we set up a rough structure to plan the following work steps.

Included task list:

• Set up plan

• Define workflow

• Discuss goals

• Discuss necessary infrastructure

• Define scope

LifeDrop Media Manager term 2020 Page 68 of 78

9.2.2 M2 Requirements

In this phase we define the mandatory and optional features of the application.

Included task list:

• Use Case Diagram

• Non functional Requirements

• Domain Model

• Screen views

9.2.3 M3 End of Elaboration

In this phase we see if our initial approach to the solution is a valid choice by making a
prototype.

Included task list:

• Architecture prototype

• Demonstration of prototype

• Working tests for prototype

9.2.4 M4 Architecture

This phase will deal with the details of the architecture for the prototype. It is meant to
assure that the solution will be valid in future scenarios as well as in the current situation.

Included task list:

• Physical architecture

• Logical architecture

• Interfaces (API)

• Database

• Component structure

• User interface

• Possible scenario for managing multiple pods

LifeDrop Media Manager term 2020 Page 69 of 78

9.2.5 M5 Alpha

This phase will provide the use cases defined as “base use cases”. It will be dealing with the
first version of the application and should provide a testable user interface that will be tested
by the CEO, Noe Tüfer, or someone with direct authority to authorize necessary changes to
the UI.

Included task list:

• Usability test cases

• Usability test results

• Unit tests for specified part of code base

• Specified system test cases

• Code review of system critical parts

• Code statistics

9.2.6 M6 Beta

This phase will be used to implement the changes elicited in the usability tests. We will
choose the most critical changes and implement them. The changes we can not implement
anymore, will be properly documented for future use.

Included task list:

• Implement changes according to usability test results

• Documentation log for usability test results

• Final updates to documentation

• Final system diagram

• Updated tests

9.2.7 M7 Polish

This phase serves as time to prepare documentation and also as a buffer zone for eventual
issues, that could not be processed during the semester for whatever reason.

Included task list:

• Presentation material

• Presentation test run

• Documentation crosscheck

• Poster

LifeDrop Media Manager term 2020 Page 70 of 78

9.3 Development Workflow

The official code of LifeDrop GmbH is hosted on their company GitLab
https://gitlab.com/lifedrop. During the development phase of the term project, the relevant
code repositories are forked into the SA LifeDrop group https://gitlab.com/sa-lifedrop.
Results are delivered back via pull requests, which enables an independent and transparent
development process.

Inside the SA LifeDrop group, development follows a straight forward feature-branch based
git workflow[2] with mutual code reviews between Lukas and Robin.

The markdown based documentation is hosted on GitLab as well and is available as a
generated static website on https://sa-lifedrop.gitlab.io/documentation. Docusaurus is the
tool used to generate the static documentation website.

9.4 Project Communication

A weekly report is sent to the supervisor Thomas containing a brief update regarding the
following points:

• Progress

• Fails/Open Issues

• Plan next week

• Questions/Decisions

This allows for an efficient weekly term project meeting on Monday at 2pm.

A WhatsApp group chat serves as a quick communication channel between all members
involved in the term project.

• Students

– Lukas

– Robin

• Supervisor

– Thomas

• LifeDrop GmbH

– Noe

– Enzo

E-Mail traffic is kept as low as possible, but permitted if deemed necessary.

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://docusaurus.io/

LifeDrop Media Manager term 2020 Page 71 of 78

9.5 Time Management

Students are awarded 8 ECTS points upon successful completion of the term project. This
entails a total workload of 240 hours, which results in a weekly workload of roughly two
eight-hour days, or 16 hours.

