

C++ Style Checker for Visual Studio Code

Bachelor Thesis

Fabian Thurnheer

&

Marco Gartmann

Department of Computer Science

OST – Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Supervision:

Thomas Corbat, OST

External Co-Examiner:

Guido Zgraggen, Google, Inc.

Internal Co-Examiner:

Prof. Dr. Daniel Patrick Politze, OST

June 2021

 i

Abstract

Programming in C++ usually relies on extensive toolchains for building, testing, and deploying

applications. The fact that a given C++ source file successfully compiles does not imply that its code is

of good quality and style. Moreover, it is not assured that agreed coding guidelines, which can be self-

defined or well renowned, are met. Ensuring this by manual code reviews after the code passed through

compilation and testing, results in a long feedback loop and negatively affects efficiency. To counteract

this problem, Cevelop, a C++ IDE built by OST's Institute for Software (IFS), offers style checks that

give programmers instant feedback on the code they type. While some of these checks are implemented

in other IDEs and plugins as well, many of them are exclusive to Cevelop and are not available in other

IDEs like Microsoft's Visual Studio Code. However, this would be desirable in the future so that students

using IDEs other than Cevelop can profit from these style checks as well.

In this thesis, with the LLVM compiler project and its clang-tidy code analysis component, a feasible

infrastructure was elaborated. In this infrastructure, Cevelop's style checks and new ones can be

implemented in the future to make them available in Visual Studio Code. Furthermore, after an analysis

of offered style checks in Cevelop, selected checks were implemented as a proof-of-concept for LLVM's

clang-tidy component using the C++ programming language. In the chosen approach, all the code

analysis intelligence is encapsulated in an IDE-independent language server (LLVM clangd, which

includes clang-tidy). To use the implemented style checks in another IDE than Visual Studio Code, only

a small plugin is needed to communicate with the language server through the Language Server Protocol

(LSP). Therefore, they can also be offered in other IDEs with minimal additional effort.

This thesis laid the foundation for offering Cevelop's style checking intelligence in IDEs independent of

Cevelop. Thus, users of other IDEs can be reached, and more developers can be helped to write clean

C++ code. The created checks were presented to the LLVM community to be integrated into the

project's code base and to make them public. Until the created style checks are integrated, a self-built

executable of LLVM's clangd language server, which includes clang-tidy and the created style checks,

can be used with clangd's VS Code plugin. This way, the created checks could help OST students enlisted

in a C++ course to write clean C++ code and to comply with taught best practices, without being

bound to Cevelop. A created developer's guide assists programmers (e.g., IFS employees) to further

extend clang-tidy with style checks that would be beneficial for them or for students.

 ii

Lay Summary

Initial Situation:

Coding style guidelines are used by programmers to maintain a uniform code style and to ensure it has

a good quality and meets well known best practices. Furthermore, such guidelines help to make source

code more readable, and they can also improve a program's efficiency and prevent bugs. If such guidelines

are not met, it is desirable that a programmer is alerted as quickly as possible, preferably as soon as he

enters new code into his editor. This reduces the feedback loop and can increase efficiency significantly

[1]. Development environments like Cevelop, which is developed by OST's Institute for Software (IFS),

analyse the code with style checks as the programmer types and give instant feedback about violated

guidelines. By doing so, Cevelop also helps OST students enrolled in a C++ course to comply with rules

taught in these courses. While some of these checks are implemented in other IDEs and plugins as well,

many of them are exclusive to Cevelop and are not available in other IDEs like Microsoft's Visual Studio

Code. However, this would be desirable in the future so that students using other IDEs than Cevelop

can profit from these style checks as well.

Approach:

To make such code analysis features available in multiple IDEs, their implementation is done in a

separate component called language server. In this language server, the desired style checks can be

implemented. To make style checks currently exclusive to Cevelop available in Visual Studio Code,

initially, it was planned to create a language sever and to implement these checks there. However, it was

evaluated that creating a new language server would take disproportionate effort. Instead, with the

LLVM project, an open-source project was evaluated that already offers a language server and style

checking functionality. By extending this project with Cevelop's checks, more effort can be put into the

implementation of the desired code style checking functionality. After a comparison of checks existing

in both projects, Cevelop style checks that were not yet available in the LLVM project were ranked by

their usefulness for students, among other criteria. Selected checks were then implemented for LLVM's

style checking component.

Results:

These implemented checks were contributed to the LLVM project so that its whole community can use

them and profit from them. The created contribution requests are, at the time of submitting this thesis,

currently awaiting approval. Until their approval, a self-built executable of LLVM's extended

components can be used by OST students in Visual Studio Code to profit from the created checks.

Furthermore, a developer's guide was created that lays the foundation for continuation of the work

conducted in this thesis by other programmers in the future.

 iii

Table of Contents

Abstract .. i

Lay Summary ... ii

1. Introduction .. 1

1.1 Initial Situation ...1

1.2 Problem Description ...1

1.3 Project Goals ..1

1.4 Structure of This Report...2

1.5 File Repositories..3

2. Analysis ... 4

2.1 Language Server Protocol ...4

3. Requirements .. 9

3.1 Functional ...9

3.2 Non-Functional ... 10

4. Solution Strategies .. 14

4.1 Extending LLVM Clang-Tidy ... 14

4.2 Creating a New Language Server .. 16

4.3 Decision ... 21

4.4 Evaluation of Checks .. 21

5. Architecture ... 24

5.1 Context of Used LLVM Tools .. 24

5.2 Clang-Tidy Architecture Overview ... 25

5.3 Clang-Tidy Check Structure ... 27

5.4 Clang-Tidy Activation Sequence .. 27

5.5 Conclusion ... 29

6. Checks & Fixes ... 30

6.1 Clang AST Matchers .. 30

6.2 Implementation and Contribution Workflow .. 30

6.3 Implemented Checks ... 32

6.4 Implemented Fixes .. 53

6.5 Testing .. 62

7. Results and Conclusion... 65

7.1 Resulting Product ... 65

7.2 Fulfilment of Requirements .. 65

7.3 Side-Effects ... 66

 iv

7.4 Conclusion ... 67

List of Figures ... 69

List of Tables .. 69

List of Listings ... 69

Glossary .. 70

Abbreviations .. 71

Bibliography .. 72

A. Declaration of Authorship .. 77

B. Task Assignment .. 78

C. Project Management .. 81

D. Comparison of Clang-Tidy and Cevelop Checks ... 89

E. System Tests .. 104

F. Developer Guide ... 107

G. Clangd Configuration File for Students .. 114

 1

1. Introduction

"Developing applications in C++ usually relies on an extensive toolchain including an integrated

development environment (IDE), a compiler and continuous integration infrastructure for building,

testing, and deploying the software." [1] The fact that a program successfully compiles does not

necessarily mean that its code is of good quality and style. It is also not assured that agreed upon coding

guidelines, which can be company intern or public and broadly used, are fulfilled. Both, the code's

quality, and its compliance to specific guidelines need to be checked and assessed before it is deployed.

To benefit a developer's efficiency, feedback on the code at hand should be given as fast as possible.

Preferably, code would be checked upon being entered into the IDE and a feedback to the developer

would be given instantaneously. As C++ compilation tasks are often time-consuming, reducing the

feedback loop can increase efficiency drastically [1].

To achieve this, IDE plugins exist that will check and assess the entered code and give a direct feedback

to developers. For instance, this feedback can be in form of wavy lines that underline problematic parts

of the code at hand. Displaying diagnostic messages describing the problem and suggesting quick fixes

further help the developer to achieve a good code quality and to comply with defined coding guidelines.

1.1 Initial Situation

Cevelop is a C++ IDE based on Eclipse C/C++ Development Tooling (CDT) and is developed by the

Institute for Software (IFS) of the Eastern Switzerland University of Applied Sciences OST in

Rapperswil-Jona. Cevelop contains plugins that implement functionality to check the style of written

code and to provide feedback and quick fixes to developers. Besides utilizing well known public coding

guidelines like the International Organisation for Standardization (ISO) C++ Core Guidelines, they also

check the code's compliance to some rules defined by the IFS itself. The latter helps students at OST,

who are for example enrolled in one of OST's C++ courses, to comply to the coding best-practices which

are taught in the respective courses.

Although Cevelop's largest user group consist of students at OST, it was and might still be used by

development teams in larger companies like SIX and Sonova [2]. Currently, Cevelop counts

approximately 5'000 website visits per month [2].

1.2 Problem Description

While Cevelop's plugins described in Section 1.1 are helpful for students and other C++ developers,

they are unfortunately exclusively available in the Cevelop IDE. Since the whole code checking

functionality is encapsulated in these plugins, users of other IDEs cannot benefit from style checks and

quick fixes they offer. However, it would be desirable to use these features in other C++ IDEs as well

in the future [1].

1.3 Project Goals

This section describes the project's goals as they were described in the thesis's task assignment [1]. The

goal of this project was to realize a proof-of-concept implementation of Cevelop's style checker

functionality which is independent of Cevelop. Especially, it should be made possible for other IDEs to

use this style checker functionality as well. To achieve this, a segregation of the source code analysis and

the visualization of its results is needed. This segregation must be reached using the Language Server

Protocol (LSP) [3], which will be described in detail later in this thesis in Section 2.1. As this thesis's

 2

target IDE to be supported, Microsoft's Visual Studio Code was predefined. However, the usage of LSP

ensures that the implemented style checking functionality can be integrated into other IDEs with

minimal extra effort in the future. As part of this proof-of-concept, one of the project's main goals was

to also elaborate "a feasible infrastructure to implement such functionality in the future" [1].

It should be noted that due to the project's proof-of-concept nature, it was not expected that all features

of Cevelop's style checker plugins were supported at the end of this thesis. "Complete support would

require in depth analysis of the C++ source code featuring an abstract syntax tree representation and a

complete symbol table for the target projects." [1] Instead, to be able to test and use the project's results,

the proof-of-concept was expected to implement a subset of Cevelop's source code checks. These checks

should primarily be useful for students learning C++ in the context of OST's programming courses.

Besides a non-exhaustive list of existing Cevelop style checks that could have been implemented, the

task assignment also proposed implementing checks for ISO's C++ Core Guidelines, since they might

target a broader audience. Furthermore, it would also have been possible to define new checking features

if reasonable. The checks to be implemented were to be discussed with and selected in collaboration with

the thesis's supervisor.

1.4 Structure of This Report

This report describes the analysis, elaboration and implementation work done as part of this bachelor

thesis as well as solutions to encountered challenges and the project's results. It is divided into the

following chapters:

Chapter 2, Analysis: Reflects the research that has been done on the fundamental principles of the

Language Server Protocol.

Chapter 3, Requirements: Lists elaborated functional and non-functional requirements for the chosen

solution strategy.

Chapter 4, Solution Strategies: Describes evaluated solution strategies, discusses their individual

strengths and weaknesses, and explains how the decision for one of them was made. Additionally, it

describes how checks which were planned for implementation were elaborated.

Chapter 5, Architecture: Gives a brief overview of the architectural context of the selected solution

strategy, in which the implementation work was carried out during this thesis.

Chapter 6, Checks & Fixes: Gives details about the implemented style-checking functionality. As a

part thereof, encountered challenges are described and it is stated how they were overcome. Furthermore,

the way the implemented checks were tested is described. In addition, this chapter introduces the

elaborated workflow which served as a guideline for the implementation work of this project.

Chapter 7, Results and Conclusion: Presents and discusses this project's results. Furthermore, by-

products generated by this project are pointed out. A summarization of the project's outcome forms the

end of this report.

 3

1.5 File Repositories

Two separate repositories were used to store source code and to conduct project management work and

to maintain a wiki. The source code had to be stored in GitHub since the project's size exceeded the

upload size limit of the GitLab instance provided by OST.

Source Code: https://github.com/mgartmann/llvm-project

Project management and wiki: https://gitlab.ost.ch/cpp-stylechecker

https://github.com/mgartmann/llvm-project
https://gitlab.ost.ch/cpp-stylechecker

 4

2. Analysis

This chapter documents research about the Language Server Protocol (LSP), which was given as a

project prerequisite in the project assignment. Thereby, the fundamental principles of LSP are explained.

2.1 Language Server Protocol

A main criterion of the project assignment was the usage of the Language Server Protocol. This section

describes what LSP is, how it works and what components are involved in LSP.

2.1.1 Without LSP

Traditionally, as described with Cevelop in the Introduction chapter, language feature functionalities

like style checking, code completion and formatting are built into a certain IDE they are developed for.

This binds their usage to the IDE and not to the programming language they support. Therefore, they

are usually implemented in the same programming language as the IDE in form of a plugin. If the

mentioned programming language features shall be used in other IDEs, a new plugin which reimplements

this functionality must be created for each of them. Depending on the programming language for which

such features should be provided, this could be time consuming and challenging. All this leads to the

following three main problems [4]:

 Plugin IDE: Different IDEs have their own way of presenting diagnostic messages. This prevents

sharing source code of language features because no standardised interface is shared between the

IDEs and the language feature functionality. This high coupling of a language's code analysis plugin

to one specific IDE leads to the situation where for the same language, a separate plugin must be

created for every other IDE that wants to support it. This means that if code analysis functionality

for m different languages should be supported in n distinct IDEs, m n plugins need to be created

(see Figure 1). Speaking for itself, this should be avoided.

 Implementation Language: Cevelop's style checking functionality is developed with Java. As a

result, using the same functionality inside Visual Studio Code, which is written in Typescript and

runs in a Node.js environment, is not possible. A new plugin must be developed in Typescript,

including the complex code analysis functionality for C++. Although developing this is possible, it

is a major effort, time consuming, and an unnecessary reimplementation of functionality that already

exists. Moreover, style checking, and other language feature functionalities are “usually implemented

in their native programming language and that presents a challenge in integrating them with Visual

Studio Code, which has a Node.js runtime.” [4].

 Performance: Executing language features can be CPU and memory resource intensive. This could

affect the performance of the IDE they are built-in, which results in an unsatisfying user experience.

 5

Figure 1: Plugins for Different IDEs Without Using LSP [4]

2.1.2 LSP Concept

To overcome such reimplementation, Microsoft developed the so-called Language Server Protocol. The

initial idea behind it was developed during writing coding features for Visual Studio Code, which is also

developed and maintained by Microsoft [5] [6]. LSP standardizes the communication between a language

server (a standalone component) and a language client (usually an IDE plugin) [3]. This allows to

encapsulate language feature functionalities with a universal interface into an own component. Through

this, all the previously mentioned problems can be solved. As shown in Figure 2, one language server

can be used with multiple IDEs to provide features like style checking, code completion or code

formatting.

Figure 2: IDE Plugins Use a Language Server over LSP [4]

Language Server

The language server is responsible for analysing source code of a specific programming language, so it

could provide different language features like style checking, code completion, formatting etc. Thanks to

the language server, all the logic and intelligence needed for this is bundled in a component which can

be reused in other IDEs. As described on LSP’s official specification website, the language server should

run in a own process and separated from the IDE [3]. This is especially useful because language analysis

can be resource intensive and impact the performance of a running IDE. A language server can be

implemented in an arbitrary programming language. However, it must be ensured that necessary runtime

environments to run the language server are available on the target computer.

 6

Language Client

A language client is a minimal software which connects language server functionality with a specific

IDE. Besides connecting to it, it can also start the language server and it can send a shutdown request

to it if its service is not needed anymore [3]. The client is commonly designed as an IDE plugin and is

therefore written in the same programming language as the IDE it is developed for.

Communication

When a programmer starts his IDE with a source file of a certain language, the installed language client

plugin starts a corresponding language server for the affected programming language. The

communication between client and server is handled over JSON-RPC. This is a stateless protocol which

uses JSON as its data format and as it is transport agnostic, it can be used to communicate over different

message passing environments [7]. Due the usage of JSON-RPC and the abstraction of the code analysis

features, theoretically, the client and the server do not have to run on the same computer system to

communicate with each other.

A JSON-RPC object contains four members called jsonrpc, method, params and id [7]. The LSP

specification describes possible remote procedure call (RPC) methods that can be called over JSON-RPC

as well as valid parameters for these methods [3]. Language clients and servers utilize these method calls

to trigger actions on their respective counterparts. Figure 3 shows an abstract demonstration of how a

C++ language client and a corresponding language server communicate when a programmer opens his

IDE with a C++ source file.

IDE plugin
(Language Client)

clangd
Language Server

Notification: textDocument/didOpen; Params: document

Notification: textDocument/publishDiagnostics; Params: {documentURI, diagnostics}

Request: initialize; Params: capabilities

Response: initialize; Params: capabilities

Language server
analyses document

and generates
warnings

User opens file

Response: textDocument/codeAction; Params: {result: {diagnostics, edits}}

Notification: textDocument/didChange; Params: contentChanges

User clicks on
displayed warning

Request: textDocument/codeAction; Params: context

User opens IDE

generates fix

User applies fix

Notification: textDocument/didClose; Params: documentURI
User closes file

Figure 3: Communication Example Between a Language Client and a Language Server

 7

As seen in Figure 3, the language client sends its capabilities with an initialize method to the server,

to which the server responds with the capabilities the language server provides [3]. After that, the client

sends a didOpen method in which the content of the C++ source file is provided as parameter. The

server then analyses the given source code and detects parts of it that violate a predefined style checking

rule. Subsequently, it generates diagnostic information which is sent back to the client. As the IDE

receives this diagnostic information, it can display the diagnostic message in its specific style.

The programmer sees the generated diagnostic message and clicks on the affected line inside the IDE,

which detects the user interaction and sends a codeAction method to the server. Since the server detects

that there is a quick fix available for this diagnostic, a codeAction response is sent back to the client

including the fixed code fragment. The programmer then applies the quick fix. To inform the language

server about the new file content, the client sends a didChange method to the server, so both participants

have the same content of the open file.

If the programmer decides to close the file in the IDE, the client informs the server about this event

with a didClose method.

Figure 4 shows the textDocument/publishDiagnostics JSON notification which the language server

sends to the client after it has analysed the given source code from Figure 3's scenario. As it can be seen,

this notification contains an array of diagnostics objects, whose code property specifies which style

check triggered this diagnostic. This information is displayed in Visual Studio Code alongside the check's

message. Its range property defines which part of the analysed source code should be marked and to

what source code range the sent diagnostic message corresponds to. Moreover, diagnostic objects

contain a severity property, which distinguished the diagnostic's severity between Error (1), Warning

(2), Information (3) and Hint (4) [3]. As it was found in this research about LSP, the uri field serves

as an ID to identify the affected source code file for both the language client and the language server.

 8

{

 "jsonrpc": "2.0",

 "method": "textDocument/publishDiagnostics",

 "params": {

 "diagnostics": [

 {

 "code": "cppcoreguidelines-avoid-non-const-global-variables",

 "message": "Variable 'x' is non-const and globally accessible, consider making ...",

 "range": {

 "end": {

 "character": 5,

 "line": 2

 },

 "start": {

 "character": 4,

 "line": 2

 }

 },

 "relatedInformation": [],

 "severity": 2,

 "source": "clang-tidy"

 },

 // more diagnostic objects

],

 "uri": "file:///c:/Users/test/Desktop/file.cpp",

 "version": 1

 }

}

Figure 4: publishDiagnostics Method Response from a C++ Language Server (clangd)

 9

3. Requirements

In this chapter, the requirements for this project are defined. Section 3.1 lists the functional requirements

whereas Section 3.2 deals with the project's non-functional requirements.

3.1 Functional

The style checking solution to be developed (including a C++ language server and a corresponding client

in the form of a Visual Studio code plugin) should meet the functional requirements described in this

section. All defined functional requirements refer to the processing of C++ source and header files.

3.1.1 Support of C++17

"As a style check programmer, I want to be able to analyse code written in recent versions of C++ so

that the implemented style checks are also of value in code bases which use the latest C++ features."

The solution to be developed must therefore be able to analyse source code written in recent C++

versions. After consultation with the thesis’s supervisor, C++17 was defined as the minimal ISO

standard to support.

3.1.2 Pre-Processor Directives

"As a style check programmer, I want to analyse source code before the stage of pre-processing in order

to analyse pre-processor directives like macro definitions or include directives."

The solution to be developed must therefore be able to analyse source code before the stage of pre-

processing.

3.1.3 Creation of Abstract Syntax Trees

"As a style check programmer, I want to analyse compiled source code in an abstract manner in order

to easily get parents, descendants etc. of a specific code part and to conduct complex queries."

The solution to be developed must therefore be able to generate an abstract representation of a given

source code in the form of an abstract syntax tree (AST).

3.1.4 Semantic Analysis

"As a style check programmer, I want to analyse connections and relations between variable or function

definitions and their references in order to trigger warnings for specific scenarios, e.g., depending on the

location where a called function is defined."

The solution to be developed must therefore be able to conduct a semantic analysis of a given source

code and to make connections between symbol declarations, definitions, and references.

3.1.5 Source Code Positions

"As a style check programmer, I want to retrieve the source code position of a specific code part in order

to create fixes and diagnostic messages based on this position."

The solution to be developed must therefore provide positional information on expressions and

statements of a given source code.

 10

3.1.6 Utilizes LSP

"As a style check programmer, I want the implemented style checks to be IDE-independent so that they

can be used in different IDEs without having to be re-implemented."

The solution to be developed must be usable by other IDEs besides Visual Studio Code. To achieve this,

it must communicate with language clients through the Language Server Protocol, as it was defined in

the thesis's task assignment (see Appendix B).

3.1.7 Allows to Implement Checks

"As a style check programmer, I want to implement new checks regularly in order to cover newly defined

style guidelines."

The solution to be developed must therefore be extendable with new style checks in the future.