• Lukas Schiltknecht: 225h total

• Robin Elvedi: 222h total

Figure 20: Time Graph

9.6 Repository
• 283 Commits

• 175 Pipelines

LifeDrop Media Manager term 2020 Page 72 of 78

9.7 Lines of code

As measured with cloc

9.7.1 Media Manager
Language files blank comment code

JSON 9 0 0 9186

JavaScript 33 344 170 2405

CSS 3 88 4 528

YAML 3 18 1 186

Markdown 1 31 0 37

HTML 1 3 20 20

SVG 9 0 0 9

Bourne Shell 2 0 0 3

——– ——– ——– ——– ——–

SUM: 61 484 195 12374

9.7.2 Media Service
Language files blank comment code

Python 5 126 19 402

Markdown 1 14 0 63

TOML 1 3 0 16

Bourne Shell 1 2 0 5

——– ——– ——– ——– ——–

SUM: 8 145 19 486

9.7.3 Tablet Frontend
Language files blank comment code

JavaScript 19 148 72 1492

JSON 2 0 0 57

CSS 2 5 0 39

Markdown 1 31 0 37

HTML 1 3 20 16

YAML 1 1 0 12

SVG 3 0 0 9

Bourne Shell 2 0 0 2

——– ——– ——– ——– ——–

SUM: 31 188 92 1664

https://github.com/AlDanial/cloc

LifeDrop Media Manager term 2020 Page 73 of 78

9.8 Contributions

As reported by git-quick-stats

9.8.1 Media Manager
Lukas Schiltknecht:
lines changed: 36367 (73%)

Robin Elvedi:
lines changed: 13451 (27%)

9.8.2 Media Frontend
Lukas Schiltknecht:
lines changed: 1309 (5%)

Robin Elvedi:
lines changed: 966 (4%)

9.8.3 Media Service
Robin Elvedi:
lines changed: 2246 (100%)

9.9 Test Coverage

9.9.1 Media Server

Figure 21: Coverage Media Server

https://github.com/arzzen/git-quick-stats

LifeDrop Media Manager term 2020 Page 74 of 78

9.9.2 Media Frontend

Figure 22: Coverage Media Manager

LifeDrop Media Manager term 2020 Page 75 of 78

10 Glossary
Term Description

Raspberry Pi Credit-Card sized multipurpose computer.

Pod Name for the deck chair like device produced by LifeDrop GmbH.

Docusaurus Static website generator used for the documentation.

LifeDrop Name of the company behind the LifeDrop pod.

GitLab Git repository hosting website, similar to GitHub.

RCE Short for “Remote Code Execution”. Cyber attack, where code gets
executed on a server by uploading malicious code to a machine.

ARM Short for “Advanced RISC Machine”. Kind of microprocessor
architecture. Incompatible to x86.

x86 Kind of microprocessor architecture. Incompatible to ARM.

UI Short for “User Interface”.

Front-end User-facing part of an application.

Back-end Server-side part of an application.

omxplayer A video and audio player specifically built for the raspberry pi.

omxplayer-
wrapper

Python library for interacting with omxplayer.

mpd Audio player daemon.

mpc Command line client for mpd.

fbi System utility. Used to output a static image over HDMI.

ZeroMQ A message passing protocol for both synchronous and asynchronous
communication.

zmq Short for “ZeroMQ”

alsa Short for “Advanced Linux Sound Architecture”. Used to configure
sound devices on linux.

amixer Tool for interacting with alsa.

Media catalog Name for the database of the media manager.

asyncio Python library for asynchronous programming.

deepl.com Website for translating texts.

sh Python library for interacting with system utilities.

System utilities Programs installed on the operating system.

JSX Javascript syntax extension for React.

React JavaScript library for building user interfaces.

LifeDrop Media Manager term 2020 Page 76 of 78

11 References
Reference

“Anleitung Dokumentation_HS20.pdf”, MS Teams. [Online]. Available:
https://teams.microsoft.com/l/file/CD418C9E-2600-4A83-B1DC-DA59166FC4C4.
[Accessed: 25.09.2020]

“Git Feature Branch Workflow”, Atlassian. [Online]. Available:
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-
workflow. [Accessed: 25.09.2020].

“GitLab CI/CD”, GitLab [Online]. Available: https://docs.gitlab.com/ee/ci/. [Accessed:
14.12.2020].