3.1.8 Allows to Implement Fixes

"As a style checker programmer, I want to offer quick fixes to generated diagnosis messages so that users

can conveniently correct problematic code parts and are able to understand how the correct code would

look like."

The solution to be implemented must provide ways to offer quick fixes alongside diagnosis messages.

3.2 Non-Functional

The project's non-functional requirements (NFRs) were determined using the FURPS+ (functionality,

usability, reliability, performance, supportability, other) systematic, from which the functionality part

was already addressed in Section 3.1. To achieve the result that the NFRs are both realistic and easy to

agree upon, their target values were defined using agile landing zones, where appropriate. Agile landing

zones reach this goal by establishing a triple of acceptable values (minimal goal, target, outstanding)

instead of a single target value [8].

3.2.1 Usability

Scenario #1: Automatic Extension Activation

As soon as the user starts working on C++ files (i.e., files ending in .cpp), the language client plugin

should be activated automatically. The user should not need to start it on his own. To benefit the general

IDE performance, the extension should not be activated if only files of other types are opened.

Business goals

Provide an excellent user experience so that users appreciate the usage of the IDE's language client

plugin.

Stimulus

The user who has the language client plugin installed opens a C++ file.

Response

The IDE plugin, i.e., the language client, and thus, also the language server is activated and started.

Activated style checks are automatically run and their diagnostic messages are displayed automatically.

 11

Response measure

Check if the extension is active and that the language client to language server communication is taking

place as a user edits a C++ file.

3.2.2 Performance

Scenario #1: Diagnosis Does Not Affect IDE Runtime Behaviour

The communication between the language client and the language server as well as ongoing diagnosis in

the language server do not affect the performance and the behaviour of the IDE in a notable manner.

Business goals

Provide an excellent user experience so that users appreciate the usage of the IDE's language client

plugin.

Stimulus

User who has the IDE extension installed opens a C++ file and starts working on it.

Response

The language client (IDE plugin) sends the currently worked on file's content to the language server,

which in turn analyses the received file content and sends a diagnosis back to the client. The user

concurrently continues his work in the IDE.

Response measure

To measure if the IDE works unaffected of the ongoing analysis and communication, the time between

a user input into the IDE and the displaying of the entered character in the IDE is determined. Table 1

lists the aspired target values in the form of agile landing zones. As defined by the Nielsen Normal

Group, response times of less than 0.1 seconds are not noticed by users [9]. This should be the target.

As the minimal goal, 0.2 seconds were assessed to be still acceptable. Since this requirement's target goal

is already the best possible situation, no third landing zone was defined.

Minimal goal Target

0.2 seconds, slight delay noticeable. 0.1 seconds, no delay noticeable.

Table 1: Agile Landing Zones for Affected Runtime Behaviour

Scenario #2: Start-up Time of IDE Extension

The IDE's language client extension must start up in a reasonable time to begin the analysis and style

checking process.

Business goals

Reduce the feedback loop to increase the user's programming efficiency.

Stimulus

User who has the IDE extension installed opens a C++ file.

Response

Even if no visual feedback about its launch is shown, the IDE extension begins to communicate with the

language server.

 12

Response measure

To check if this requirement is fulfilled, the time delta between the opening of a C++ file in the IDE

and the moment the language client starts communication with the language server is evaluated. The

defined target values can be seen in Table 2.

Minimal goal Target Outstanding

< 2 seconds. < 1 seconds. < 0.5 second.

Table 2: Agile Landing Zones for Start-up Time of IDE Extension

Scenario #3: Quickness of Style Checker Feedback

The user should receive feedback on his written code as immediately as possible.

Business goals

Reduce the feedback loop to increase the user's programming efficiency.

Stimulus

User who is working on a C++ file and altering its content.

Response

On modification of the file's content, the language client sends the content of this file to the language

server, which analysis the received information and returns a diagnostic feedback to the client. The IDE

will then make this feedback visible in the user's code.

Response measure

Critical to fulfil this requirement is the time it takes between a user input which triggers a language

server reaction (i.e., a diagnostic feedback) and the moment this feedback is visualized in the IDE. Since

this time may depend on a file's size, a fixed number of source lines of code (SLOC) was defined to test

this requirement. The LLVM project was analysed to determine usual file sizes in a large open-source

project.

For this, the SLOCs of all C++ files inside the LLVM project were determined using cloc [10]. The one

C++ file which forms the 95th percentile was taken as reference, meaning that 95% of all of LLVM's

C++ files are smaller or have the same length.

This file (llvm-project/lld/unittests/MachOTests/MachONormalizedFileYAMLTests.cpp) counts 1'174

SLOC. However, LLVM's C++ files usually include numerous headers, which add to the file's overall

size after it is pre-processed. This work has to be done by a language server (or its compiler) as well to

generate the file's complete AST. Therefore, the named file was run through Clang's pre-processor,

whereby all included header files were copied into the output file. Using cloc, it was determined that this

resulting file contains approximately 22'000 SLOC.

A file with this number of SLOC (preferably, the file named above itself) shall be taken to verify the

quickness of the developed solution. The target values are set according to Table 3.

Minimal goal Target Outstanding

< 5 seconds. < 4 seconds. < 2 second.

Table 3: Agile Landing Zones for the Style Checker Quickness

 13

3.2.3 Supportability

Scenario #1: Installation of the Language Client and Language Server

Users should be able to install all the required software parts in an easy way. Above all, the language

server should be included in the installation process of the language client, i.e., the IDE extension.

Business goals

Get programmers to install and to use the IDE extension.

Stimulus

The user installs the IDE extension, either through the Visual Studio Code [6] extension marketplace or

through an alternative installation method.

Response

Both the IDE extension (i.e., the language client), and the language server are installed. The user does

not need to install the language server separately.

Response measure

As already described, the language client and the language server can be installed together. A separate

installation of the language server is not needed. Since this requirement cannot be quantified any further,

no agile landing zones are defined.

3.2.4 Verification of Non-Functional Requirements

During elaborating a solution strategy, its compliance to the defined non-functional requirements was

assessed. This assessment's results are described in Appendix E.

 14

4. Solution Strategies

To reach the goals described in the task assignment (see Appendix B), two possible solution strategies

were elaborated, which will be covered in this chapter. First, Section 4.1 describes the possibility of

extending existing code analysis tools and the idea of contributing to an open-source project.

Alternatively, it would also be possible to start from scratch and to create a new language server and

language client. The latter approach is discussed in Section 4.2. The conclusion in Section 4.3 summarizes

each strategy's strengths and disadvantages and covers the final decision for one of the strategies. Lastly,

after an applicable solution strategy was selected, Section 4.4 describes how checks were elaborated

which were to be implemented with the selected solution strategy.

4.1 Extending LLVM Clang-Tidy

The reason for taking an open-source contribution into consideration is that the creation of a new

language server and language client (i.e., IDE extension) involves several drawbacks. For example, a

high initial effort would be needed until the first check is functional, since the language server and

language client infrastructure would need to be created first. Moreover, the question arose as to how

popular an IDE extension would be that (probably) covers only a fraction of existing solutions' checker

functionality.

By extending an existing tool, users could benefit from its already available functionality as well as from

the new extended functionality. Furthermore, needed infrastructure like a language server does not need

to be self-implemented, which makes it possible to put more effort into implementing the actual style

checking functionality. On the other hand, this approach also had its drawbacks. First, integrating

functionality into an open-source project requires creating and managing pull-requests, which was

estimated to generate extra effort. Furthermore, the benefit of the created style checks must be accepted

by the project's community. There is a risk that the project's focus differs from what the Cevelop style

checks focus on, and that the project's community might not approve such checks. This limits the free

selection of checks to be implemented.

As a contender for the to-be-extended open-source project, LLVM's1 clang-tidy was evaluated, which

will be described in the following sections.

4.1.1 LLVM Clang-Tidy Introduction

"The LLVM Project is a collection of modular and reusable compiler and toolchain technologies. […]

LLVM has grown to be an umbrella project consisting of a number of subprojects, many of which are

being used in production by a wide variety of commercial and open-source projects as well as being

widely used in academic research." [11] Clang is a C/C++/Objective-C compiler and one of the core

components of the LLVM project. It serves as a frontend to the LLVM core libraries and can be used to

build additional language tools on top of it [12].

In addition to Clang, the LLVM project offers extra tools (bundled under the term clang-tools-extra)

like clangd, which is a C++ language server built on top of the Clang C++ compiler frontend [13], and

clang-tidy. The latter is a C++ linter tool, which is also based on Clang, and which is responsible for

the style-checking functionality of clangd's language server. Furthermore, it offers the possibility to

1 "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies. […]

The name 'LLVM' itself is not an acronym; it is the full name of the project." [11]

 15

propose fixes to any style problems found [14]. It can be both used as a standalone command line

interface (CLI) tool as well as in combination with the clangd language server. By using it as a part of

clangd, its style-checking functionality can be utilized in IDEs. Thereby, users can activate or deactivate

a wide variety of existing checks and configure options for certain checks in a designated clang-tidy or

clangd configuration file.

LLVM's clang-tidy was chosen as a contender for the project to contribute to because of its widespread

usage. To name just a few prominent examples, clang-tidy is included automatically when choosing a

C++ workload in the Microsoft Visual Studio Installer, as described on Microsoft's website: "Clang-

Tidy is the default analysis tool when using the LLVM/clang-cl toolset, available in both MSBuild and

CMake." [15] Furthermore, JetBrains's CLion, which is another popular C++ IDE, includes clang-tidy

as a static code analysis tool by default [16]. Because of its widespread usage, LLVM and clang-tidy

profit from a lively community, what was assessed to be beneficial for this thesis. What also made this

open-source project interesting was the fact that a Visual Studio Code extension for clangd already

existed, which includes and runs clang-tidy checks. This extension could either be used as it is or it could

serve as the basis for self-implementing one if necessary.

4.1.2 Alternatives

In the process of choosing an open-source project to contribute to, two other better-known compilers

and language servers were evaluated as well.

GCC by GNU is an official compiler for the GNU and Linux systems, and a main compiler for compiling

other UNIX operating systems. Despite finding a mailing list article from 2017 about a proof-of-concept

implementation of the LSP [17], there was no evidence found that the current production version of

GCC includes an LSP implementation. Because GCC is missing a language server and does not

implement the LSP (which was a requirement given in the thesis's assignment), it was not further

considered as a possibility for this thesis.

Furthermore, ccls [18] was evaluated as a language server, which originates from cquery [19]. The cquery

language server for C/C++ is no longer under development. Besides Clang, the cquery developers also

name ccls as a valid replacement for it [19]. Despite having about 60 contributors on GitHub (as of

17.03.2021), its community seemed noticeably smaller than clangd's. Furthermore, in contrast to the

LLVM project and clangd, ccls is backed by individual contributors rather than well-known tech

companies, what was seen to bring the danger of API instability and an unknown future with it. As ccls

itself also relies on LLVM tooling (i.e., LibClang), it was decided that it would make more sense to

contribute to the LLVM project directly.

4.1.3 Contribution Possibilities

There are multiple possibilities as to how clangd and clang-tidy can be extended as part of this thesis.

Most obviously, one task could be to implement an arbitrary number of Cevelop checks for clang-tidy,

which are currently missing there. A comparison of existing clang-tidy checks and existing Cevelop

checks (see Appendix D) revealed that 22 of Cevelop's checks were not yet implemented in clang-tidy.

It should be noted that thereby, only the two Cevelop plugins GSLator and Ctylechecker were analysed.

The reason for this will be explained in Section 4.4.1. Additionally, it could be useful for the clangd

community if missing fixes to already available checks were created. And finally, clangd and clang-tidy

developers and their communities could be asked if there were any tasks for which help is needed.

To merge contributions with the LLVM project, LLVM does not rely on GitHub pull requests but on

another review tool, which is called Phabricator [20]. Based on the commit history on Phabricator and

on LLVM's repository on GitHub, clang-tidy checks are regularly being added by community members.

 16

4.1.4 Compliance with Functional Requirements

During the evaluation of clang-tidy as a possible open-source project to contribute to, it was verified

that clang-tidy meets the functional requirements defined in Section 3.1. Clang, which builds the basis

of clang-tidy, supports all C++17 features and already many of C++20 [21]. Furthermore, Clang allows

the creation of (position related) diagnostic messages and quick fixes [22] and provides a library called

libsema, which is responsible for semantic analysis and for building ASTs [23]. With clang-tidy, checks

can be implemented which are able to analyse pre-processor directives [24]. The only functional

requirement that is not directly met by clang-tidy is the utilization of LSP. However, to use clang-tidy

within Visual Studio Code, LLVM's language server clangd and the corresponding Visual Studio Code

plugin are used. The communication between the clangd language server and its IDE plugin happens

over LSP [13]. Therefore, this requirement was also assessed to be fulfilled.

4.2 Creating a New Language Server

Apart from extending an open-source project, it would also be possible to create the language analysis

infrastructure from scratch. There were two main concerns that were considered for implementing a new

language server. Firstly, it had to be decided which programming language would be used to implement

the language server. Secondly, the question of how the implemented language server should parse and

analyse a given code file had to be answered. In the following sections, possible answers to these questions

are explained and compared.

4.2.1 Implementation Language

Three programming languages were considered as an implementation language for the language server.

On the one hand, C++ would have been a reasonable choice, because the language that should be

analysed is C++ itself and thus, expertise would have only been needed for one programming language.

Furthermore, TypeScript and C# were considered because they were already used by the project team

in past projects. Table 4 shows a comparison of the mentioned languages divided into pro and contra

arguments, as assessed by the project team.

Languages Pro Contra

C++ The languages server could be

built as a standalone

executable, so no extra

runtime would be needed.

 Language knowledge acquired

by writing checks could be

used to understand the code

which has to be analysed, and

vice versa.

 Both project members visited a

C++ OST module course.

Thus, a lot of lecture material

could help the implementation.

 A separate compiled binary is

needed for each platform on which

the language server shall be run.

 Project team is not very familiar

with using C++ for larger

projects.

 17

Languages Pro Contra

TypeScript Node.js [25] runtime from

Visual Studio Code can be

used, so no extra installation is

needed.

 Implementation examples from

Microsoft are available.

 Only one language must be

used in this project (VS Code

plugin should be written in

TypeScript).

 Project team used TypeScript

in past projects.

 If the language server is used with

another editor than Visual Studio

Code, a Node.js runtime would

need to be installed additionally.

C# One project member used C#

in a past project.

 Both project members visited a

C# OST module course. Thus,

a lot of lecture material could

help the implementation.

 Additional .NET runtime

installation is needed to run the

C# language server.

 Implementation examples are only

available from third party

websites.

Table 4: Comparison of Possible Programming Languages to Implement a Language Server

Theoretically, any programming language could be used to implement the language server component,

as long as the language server implements the Language Server Protocol (LSP). Since it would be

cumbersome and error-prone to implement the LSP from scratch, the use of a software development kit

(SDK), which implements the LSP and conveniently offers an advanced programming interface (API),

was considered. Table 5 lists a benefit value analysis of the evaluated SDK options for the programming

languages assessed in Table 4.

 18

LspCpp

(C++) [26]

Vscode-

languageserver

(TS) [27]

OmniSharp

C#-LSP [28]

Criteria Weight Mark Points Mark Point Mark Points

Project Team's

Language

Knowledge

15% 2 0.3 6 0.9 4 0.6

Prominence of

Library

Maintainer

30% 3 0.9 6 1.8 5 1.5

Quality and

Amount of

Implementation

Examples

20% 1 0.2 5 1 4 0.8

Quality of

Documentation

30% 1 0.3 4 1.2 2 0.6

Additional

Components

Needed2

5% 6 0.3 6 0.3 2 0.1

Total 100% 13 2.0 27 5.2 17 3.6

Table 5: Evaluation of LSP SDKs in Different Programming Languages

As seen in the Weight column, special attention was given to the SKD's Library Maintainer and its

Documentation. An SDK without a community or organisation behind it, which constantly improves

and develops it further, was seen as not reliable. Furthermore, an SDK without a proper documentation

would make it tough to work with. Also, available implementation examples were considered as

important because they could potentially speed up the development process. The vscode-languageserver

SDK outperformed its competitors in this benefit value analysis by more than 1.6 points. It is maintained

by Microsoft, is publicly available and provides a detailed documentation with helpful implementation

examples.

Due to these analyses and a successful attempt of an implementation example, it was decided that the

needed language server would be implemented with the vscode-languageserver SDK and TypeScript

would be used as the implementation language. To run the application, Node.js was chosen as the

runtime environment, since it is already included in Visual Studio Code, the IDE that needs to be

supported.

4.2.2 Parsing and Analysing Source Code

The last decision that had to be made for this solution strategy was how the implemented language

server would parse and analyse source code. Implementing functionality to parse C++ code into an

abstract syntax tree (AST) would have gone beyond the scope of this thesis and the project team's

knowledge. Instead, an already existing library or tool was to be used. The following sections list

elaborated approaches which could be used to integrate such a library or tool into the language server.

Additionally, it is assessed if they fulfil the functional requirements defined in Section 3.1.

2 Additional components (e.g., runtimes) would be needed to run the server, provided that the user has

Visual Studio Code installed.

 19

Child Process

The LLVM project offers the C++ compiler frontend Clang, which was already mentioned in Section

4.1. This compiler can be executed as a standalone CLI tool with a specified C++ source file as its

parameter. Clang then returns an AST of the specified file. As defined in Section 4.2.1, the server should

be executed within a Node.js instance. From there, it should be possible to run a child process to execute

Clang and to read generated ASTs from the child process's output. While trying out the described

approach, the following advantages and disadvantages were found:

Advantages:

 Most of the code could be written in TypeScript.

 Clang's infrastructure is very well maintained and at the edge of C++ language standard's

development. This would mean that the used language server would always be up to date with new

C++ language features.

Disadvantages:

 Traversing and interpreting of the AST would have to be implemented.

 Spawning a child process for every source file analysis was assessed to be not very efficient.

 The Clang CLI tool is only able to receive complete files as a parameter. Although the language

server receives changes to source files incrementally over LSP, it would have to persist each of these

received changes to a file in order to pass it to Clang. This is impractical and would probably

negatively affect the language server's performance.

 Also, analysing pre-processor directives can only be done by analysing the source code without

sending it to the Clang executable, as they are removed in Clang’s AST.

Node.js Add-On

Node.js allows importing specially compiled add-ons [29] written in C++. One approach could be to use

LibTooling [30], a C++ library which is also part of the LLVM project, and which can be used to write

standalone tools based on Clang. With the usage of LibTooling, an analyser add-on could be written in

C++ and its functionality could be imported in the TypeScript language server. For testing this

approach, a short function inside such a C++ add-on was created, which could successfully be called

inside a JavaScript file. Furthermore, it was possible to read the function's return value.

Advantages:

 Traversal and interpretation of the AST could be written in C++ with strong help from LibTooling.

 As LibTooling is part of LLVM, it is well maintained and at the edge of C++ language standard's

development. This would mean that the used language server would always be up to date with new

C++ language features.

 Clang offers pre-processor callbacks and pre-defined AST matchers [24] [31]. Also, source code

positions are available within Clang [22].

Disadvantages:

 Might be difficult to do, as it needs advanced C++ knowledge to setup such a project. Because of

this, LibTooling itself was not used in this first trial.

 Barely any examples of such add-on implementations, especially ones which make use of LibTooling,

were found that could help while implementing this approach.

 20

ANTLR

Another approach would be to have a C++ parser written in the same language as the language server

implementation. Therefore, the processing of the source file could be included directly into the language

server code. As decided in Section 4.2.1, this parser would have to be implemented in TypeScript or

JavaScript.

ANTLR [32] is a Java based powerful parser generator which can create a lexer and a parser for many

languages. To do that, ANTLR needs a grammar file for the specific language and a target

implementation language. On ANTLR's GitHub project, a repository with lots of predefined grammar

files, including one for C++14, can be found [33]. In ANTLR's documentation, JavaScript is listed as a

possible implementation language for a lexer and parser [34]. ANTLR was tested with JavaScript as

target implementation language for a C++ lexer and parser. Unfortunately, only a data structure that

includes some tokens generated by the provided lexer could be implemented. However, it was not

achieved to generate an AST or to traverse a such.

Advantages:

 No C++ code would be needed to generate an AST and to analyse it.

Disadvantages:

 The latest C++ grammar file which could be found seems to only support C++14.

 Although the GitHub repository of ANTLR seems well maintained, this is not the case for the C++

grammar repository. Grammar files for C++17 do not exist.

 Traversing the AST and matching its nodes would have to be implemented.

 The trial was not promising. More time would have to be invested to prove if even an AST could

be generated.

 No predefined functionality to extract source code positions or to analyse pre-processor directives is

available.

Decision

Integrating C++ analysis functionality into an own language server was considered as not

straightforward with the tested approaches. Investing more time to implementing a functional example

with the generated lexer/parser from ANTLR was rated to be not worth it, since the grammar (C++14)

does not fulfil the functional requirement of supporting C++17. Although Clang’s AST provides source

code positions and supports C++17 and above, reading out the AST output from a language server's

child process is not a practicable solution, as described above. Furthermore, interpreting the AST and

building a suitable traversal infrastructure would be a huge effort, compared to the generated benefit.

As a result, creating a Node.js add-on and using the power of Clang and LibTooling would be the most

promising approach, although no proof-of-concept implementation which includes them inside an add-

on was created yet. The only functional requirement which might not be completely fulfilled is Semantic

Analysis, but it might provide enough functionality to implement style checks which do not need

information spanned across multiple translation units.

 21

4.3 Decision

After the two described solution strategies were analysed and assessed, it was decided that the first

strategy, i.e., extending LLVM's clang-tidy, was more promising. The decisive factor for this was that

reusing its existing infrastructure allowed starting the implementation of effective style checks earlier. If

this infrastructure had to be implemented from scratch (as in the strategy described in 4.2), a great time

effort would have had to be spent on this task and thus, less style checker functionality could have been

implemented. Since future users mainly benefit from implemented style checks rather than from the

infrastructure itself, it was assessed that by following the first strategy, the resulting product was going

to be more valuable for its users. Furthermore, LLVM's infrastructure is mature and very functional. It

would have made little sense to put effort into a new infrastructure that only offers a fraction of LLVM's

infrastructure functionality and that would probably not be maintained further after this thesis.

Additionally, with the assessed variants of the "Creating a New Language Server Approach", not all

defined functional requirements could have been fulfilled.

Apart from this, other considerations led to this decision as well. For instance, by following this strategy,

more users (i.e., developers) can be reached. Not only would OST students benefit from this thesis's

work, but anyone using clang-tidy could activate the created checks and profit from them. Furthermore,

the first strategy was seen as a great opportunity to gain experience in contributing to a large-scale

open-source project and to learn from received community feedback thereby.

4.4 Evaluation of Checks

After the solution strategy of extending an existing project was selected, it was analysed and decided

which checks were to be implemented in the elaborated environment. This section describes the

determination of checks to be implemented as well as their prioritization.

4.4.1 Evaluation

A list of potential checks to be implemented was initially given in the thesis assignment (see Appendix

B). All these proposed checks are contained within Cevelop's C++ Ctylechecker plugin. Hence, this

plugin's checks were the primary implementation candidates at the beginning of the thesis. However,

many of these checks are IFS best practices and do not relate to any well-known C++ coding guideline.

After a first of these checks was implemented, it was evaluated that checks for rules defined in well

renowned C++ guidelines would have a greater chance of being accepted by LLVM's community.

Therefore, it was decided to put the focus on checks that are related to the C++ Core Guidelines [35].

Since only a few of the named plugin's checks implement a C++ Core Guideline, Cevelop's GSLator

plugin was taken into consideration as well. This plugin was selected since it implements a broad selection

of C++ Core Guidelines rules.

To gain an overview of the checker functionality that the named Cevelop plugins and LLVM's clang-

tidy offer, a comparison of already existing checks in both projects was conducted. Summarized, from

about 470 C++ Core Guideline rules (stand of 12.06.2021), the two analysed Cevelop plugins together

implement 33 of them. Of these 33 checks, 17 were already covered by clang-tidy at the time of writing

this report. Furthermore, six checks for non-C++-Core-Guideline rules were assessed to be not yet

implemented in clang-tidy. Detailed results of the conducted comparison may be seen in Appendix D.

There, it is also visible which exact GSLator and C++ Ctylechecker checks were not already

implemented in clang-tidy. These checks missing in clang-tidy were considered as candidates for

implementation.

 22

4.4.2 Prioritization

To decide which of the evaluated checks should be implemented, all not-yet-implemented GSLator and

Ctylechecker checks were assessed by the following two criteria:

• Feasibility: Determines how feasible it is to implement a given check. This factor depends on

the following points:

o What does the corresponding C++ Core Guideline demand from a check?

o For non-C++-Core-Guideline checks, the check's function scope was estimated based

on the existing Cevelop check.

o Furthermore, it is influenced by the infrastructure that Clang offers to implement this

check as follows:

▪ E.g., if Clang already offers specific AST matchers needed for a check, its

feasibility is rated as "simple".

▪ If a new matcher function would need to be introduced or the check's

enforcement was estimated to be complex, the checks feasibility was estimated

to be "moderate".

▪ Also, if a lot of additional functionality apart from the AST matchers needs to

be implemented, feasibility was rated as "moderate" as well.

▪ If new dependencies or large-scale changes would need to be introduced to clang,

clangd or clang-tidy, the feasibility was rated as "hard".

• Benefit for Students: This criterion determines to what extent students would benefit from a

check for the given C++ Core Guideline. This criterion depends on two factors:

o First, for each potential check, it was assessed what impact disregarding the

corresponding C++ Core Guideline would have. This impact was divided into three

categories:

▪ Readability or performance and related issues (rated as "low").

▪ Program errors and error-prone code (rated as "medium").

▪ And ultimately, issues leading to Undefined Behavior (rated as "high").

The severer this impact, the higher was a check's benefit for a student estimated.

o Secondly, the likeliness of students getting in contact with the given C++ Core

Guideline was estimated and taken into account. This likeliness was estimated by the

thesis team based on personal experience and was continuously discussed with the

thesis's supervisor.

Depending on these criteria, the assessed checks were categorized, as it can be seen in Table 6. An

exhaustive list of the assessed checks together with rationale on their categorisation can be found in

Appendix D. It is important to note that before a check was implemented, its categorization was

discussed with the thesis's supervisor.

 23

 Benefit for Students
F
e
a
si

b
il
it

y

 Low Medium High

Simple C.44, C.37 C.45, CC, II, MACT ES.75, C.46

Moderate C.83, C.84, C.85 ES.74, ES.9, C.31,

SF.5, SIP

C.35

Hard SSI, C.20 ES.26 SF.8, MSI

Table 6: Assessment of Possible Checks to Implement

Primarily, checks which belong to the green-coloured group in Table 6 were the main targets to be

implemented and were treated with the highest priority. As a secondary priority, checks in fields with a

yellow filling were considered for implementation as well. Finally, checks in the red group would require

disproportionate effort compared to their benefit for students. These would only have been considered

for implementation if all other checks were successfully implemented.

 24

5. Architecture

The overall goal of this chapter is to visualize the architectural context in which the defined functional

requirements and the elaborated style checks were implemented. More precisely, it visualizes how

different LLVM tools, that were used to realize the selected solution strategy, interrelate (Section 5.1),

and gives an insight on clang-tidy's architecture (Section 5.2). Furthermore, in Section 5.3, the internal

structure of clang-tidy checks is briefly explained, which might be helpful to get a better understanding

of the implementation details described in Chapter 6.

5.1 Context of Used LLVM Tools

LLVM is a large project with tools for many different purposes. Figure 5 and the following sections

visualize which LLVM tools were used as part of this thesis to achieve the project goals described in

Section 1.3.

VS Code Plugin
clangd

(Language Server)

clang-tidy
(Linter)

Other LLVM Tools

Figure 5: Overview of Used LLVM Tools

5.1.1 Clang-Tidy

Clang-tidy is known as the linter tool of the LLVM project. It already offers a high number of existing

style checks, which can be extended by contributions. Clang-tidy analyses single source files against

custom rules defined in so called clang-tidy checks. If such rules are violated, it creates warnings in the

form of diagnostic messages. It is also possible to propose quick fixes (called FixItHints in clang-tidy)

to resolve detected issued.

5.1.2 Clangd

Clangd is the language server included in the LLVM project. This language server is responsible for

receiving Language Server Protocol (LSP) messages and commands from a language client, to trigger

the corresponding LLVM tool, and to return an answer (e.g., warnings and diagnostics) back to the

language client (a more comprehensive explanation of the LSP and its messages can be found in Section

2.1). By doing this, clangd enables using a great variety of LLVM tools inside an IDE. Thanks to the

LSP abstraction, to integrate tools like code completion, formatting, finding compilation errors, style

checking etc. into an IDE, only a minimalistic plugin for each IDE is needed alongside the clangd

language server.

5.1.3 Visual Studio Code Plugin

LLVM offers a plugin to integrate its own language server clangd into Visual Studio Code. This plugin

handles the communication with the clangd language server and displays the received diagnostics inside

the IDE. This plugin called "clangd" (its name overlaps with the language server's name) is available in

the official Microsoft Visual Studio Code Marketplace [36].

 25

5.1.4 Other LLVM Tools

Clangd is also able to utilize the functionality of other LLVM tools like Clang's static code analyser or

clang-format, to just name two examples. While LLVM's Visual Studio Code plugin might also display

warnings of such tools, they were not the main components concerned in this thesis. However, some of

them were utilized in this thesis. Thanks to clang-format, which formats C++ source files according to

defined rules, no consideration had to be given to formatting source code after changing it through the

implemented quick fixes, for example. Thereby, a separation of concerns was achieved. To give another

example of how LLVM tools are relevant for clang-tidy, clang-indexer could be utilized for checks and

fixes which concern multiple translation units at once, although this was not utilized in this thesis.

5.2 Clang-Tidy Architecture Overview

Of the LLVM tools described in the previous section, clang-tidy is the most important one for this thesis

because it is this tool that is going to be extended as part of the selected solution strategy. Therefore,

its internal structure will be elaborated for a better understanding in this section.

Heavily abstracted, clang-tidy consists of individual checks, modules, and a core component (see Figure

6). Checks implement all the programmatic logic to define custom coding style rules and to analyse if a

given source code violates this check's rule. Multiple checks are grouped and registered in modules. For

instance, a module called CppCoreGuidelinesModule exists in which all checks related to a C++ Core

Guideline rule are registered. A core component consisting of multiple files and classes forms the entry

point when clang-tidy is run. It is aware of all existing modules and triggers the creation and activation

of all checks that were enabled by the user.

Figure 6: Relation Between Clang-Tidy Checks and Modules [37]

While the structure shown in Figure 6 was abstracted for the sake of simplicity, Figure 7 visualizes a

more technically detailed overview of clang-tidy's architecture. There, it becomes visible that clang-tidy's

core components are built on top of functionality offered by clang, which itself relies on LLVM's core

components. The most relevant components of clang-tidy for this thesis are ClangTidyModules and

ClangTidyChecks (marked green in Figure 3). Both are used as base classes for concrete implementations

of modules (like the CppCoreGuidelinesModule) and its checks. To implement new checks (as it was done

as part of this thesis), a new check class which derives from the ClangTidyCheck base class must be

created. The classes contained in the clang-tidy core packet are, as mentioned earlier, responsible for

registering and instantiating activated checks and modules.

clang-tidy
core

module A

check 1

check 2

check N

module B

check 1

check 2

check N

clang-tidy
(Clang Tool)

 26

ClangTidyModuleRegistery

ClangTidyASTConsumerFactory

ClangTidyCheckFactories

ClangTidyModule ClangTidyCheck

ClangTidyASTConsumer

ClangTidyMain.cpp
(Entry Point)

Figure 7: Abstract Architecture Layer Diagram of Clang-Tidy

 27

5.3 Clang-Tidy Check Structure

A further zoom-in into the ClangTidyCheck class reveals a check's abstract internal structure, as it can

be seen in Figure 8. Each clang-tidy check either has a function to register abstract syntax tree (AST)

matchers, which are used to match parts of an AST, or a function to register pre-processor callbacks.

The latter can be used in scenarios where parts of a source code need to be analysed which would be

replaced by the pre-processor (e.g., include statements). Furthermore, each check implements a call-back

function which is executed each time a registered AST matcher or pre-processor callback finds a match

in a given source file. In this call-back function, the source code can be further analysed and diagnostic

messages as well as quick-fix proposals can be created and returned.

Figure 8: Internal Structure of Clang-Tidy Checks [17]

5.4 Clang-Tidy Activation Sequence

As it could be seen in Figure 7, clang-tidy consists of a variety of registries and factories which are

responsible for storing knowledge about available checks and for instantiating activated checks when

clang-tidy is executed for a source file. To make it understandable what these classes do when clang-tidy

is executed, Figure 9 visualises the most important parts of clang-tidy's start-up. It should be noted that

the leftmost component (i.e., ClangTidy), encapsulates logic which is part of LLVM libraries like

LibTooling. To maintain a reasonable size of the diagram, this logic was abstracted and not visualized

in detail.

AST matchers

Preprocessor hooks

Callback logic Diagnostics

clang-tidy check

 28

Figure 9: Sequence Diagram of Clang-Tidy Activation and Check Creation

The created ClangTidyASTConsumer (as seen in Figure 9) with its finder and all the activated checks will

eventually process a source file. Thereby, all analysed code parts that match a check's given matcher

query are registered. On a match, the corresponding check's callback logic is run to generate warnings

and quick fixes.

 29

5.5 Conclusion

The described architecture of clang-tidy provides several benefits. First, thanks to the usage of check

factories, new clang-tidy checks can be implemented without having to alter clang-tidy's core component.

New checks only need to be registered in their corresponding module. Because only the check's class

name and its header file are needed in this registration, no adjustments are necessary if the check's code

is changed in the future. Furthermore, since clang-tidy relies on libraries provided by Clang, it utilizes

the same interfaces as other Clang tools. This allows clang-tidy to be integrated in Clang's language

server clangd alongside other Clang tools. Lastly, clang-tidy utilizes Clang's LibTooling library, which

provides functionality to run Clang tools without having to install Clang. Therefore, besides being

included in clangd, clang-tidy can also be run as a standalone CLI tool.

On the other hand, this architecture also has a downside. Since style checks are a part of the clang-tidy

tool itself, they are built into clang-tidy's binary, which means that a plugin architecture is not

supported. Thus, it is not possible to develop checks in a separate plugin which could be integrated into

the off-the-shelf clang-tidy binary. Because of this, it is also not possible to add new style checks without

having to rebuild the clang-tidy binary.

Overall, the described advantages of clang-tidy's architecture overweigh its disadvantages in this thesis.

 30

6. Checks & Fixes

The main implementation part of this thesis consisted of implementing the checks which were evaluated

in Section 4.4. After the solution strategy's elaboration and the architectural context of this project were

explained in earlier chapters, this chapter covers the conducted implementation work. First, it is

described what Clang's AST matchers are, which form a fundamental component of clang-tidy checks

(Section 6.1). Then, the defined implementation and contribution workflow is introduced (Section 6.2).

Afterwards, it goes into detail on the implemented checks (Section 6.3) and fixes (Section 6.4). Since

their implementation details are often very different from each other, the explanations of a coding rule's

implemented check and its corresponding fixes were split into separate sections. Lastly, in Section 6.5,

it will be described how the created style checks and quick fixes were tested using clang-tidy's testing

infrastructure.

6.1 Clang AST Matchers

Before a file can be analysed with clang-tidy, it is compiled by Clang and an abstract syntax tree (AST)

representation of the file is generated. This AST resembles the written C++ code in an abstract manner.

Each of the code's declarations, statements and expressions is represented by a separate node in this

AST. AST matchers form one of the most important components of creating style checks in clang-tidy.

With these matchers, individual AST nodes can be matched based on their types, their attributes, their

names etc.

Clang provides a large variety of predefined AST matcher functions, which can be used in combination

with each other [31]. These functions form an embedded domain specific language (DSL), which can be

used to create complex queries to match specific nodes of a Clang AST. An example of such an AST

matcher query can be seen in Listing 1. The visualised query matches all AST nodes of type

cxxRecordDecl (i.e., classes, structs and unions) which have a method declaration called Foo. In most

clang-tidy checks, at least one such AST matcher query is defined to match an AST node that violates

the check's style rule.

cxxRecordDecl (has (cxxMethodDecl (hasName ("Foo"))))

Listing 1: Example of a Simple Clang AST Matcher Query

In the following sections, which describe the implementation of clang-tidy checks and fixes, such AST

matcher queries will be referenced and mentioned frequently. Through the explanations in this section,

these implementation details should be more understandable to readers.

6.2 Implementation and Contribution Workflow

This section explains what workflow was followed while creating a new clang-tidy check or fix during

this project. After it was made sure that the check or fix intended to be implemented does not already

exist, the following steps were conducted in sequence:

1. Create branch: On the forked LLVM project GitHub repository, a new branch for each

check/fix was created. Thanks to this, the new check's branch could easily be compared to the

project's untouched main branch. This simplified the process of creating a code differential for

a later review on Phabricator.

2. Create necessary files: To create a new check, clang-tidy offers a Python convenience script

called add_new_check.py. This script is a built-in part of the LLVM project and was not created

 31

or altered in this thesis. Among others, the check's C++ files, a corresponding test file and

documentation files are created when the script is run. In the check's C++ files, a basic class

and file structure is also created by this script. Running this script formed the foundation for

each implemented check.

3. Create build files: In the locally cloned LLVM project git repository, the project's build files

had to be created. These were needed so that after implementing the check and its tests, clang-

tidy and clangd could be built for manual testing. Furthermore, there is a dedicated build target

to run clang-tidy's integration tests (which will be described in Section 6.5). CMake was used

to create those build files from the project's predefined CMake lists. For this project, Microsoft

Visual Studio was used as the build system.

4. Exploring the AST and finding an AST matcher: A functioning AST node matcher is

the foundation of each clang-tidy check. But to be able to create such a matcher, first, it is

crucial to understand the AST structure of the code that should be matched. Using clang-check,

first, an AST for a problematic code snipped was generated for each check. This AST information

was then used to develop the needed AST matcher query. Its correctness was validated by using

clang-query and by running the developed query over the code at hand. Since clang-query can

be run as a standalone tool in the shell, it was not necessary to build clang-tidy to validate the

matcher query each time it was altered. Thus, the development process could be sped up rapidly.

5. Implement the check and its tests: After a functioning matcher was found in the previous

step, the check with its matcher(s) and the corresponding tests could then be implemented in

the C++ files, which were previously created by the described add_new_check.py Python script.

The testing procedure will be explained in detail in Section 6.5.

6. Write documentation: Besides describing what each test does in its header file,

documentation files, which are created by the add_new_check.py script for each clang-tidy

check, needed to be filled. There, the check's goal, its justification, and an example of its

behaviour on a code snippet were described. These files also form the basis of LLVM's website

listing any existing clang-tidy checks [38].

7. Review on Phabricator: After the check functioned as intended and was formatted according

to LLVM's coding guidelines, a request for feedback and approval on the newly created check

had to be submitted. For this, LLVM uses a software called Phabricator. There, a differential

which describes any made changes was to be uploaded. This so called "patch" was then reviewed

by authorized community members. Reviews may consist of multiple review-and-enhancement

cycles.

8. Publishing of the check: After the reviewers approved all the introduced changes, the new

check could have been published. This would be done by directly pushing these changes into the

LLVM project repository's main branch on GitHub. To prevent unsatisfactory code from being

pushed, only selected community members have the right to perform this push. In this thesis,

such a qualified person would have had to be asked to push the changes.

For a better readability, technical details as well as concrete commands were intentionally omitted in

the above list. A more comprehensive workflow description, which can be used by developers continuing

this project, can be found in Appendix E, Developer Guide.

 32

6.3 Implemented Checks

This section lists the checks that were implemented as part of this bachelor thesis. It covers functional

descriptions as well as implementation details and encountered challenges. In the following sections, the

implemented checks are described and identified by their abbreviation (e.g., CC for Cevelop's Cin-Cout

check) used in their evaluation (see Appendix D) or by their corresponding guideline number (e.g.,

ES.74).

6.3.1 CC - Standard Input and Output Usage Outside of Main Function

Problem Description

In C++, a simple way to write output to a screen and to obtain user input is to use the standard

library's iostream header file. This header file defines multiple objects like std::cin and std::cout. In

a source file which includes this header file, these objects can be used to generate output or to receive

user input, as it can be seen in Listing 2.

The pitfall of this approach is that it negatively affects the testability of the code which uses those

iostream objects. Since std::cin for instance is a global object, it cannot be replaced with a mocked

input stream during testing [39]. Therefore, it is taught in the C++ course at OST that std::cin,

std::cout etc. should only be used inside the main function. If other functions need an input or an

output stream, students are encouraged to use the std::istream and std::ostream base types and to

receive the stream objects as function arguments. Thus, during testing, test double stream objects can

be handed to the function what enables one to inspect the input/output behaviour of the function [39].

Listing 3 visualises this recommended way of using standard stream objects.

The goal of this check is to find any uses of predefined standard stream objects (i.e., cout, wcout, cerr,

wcerr, cin, wcin) and to check whether they are used inside the main function or not. If any uses are

found outside the main function, a diagnosis is created for the language server in response. As a result,

an IDE relying on clang-tidy checks would highlight those discouraged uses.

In answer to the feedback the check received on Phabricator, it was extended to also match C-like input

and output functions like printf, scanf, getchar etc. These functions are defined in the C++ cstdio

header file, respectively the stdio.h C header file.

#include <iostream>

#include <cstdio>

void some_function() {

 std::cout << "This should trigger the check."; // NOK, output cannot be tested.

 std::printf ("This should trigger the check."); // NOK, output cannot be tested.

}

int main() {

 std::cout << "This should not trigger the check."; // OK

 std::printf ("This should not trigger the check."); // OK

}

Listing 2: Improper Use of Standard IO Objects and Functions Outside main

 33

#include <iostream>

void some_function(std::istream & in, std::ostream & out) { // OK, test doubles can be injected.

 out << "This should not trigger the check.";

 int i{0};

 in >> i;

}

int main() {

 some_function(std::cin, std::cout);

}

Listing 3: Encouraged Way of Using Standard IO Objects

Implementation Details

As described in Section 5.3, this check consists of two main functions. One of which is responsible for

matching code parts in a source file, and a second one that examines which matcher matched and that

creates a fitting diagnostic message in response to each match.

For this check, three AST matchers had to be registered to filter out all the possible occurrences of cin,

printf and other unwanted objects and functions. First, all three matchers look for so called declaration

reference expressions, which are represented in the matcher query by the keyword declRefExpr. For

example, a call of a function or a reference to a variable are kinds of declaration reference expressions.