“Poetry Introduction”, Poetry [Online]. Available: https://python-poetry.org/docs/.
[Accessed: 14.12.2020].

“Raspberry Pi Documentation”, Raspberry Pi [Online]. Available:
https://www.raspberrypi.org/documentation/. [Accessed: 14.12.2020].

“PyZMQ Documentation”, ZMQ [Online]. Available:
https://pyzmq.readthedocs.io/en/latest/. [Accessed: 14.12.2020].

“omxplayer API Docs”, omxplayer-wrapper [Online]. Available: https://python-
omxplayer-wrapper.readthedocs.io/en/latest/omxplayer/. [Accessed: 14.12.2020].

“systemd Service unit configuration”, Freedesktop [Online]. Available:
https://www.freedesktop.org/software/systemd/man/systemd.service.html. [Accessed:
14.12.2020].

LifeDrop Media Manager term 2020 Page 77 of 78

12 List of Figures
Figure 1: lifedrop chair (source: life-drop.ch) ... 10
Figure 2: Initial system diagram .. 12
Figure 3: Initial user interface design ... 13
Figure 4: Initial use case diagram .. 14
Figure 5: Manual media management workflow diagram ... 16
Figure 6: Initial state machine of the pod .. 22
Figure 7: System diagram ... 24
Figure 8: System architecture overview ..25
Figure 9: Use case diagram ... 26
Figure 10: Domain model... 28
Figure 11: Component diagram .. 34
Figure 12: Create media interaction .. 35
Figure 13: Notification interaction .. 35
Figure 14: Screenshot of the media manager frontend .. 38
Figure 15: Screenshot of the pod control ui.. 38
Figure 16: Controller ... 40
Figure 17: Continuous Integration .. 56
Figure 18: Statistics view ... 58
Figure 19: Project timeline .. 67
Figure 20: Time Graph .. 71
Figure 21: Coverage Media Server .. 73
Figure 22: Coverage Media Manager .. 74

(images were created for this document where not otherwise declared)

file:///D:/_SA/documentation/docs/lifedrop_documentation.docx%23_Toc59111314

LifeDrop Media Manager term 2020 Page 78 of 78

13 Appendix

LifeDrop Developer Manual 15.12.2020 Page 1 of 4

LifeDrop Developer Manual

LifeDrop Developer Manual 15.12.2020 Page 2 of 4

Table of Contents
1 Developer Manual .. 3

1.1 Installation and configuration ... 3

1.1.1 Operating System .. 3

1.1.2 Hostname .. 3

1.1.3 System Dependencies .. 3

1.1.4 Install Docker ... 3

1.1.5 Install Docker Compose .. 3

1.1.6 Install Poetry .. 3

1.1.7 Install Media Service .. 3

1.1.8 Install Media Manager ... 4

1.1.9 Install Media Frontend .. 4

1.1.10 Configure MPD ... 4

1.2 Usage .. 4

1.2.1 Run Media Service ... 4

1.2.2 Run Media Manager ... 4

1.2.3 Run Pod Control UI ... 4

LifeDrop Developer Manual 15.12.2020 Page 3 of 4

1 Developer Manual

This manual describes the set-up and usage of a new media pi. The first
section describes how to install the dependencies as well as the media service
software. The second section describes how to use the media pi.

1.1 Installation and configuration
• Using the default user pi with default home at /home/pi

1.1.1 Operating System
• Raspberry PI OS 32bit
• Can be installed onto the SD-Card using the rpi-imager utility

1.1.2 Hostname
• The hostname has to be set to lifedropmedia
• This can be done using the raspi-config utility

1.1.3 System Dependencies
• Required by the media service and other system utilities
sudo apt-get install libglib2.0-dev libdbus-1-dev libffi-dev libssl-dev
fbi omxplayer mpd mpc

1.1.4 Install Docker
• Used to run services inside containers
• Requires a reboot afterwards
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker pi
sudo pip3 -v install docker-compose