Then, the matched nodes are narrowed down by their name and only such with names like cin, cout

etc. are kept. Afterwards, matches are narrowed further by using more specific AST matchers. For

instance, while matching global standard stream objects like cin, only matches whose definitions are

located inside the standard namespace are kept, as it can be seen in Listing 4. Thus, less false positive

matches will be criticized. For example, if a user defines an object called cin in his or her own namespace,

it will not be criticized. This behaviour replicates how Cevelop's related style check would behave.

void AvoidStdIoOutsideMainCheck::registerMatchers(MatchFinder *Finder) {

 Finder->addMatcher(

 declRefExpr(to(varDecl(hasAnyName("cin", "wcin", "cout", "wcout", "cerr",

 "wcerr"),

 isInStdNamespace())),

 unless(forFunction(isMain())))

 .bind("StdStreamObject"),

 this);

 // …

}

Listing 4: AST Matcher for Global Standard Stream Objects

For the second use case of this check, i.e., discouraging the use of C-like functions like printf, two

separate matchers were necessary. The reason for this is that on this check's Phabricator review, it was

especially asked that not only direct function calls, but also indirect usages of the described functions

should be matched. An example of such an indirect usage can be seen in Listing 5. The complexly nested

abstract syntax tree of the latter use case asked for a separate matcher.

 34

 auto Print = &puts;

 Print("This is using stdio");

Listing 5: Example of an Indirect Usage of C-Like Functions

Limitations

First, the check had the limitation that it matched any AST declaration reference expression node that

was named cin, cout, etc. In a second version, this limitation was mitigated using Clang's AST matcher

named isInStdNamespace. Now, only the standard library's global stream objects are matched. As

described above, this behaviour was requested on this check's Phabricator review and corresponds to

how the equivalent check in Cevelop would behave.

6.3.2 ES.74 – Loop Variable Declaration Outside the Initializer Part of a For-Statement

Problem Description

A loop variable in a for-statement, which is declared outside of the for-statement's initializer part, could

lead to various problems. As shown in Listing 6, variable Counter is declared outside of a for-statement

and is never used anywhere outside of it. Due to that, its scope is larger than it should be. This has also

a negative effect on the readability of the given code. To address the problem in the provided example,

the variable declaration of Counter should be moved inside the for-statement’s initializer part.

void function() {

 auto Counter{0}; // bad, scope of the variable is larger than it should be

 for (Counter = 0; Counter < 5; Counter++) {}

}

Listing 6: Example for Problematic Code Violating Guideline ES.74

Possible Approaches

According to the ES.74 C++ Core Guideline, declaration reference expressions that meet all the following

conditions should be considered for improvement to address this problem [40]:

 Are within a for-statement.

 Are modified.

 Their declaration is outside the for-statement.

 There are no other declaration reference expressions of the same variable declaration outside of that

for-statement.

The first three of them could be implemented in a straightforward manner with provided AST matchers

as shown in Listing 8.

To meet the fourth condition, no existing AST matcher could be found. The difficulty with this condition

was in distinguishing if variables, which are declared outside of a for-statement but are used within it,

are also used somewhere else in the source code. This would justify their declaration outside of the for-

statement. To detect such variables, various approaches were tried out.

 35

A first idea was to extend the matcher from condition three to match all declaration reference expressions

which reference the matched variable declaration. During the implementation of this idea, it was found

that no possibility exists to query such declaration reference expressions based on a variable declaration

(e.g., with a function that could be called on the variable declaration object). Therefore, this approach

could not be used to implement condition four.

Another approach could have been to start searching from a specific node and to find all descendant

nodes which are declaration reference expressions, and which are not located inside the matched for-

statement from condition one. A suitable starting point would have been the translation unit node.

There is only one translation unit declaration in a generated AST, because it represents the root node

of the tree. Therefore, every declaration reference expression would have been found. Another possible

starting node could have been a compound statement that is an ancestor of the matched variable

declaration. In comparison to the declaration unit, the search scope would be much smaller, because it

is technically not possible that a declaration reference expression, which references the variable

declaration, is outside of this compound statement.

The project team implemented the latter approach by using AST matchers. In detail, it was tried to

search for the next ancestor compound statement of the variable declaration and starting from this node,

to find all declaration reference expressions which are not in the for-statement and reference the matched

variable declaration from condition three. During the execution it became clear that the implementation

had a conceptual problem. As seen in Listing 7, the matcher inside the varDecl-matcher needs access to

the bound variable declaration. Since this binding has not been done yet during the resolving of the

inner matcher, this variable declaration could not be accessed and the whole matcher failed.

void DeclareLoopVariableInTheInitializerCheck::registerMatchers(

 MatchFinder *Finder) {

 Finder->addMatcher(

 declRefExpr(

 hasAncestor(forStmt().bind("ForStmt")),

 anyOf(hasAncestor(unaryOperator().bind("Operator")),

 hasAncestor(

 binaryOperator(isAssignmentOperator()).bind("Operator"))),

 to(varDecl(

 hasAncestor(compoundStmt(hasDescendant(

 declRefExpr(to(varDecl(equalsBoundNode("VarDecl"))))))),

 unless(hasAncestor(forStmt(equalsBoundNode("ForStmt"))))

).bind("VarDecl")

)

), this);

}

Listing 7: Code Example of an Implementation Approach

Therefore, writing an own matcher, as described in Clang’s documentation [31], which fits our needs

was considered. The advantage of this concept, in comparison to the approach described above, is that

inside such a matcher, it is possible to access the matched node [41]. Unfortunately, the implementation

of this approach led to some errors and challenges. When applying the created matcher, clang-tidy

always crashed. It was found that the reason for this was the usage of predefined AST matchers provided

by Clang inside the self-written one. Because no solution could be found in a timely manner, the

implementation of this approach was cancelled after consultation with the thesis's supervisor.

 36

It should be mentioned that using such self-written matchers would have had a hidden downsize when

working with clang-query as well. As described in the Developer Guide (Appendix E), clang-query is a

useful command line tool to test AST matcher queries during the development process of a new check.

Owed to the fact that clang-query does not have any knowledge of self-written matcher functions,

potential matcher queries which include custom matchers could not have been tested with clang-query.

Finally, a RecursiveASTVisitor class was used to overcome challenges accessing the matched variable

declaration node. This class inherits from a given RecursiveASTVisitor class as described in LLVM’s

documentation [42]. It uses a visitor-pattern-like approach to visit nodes inside Clang’s AST. When a

specific type of node is visited, a predefined function is called, which was overwritten with custom visiting

logic. With this functionality, it was possible to implement condition four as desired.

Implementation Details

As already mentioned, the first three conditions could be implemented with existing AST matchers as

shown in Listing 8. The matcher was split in three parts, of which each of them represents one of the

conditions listed in this section's Possible Approaches section.

void DeclareLoopVariableInTheInitializerCheck::registerMatchers(

 MatchFinder *Finder) {

 Finder->addMatcher(

 declRefExpr(

 hasAncestor(forStmt().bind("ForStmt")), 1)

 anyOf(hasAncestor(unaryOperator().bind("Operator")),

 hasAncestor(2)

 binaryOperator(isAssignmentOperator()).bind("Operator"))),

 to(varDecl(hasAncestor(compoundStmt().bind("Compound")),

 unless(hasAncestor(forStmt(equalsBoundNode("ForStmt"))))) 3)

 .bind("VarDecl"))),

 this);

}

Listing 8: Final AST Matcher for ES.74 Check

To cover the fourth condition, the described visitor-pattern-like approach was implemented. Because of

this, a new class OutsideForStmtVisitor, which inherits from RecursiveASTVisitor, was created. As

described earlier, it is possible to overwrite hook functions of the inherited class. These hook functions

are executed when a specific node type is visited while traversing through the AST. In this case,

VisitDeclRefExpr [43] was used and overwritten with custom logic, as this function is executed each

time a declaration reference expression is visited. The function was implemented as shown in Listing 9.

 37

private:

 bool VisitDeclRefExpr(DeclRefExpr *D) {

 if (const auto *To = dyn_cast<VarDecl>(D->getDecl())) {

 if (To == MatchedDecl &&

 !isInsideMatchedForStmt(MatchedResult, DynTypedNode::create(*D))) {

 IsOutsideMatchedForStmt = true;

 return false;

 }

 }

 return true;

 }

Listing 9: Hook Function VisitDeclRefExpr

The implementation of the VisitDeclRefExpr function checks if the currently visited declaration

reference expression has a variable declaration which coincides with the one matched with the AST

matcher query from Listing 8. To verify that the declaration reference expression is not inside the also

already matched for-statement, a self-written function isInsideMatchedForStmt was created. If these

two conditions are fulfilled, no more traversing is needed as it is proved that a declaration reference

expression exists outside the for-statement. Since this violates the C++ Core Guideline rule, the AST

traversal is stopped by returning false in the VisitDeclRefExpr function.

Possible Improvements / Known Limitations

Although the check fully implements the ES.74 C++ Core Guideline, the following enhancements were

determined:

 No fix is provided. This check could be extended with a fix which automatically moves a variable

declaration into the for-statement, where it is used exclusively.

 Pointer references are not covered. The check only finds variables which are modified by a unary or

by a binary assignment operator.

 Variable declarations are only matched if they reside inside a compound statement. It was decided

to lay the focus on local variables, since a global variable could be used in another translation unit,

which makes its dependencies unclear.

Result

The first version of this check implemented the same functionality as the corresponding check from the

GSLator Cevelop plugin. However, this functionality was not enough to fully cover the ES.74 C++ Core

Guideline. Due to that, Phabricator reviewers demanded a complete reimplementation of the check.

Thanks to the received feedback and the new implementation, the check is now even an improvement

to the current one available in Cevelop's GSLator plugin.

 38

6.3.3 C.35 – Virtuality of Base Class Destructors

Problem Description

This check addresses an issue of using inheritance and object-oriented design principles regarding the

deletion of a derived class using a pointer of its base class type. This could result in Undefined Behavior

if the base class's or struct's destructor is not virtual, as it is illustrated in Listing 10 [40]. There, it is

visible that a non-virtual destructor of a base struct is no problem when a created object has the derived

struct as type. Both the base struct's and the derived struct's destructors are called upon deletion of the

object. However, in a polymorphic scenario, where a C++ smart pointer of type Base points to an object

of type Derived, only the base struct's destructor is called. Since the base struct's destructor is not

specified as virtual, no dynamic polymorphism happens when it is called. Hence, the destructor call is

not dispatched to the destructor of the derived struct. This means that data members of struct Derived

are not cleaned up, which could lead to an Undefined Behavior of the program.

// includes

struct Base {

 ~Base(){

 std::cout << "Destruction of Base. \n";

 } // public non-virtual destructor

 // ...

};

struct Derived : Base {

 // data members

 ~Derived(){

 std::cout << "Destruction of Derived. \n";

 }

};

int main() {

 {

 std::cout << "Creating object of type Derived. \n";

 Derived foo{};

 }

 {

 std::cout << "\nCreating pointer of type Base, pointing to a Derived object. \n";

 std::unique_ptr<Base> bar = std::make_unique<Derived>();

 }

}

Will generate the following output:

Creating object of type Derived.

Destruction of Derived.

Destruction of Base.

Creating a smart pointer of type Base, pointing to a Derived object.

Destruction of Base.

Listing 10: Problematic Inheritance with a Non-Virtual Base Class Destructor

 39

To circumvent this problem, the C++ Core Guideline C.35 suggests that "a base class destructor should

be either public and virtual, or protected and non-virtual" [40]. Thereby, every class or struct with any

virtual function is seen as a (potential) base class [40]. Specifying a base class's destructor as virtual

ensures that a derived class's destructor is also called in polymorphic scenarios (as seen in Listing 10).

Thus, the memory used by the derived class is cleaned up properly and no Undefined Behaviour happens.

The second part of the guideline states that destructors which are specified as protected should not be

made virtual. This is reasoned by the C++ Core Guidelines on the grounds that specifying every base

class destructor as virtual is unnecessary [40]. Due to the protected visibility of a base class's destructor,

only derived classes can call this destructor. If an object of the base class would be created outside of

this class hierarchy, they cannot be destructed, and a compiler error would be generated. Thus, a scenario

in which a base class pointer points to an object of a derived class (as it can be seen in Listing 10) is not

possible. Hence, it is superfluous to make the base class's destructor virtual.

Implementation Details

Prior to implementing the check, an analysis of a problematic code's AST was done to find the correct

AST node that needed to be matched by this check. Through this analysis, it became visible that the

uppermost nodes that needed to be matched (i.e., class and struct definitions containing a problematic

destructor) were represented by a cxxRecordDecl node in clang's AST.

The general functionality of the planned matcher is to find all classes and structs (cxxRecordDecls),

which have at least one member function that is virtual and whose destructor is either public and non-

virtual or protected and virtual. As described earlier, a class or struct with at least one virtual function

is seen as a (potential) base class by the C++ Core Guidelines [40]. Although cxxRecordDecls represent

not only structs and classes but also unions, it was not necessary to narrow all found cxxRecordDecls

nodes to only keep such representing structs and classes. This is because unions cannot have virtual

member functions [44]. Thus, they are not matched by the resulting matcher query. The resulting

matcher query can be seen in Listing 11.

To achieve the matcher expression described above (see also Listing 11), existing AST matchers, which

are part of Clang's AST matcher API, were used.

Derived classes are also covered by the resulting matcher. However, they represent an edge case in this

check because of the way they inherit their base class's destructor. For instance, if a derived class does

not have a user-defined destructor, the implicitly compiler-generated one is publicly visible. If one of its

base classes' destructors is specified as virtual (independent of its visibility), the derived class's destructor

inherits this virtuality [45]. Hence, the derived class's destructor is public and virtual and is not marked

by this check. Otherwise, it is marked. No special effort was needed to cover this edge case. However, it

was seen as worth noting since this behaviour might not be obvious otherwise.

 40

void VirtualClassDestructorCheck::registerMatchers(MatchFinder *Finder) {

 ast_matchers::internal::Matcher<CXXRecordDecl> InheritsVirtualMethod =

 hasAnyBase(hasType(cxxRecordDecl(has(cxxMethodDecl(isVirtual())))));

 Finder->addMatcher(

 cxxRecordDecl(

 anyOf(has(cxxMethodDecl(isVirtual())), InheritsVirtualMethod),

 unless(anyOf(

 has(cxxDestructorDecl(isPublic(), isVirtual())),

 has(cxxDestructorDecl(isProtected(), unless(isVirtual()))))))

 .bind("ProblematicClassOrStruct"),

 this);

}

Listing 11: Created AST Matcher Function for C.35

Result

For destructors that violate rule C.35, now, a diagnosis message is generated. It indicates to users that

a struct or a class should either be made public and virtual or protected and non-virtual. For the user's

convenience, this message also states what the destructor's current visibility and virtuality is.

Additionally, if a destructor of a base class or struct is found to be private, the diagnosis message informs

programmers that thus, the type will not be usable and that it should be considered making it public

and virtual or protected and non-virtual.

It should be noted that for this check, quick fixes were implemented as well. Their implementation is

described in Section 6.4.2.

6.3.4 ES.75: Avoid Do-Statements

Problem Description

In comparison to a while-statement, a do-statement has its condition at the end of the statement. Thus,

the first iteration through a do-statement is not validated by its condition. According to the ES.75 C++

Core Guideline [40], this could lead to two major problems: readability and error-proneness. First, the

condition could easily be overlooked while reading the code, because of its position at the end of the

statement. Furthermore, the first iteration without checking the condition could be misleading.

Implementation Details

The ES.75 C++ Core Guideline describes the enforcement of this check with flagging all do-statements.

Clang provides an AST matcher for do-statements. Because of that, the implementation was

straightforward.

After uploading the check to Phabricator, a reviewer mentioned the practice of using do-statements in

macro definitions. C++ programmers could potentially use do-statements to wrap multiple statements

inside a macro. This prevents issues like falsely set semicolons or single line if-statements when the macro

is resolved by the pre-processor [46]. Such do-statements normally have a falsy condition to not have

any impact on the given code.

 41

At the time of submitting this thesis, Clang provided no AST matcher function which could match

statements that are inside a macro definition. Because of this, a custom AST matcher isInMacro had to

be used, as seen in Listing 12 and Listing 13.

AST_MATCHER(DoStmt, isInMacro) { return Node.getBeginLoc().isMacroID(); }

Listing 12: Custom AST Matcher isInMacro

void AvoidDoWhileCheck::registerMatchers(MatchFinder *Finder) {

 Finder->addMatcher(

 doStmt(unless(allOf(

 isInMacro(),

 hasCondition(ignoringImpCasts(anyOf(

 cxxBoolLiteral(equals(false)), integerLiteral(equals(0)),

 cxxNullPtrLiteralExpr(), gnuNullExpr()))))))

 .bind("doStmt"),

 this);

}

Listing 13: AST Matcher for ES.75 Utilizing a Self-Written Matcher

The implementation of isInMacro was found in the source code of an already existing clang-tidy check

[47] and could be reused.

Result

The newly created clang-tidy check now flags every occurrence of a do-statement inside a C++ source

code file. If a programmer uses do-statements inside macros, for the described reason, the statements are

not highlighted. Beside of this desired exception, the created matcher does fully implement the ES.75

C++ Core Guideline. Listing 14 visualizes how the check behaves.

#define MACRO do {} while(false) // Is not flagged

void function() {

 auto Counter{0};

 do { // Is flagged

 Counter++;

 } while (Counter < 10);

}

Listing 14: C++ Code Which Shows ES.75 Check's Behaviour

 42

6.3.5 C.46: Explicit Single Argument Constructors

Problem Description

In C++, when a class object is initialized with a value of an unrelated type, a converting constructor3

of the destination object's class can be used to initialize it. Thereby, the given value is implicitly

converted into the destination class's type [48]. This behaviour might be intentional in certain scenarios,

e.g., as illustrated in Listing 15. However, this conversion can also happen in scenarios where such a

conversion is not intended, as it can be seen in the example in Listing 16. There, besides a MyString

class, both a print function that takes a MyString object and one that takes a string literal exist. In this

example, assume that a user of the print function wanted to print a one-character long string "x".

Accidentally, he passes the letter x as a character literal instead of as a string literal. Since the character

type can be converted to an integer but not to a string literal, the former print function is called, and

'x' is implicitly converted to an empty MyString object. Through this implicit conversion, surprisingly

for the caller, an empty MyString object is printed instead of the letter x.

struct X {

 X(int);

 X(const char*);

};

void f(X arg) {

 // Here, it is intended to create an object of type X

 X a = 1; // a = X(1)

 X b = "Foo"; // b = X("Foo");

}

Listing 15: Example of an Intended Type Conversion

class MyString {

public:

 MyString(int n){

 // allocate n bytes to the MyString object

 }

};

void print(const MyString &a) { /* ... */ }

void print(const char *a) { /* ... */ }

int main(){

 print('x'); // User intended to call: print("x");

} // It is neither clear nor intended that a MyString object is instantiated

Listing 16: Example of Unintended Type Conversion

3 Any non-explicit constructor is called a converting constructor [48]

 43

Such unintended conversions can lead to unexpected behaviour of a program and to bugs which are,

based on the thesis team's own experience, especially hard to debug for unexperienced C++

programmers.

To prevent unintended conversions, C++ Core Guideline's rule C.46 proposes to declare single-argument

constructors as explicit. If a class's constructor is declared as explicit, a user is forced to explicitly cast

values to this class's type, if s/he wants to convert it (e.g., by using static_cast). Otherwise, a compiler

error is generated (which is a good thing here, since it protects programmes from unintended

conversions).

Possible Approaches

In a first analysis, it was found that no current clang-tidy check implements the C++ Core Guidelines

rule C.46. However, after work on its implementation had begun, it was found that Google's google-

explicit-constructor clang-tidy check already implements parts of the given guideline rule. However, this

check did not cover all parts of rule C.46's enforcement specified in the C++ Core Guidelines. Namely,

the enforcement specifies that in some cases, implicit conversions through constructors might be wanted

or needed. Therefore, it shall be possible to exclude such constructors and classes from generating

warnings by listing them in a positive list [40].

To completely comply with the C++ Core Guidelines, one possible approach would have been to

implement a new and separate check for this rule. However, since this and Google's check would have

shared the same logic, this would probably have led to duplicated code (and surely to duplicated logic).

Since duplicated code is a well-known code smell which should be avoided, this approach was not

desirable.

Instead, a second approach in which code from Google's check was to be reused somehow was aimed for.

An analysis on Google's google-explicit-constructor check revealed that most of the check's logic was

contained in private member functions. Therefore, the possibility to include the check's header file in a

new check and to reuse its functions by linking the two check's implementation files fell away. From

further research, it was found that clang-tidy offers the possibility to add aliases for existing checks.

These aliases may be created with a new name and in a clang-tidy module different from the existing

check's module. In this rule's scenario, this meant that such an alias could be created in clang-tidy's

cppcoreguidelines module with an appropriate name, pointing to Google's google-explicit-constructor

check. To implement the demanded whitelisting functionality, adding a user-configurable clang-tidy

option to the pointed to check was evaluated to be promising.

Implementation Details

Since the logic to match problematic constructors already existed in Google's google-explicit-constructor

check, no initial AST analysis was necessary. Therefore also, no AST matchers had to be implemented.

Like every regular clang-tidy check, a check alias must be registered in a ClangTidyCheckFactory in its

corresponding clang-tidy module. Normally, when creating a new check, it is automatically registered in

the specified module by the add_new_check.py convenience script, as described in Section 6.1. In this

scenario however, since only an alias was to be created for a C++ Core Guideline rule, this script could

not be used and the registering of the alias in the CppCoreGuidelinesTidyModule had to be done

manually. Thereby, the only difference in registering an alias to registering an effective check was that

the pointed-to check is accessed by including its namespace. Logically, the foreign check's header file

had to be included as well. Listing 17 gives an example of how this check's alias was registered.