1.1.5 Install Docker Compose
• Used to manage the containers and their dependencies among each other
sudo pip3 -v install docker-compose

1.1.6 Install Poetry
• Used to manage the python environment
curl -sSL -o get-poetry.py https://raw.githubusercontent.com/python-
poetry/poetry/master/get-poetry.py

The install script requires a manual patch on line 641:

- allowed_executables = ["python", "python3"]
+ allowed_executables = ["python3", "python"]

• The installer can be run with python3 get-poetry.py

1.1.7 Install Media Service
• Used for listening to incoming messages and executing the appropriate

system commands to control media playback

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/blog/raspberry-pi-imager-imaging-utility/
https://www.raspberrypi.org/documentation/configuration/raspi-config.md

LifeDrop Developer Manual 15.12.2020 Page 4 of 4

cd
git clone git@gitlab.com:sa-lifedrop/media-service.git
cd media-service
poetry install
./install_service.sh

1.1.8 Install Media Manager
cd
git clone git@gitlab.com:sa-lifedrop/media-manager.git

1.1.9 Install Media Frontend
cd
git clone git@gitlab.com:sa-lifedrop/frontend.git media-frontend

1.1.10 Configure MPD
cd /etc
sudo ln -s /home/pi/media-service/mpd.conf mpd.conf

1.2 Usage
• The media service runs as a systemd process due to the tight integration

with operating system utilities such as omxplayer
• The other services (media manager and media frontend) run as docker

containers
• Logs from containers can be inspected with docker logs -f <container-

name>

1.2.1 Run Media Service
• Starts automatically after the raspberry pi boots
• The logs can be inspected with journalctl -u media_service.service

1.2.2 Run Media Manager
• Starts automatically after the raspberry pi boots
• Can be manually controlled with ./start.sh and ./stop.sh scripts
cd media-manager
./start.sh
./stop.sh

1.2.3 Run Pod Control UI
• Starts automatically after the raspberry pi boots
• Can be manually controlled with ./start.sh and ./stop.sh scripts
cd media-frontend
./start.sh
./stop.sh

Life-Drop | user manual for the media manager	 Page 1 / 6

Life-Drop
Media-Manager
This is the user manual to the media-manager of life-drop.
For further information please consult life-drop.ch

https://life-drop.ch/

Life-Drop | user manual for the media manager	 Page 2 / 6

Contents
Uploading media to the pod.. 3

Updating media info.. 4

Create collection.. 5

Check player count. 6

Life-Drop | user manual for the media manager	 Page 3 / 6

Uploading media to the pod

Step 1: Select add button Step 2: Select Media to add Step 3: Upload Media

Warning: �To delete media from pod click
on the “x”-button. This button will
always delete the media from
every collection on the pod.

Note: �Following file sizes and resolutions are
recommended for the media upload.
Higher resolutions and bigger file sizes
may lead to unexpected issues.

File size: 2 – 4 GB

Resolution: 1280 × 720 (pixel)

Codec: H264 - MPEG 4 AVC (recommended)

(all other media specifications can be tried
but there is no guarantee for appropriate pro-
cessing due to memory limitations)

  >   >

Life-Drop | user manual for the media manager	 Page 4 / 6

Updating media info

Step 1: Click on media tile

Step 4: Click update button

Step 2: Update media info

Step 5: Check updates

Step 3: Upload thumbnail

  >

  >

  >

Life-Drop | user manual for the media manager	 Page 5 / 6

Create collection

Step 1: Enter collection title

Step 4: Or select “Media Library”

Step 7: Close update form Step 8: Check if media is added

Step 2: Press add button next to title

Step 5: Open update form Step 6: Check collection checkbox

Step 3: Add media to collection directly

  >

  >

  >

  >

  >

Life-Drop | user manual for the media manager	 Page 6 / 6

Check player count

Step 1: Select Pod Statistics Step 2: Check the play counter

  >