Afterwards, it was already possible to activate Google's google-explicit-constructor check by using its

alias, cppcoreguidelines-explicit-constructor-and-conversion.

 44

// CppCoreGuidelinesTidyModule.cpp

// ...

#include "../google/ExplicitConstructorCheck.h"

#include "AvoidGotoCheck.h"

// ...

/// A module containing checks of the C++ Core Guidelines

class CppCoreGuidelinesModule : public ClangTidyModule {

public:

 void addCheckFactories(ClangTidyCheckFactories &CheckFactories) override {

 // Registering a module-local check:

 CheckFactories.registerCheck<AvoidGotoCheck>(

 "cppcoreguidelines-avoid-goto");

 // Registering an alias to a foreign check:

 CheckFactories.registerCheck<google::ExplicitConstructorCheck>(

 "cppcoreguidelines-explicit-constructor-and-conversion");

 // ...

 }

}

Listing 17: Registering of an Alias to a Foreign Check

As described before, what was still needed to comply to the C++ Core Guideline rule C.46 was the

possibility to ignore certain constructors from being flagged. Since the created check alias does not have

any logic (and not even an own C++ file), this functionality had to be added to the pointed-to Google

check. Clang-tidy options were used to allow users to specify a semicolon separated list of constructors

which shall be ignored by the check. The existing check's AST matcher was extended so that upon

matching problematic (non-explicit, single argument) constructors, their names are checked against this

list. If it occurs in the user specified ignore list, they are not matched, and no warnings are generated.

Users of the check can define this ignore list as a semicolon separated list of class names in their clangd

or clang-tidy configuration file.

Result

Thanks to the implemented alias, Google's google-explicit-constructor check can now also be used with

its C++ Core Guidelines alias, cppcoreguidelines-explicit-constructor-and-conversion. This helps

programmers to find the check for C++ Core Guideline C.46 where it would be expected, which is in

the CppCoreGuidelines module of clang-tidy. Furthermore, non-explicit single argument constructors

that are intentionally used for implicit conversions can now be listed in a semicolon separated ignore

list. Constructors of classes contained in this list do not trigger warnings and thus, programmers have

to cope with less false-positive warnings.

 45

6.3.6 C.164: Avoid Implicit Conversion Operators

Problem Description

As already described in Section 6.3.5 for C.46's check, implicit conversions of an object from one type to

another type can be intended and essential in certain cases (e.g., double to int conversion). However,

they often cause surprises [40]. Apart from conversion destructors (as described in Section 6.3.5), so

called conversion operators can be used as well to convert from one type to another. To prevent unwanted

implicit conversions that could lead to an unexpected program behaviour and hard to spot bugs,

conversion operators should be specified as explicit too.

Possible Approaches

During the implementation of guideline C.46's check, it was found that Google's google-explicit-

constructor check also implements guideline C.164 nearly exactly. However, other than described in

C++ Core Guideline's enforcement for C.164 [40], not all but only non-explicit conversion operators are

marked by Google's check. Cross-checking this behaviour with the corresponding check in Cevelop

revealed that they both function the same. Since apart from C.164's enforcement, the remaining parts

of its guideline suggest preferring explicit conversion operators rather than doing without them

completely, the enforcement was seen as misleading. After consultation with the thesis's supervisor, the

guideline's enforcement was rewritten and the clarified one was proposed to the C++ Core Guidelines

community in form of a pull-request. More details about this pull-request can be found in Section 7.3.2.

The clarified enforcement now states that only non-explicit conversion operators should be flagged.

Since Google's check complies to the clarified enforcement of guideline C.164, no additional functionality

had to be implemented. To make Google's check available under a name from clang-tidy's

CppCoreGuidelines module, it was seen as practical to create an alias to Google's google-explicit-

constructor check with a C++ Core Guidelines related name.

Implementation Details

Since Google's google-explicit-constructor check covers both C++ Core Guidelines C.46 and C.164 and

since the topic of both are closely related, only one alias was created for both. As already described in

Section 6.3.5, the created alias is called cppcoreguidelines-explicit-constructor-and-conversion. As C.46's

section above already discusses details of how this alias was implemented, it is not described again in

this section to avoid duplication. Please refer to Section 6.3.5 for further implementation details.

Additionally, functionality was added to enable users to ignore conversion operators by specifying their

name in a semicolon-separated list in this check's clang-tidy options.

Limitations

On this check's Phabricator request, reviewers mentioned that templated conversion operators should

also be ignorable. Listing 18 shows such a templated conversion operator and its corresponding AST. As

it is visible there, the main problem of ignoring templated conversion operators is that their names in

the AST are different from their names visible in the source code (type-parameter-0-0 instead of Ty in

Listing 18). Therefore, to ignore such conversion operators, users currently have to specify their type-

parameter-m-n names in the check's options. These names are also displayed in Google's check's

diagnostic messages and are therefore known to the user. While this works, it would be more convenient

for users to use the operator's name they see in their source code. However, no practicable way was

found to implement this. It was therefore decided to accept this limitation in favour of a robust and

maintainable check.

 46

struct Foo {

 template <typename Ty>

 operator Ty() const; // How to silence the diagnostic here?

};

// AST:

`-CXXRecordDecl 0x19bd2712470 <C:\HSR\Semester6\BA\llvm-project\..\playground\test\blank.cpp:1:1,
line:4:1> line:1:8 struct Foo definition

 |-DefinitionData pass_in_registers empty aggregate standard_layout trivially_copyable pod trivial
literal has_constexpr_non_copy_move_ctor can_const_default_init

 | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr

 | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param

 | |-MoveConstructor exists simple trivial needs_implicit

 | |-CopyAssignment simple trivial has_const_param needs_implicit implicit_has_const_param

 | |-MoveAssignment exists simple trivial needs_implicit

 | `-Destructor simple irrelevant trivial needs_implicit

 |-CXXRecordDecl 0x19bd2712590 <col:1, col:8> col:8 implicit struct Foo

 `-FunctionTemplateDecl 0x19bd2712878 <line:2:3, line:3:17> col:3 operator type-parameter-0-0

 |-TemplateTypeParmDecl 0x19bd2712620 <line:2:13, col:22> col:22 referenced typename depth 0
index 0 Ty

 `-CXXConversionDecl 0x19bd27127d0 <line:3:3, col:17> col:3 operator type-parameter-0-0 'Ty ()
const'

Listing 18: Templated Conversion Operator Alongside Its AST

Result

The implemented alias helps programmers to find Google's check for C++ Core Guideline C.164 in

clang-tidy's CppCoreGuidelines module, where it would probably be expected. Thus, it is also clearer

that this guideline is already implemented what might save a programmer from reimplementing it.

Furthermore, apart from using the alias directly, Google's google-explicit-constructor check is also

activated when a user of clang-tidy activates all cppcoreguidelines-* checks.

 47

6.3.7 C.45: Default Constructors that Only Initialize Data Members

Problem Description

Unexperienced developers might not primarily think about optimization and readability when defining

a new class type in C++. As the thesis team knows from their own visit of OST’s C++ module, creating

classes is a task often done in the exercise lessons. The C++ Core Guideline C.45 [40] with its

enforcement tries to support implementing a new class, especially with creating a constructor or

initializing data members. According to C.45, a default constructor should do more than just initialize

class member variables. If a default constructor does nothing more than that, it could be left out or be

defaulted and the class member could be initialized with in-class member initialization instead. This

forces the compiler to create the default constructor by itself, which the C++ Core Guideline assumes

to be more efficient. This does also improve readability and prevents duplication. As seen in Listing 19,

after enforcing C.45 all class data members are initialized at one place. Also, if the implicitly default

constructor is used, a developer cannot initialize a class member with an in-class member initialization

and a constructor list initialization at the same time which would lead to duplicated code. Furthermore,

the in-class member initialization would be ignored in that case, which a developer might not be aware

of [49].

Without C.45 Enforcement With C.45 Enforcement
class C {
 int x;
 int y{2};
 int z;

 // more code

 C(): x{1}, z{3} {}
};

class C {
 int x{1};
 int y{2};
 int z{3};

 // more code

 C() = default; // could also be omitted
};

Listing 19: Cod Example to Explain C.45

When the default constructor is not defined explicitly by a developer, the enforcement could also lead

to cleaner code, as no code for an unnecessary default constructor will pollute the class definition.

Possible Approaches

By interpreting the C.45 C++ Core Guideline, the following conditions should be fulfilled so that a

constructor could be omitted:

 Constructor is a default constructor.

 Constructor does only initialize class members with constants.

If a constructor declaration meets these conditions, it should be flagged, and a diagnostic message should

inform the programmer about the violation.

Before work on an own implementation of a check was begun, it was discovered that an existing check

for the same topic exists. However, it did not implement rule C.45 exactly. The clang-tidy check

modernize-use-default-member-init [50] does flag class member variables which are initialized by a

constructor’s initializer list, and which do not have an in-class initialization. Also, it provides a fix for

each class member to convert the initialization from the constructor list to an in-class initialization.

Although this check does not focus on flagging a default constructor which does only initialize class

members, its fix would be almost what a fix for a C.45 check would look like. The only exception is that

it would be more convenient to convert all affected class members at once. While testing the found

 48

modernize-use-default-member-init check, it was noticed that its fix does not work correctly in Visual

Studio Code. For example, if the provided fix is manually applied in Visual Studio Code, the initialization

value is dropped and characters like , or : from the initializer list were not deleted as they should be

(as seen in Listing 19, without C.45 enforcement).

As usual for a clang-tidy check, modernize-use-default-member-init has a test file which contains test

code to verify its functionality. After consultation with the thesis's supervisor, it was decided to find out

if this test file runs successfully. If this was not the case, fixing the current existing check’s fix should be

considered. After analysis, no obvious error was found in modernize-use-default-member-init’s source

code, and the executed test file worked correctly. As it was not figured out how the described problems

in Visual Studio Code could be fixed, it was decided to implement a new check and a corresponding

quick fix. Several advantages of implementing a new check also led to this decision. First, use-default-

member-init does not flag a constructor declaration which violates rule C.45. Secondly, the provided fix

of modernize-use-default-member-init is not enough for a C.45 enforcement as it does not delete or set a

default constructor to =default. Furthermore, with modernize-use-default-member-init’s fix, every class

member which is initialized over a default constructor’s list initializer needs to be fixed manually, which

is not practical. It would be more feasible if a fix on a flagged constructor declaration could convert all

list initializers at once. Finally, the check is listed under the clang-tidy module modernize. Therefore, its

functionality is not available if a developer enables the cppcoreguidelines style check module. And as the

check does not exactly cover C.45, creating a cppcoreguidelines alias was not an option.

Within mind of the conditions mentioned at the beginning of this section and browsing through Clang’s

AST matcher reference, it was assessed that a new check to enforce rule C.45 could mostly be done with

predefined AST matchers.

Implementation Details

A constructor initializes a class member variable in its initializer list or inside its body. It was decided

to first lay the focus on the initializer list as this is the more widely variant and since it is also listed in

the C.45 Core Guideline as its primary example.

While analysing an AST of a code example as seen in Listing 20, it was discovered that when a class

member is initialized using in-class member initialization (and not by the constructor), a

CXXCtorInitializer node is created as a child node of the given construction declaration as well. This

was a challenge which had to be solved since a constructor should not be matched if only in-class member

initializations are used. The first tried solution to overcome this problem was to narrow the matcher

query to only match if the CXXCtorInitializer has a child node which is a InitListExpr. As a

CXXCtorInitilaizer which was generated for an in-class member initialization does have a

CXXDefaultInitExpr as its child instead, only the desired constructors would be matched. After further

development, it was discovered that if an initialiser list member uses parenthesis instead of braces,

Clang’s AST handles such members differently than the ones with braces. There, the AST does not

contain an InitListExpr for members using parentheses. Instead, a child node for the initialization value

type is created (to be seen as IntegerLiteral in Listing 20). This prevented narrowing the matcher

query to InitListExpr nodes, as using parenthesis is also valid to be used in an initializer list [51].

 49

Code Example AST Representation

class C {
 int x;
 int y{2};
 int z;

 C(): x{1}, z(3) {}
};

`-CXXConstructorDecl 0x1c56507a790 <line:9:3, col:20> col:3 ...
 |-CXXCtorInitializer Field 0x1c56507a5b8 'x' 'int'
 | `-InitListExpr 0x1c56507a998 <col:9, col:11> 'int'
 | `-IntegerLiteral 0x1c56507a918 <col:10> 'int' 1
 |-CXXCtorInitializer Field 0x1c56507a628 'y' 'int'
 | `-IntegerLiteral 0x1c56507aa08 <col:16> 'int' 2
 |-CXXCtorInitializer Field 0x1c56507a698 'z' 'int'
 | `-CXXDefaultInitExpr 0x1c56507aa78 <col:3> 'int'
 `-CompoundStmt 0x1c56507aad8 <col:19, col:20>

Listing 20: Code/AST Example to Explain an Implementation Detail.

To finally overcome this challenge, it was decided to check if the corresponding class data member,

which is initialized by the constructor in its initializer list, is already initialized with an in-class member

initialization. If this is the case, the matcher query ignores the CXXCtorInitializer node.

While finalizing the check's matcher query, two other existing checks were found to be helpful:

 cppcoreguidelines-prefer-member-initializer: Finds class member initializations inside a constructor’s

body and provides a fix to convert them to default member initializations [52].

 modernize-use-equals-default (has an alias hicpp-use-equals-default): Replaces empty bodies of special

member functions like constructors with =default [53].

The functionality they provide could help to implement the check and a fix for C.45. Either the ability

to search if the body of a default constructor contains initializations of class members and if possible,

change them to in-class member initializers. Or further, to set a constructor explicitly defaulted.

Before starting to implement a suitable fix for this check, another attempt was made to find out why

the existing fixes of modernize-default-member-init do not work as expected. It turned out that the fixes

do work, but only when executing clang-tidy as standalone tool with the parameter --fix. This explains

why no error in the code could be found and why the test file could be executed successfully. However,

inside Visual Studio Code, the check's fixes do still not work as expected.

This discovery and the two found existing checks mentioned above changed the future outcome of this

check. As discovered, apart of flagging a constructor declaration which violates C.45, applying all fixes

of the mentioned checks step by step successfully enforces C.45. A possible approach for the C.45 check

could be to copy the source code of the mentioned checks to provide the same functionality. Since this

would mean that code duplication between the checks would occur and the maintainability of the copied

functionality would be worsened, this could not be a solution. Instead, the current check was submitted

to Phabricator with a question asking about how the situation should be handled. Possible answers of

the community might be a recommendation to activate all the three found checks or proposal to extend

one of them and to integrate the other ones.

Additionally, it was tested if a cppcoreguideline alias could be created which combines three different

checks under one check name. No satisfying result could be achieved, since only the last registered alias

is adapted. After a research inside the source code of the function that registers an alias, it was found

that this behaviour seems to be intentional by design.

Result

The current version of the check was contributed to Phabricator. It successfully flags default constructor

declarations which have at minimum one list initializer and an empty function body (which means that

they do not do more than initializing a class member with the list initializer). No fix was implemented

because clang-tidy already contains checks which implement most of the needed logic. Also, finding

 50

initializations inside the function body is covered by one of those checks. In favour of less code duplication

and better maintainability, the check was not further extended, and no fix was implemented.

Since some functionality which this check could use already exists in other checks, as described above,

it was asked on Phabricator how to proceed with the implementation of this check. The community’s

answer could be interesting for further check implementations, where needed functionality is also found

in existing checks. However, until the end of this project, no answer to this question was received.

Furthermore, a detailed bug report for the malfunctioning modernize-default-member-init fix inside

Visual Studio Code was created on clangd’s GitHub repository, so that this check's fixes can be used

within Visual Studio Code in the future.

6.3.8 SF.5: Include Definitions

Problem Description

When designing a C++ program, a common concept is to use header files. This means that a C++

source file has a corresponding header file which includes declarations of the C++ file's implementation.

Other C++ files which need to use the functionality of a C++ file can then include its header file. A

main advantage of this is that the implementation behind a header declaration can be exchanged during

link time without having to change other source code that depends on it. Also, since only the source files

which were changed since the last build must be rebuilt, build time of a project can be reduced.

The SF.5 C++ Core Guideline describes that a C++ file must include header files which define its

interface [40]. This is especially useful to detect consistency errors while working with the described

concept. As the left side of Figure 10 shows, the function defined in bar.h does not have the same return

type as the one implemented in bar.cpp. Because bar.cpp does not include bar.h, the files bar.cpp and

main.cpp will compile successfully. However, during link time, the linker will throw an error as the

implementation of function does not have the same signature as the one main.cpp includes.

As seen on the right side of Figure 10, if bar.cpp does include the header file like described in SF.5, the

error could be detected at compile time, as the compiler will detect the same function name with two

different return types.

Including No Headers with Declarations Including Headers with Declarations

// bar.h
int function();

// main.cpp
#include "bar.h"

int main() {
 int x = function();
 return 0;
}

// bar.cpp
char function() {
 return '1';
}

// bar.h
int function();

// main.cpp
#include "bar.h"

int main() {
 int x = function();
 return 0;
}

// bar.cpp -> does not compile!
#include "bar.h"

char function() {
 return '1';
}

Figure 10: Code Examples to Explain SF.5

Possible Approaches

The check Missing Include to Own Header contained in Cevelop's Ctylechecker plugin tries to enforce

this rule by checking if a C++ file includes a header file with the same name (bar.cpp should include

 51

bar.h). Additionally, the check verifies that a corresponding header file exists in the user’s workspace.

If no such header file is present, the check will not generate a warning.

Indeed, this alone does not guarantee that a bar.h header file defines all implementations done by

bar.cpp. Nevertheless, after consultation with the thesis's supervisor, it was decided that implementing

a check which behaves the same way as the one from Ctylechecker would be desired [54].

To implement the functionality of Cevelop's Missing Include to Own Header check in clang-tidy, it had

to be clarified if the criteria mentioned above could be fulfilled with clang-tidy.

First, it should be determined if an include directive inside the analysed file with a name like <file-

name>.h exists. The usual approach to this, as described in section 6.1, would be to use AST matchers.

However, in this case, this is not possible since an include directive is replaced by the pre-processor.

Thus, it is not visible in an AST and cannot be matched with AST matchers. Fortunately, Clang provides

a PPCallback class which contains a callback function called InclusionDirective [24]. This function is

invoked when the pre-processor is processing an inclusion directive like #include or #import. As the

callback has a parameter which contains the included file's filename, this filename could be used to

compare it with the analysed file's name. To do such a comparison, the name of the analysed file must

be extracted. Because the PPCallback class is handed a SourceManager object upon its construction, with

its help, the filename can be extracted inside the InclusionDirective function, as shown in Listing 21.

void NewCheckPPCallbacks::InclusionDirective(SourceLocation HashLoc, /* ... */) {

 /* ... */
 auto filename = PPCallbacks::sourceManager.getFilename(HashLoc).str();

 /* ... */
}

Listing 21: Code Example of How to Extract a Filename

If it is determined that no corresponding header file is included, it would be desirable if the check contains

a fix to include it. From research, it was found that Clang provides a class called IncludeInserter [55]

which exactly provides this functionality.

Furthermore, the check needs access to the programmer’s workspace path to search possible header files

which could be included. LSP supports parameters like rootUri (deprecated) or workspaceFolders for

its initialize method which contain the user’s workspace path [3]. As described in Section 2.1.2, the

initialize method is sent from the client to the server for propagating its capabilities to which the

server responds with his own. But as it was seen in clangd’s log output during an analysis, the server's

response does not contain a workspaceFolders parameter, which leads to the assumption that it may

not use the provided information.

After further research, it was seen in the source code of the Visual Studio Code plugin for clangd, the

programmer’s workspace path is set inside the server's options when starting the clangd server [56].

Nevertheless, accessing a workspace path provided by clangd represents a general problem either way

since clang-tidy has to work as a standalone tool as well. Therefore, its checks must not depend on

information which is only available when using clang-tidy in combination with clangd. To resolve this

problem, there should be a common path source which is available in both scenarios.

Two such common sources were found. First, clangd and clang-tidy both support reading a

compile_command.json file. This file can be generated, e.g., with CMake, and contains all C++ files of

a C++ project, including their individual build commands. However, there are two downsides to this.

First, the compile_command.json file does not contain the project's header files by default. Furthermore,

as discussed with the thesis's supervisor and based on the thesis team's own experience, students enlisted

 52

in OST’s C++ courses do usually not use such a JSON-file in their course exercises. Its usage would be

exaggerated for course exercise projects.

The second discovered common source are clang-tidy options. A clang-tidy check can be configured over

check options which can be set in a configuration file. In an attempt, it was achieved to recursively print

all filenames inside a given directory path by making use of a LLVM internal class called

llvm::sys::fs::recursive_directory_iterator [57]. By setting a workspace path manually in the

clang-tidy check options, such a path value could be used to search for header files in it. However,

configuring each workspace path by hand just to support one clang-tidy check would be very unhandy.

Furthermore, handling absolute or relative paths was also seen as an obstacle with this approach.

Furthermore, after a discussion with the thesis's supervisor, it was determined that such a solution would

most likely not be appreciated by the LLVM community.

Result and Limitations

It could not be achieved to implement a check which works like the corresponding one from Cevelop's

Ctylechecker plugin. The reason for this is the described limitation of not having access to the IDEs

workspace inside of clang-tidy, while also being able to run clang-tidy as a standalone tool without

clangd. The found common sources for workspace paths were classified as insufficient. However, the

documentation of this approach shows that limitations do exist when using an IDE-independent language

server, compared to implementing style checking functionality directly in an IDE.

 53

6.4 Implemented Fixes

Apart from the checks listed in Section 6.3, fixes to already existing and to newly created checks were

also implemented. This section lists and describes these implemented fixes.

To create fixes and fix-hints, clang-tidy relies on Clang, which offers a FixItHint class in its

Diagnostic.h header file. This class contains functions to create fixes and to alter the given source-file.

The following functions are offered:

- CreateInsertion: inserts a given code string at a specific location.

- CreateInsertionFromRange: like CreateInsertion, inserts a range of code in a source file instead

of a string.

- CreateRemoval: removes a given source code range.

- CreateReplacement: replaces a given source code range with a given code string.

6.4.1 Fix for I.2 – Avoid Non-Constant Global Variables Check

In clang-tidy, a check that reports violations against ISO's C++ Core Guideline I.2 Avoid-non-const-

global-variables already existed. This section describes how this check was extended with fixes as part of

this thesis.

Problem Description

As described in rule I.2 of ISO's C++ Core Guidelines, "non-const global variables hide dependencies

and make the dependencies subject to unpredictable changes." [40] Therefore, declaring global variables

as non-constant is discouraged. However, the existing check did not offer any fixes, which could be

applied by the user to make the concerned variables constant.

These fixes were implemented. Their goal is to change matched global and non-constant variables to

constant ones. Listing 22 shows a is-should comparison in form of two code extracts. There, also the

AST trees corresponding to the code extracts are visible. These ASTs formed the basis for implementing

the described fixes.

 54

/// "Is" situation:

int x;

int *y = &x;

int &z = x;

// The associated AST looks as follows:

| ...

|-VarDecl 0x1ef4fb6b418 <C:\nonconstglobal.cpp:1:1, col:5> col:5 used x 'int'

|-VarDecl 0x1ef4fb6b518 <line:2:1, col:11> col:6 y 'int *' cinit

| `-UnaryOperator 0x1ef4fb6b5a0 <col:10, col:11> 'int *' prefix '&' cannot overflow

| `-DeclRefExpr 0x1ef4fb6b580 <col:11> 'int' lvalue Var 0x1ef4fb6b418 'x' 'int'

`-VarDecl 0x1ef4fb6b608 <line:3:1, col:10> col:6 z 'int &' cinit

 `-DeclRefExpr 0x1ef4fb6b670 <col:10> 'int' lvalue Var 0x1ef4fb6b418 'x' 'int'

/// Should be changed to this by applying all fixes:

const int x;

const int *const y = &x;

const int &z = x;

// The associated AST then looks as follows:

| ...

|-VarDecl 0x25ccdb0f5b0 <line:8:1, col:11> col:11 used x 'const int' callinit

| `-ImplicitValueInitExpr 0x25ccdb0faa8 <<invalid sloc>> 'const int'

|-VarDecl 0x25ccdb0fb18 <line:9:1, col:23> col:18 y 'const int *const' cinit

| `-UnaryOperator 0x25ccdb0fba0 <col:22, col:23> 'const int *' prefix '&' cannot overflow

| `-DeclRefExpr 0x25ccdb0fb80 <col:23> 'const int' lvalue Var 0x25ccdb0f5b0 'x' 'const int'

|-VarDecl 0x25ccdb0fc08 <line:10:1, col:16> col:12 z 'const int &' cinit

| `-DeclRefExpr 0x25ccdb0fc70 <col:16> 'const int' lvalue Var 0x25ccdb0f5b0 'x' 'const int'

Listing 22: AST Dump of Simple Non-Constant Global Variable Declarations

Functional Requirements

On the basis of the existing check, there are three general use cases for which a fix must be provided:

• Firstly, a global variable declaration must be made constant by inserting the const qualifier

either to the left or to the right of the variable's type specifier.

• Secondly, a pointee's type of a global pointer should be made constant.

• And lastly, if a global reference variable references a non-constant variable, the type which is

referenced should also be made constant.

Possible Approaches

The existing check already implements all the logic needed to match the problematic non-constant

variables in the source code. To provide fixes to the detected problems, the following two approaches

were evaluated.

 55

Firstly, to provide the described fixes, it would have been sufficient to add FixItHints to the diagnosis

messages already emitted by the check. Briefly summarized, a FixItHint contains information on where

in a source file to insert or to replace an arbitrary text. Currently, the described diagnosis messages only

provide users with a warning about the problematic variables in their source code. By appending a

FixItHint to them, either the missing const keyword could be inserted into the source code as text

(using CreateInsertion, as described at the beginning of this section), or the non-constant variable's

type could be made constant in a more abstract manner. With the latter, the CreateReplacement function

lent itself to replace the old, non-constant type with the new, constant type. Although implementing the

former solution was expected to be simpler since the required API functions were already known, the

latter was to be preferred. By only instructing clang to make a variable's type constant, the correct

location to insert the const keyword did not need to be evaluated manually, as it would have had to be

done in the text-insertion approach. Furthermore, especially with handling pointer-type variables, the

first solution proved to be error-prone and impractical in a quick experiment.

Another approach would have been to extend the TransformerClangTidyCheck class to create a clang-

tidy check which uses so called RewriteRules to alter the source code. This class makes use of Clang's

LibTooling Transformer class. Since there already is an existing check depending thereon, no new

dependencies would have had to be introduced to clang-tidy by using this approach. However, it was

assessed that this approach would not bring any benefit over the one described above. This is because

in the end, TransformerClangTidyCheck only extracts the source code matchers and modification

instructions from a given RewriteRule to then create a FixItHint. This coincides with would have been

done anyways in the previously described approach.

In addition to not offering a great benefit, the TransformerClangTidyCheck would also require rewriting

the check's existing implementation. This bears the risk of breaking existing code, and it was assumed

that the community would be less keen on accepting such a change. Therefore, the approach that includes

writing FixItHints directly was elected to be implemented.

Implementation Details

As described in the Possible Approaches part of this section, it was decided to make a variable's type

constant in an abstract way instead of inserting the const keyword on its own. The benefit of this

approach is that Clang takes care of placing the const keyword in the right place itself. This abstractness

was achieved through the usage of an API function called addConst(), which is available on the Type

property of matched variables.

After a matched variable's type was made constant, a string representation of the now constant type

was used to replace the variable's original type. One challenge thereby was the fact that a type's string

representation may not only contain what is visible in the source code to a programmer, but also

additional type-information. An example of such a case can be seen in Listing 23, where the effective

type of bar is class Foo and not only Foo, as it was expected. It should be noted that despite the

superfluous class keyword, the code illustrated in Listing 23 is syntactically correct. However, this

cannot be guaranteed for all possible cases of types with superfluous type-information. To ensure

syntactical correctness for all possible type replacements, a dedicated function was implemented which

removes any superfluous type-information. This function utilizes Clang's PrintingPolicy class, which

was used to supress most of the superfluous type-information while generating a type's string

representation. Its use for this scenario was advised in a response to a question asked by the thesis team

on LLVM's Discord server. The remaining unwanted type-information (e.g., unnamed keywords for

unnamed structs), which were not removed by the PrintingPolicy, was listed in a C++ vector and was

then erased from the type's string representation.

 56

class Foo {};

Foo bar{};

// For Clang, bar's type is "class Foo".

// Without measures, too much information would be inserted into the source code by the fix:

const class Foo bar{};

      ~~~~~ 
 

Listing 23: Example of a Type That Needs To Be Shortened 

In addition to the implementation of the fixes, the tests belonging to this clang-tidy check were extended 

as well. They now also verify that the implemented fixes alter the source code correctly. Furthermore, 

while implementing the fixes, a not yet tested scenario of unnamed global structs was discovered. A new 

test-case was created for that scenario. Details on how tests for clang-tidy checks were written can be 

found in Section 6.5. 

Result 

Thanks to the implemented fixes, clang-tidy's cppcoreguidelines-avoid-non-const-global-variables check 

is now able to replace a variable's type in all cases listed in Listing 24 with their constant equivalent. 

For the sake of brevity of this section, Listing 24 contains only an extract of all possible cases the fixes 

can correct. An exhaustive list can be found in the check's test file contained in the LLVM project code 

base [58].  

Before After Fixes Are Applied 

int a{0};            
int *b = &a;         
int &c = a;          
 
class Foo {}; 
Foo bar{};        
 
struct D  
    int x;       
} e{};        
 
struct {} f{};     

 

const int a{0}; 
const int *const b = &a; 
const int &c = a; 
 
class Foo {}; 
const Foo bar{}; 
 
const struct D { 
    int x; 
} e{}; 
 
const struct {} f{}; 

 

Listing 24: Resulting Functionality of the Implemented Fixes for C++ Core Guideline I.2 

  



 

 

 57  

6.4.2 Fix for C.35 – Virtuality of Base Class Destructors 

For ISO's C++ Core Guideline C.35 called "A base class destructor should be either public and virtual, 

or protected and non-virtual", a check has already been implemented as part of this thesis, as it was 

described in Section 6.3.3. Afterwards, to make it convenient for users to resolve the found deviations to 

this guideline, the check was extended with fixes. For the sake of brevity of this section, the details of 

guideline C.35 will not be described again. For this, please refer to Section 6.3.3.  

Functional Requirements 

To solve all problems with wrongly specified destructors (according to ISO's C++ Core Guideline C.35), 

the to be implemented quick fixes mainly need to insert or remove virtual keywords. What a quick fix 

needs to do depends on a destructor's combination of its visibility and its virtuality, as it can be seen in 

Table 7.  

 Virtuality 

V
is

ib
il
it

y
 

 Virtual Non-Virtual 

Public 
Complies with C.35, no actions 

needed. 

virtual keyword needs to be added 

to the destructor declaration. 

Protected 

virtual keyword needs to be 

removed from the destructor 

declaration.  

Complies with C.35, no actions 

needed. 

Private 

The destructor must either be made public and a virtual keyword needs 

to be inserted, or it needs to be made protected and the virtual keyword 

needs to be removed if present. 

Table 7: User-Defined Destructors and Actions Needed to Comply with C.35 

Whereas Table 7 only describes scenarios for user-defined destructors – in other words, destructors that 

are explicitly declared by the user and visible in the source code – different actions need to be taken for 

destructors that are implicitly generated by the compiler. To fix implicit destructors with a wrong 

combination of virtuality and visibility, a destructor with correct specifiers needs to be inserted into the 

source code. The way in which the new destructor must be inserted depends on a set of conditions, which 

are visualized in Figure 11. 

 



 

 

 58  

Implicit Destructor

public: Access 
Specifier Present?

Yes

Insert
virtual ~Foo() = default;

Beneath the Access Specifier

No

Class or Struct?

Class

Insert
public:

Access Specifier at 
the Class s End

Struct

Insert
virtual ~Foo() = default;

At the Struct s First Position

End

 

Figure 11: Flowchart of Fixing Implicit Destructors to Comply with C.35 

 

Possible Approaches 

To implement fixes for C.35, the same possible approaches existed as described in Section 6.4.1 for 

guideline I.2's fixes. To briefly recap them, on the one hand, it would have been possible to generate 

FixItHints which could be attached to diagnosis messages of checks. On the other hand, it would have 

also been possible to extend the TransformerClangTidyCheck class and to use RewriteRules to alter code. 

However, the latter approach would not have been compatible with the check which was already 

implemented for C.35 since this was created with the registerMatchers function and not with 

RewriteRules (see Section 6.3.3). Thus, choosing this approach would have led to a reimplementation of 

this check. Furthermore, RewriteRules themselves also create FixItHints, so this approach was assessed 

to not bring any benefit that would have justified the check's reimplementation. Therefore, the FixItHint 

approach was selected to be implemented. 

Implementation Details 

If user-declared destructors are already present in the source file at hand, to fix them, the virtual 

specifier simply has to be removed from the code if superfluous or added to it if needed. This was 

achieved by using Clang's CreateInsertion and CreateRemoval API functions. When removing the 

keyword, care was taken that not only the unwanted virtual keyword, but any following whitespace is 



 

 

 59  

removed as well. Despite being challenging, this could be achieved by utilizing clang's Lexer class. With 

its lexer functionality, the start location of the token following the virtual keyword could be found. 

Everything in between these two tokens is whitespace and is deleted as well, leaving a correctly formatted 

source file behind. 

As mentioned above, for classes and structs that have an implicit constructor, an additional line of code 

containing the correctly specified destructor needs to be inserted. This was more challenging to achieve, 

since the insertion location and what needs to be inserted depends on multiple conditions, as it can be 

seen in Figure 11. The code extracts in Listing 25 aim to explain this challenge visually. 

// Before fixes are applied: 

struct Foo { 

 

    virtual void f(); 

}; 

 

class Bar { 

    virtual void f(); 

 

 

}; 

 

class Baz { 

    virtual void f(); 

public: 

 

    int x{0}; 

}; 

 

// Must look like this after applying the fixes: 

struct Foo { 

    virtual ~Foo() = default; 

    virtual void f(); 

}; 

 

class Bar {  

    virtual void f(); 

public: 

    virtual ~Bar() = default; 

}; 

 

class Baz {  

    virtual void f(); 

public: 

    virtual ~Baz() = default; 

    int x{0}; 

}; 

 

 

Listing 25: Before and After Comparison of Fixing Implicit Destructors 

To determine if a public: access specifier is already present, an iterator provided by Clang 

(DeclContext::specific_decl_iterator<AccessSpecDecl>) was used to loop over all the access 

specifiers of a class or struct. With this information, the decision tree introduced in Figure 11 was 

implemented and a string containing the needed tokens was created. After calculating the correct 

insertion position, this string could then be inserted into the source code using Clang's CreateInsertion 

FixItHint function. 

Moreover, it was achieved to offer quick fixes for private destructors. To do so, a dedicated function was 

created which can both make a private destructor public and virtual as well as protected and non-virtual. 

Briefly explained, the function takes an access specifier keyword (public or protected) and creates a 

string which included this access specifier followed by the original destructor code (where the virtual 

keyword is added or removed, based on the destructor's target visibility). Furthermore, the string's last 

part is the private access specifier, which is needed to keep everything beneath the destructor private 

that was previously private as well. Clang's CreateReplacement API function was used to create a fix 

which replaces the affected code parts. One challenge that had to be overcome was that the user should 

be able to choose whether he wants to make the destructor public or protected with a quick fix within 

the IDE. To achieve this and to give the quick fixes displayed in the IDE meaningful descriptions, the 



 

 

 60  

offered fixes and the displayed warning message were separated. Whereas the latter is appended to a 

Clang diagnostic message of type Warning, for each of the two possible fixes, a diagnostic message of 

type Note was created. Through this, a Visual Studio Code user can hover over a flagged code part to 

see the generated warning message and to choose from one of the two possible quick fixes, as it can be 

seen in Figure 12. 

    

Figure 12: Selection of Multiple Fixes for C.35 

Limitations 

For one thing, as explained above, a user-declared destructor is inserted for classes and structs that do 

not have one already and which fall into the category of marked classes. This leads to the fact that a 

class's or struct's move constructor and its move assignment operator are no longer implicitly declared 

if they were implicit before [59]. This would be problematic if the code at hand used one of these 

constructors or assignment operators before the source code was altered by this check's fixes. In this 

case, the compiler would try to call the class’s copy constructor or assignment operator, what would 

only be problematic if the class had move-only members (e.g., unique pointers) which cannot be copied. 

However, this case was estimated to be not very likely. Furthermore, there already exist clang-tidy 

checks (e.g., cppcoreguidelines-special-member-functions for C++ Code Guidelines rule C.21) that 

indicate missing move constructors and assignment operators to the user [58]. Thus, it was decided to 

leave it to the user to declare these move constructors and assignment operators if needed. 

Result 

The implemented fixes are now able to correct the virtuality of classes' and structs' user-defined 

destructors, that were wrongly specified before (public and non-virtual or protected and virtual). 

Furthermore, for classes and structs that had an implicit destructor generated by the compiler with a 

wrong visibility-virtuality combination, a public and virtual user-declared destructor is inserted. 

Thereby, a public access specifier is inserted as well if needed. Moreover, a special effort was put into 

assuring that the inserted code is indented correctly. Implemented user-overwritable options allowed the 

user to specify its desired indentation width. However, since feedback received on this fix's Phabricator 

request pointed out that indentation should be handled by clang-format, this functionality was ultimately 

removed again. A brief overview over the capabilities of the implemented fixes can be seen in Listing 26.  



 

 

 61  

User-Written Code: After Fixes Were Applied: 

struct ProtectedVirtualStruct { 
    virtual void f(); 
protected: 
    virtual ~ProtectedVirtualStruct(){}; 
}; 
 

class PublicNonVirtualClass { 
    virtual void f(); 
public: 
    ~PublicNonVirtualClass(){}; 
}; 
 

class PublicImplicitNonVirtualClass { 
  virtual void f(); 
}; 
 
 
 
 
struct PrivateVirtualBaseStruct { 

  virtual void f(); 

private: 

  int m = 0; 

  virtual ~PrivateVirtualBaseStruct(){} 

  int n = 0; 

}; 

 

struct ProtectedVirtualStruct {  
    virtual void f(); 
protected: 
    ~ProtectedVirtualStruct(){}; 
}; 

 
class PublicNonVirtualClass {  
    virtual void f(); 
public: 
    virtual ~PublicNonVirtualClass(){}; 
}; 
 
class PublicImplicitNonVirtualClass { 
    virtual void f(); 
public: 
    virtual ~PublicImplicitNonVirtualClass() = default; 
}; 
 

struct PrivateVirtualBaseStruct { 

  virtual void f(); 

private: 

  int m = 0; 

protected: 

  ~PrivateVirtualBaseStruct() noexcept {} 

private: 

  int n = 0; 

}; 
 

Listing 26: Resulting Functionality of the Implemented Fixes for C++ Core Guideline C.35 

  



 

 

 62  

6.5 Testing 

This section describes how the created clang-tidy checks and fixes were tested. In Section 6.5.1, a 

description of how tests for clang-tidy were created and run is given. Furthermore, their results are 

discussed as well.  

6.5.1 Clang-Tidy Integration Tests 

LLVM's clang-extra-tools, to which clang-tidy belongs, contain an integrated test suite. One part of 

clang-tidy's folder in this suite is a Python script named check_clang_tidy.py, which will run the 

available integration tests. To understand how the integration tests work, it is best to take a step back 

and to recall what clang-tidy does with a C++ source file. Basically, clang-tidy performs linting based 

on activated clang-tidy checks on a C++ file. If any of the checks match, it will generate a diagnostic 

warning and will apply available fixes.  

Therefore, to create an integration test for a clang-tidy check, a test file is needed which contains code 

that should trigger the check to generate a warning and code that does not. The expected clang-tidy 

warnings are written as C++ comments near the triggering line of code. Moreover, if fixes are expected 

to be applied, they are noted as comments as well. Furthermore, the first line of the file is always a 

comment that instructs LLVM's test runner to run the check_clang_tidy.py script on this file. Also, this 

comment activates the clang-tidy check that should be tested. The Python script then runs the activated 

check on the given test file and compares the expected clang-tidy warnings and fixes with the ones 

generated while running the test. If they match, the test is considered successful.  

Something that was discovered while writing tests for checks is that for expected fixes, it does not matter 

where the comment is written which specifies the expected fixed code fragments. Other than with 

expected warnings, no exact line is specified on which the fix is expected to be applied. What the 

described Python script does is to gather all the expected fixes from the test file's comments and to 

conduct a textual search of the expected fixed code parts on the fixed source file. If code is found that 

coincides with what was expected to be applied by a fix, the test passes. The test also passes when such 

a code part was already present in the source file from the beginning and if no fixes were applied! 

Therefore, it is important to describe the expected fixes as specifically as possible, for example by 

including distinct class names in these comments. Only then can it be assured that the tests work as 

expected. 

An example of how an integration test file for a clang-tidy check looks like can be seen in Listing 27. 

This test file belongs to the created virtual-class-destructor check, which was described in Sections 6.3.3 

(check) and 6.4.2 (fixes). 



 

 

 63  

// RUN: %check_clang_tidy %s cppcoreguidelines-virtual-class-destructor %t -- --fix-notes 

 

struct PublicVirtualBaseStruct { // OK 

  virtual void f(); 

  virtual ~PublicVirtualBaseStruct() {} 

}; 

 

// CHECK-MESSAGES: :[[@LINE+2]]:8: warning: destructor of 'ProtectedVirtualBaseStruct' is prote... 

// CHECK-MESSAGES: :[[@LINE+1]]:8: note: make it protected and non-virtual 

struct ProtectedVirtualBaseStruct { 

  virtual void f(); 

 

protected: 

  virtual ~ProtectedVirtualBaseStruct() {} 

  // CHECK-FIXES: ~ProtectedVirtualBaseStruct() {} 

}; 

 

// CHECK-MESSAGES: :[[@LINE+2]]:8: warning: destructor of 'PublicNonVirtualBaseStruct' is public ... 

// CHECK-MESSAGES: :[[@LINE+1]]:8: note: make it public and virtual 

struct PublicNonVirtualBaseStruct { 

  virtual void f(); 

  ~PublicNonVirtualBaseStruct() {} 

  // CHECK-FIXES: virtual ~PublicNonVirtualBaseStruct() {} 

}; 

 

Listing 27: Example Integration Test File from a Clang-Tidy Check 

The LLVM Visual Studio solution contains a project which can be used to run all clang-tools-extras' 

integration tests, called check-clang-tools. 

In Listing 28, a summary of all clang-tidy integration tests can be seen. It is visible that in total, five 

tests failed. However, none of the tests and checks resulting from this thesis is listed under the failing 

tests, which means they worked as expected. Since these tests run successfully on Phabricator's build 

platform and since they have no relation to the checks implemented in this thesis, no time was spent on 

investigating why these tests failed locally.  



 

 

 64  

115>******************** 

115>Failed Tests (5): 

115>  Clang Tools :: clang-apply-replacements/ClangRenameClassReplacements.cpp 

115>  Clang Tools :: clang-apply-replacements/basic.cpp 

115>  Clang Tools :: clang-apply-replacements/format.cpp 

115>  Clang Tools :: clang-move/move-used-helper-decls.cpp 

115>  Clang Tools :: clang-tidy/infrastructure/export-diagnostics.cpp 

115> 

115> 

115>Testing Time: 173.76s 

115>  Unsupported       :    9 

115>  Passed               : 1231 

115>  Expectedly Failed:    2 

115>  Failed                :    5 

115>******************** 

Listing 28: Integration Tests Results of All Clang-Tidy Checks 

  



 

 

 65  

7. Results and Conclusion 

This chapter summarizes the thesis's results and explains what has been achieved and what still can be 

done in the future. Section 7.1 describes the resulting product and the project's output. Furthermore, in 

Section 7.2, the solution's compliance to the defined functional and non-functional requirements is 

pointed out. The work conducted in this thesis also led to some side-effects and by-products, which are 

elaborated in Section 7.3. Finally, Section 7.4 concludes this report by going into this thesis's 

achievements, by reflecting on the evaluated solution and its limitations, and by giving an outlook. 

7.1 Resulting Product 

According to the contribution workflow described in Section 6.1, a new differential was created on 

Phabricator for each implemented check and fix (as seen in Table 8) and thereby, their inclusion into 

the LLVM project was requested. Each of the created Phabricator requests received feedback, which was 

used to improve the checks and fixes. The updated versions are now waiting for their review again. At 

the time of this thesis's submission, none of the created requests have been accepted yet and they are 

still waiting for their final approval. It is assumed that the reason for this is that clang-tidy's community 

members, which can be volunteers but also employees of big tech companies, might be busy with work 

that is more fundamental for clang-tidy. As seen in other Phabricator contributions, it is not uncommon 

for clang-tidy checks to take several months to be accepted. Moreover, the received feedback shows that 

clang-tidy's community indeed is interested in including the work conducted during this thesis in their 

project.  

Check or Fix Phabricator Request 

CC https://reviews.llvm.org/D99646  

C.35 https://reviews.llvm.org/D102325  

C.45 https://reviews.llvm.org/D104112 

C.46 & C.164 https://reviews.llvm.org/D102779  

ES.74 https://reviews.llvm.org/D100092  

ES.75 https://reviews.llvm.org/D102576  

I.2 https://reviews.llvm.org/D100972  

Table 8: List of Created Phabricator Requests 

Once all contributed work is integrated, every Visual Studio Code user will be able to use the created 

checks and fixes by downloading the clangd Visual Studio Code plugin. Since this plugin also includes 

the clangd language server (and thus, also clang-tidy), no additional components need to be installed, 

which is very convenient.  

To make the created checks and fixes usable until they are integrated into the LLVM project, a self-

built executable of clangd was created and handed in at the end of this thesis. In the settings of clangd's 

Visual Studio Code extension, a custom path can then be set to point to the self-built clangd executable. 

Afterwards, users can activate the created checks and are able to already profit from their feedback. 

7.2 Fulfilment of Requirements 

Through the evaluation and the selection of clang-tidy as the project, which was extended in this thesis, 

all functional requirements defined in 3.1 could be fulfilled, as it was already described in Section 4.1.4. 

Moreover, the style checks and fixes which were planned to be implemented can also be seen as additional 

functional requirements of this project. As discussed in Section 4.4.2, these checks and fixes were 

https://reviews.llvm.org/D99646
https://reviews.llvm.org/D102325
https://reviews.llvm.org/D104112
https://reviews.llvm.org/D102779
https://reviews.llvm.org/D100092
https://reviews.llvm.org/D102576
https://reviews.llvm.org/D100972


 

 

 66  

prioritized according to their feasibility and to what extent students would profit from them. 

Furthermore, it was decided that checks which cover existing C++ Core Guideline rules were to be 

prioritized. As it can be seen Table 9, all these prioritized checks were successfully implemented. 

Additionally, checks for guidelines ES.74 and C.164 (not listed in Table 9, since this check was a by-

product of C.46) were implemented. Also, quick fixes could be implemented for checks I.2 (check already 

existed) and C.35. Furthermore, a check for ES.74 was implemented, and implementation of guideline 

SF.5 was begun. However, it was discovered that due to limitations of clang-tidy, it was not possible to 

implement the latter in this infrastructure in the intended way.  

 Benefit for Students 

F
e
a
si

b
il
it

y
 

 Low Medium High 

Simple C.44, C.37 C.45 , CC ,  

II, MACT 

ES.75  

C.46  

Moderate C.83, C.84, C.85 ES.74 , SF.5 (), 

ES.9, C.31, SIP 

C.35 (with fix)   

I.2 (fix only)  

Hard SSI, C.20 ES.26 SF.8, MSI 

Table 9: Visualization of Implemented Checks and Fixes 

Through selecting LLVM as the open-source project, which was to be extended in this thesis, all the 

defined non-functional requirements (see Section 3.2) were met. LLVM's clangd language server and its 

corresponding Visual Studio Code plugin excelled at the conducted NFR tests (see Appendix E). 

7.3 Side-Effects 

Besides the results described above, this project also had some side-effects and by-products. By working 

with the LLVM project, we researched a lot in its documentation and worked with existing source code. 

Thereby, we stumbled upon some minor bugs, which we corrected and contributed. These side-effects 

are described in the following sections. 

7.3.1 LLVM Improvements 

Corrected Clangd Documentation 

While trying out the clangd Visual Studio Code plugin for the first time, we had problems creating a 

configuration file. This occurred even though the configuration file was structured as described in clangd's 

documentation. After some research, it was revealed that the website of clangd’s documentation was 

missing an important keyword. A corrected version of the documentation site was contributed to the 

GitHub repository of clangd’s website. Also, an open issue from a user who was asking about the same 

problem could be closed after this contribution [60]. 

While creating a new clang-tidy check or using most of the available clang-tidy check modules, it could 

be useful to activate all possible checks in clangd’s configuration file. By doing this, it transpired that 

the way this could be done is not the same as clangd’s documentation implies. A pull request to the 

GitHub repository of clangd’s website, which should clarify this edge case, was contributed [61]. 

  



 

 

 67  

Reported a Found Bug in a Clang-Tidy Check 

As described in section 6.3.7, an existing checks’ fix does not work as expected. When applying the fix 

in Visual Studio Code on a code example, the resulting code is not satisfying. However, when applying 

the fix running clang-tidy as stand-alone tool, it worked as expected. A bug report was uploaded to the 

clangd Visual Studio Code plugin's GitHub repository describing this issue [62]. 

Corrected Clang AST Matcher Reference 

While implementing new clang-tidy checks and fixes, a typo in clang's AST Matcher Reference 

documentation was found and corrected (cxxRcordDecl was changed to cxxRecordDecl). A Phabricator 

differential was created to publish these fixes [63].  

7.3.2 Clarification of C++ Core Guidelines 

Rule C.164 of the C++ Core Guidelines stated that implicit conversion operators should be neglected 

and that such which are specified as explicit should be used [35]. However, the rule's enforcement part 

stated that all conversion operators should be flagged. In the project team's and the thesis supervisor's 

opinion, this enforcement did not coincide with what the rest of rule C.164 stated. Therefore, the 

enforcement was rewritten and clarified during this thesis. A pull-request was opened on 

CppCoreGuideline's GitHub repository to make this change available for the public [64]. 

7.4 Conclusion 

In this thesis, with the LLVM compiler project and its clang-tidy style checking component, an applicable 

infrastructure was elaborated in which the IFS can implement their style checks in the future. 

Furthermore, already existing Cevelop style checks can be ported to this infrastructure, as this thesis's 

proof-of-concept implementations showed. Thereby, a reasonable foundation for offering Cevelop's style 

checks in Visual Studio Code was laid. Besides Visual Studio Code, the elaborated style checking tool 

clang-tidy is already integrated in other popular IDEs as well, which makes Cevelop's style checks 

available to an even broader group of users [65]. Since the used language server (i.e., clangd) utilizes the 

LSP, the created checks can also be integrated into not yet supported IDEs with appropriate effort in 

the future. 

By comparing existing checks in clang-tidy and in Cevelop's GSLator and Ctylechecker plugins, it was 

assessed which of Cevelop's checks were already implemented in clang-tidy and which would need to be 

implemented. For seven of the assessed Cevelop style checks, their counterpart was implemented in 

clang-tidy, covering eight coding style rules in total. For one implemented and one existing check, 

accompanying quick fixes could be implemented as well. However, to be able to provide Cevelop's 

complete style checking functionality in other IDEs, a lot of additional Cevelop checks would have to be 

implemented in clang-tidy. 

To fully support Cevelop's complete style checking functionality in clang-tidy, the following work would 

have to be done in a continuation of this project: 

 Implementation of remaining assessed checks 

 Consideration of further Cevelop plugins 

  



 

 

 68  

Implementation of remaining assessed checks: as already mentioned, seven of the assessed Cevelop 

style checks were implemented in clang-tidy. There are 15 checks left from Cevelop's GSLator and 

Ctylechecker plugins which are not yet implemented in clang-tidy (as it can be seen in Appendix D). If 

desirable, these checks could be implemented in the future. 

Consideration of further Cevelop plugins: in this thesis, only checks of Cevelop's GSLator and 

Ctylechecker plugins were compared to existing clang-tidy checks and considered for implementation. 

However, Cevelop features many other style checker plugins. If clang-tidy should represent an equivalent 

alternative for OST students, one would have to clarify which of these plugin's checks are already 

implemented in clang-tidy. Furthermore, checks not yet existing in clang-tidy would have to be 

implemented there. 

Ultimately, it should be mentioned that during this thesis, it was found that the selected approach also 

has some limitations. On one hand, it was found that some of Cevelop's implementation possibilities are 

not given in clang-tidy. For instance, while implementing a check for C++ Core Guideline SF.5, it could 

not be achieved to access the user's workspace directory from clang-tidy. While style checks integrated 

into Cevelop have direct access to the IDE's workspace, no feasible solution for this was found using 

clangd and clang-tidy. Furthermore, the approach of contributing to an open-source project limit one's 

implementational freedom. In Cevelop, the IFS can implement and quickly deploy any style check which 

is of value to them. On the other hand, in clang-tidy, its community decides which checks shall be 

included and which are not of value for the project. The review procedure is time consuming (in this 

thesis, about 40% of a check's effort went into its review cycles) and bears the risk of checks being denied 

by the community. To overcome this problem, new checks could be offered in a self-built clang-tidy 

executable as an interim solution. However, to prevent having a concurrent version of clang-tidy which 

had to be updated and distributed manually, contributing the implemented checks to the LLVM project 

should be aspired.  

Nevertheless, we are still convinced that extending clang-tidy was the right decision. With its Clang-

based features including predefined AST matchers, creating new checks is doable even for programmers 

without in depth compiler knowledge. Furthermore, the LLVM infrastructure behind it is well-

maintained and new C++ standards are continuously adopted. With clangd, LLVM provides a powerful 

LSP language server off-the-shelf. Thus, a clang-tidy contributor does not have to worry about 

maintaining a language server to offer style checks over LSP. Finally, the already mentioned widespread 

usage of clang-tidy makes a contributed style checks much more valuable, since many developers using 

different IDEs can profit from them. 

 

  



 

 

 69  

List of Figures 

Figure 1: Plugins for Different IDEs Without Using LSP [4] ...................................................................5 

Figure 2: IDE Plugins Use a Language Server over LSP [4] .....................................................................5 

Figure 3: Communication Example Between a Language Client and a Language Server ........................6 

Figure 4: publishDiagnostics Method Response from a C++ Language Server (clangd) ...................8 

Figure 5: Overview of Used LLVM Tools ............................................................................................... 24 

Figure 6: Relation Between Clang-Tidy Checks and Modules [37] ......................................................... 25 

Figure 7: Abstract Architecture Layer Diagram of Clang-Tidy ............................................................. 26 

Figure 8: Internal Structure of Clang-Tidy Checks [17] ......................................................................... 27 

Figure 9: Sequence Diagram of Clang-Tidy Activation and Check Creation ......................................... 28 

Figure 10: Code Examples to Explain SF.5 ............................................................................................ 50 

Figure 11: Flowchart of Fixing Implicit Destructors to Comply with C.35 ........................................... 58 

Figure 12: Selection of Multiple Fixes for C.35 ...................................................................................... 60 

Figure 13: Overview of Phases and Milestones ....................................................................................... 82 

 

List of Tables 

Table 1: Agile Landing Zones for Affected Runtime Behaviour ............................................................. 11 

Table 2: Agile Landing Zones for Start-up Time of IDE Extension ....................................................... 12 

Table 3: Agile Landing Zones for the Style Checker Quickness ............................................................. 12 

Table 4: Comparison of Possible Programming Languages to Implement a Language Server ............... 17 

Table 5: Evaluation of LSP SDKs in Different Programming Languages .............................................. 18 

Table 6: Assessment of Possible Checks to Implement .......................................................................... 23 

Table 7: User-Defined Destructors and Actions Needed to Comply with C.35 ...................................... 57 

Table 8: List of Created Phabricator Requests ...................................................................................... 65 

Table 9: Visualization of Implemented Checks and Fixes ...................................................................... 66 

Table 10: Project Development Team Members and Their Responsibilities .......................................... 81 

Table 11: Evaluated Milestones with Their Corresponding Description ................................................ 83 

Table 12: Planned Meetings ................................................................................................................... 83 

Table 13: Evaluated Risks at the Beginning of the Project ................................................................... 86 

Table 14: Risk Matrix at the Beginning of the Project .......................................................................... 86 

Table 15: Reassessment of the Defined Risks at the End of Elaboration ............................................... 87 

Table 16: Risk Matrix at the End of Elaboration .................................................................................. 88 

Table 17: Cevelop C++ Style Checkers and Their LLVM Counterparts .............................................. 96 

Table 18: Cevelop GSLator Plugin and Their LLVM Counterparts .................................................... 103 

Table 19: Test of Usability NFRs ......................................................................................................... 104 

Table 20: Test of Performance NFRs ................................................................................................... 106 

Table 21: Test of Supportability NFRs ................................................................................................ 106 

List of Listings 

Listing 1: Example of a Simple Clang AST Matcher Query ................................................................... 30 

Listing 2: Improper Use of Standard IO Objects and Functions Outside main ..................................... 32 

Listing 3: Encouraged Way of Using Standard IO Objects .................................................................... 33 

Listing 4: AST Matcher for Global Standard Stream Objects ............................................................... 33 



 

 

 70  

Listing 5: Example of an Indirect Usage of C-Like Functions ................................................................ 34 

Listing 6: Example for Problematic Code Violating Guideline ES.74 .................................................... 34 

Listing 7: Code Example of an Implementation Approach ..................................................................... 35 

Listing 8: Final AST Matcher for ES.74 Check ...................................................................................... 36 

Listing 9: Hook Function VisitDeclRefExpr ........................................................................................... 37 

Listing 10: Problematic Inheritance with a Non-Virtual Base Class Destructor .................................... 38 

Listing 11: Created AST Matcher Function for C.35 ............................................................................. 40 

Listing 12: Custom AST Matcher isInMacro ........................................................................................ 41 

Listing 13: AST Matcher for ES.75 Utilizing a Self-Written Matcher ................................................... 41 

Listing 14: C++ Code Which Shows ES.75 Check's Behaviour ............................................................. 41 

Listing 15: Example of an Intended Type Conversion ............................................................................ 42 

Listing 16: Example of Unintended Type Conversion ............................................................................ 42 

Listing 17: Registering of an Alias to a Foreign Check .......................................................................... 44 

Listing 18: Templated Conversion Operator Alongside Its AST ............................................................ 46 

Listing 19: Cod Example to Explain C.45 .............................................................................................. 47 

Listing 20: Code/AST Example to Explain an Implementation Detail. ................................................. 49 

Listing 21: Code Example of How to Extract a Filename ...................................................................... 51 

Listing 22: AST Dump of Simple Non-Constant Global Variable Declarations ..................................... 54 

Listing 23: Example of a Type That Needs To Be Shortened ................................................................ 56 

Listing 24: Resulting Functionality of the Implemented Fixes for C++ Core Guideline I.2 ................. 56 

Listing 25: Before and After Comparison of Fixing Implicit Destructors ............................................... 59 

Listing 26: Resulting Functionality of the Implemented Fixes for C++ Core Guideline C.35 .............. 61 

Listing 27: Example Integration Test File from a Clang-Tidy Check .................................................... 63 

Listing 28: Integration Tests Results of All Clang-Tidy Checks ............................................................ 64 

 

Glossary  

Abstract Syntax Tree 

a tree representation of the abstract syntactic structure of source code written in a programming 

language. [Wikipedia] ............................................................................................ 2, 9, 18, 27, 30, 33 

C++ Core Guidelines 

a set of guidelines issued by ISO which aim to help C++ programmers to write simpler, more efficient, 

more maintainable code. Consists of ca. 470 guidelines. [ISO] ....... 1, 2, 21, 39, 43, 44, 45, 53, 67, 98 

Cloc 

CLI tool to count blank lines, comments and physical liens of source code in many programming 

languages. ........................................................................................................................................ 12 

CMake 

CMake is an open-source, cross-platform family of tools designed to build, test and package software. 

[CMake] ............................................................................................................................... 15, 31, 51 

Lexer 

part of parsing C++ source files, splits input into tokens. ........................................................... 20, 59 

LibTooling 

C++ library which is part of the LLVM project, and which can be used to write standalone tools 

based on Clang ........................................................................................................ 19, 20, 27, 29, 55 

Node.js 

A server-side JavaScript runtime environment ............................................................. 4, 17, 18, 19, 20 

OST 



 

 

 71  

Eastern Switzerland University of Applied Sciences, focused on its campus Rapperswil-Jona in this 

document. .......................................................................................................................... ii, 1, 89, 94 

Phabricator 

Phabricator is a set of tools for developing software. It includes applications for code review, repository 

hosting, bug tracking, project management, and more. [Phacility]15, 30, 31, 32, 33, 34, 37, 40, 49, 

60, 65, 67, 84, 91, 107, 111, 112 

Source Lines of Code 

lines of code without comments and blank lines ................................................................................. 12 

Undefined Behavior 

Permissible undefined behavior ranges from ignoring the situation completely with unpredictable 

results, to behaving during translation or program execution in a documented manner characteristic 

of the environment [...], to terminating a translation or execution [...]. [ISO]........ 22, 38, 97, 99, 100 

 

Abbreviations 

API: Advanced Programming Interface ........................................................................................... passim 

AST: Abstract Syntax Tree ............................................................................................................. passim 

CDT: C/C++ Development Tooling ........................................................................................................1 

CLI: Command Line Interface .................................................................................................... 15, 19, 85 

DSL: Domain Specific Language ............................................................................................................. 30 

ECTS: European Credit Transfer System .............................................................................................. 82 

FURPS+: Functionality, Usability, Reliability, Performance, Supportability, Other ............................ 10 

IDE: Integrated Development Environment .................................................................................... passim 

IFS: Institute for Software ............................................................................................................... passim 

ISO: International Organisation for Standardization................................................................ 1, 2, 53, 57 

LSP: Language Server Protocol ....................................................................................................... passim 

NFR: Non-Functional Requirements ................................................................................................ 10, 66 

OST: Eastern Switzerland University of Applied Sciences .............................................................. passim 

RPC: Remote Procedure Call ...................................................................................................................6 

SDK: Software Development Kit ...................................................................................................... 17, 18 

STL: C++ Standard Template Library.................................................................................................. 98 

 

  



 

 

 72  

Bibliography 

 

[1]  T. Corbat, “Assignment for Bachelor Thesis “C++ Stylechecker for VSCode”,” Rapperswil, 2021. 

[2]  T. Corbat, “Weekly Thesis Status Meeting,” 03 May 2021.  

[3]  Microsoft, “Language Server Protocol,” [Online]. Available: https://microsoft.github.io/language-

server-protocol/. [Accessed 02 June 2021]. 

[4]  Microsoft, adjustments by M. Gartmann, “Language Server Extension Guide,” 05 May 2021. 

[Online]. Available: https://code.visualstudio.com/api/language-extensions/language-server-

extension-guide. [Accessed 02 June 2021]. 

[5]  Dirk Bäumer, Erich Gamma, Sean McBreen, “Eclipse Newsletter 2017 about LSP,” 2017. [Online]. 

Available: https://www.eclipse.org/community/eclipse_newsletter/2017/may/article1.php. 

[Accessed 03 June 2021]. 

[6]  Microsoft, “Visual Studio Code,” [Online]. Available: https://code.visualstudio.com/. [Accessed 03 

March 2021]. 

[7]  JSON-RPC Working Group, “JSON-RPC 2.0 Specification,” 04 January 2013. [Online]. Available: 

https://www.jsonrpc.org/specification. [Accessed 02 June 2021]. 

[8]  O. Zimmermann, Application Architecture: Agile Landing Zones, Rapperswil: OST Eastern 

Switzerland University of Applied Sciences, 2020.  

[9]  J. Nielsen, 01 January 1993. [Online]. Available: https://www.nngroup.com/articles/response-

times-3-important-limits/. [Accessed 11 June 2021]. 

[10]  AlDanial, “cloc GitHub Repository,” [Online]. Available: https://github.com/AlDanial/cloc. 

[Accessed 15 June 2021]. 

[11]  LLVM Community, “The LLVM Compiler Infrastructure,” [Online]. Available: https://llvm.org/. 

[Accessed 15 March 2021]. 

[12]  The Clang Team, “Clang: a C language family frontend for LLVM,” [Online]. Available: 

https://clang.llvm.org/. [Accessed 15 March 2021]. 

[13]  The Clang Team, “clangd,” [Online]. Available: https://clangd.llvm.org/. [Accessed 15 March 

2021]. 

[14]  The Clang Team, “clang-tidy,” [Online]. Available: https://clang.llvm.org/extra/clang-tidy/. 

[Accessed 15 March 2021]. 

[15]  C. Robertson, “Using Clang-Tidy in Visual Studio,” 19 February 2020. [Online]. Available: 

https://docs.microsoft.com/en-us/cpp/code-quality/clang-tidy. [Accessed 25 March 2021]. 

[16]  JetBrains s.r.o., “Clang-Tidy integration,” 08 March 2021. [Online]. Available: 

https://www.jetbrains.com/help/clion/clang-tidy-checks-support.html. [Accessed 25 March 2021]. 



 

 

 73  

[17]  D. Malcolm, “Language Server Protocol: proof-of-concept GCC implementation,” 24 July 2017. 

[Online]. Available: https://gcc.gnu.org/legacy-ml/gcc-patches/2017-07/msg01465.html. [Accessed 

17 March 2021]. 

[18]  MaskRay, “ccls GitHub Repository,” [Online]. Available: https://github.com/MaskRay/ccls. 

[Accessed 17 March 2021]. 

[19]  jacobdefault, “cquery GitHub Repository,” 29 July 2020. [Online]. Available: 

https://github.com/jacobdufault/cquery#archived. [Accessed 17 March 2021]. 

[20]  LLVM Community, “Phabricator,” [Online]. Available: https://reviews.llvm.org/. [Accessed 11 

June 2021]. 

[21]  The Clang Team, “C++ Support in Clang,” [Online]. Available: 

https://clang.llvm.org/cxx_status.html. [Accessed 14 June 2021]. 

[22]  The Clang Team, “Clang Expressive Diagnostics,” [Online]. Available: 

https://clang.llvm.org/diagnostics.html. [Accessed 14 June 2021]. 

[23]  The Clang Team, “Clang - Features and Goals,” [Online]. Available: 

https://clang.llvm.org/features.html. [Accessed 14 June 2021]. 

[24]  The Clang Team, “clang::PPCallbacks Class Reference,” [Online]. Available: 

https://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html. [Accessed 12 06 2021]. 

[25]  Node.js, “Node.js,” [Online]. Available: https://nodejs.org/en/about/. [Accessed 25 March 2021]. 

[26]  kuafuwang, “LspCpp GitHub Repository,” [Online]. Available: 

https://github.com/kuafuwang/LspCpp. [Accessed 15 06 2021]. 

[27]  Microsoft, “vscode-languageserver GitHub Repository,” [Online]. Available: 

https://github.com/microsoft/vscode-languageserver-node. [Accessed 15 06 2021]. 

[28]  OmniSparp, “OmniSharp LSP GitHub Repository,” [Online]. Available: 

https://github.com/OmniSharp/csharp-language-server-protocol. [Accessed 15 06 2021]. 

[29]  OpenJS Foundation, “Node.js Documentation,” [Online]. Available: 

https://nodejs.org/api/documentation.html. [Accessed 15 06 2021]. 

[30]  The Clang Team, “LibTooling,” [Online]. Available: https://clang.llvm.org/docs/LibTooling.html. 

[Accessed 15 06 2021]. 

[31]  The Clang Team, “Matching the Clang AST,” 2021. [Online]. Available: 

https://clang.llvm.org/docs/LibASTMatchers.html. [Accessed 27 05 2021]. 

[32]  ANTLR, “ANTLR,” [Online]. Available: https://www.antlr.org/. [Accessed 17 03 2021]. 

[33]  ANTLR, “ANTLR grammars-v4 GitHub Repository,” [Online]. Available: 

https://github.com/antlr/grammars-v4. [Accessed 17 03 2021]. 

[34]  ANTLR, “ANTLR antlr4 GitHub Repository,” [Online]. Available: 

https://github.com/antlr/antlr4. [Accessed 05 06 2021]. 



 

 

 74  

[35]  isocpp, “CppCoreGuidelines GitHub Repository,” 13 May 2021. [Online]. Available: 

https://github.com/isocpp/CppCoreGuidelines. [Accessed 20 May 2021]. 

[36]  LLVM Extension, “clangd Visual Studio Code Extension,” 02 March 2021. [Online]. Available: 

https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd. 

[Accessed 04 July 2021]. 

[37]  D. Jasper, “clang-tidy: lint-like checks and beyond,” in Euro LLVM 2014, 2014.  

[38]  The Clang Team, “Clang-Tidy Checks,” [Online]. Available: https://clang.llvm.org/extra/clang-

tidy/checks/list.html. [Accessed 20 May 2021]. 

[39]  P. Sommerlad and T. Corbat, Modern and Lucid C++ for Professional Programmers, Week 2 - 

Functions, Values and Streams, Rapperswil, 2019, p. 28. 

[40]  B. Stroustrup and H. Sutter, “C++ Core Guidelines,” ISO, 11 March 2021. [Online]. Available: 

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines. [Accessed 22 April 2021]. 

[41]  The Clang Team, “ASTMatchersMacros.h File Reference,” 2021. [Online]. Available: 

https://clang.llvm.org/doxygen/ASTMatchersMacros_8h.html. [Accessed 27 05 2021]. 

[42]  The Clang Team, “How to write a RecursiveASTVisitor based ASTFrontendActions,” 2021. 

[Online]. Available: https://clang.llvm.org/docs/RAVFrontendAction.html. [Accessed 27 05 

2021]. 

[43]  The Clang Team, “clang::tooling::RecursiveSymbolVisitor< T > Class Template Reference,” 27 

April 2021. [Online]. Available: 

https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1RecursiveSymbolVisitor.html. 

[Accessed 27 April 2021]. 

[44]  ISO/IEC, “Unions,” in ISO/IEC 14882:2020: Programming Languages — C++, ISO, 2020, p. 

[class.union.general]/4. 

[45]  ISO/IEC, “Classes,” in ISO/IEC 14882:2020: Programming Languages — C++, ISO, 2020, p. 

[class.dtor]/12. 

[46]  J. B. David Svoboda, “PRE10-C. Wrap multistatement macros in a do-while loop,” 23 April 2021. 

[Online]. Available: https://wiki.sei.cmu.edu/confluence/display/c/PRE10-

C.+Wrap+multistatement+macros+in+a+do-while+loop. [Accessed 27 April 2021]. 

[47]  A clang-tidy Contributor, “LLVM Github Repository,” [Online]. Available: 

https://github.com/llvm/llvm-project/blob/main/clang-tools-extra/clang-

tidy/bugprone/MultipleStatementMacroCheck.cpp#L21. [Accessed 27 April 2021]. 

[48]  ISO/IEC, “Classes,” in ISO/IEC 14882:2020: Programming Languages — C++, ISO, 2020, p. 

[class.conv.ctor]. 

[49]  ISO/IEC, “Initialization,” in ISO/IEC 14882:2020: Programming Languages — C++, ISO, 2020, 

p. [class.base.init]/10. 



 

 

 75  

[50]  The Clang Team, “clang-tidy - modernize-use-default-member-init,” [Online]. Available: 

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-default-member-init.html. 

[Accessed 21 06 2021]. 

[51]  cppreference.com Community, “Non-static data members,” [Online]. Available: 

https://en.cppreference.com/w/cpp/language/data_members. [Accessed 14 06 2021]. 

[52]  The Clang Team, “clang-tidy - cppcoreguidelines-prefer-member-initializer,” [Online]. Available: 

https://clang.llvm.org/extra/clang-tidy/checks/cppcoreguidelines-prefer-member-initializer.html. 

[Accessed 14 06 2021]. 

[53]  The Clang Team, “lang-tidy - modernize-use-equals-default,” [Online]. Available: 

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-equals-default.html. [Accessed 14 

06 2021]. 

[54]  T. Corbat, “Weekly Thesis Status Meeting,” 31 05 2021.  

[55]  The Clang Team, “clang::tidy::utils::IncludeInserter Class Reference,” [Online]. Available: 

https://clang.llvm.org/extra/doxygen/classclang_1_1tidy_1_1utils_1_1IncludeInserter.html. 

[Accessed 13 06 2021]. 

[56]  LLVM Community, “Visual Studio Code Extension for Clangd GitHub Repository,” [Online]. 

Available: https://github.com/clangd/vscode-clangd. [Accessed 13 06 2021]. 

[57]  LLVM Community, “llvm::sys::fs::recursive_directory_iterator Class Reference,” [Online]. 

Available: 

https://llvm.org/doxygen/classllvm_1_1sys_1_1fs_1_1recursive__directory__iterator.html. 

[Accessed 13 06 2021]. 

[58]  LLVM Community, “llvm-project GitHub Repository,” [Online]. Available: 

https://github.com/llvm/llvm-project. [Accessed 28 April 2021]. 

[59]  H. Hinnant, “Everything You Ever Wanted To Know About Move Semantics,” 12 April 2014. 

[Online]. Available: https://accu.org/conf-docs/PDFs_2014/Howard_Hinnant_Accu_2014.pdf. 

[Accessed 06 May 2021]. 

[60]  F. Thurnheer, “clangd-www GitHub Repository Pull Request 24,” 12 03 2021. [Online]. Available: 

https://github.com/llvm/clangd-www/pull/24. [Accessed 17 06 2021]. 

[61]  F. Thurnheer, “clangd-www GitHub Repository Pull Request 37,” [Online]. Available: 

https://github.com/llvm/clangd-www/pull/37. [Accessed 17 06 2021]. 

[62]  F. Thurnheer, “clangd GitHub Repository Bug Report 799,” [Online]. Available: 

https://github.com/clangd/clangd/issues/799. [Accessed 16 06 2021]. 

[63]  M. Gartmann, “[clang] Fix Typo in AST Matcher Reference,” 20 May 2021. [Online]. Available: 

https://reviews.llvm.org/D102836. [Accessed 20 May 2021]. 

[64]  M. Gartmann, “CppCoreGuidelines GitHub Repository Pull Request 1789,” [Online]. Available: 

https://github.com/isocpp/CppCoreGuidelines/pull/1789. [Accessed 17 June 2021]. 



 

 

 76  

[65]  The Clang Team, “Clang-tidy IDE/Editor Integrations,” [Online]. Available: 

https://clang.llvm.org/extra/clang-tidy/Integrations.html. [Accessed 13 June 2021]. 

[66]  Schweizerische Eidgenossenschaft, “Verordnung des Hochschulrates über die Koordination der 

Lehre an den Schweizer Hochschulen,” 01 January 2020. [Online]. Available: 

https://www.fedlex.admin.ch/eli/cc/2019/722/de#art_3. [Accessed 03 March 2021]. 

[67]  T. Corbat, “Weekly Thesis Status Meeting,” 25 May 2021.  

[68]  T. Rix, “Phabricator - [clang-tidy] bugprone-header-guard : a simple version of llvm-header-

guard,” 3 May 2019. [Online]. Available: https://reviews.llvm.org/D61508. [Accessed 24 May 

2021]. 

[69]  Cevelop, “Cevelop GitHub Repository,” [Online]. Available: https://github.com/Cevelop/cevelop. 

[Accessed 24 May 2021]. 

[70]  SonarSource, “SonarQube,” [Online]. Available: https://www.sonarqube.org/. [Accessed 03 March 

2021]. 

[71]  GitLab, “GitLab,” [Online]. Available: https://about.gitlab.com/. [Accessed 03 March 2021]. 

[72]  Docker Inc., “Docker,” [Online]. Available: https://www.docker.com/. [Accessed 05 March 2021]. 

[73]  Google Inc., “Clang,” [Online]. Available: 

https://chromium.googlesource.com/chromium/src/+/master/docs/clang.md. [Accessed 17 

March 2021]. 

[74]  Alibaba Tech, “GCC vs. Clang/LLVM: An In-Depth Comparison of C/C++ Compilers,” 29 

August 2019. [Online]. Available: https://www.alibabacloud.com/blog/gcc-vs--clangllvm-an-in-

depth-comparison-of-cc%2B%2B-compilers_595309. [Accessed 17 March 2021]. 

[75]  Wikipedia, “Use case,” 9 May 2021. [Online]. Available: https://en.wikipedia.org/wiki/Use_case. 

[Accessed 19 May 2021]. 

[76]  kriskbx, “gitlab-time-tracker GitHub Repository,” [Online]. Available: 

https://github.com/kriskbx/gitlab-time-tracker. [Accessed 03 March 2021]. 

[77]  Microsoft, “vscode-cpptools GitHub Repository,” [Online]. Available: 

https://github.com/microsoft/vscode-cpptools. [Accessed 11 June 2021]. 

 

 

  



 

 

 77  

A. Declaration of Authorship 

I hereby declare, 

• that I have written this thesis without any help from others besides those explicitly mentioned 

in the assignment or agreed upon in writing with the supervisor, 

• that I have mentioned all the sources used and that I have cited them correctly according to 

established academic citation rules, 

• that I have not used any materials (e.g., pictures) protected by copyrights in an unauthorised 

way. 

 

 

Student's signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Name: Fabian Thurnheer 

Location, date of submission: Jona, 18.06.2021 

 

 

 

Student's signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Name: Marco Gartmann 

Location, date of submission: Jona, 18.06.2021 

  



 

 

 78  

B. Task Assignment 

 



 

 

 79  

 



 

 

 80  

 

 

  



 

 

 81  

C. Project Management 

In general, this chapter aims to explain the used project management principles. In the first sections (up 

to Section C.3), the team members' responsibilities as well as the chosen project method and the required 

tools are outlined. Sections C.4 and C.5 describe the planned effort, the duration of the project and how 

the project is structured with phases and milestones. The following sections contain information on 

planned meetings (C.6), measures to ensure code and documentation quality (C.7) and lastly, a list of 

evaluated project risks (C.8). 

C.1. Responsibilities 

Both members of the development team are considered as full stack developers and are therefore equally 

responsible for all development tasks. 

Member Responsibilities 

Fabian Thurnheer Development, DevOps, Documentation 

Marco Gartmann Development, DevOps, Documentation 

Table 10: Project Development Team Members and Their Responsibilities 

C.2. Project Method 

For the realization of this project, it was decided to use a variation of the Unified Process where the 

project duration will be divided in four phases. Namely, those are: Inception, Elaboration, Construction 

and Transition. The Elaboration and Construction phase will be conducted in an agile manner modelled 

on the Scrum framework. During the agile phases of the project, sprints of the duration of one week will 

be used.  

This method was chosen because the project team already successfully conducted their term project with 

it. Furthermore, it includes advantages both of the agile and the non-agile world, which allows to 

structure the project with milestones and still allows to include new requirements during the duration 

of the project. 

C.3. Tooling 

To manage created source code, the version control system git is used. Furthermore, the git repository 

is uploaded to GitHub. Initially, GitLab was planned to be used. However, during the project it became 

clear that the repository was exceeded OST's GitLab upload limit. Therefore, GitHub was used from 

then on. 

For the project management, a GitLab instance provided by the OST university is used. The needed 

components for the chosen project method (as described above) are realized as follows: 

Work packages and milestones: work packages are created as GitLab issues and are assigned to the 

created milestones. 

Scrum board: is mapped to a GitLab issue board. Issues are positioned on the issue board using labels. 

Time tracking: worked hours are recorded on the GitLab issues. For the creation of time reports, a 

self-written webapp fetching GitLab’s API is used. 



 

 

 82  

C.4. Planned Effort 

The bachelor thesis counts for 12 ECTS credits. By means of the Bologna system, each ECTS credit 

equals an effort of 30 hours [66]. With two project members, the total planned effort for this thesis equals 

720 hours. 

This thesis must be completed within the spring semester 2021. The lecture period of 15 weeks is 

extended by two weeks, which can be used exclusively for the bachelor thesis. With 720 hours and 17 

weeks in total, the planned effort is 21 hours per week and project member. 

C.5. Phases and Milestones 

As mentioned before, the duration of this thesis project is divided into four phases: Inception, 

Elaboration, Construction and Transition. This section gives a brief overview of each phase's goal and 

of the planned milestones. 

22.2.21 18.6.21
1.3 8.3 15.3 22.3 29.3 5.4 12.4 19.4 26.4 3.5 10.5 17.5 24.5 31.5 7.6 14.6

22.2 - 28.2

Inception

1.3 - 28.3

Elaboration

29.3 - 13.6

Construction

14.6 - 18.6

Transition

29.3

M1: End of Elaboration

25.4

M2: Working Checker Prototype
6.6

M3: Feature Freeze

18.6

M4: Submission
 

Figure 13: Overview of Phases and Milestones 

C.5.1 Phases 

Inception: In this phase, a first meeting with the supervisor will be held and the task definition as well 

as the thesis's goal will be discussed. Additionally, the development team will be starting their work on 

the project plan and discussing any administrative matters. 

Elaboration: The aim of the Elaboration phase is to finish the project plan, which may still be altered 

in a later phase, to evaluate and minimize any risks, to define the requirements and to develop prototypes 

for the language client and the language server, if demanded by the chosen solution strategy. The latter 

will already be developed using an agile approach. If the language server and client do not have to be 

self-implemented, work on firsts checks can be begun. 

Construction: During this phase, while processing the evaluated work packages in order of their 

importance, the majority of code will be written. Simultaneously, the produced code and the resulting 

product will be tested continuously. A feature freeze concludes this phase. Afterwards, implementation 

of new features is forbidden. 

Transition: Serves the purpose to finalize work in progress and to prepare the thesis documentation 

for its submission. 

C.5.2 Milestones 

For the duration of the thesis project, milestones were defined to ensure that the project is on course. 

The defined milestones can be seen in Table 11. 



 

 

 83  

Milestone Date Description 

M1: End of Elaboration 28.03.2021 All risks have been identified and measures to minimize 

them have been defined. First requirements have been 

evaluated and the developed prototype proofs the validity 

of the chosen approach.  

M2: Working Checker 

Prototype 

25.04.2021 A first check has been implemented in the language server. 

This can be a simple check, e.g., for missing include 

guards. 

M3: Feature Freeze 06.06.2021 The final function scope is fixed. Afterwards, no new work 

will be begun. 

M4: Submission 18.06.2021 The project is finished. All MUST requirements are 

implemented. The software and the thesis documentation 

are submitted. 

Table 11: Evaluated Milestones with Their Corresponding Description 

C.6. Meetings 

Besides any informal ad-hoc meetings between the development team members, some meetings are 

planned to be held regularly, as it can be seen in Table 12.  

Meeting Frequency Purpose 

Status meeting Weekly on Mondays Together with the thesis's supervisor, the 

weekly progress and any occurred 

problems are discussed. 

Sprint meeting After each sprint, weekly Includes the retrospective of the finished 

sprint and the planning of the upcoming 

sprint. This contains the backlog 

management and thus the prioritization, 

weighting, and creation of issues. 

Table 12: Planned Meetings 

C.7. Quality Measures 

Several measures were defined to ensure a good quality, both for implemented code and written 

documentation. This section describes these measures.  

C.7.1 Use of Branches 

Goal: To keep changes to the code base small and thus to reduce the occurrence and complexity of 

merge conflicts. Additionally, it aims to allow for code review processes on small chunks of new code. 

For each issue/feature, a new feature branch is created where the necessary work is done. Code in the 

main branch is considered finished, working, and compliant to the coding guidelines. A feature branch 

is only merged into the develop branch after it passed the review process. 

C.7.2 Definition of Done 

Goal: To create a common understanding on when something can be categorized as done and prevent 

unfinished work from being merged. 

For an issue/feature/user story to be mergeable, the following criteria must be met: 



 

 

 84  

• No errors are shown in the IDE. 

• Pipeline has been run successfully, including: 

o Built successfully, all unit tests passed, no linter errors shown. 

• Tests for the newly created code have been added. 

• If necessary, the software documentation has been updated.  

• Newly added code has passed through the code review process. 

C.7.3 Code Reviews 

Goal: To ensure a high code quality and a complete and up-to-date documentation of the software 

documentation. 

After an issue has been finished by a team member and before it can be published, the other team 

member conducts a review of it. The emphasis is thereby put on the following points: 

• The reviewer ensures that the new feature is working as intended or that the addressed problem 

has been fixed. 

• The reviewer verifies that there are no code smells in the code not yet identified by static code 

analysis and that variables and classes have meaningful names. 

• The reviewer checks that the design and architecture documentation has been updated if 

necessary. 

As it was decided to follow the approach where clang-tidy (see Section 4.1) was to be extended, the goal 

of each feature is to be merged into the extended project. Before they are merged, a differential showing 

what was changed in the project must be uploaded to a review tool called Phabricator. There, members 

of clang-tidy's community also conduct a review of the implemented functionality and give feedback.  

C.7.4 Testing 

Goal: To minimize the possibility of faults and bugs. 

To achieve the mentioned goal, tests are run continuously and also before each feature is published to 

Phabricator. 

C.7.5 Proof Reading 

Goal: To eradicate spelling errors in the thesis and to ensure that it is written understandably. 

On the one hand, proof reading is done continuously throughout the project by the thesis team members 

who review each other's texts. Additionally, it is planned that a proficient person proofreads this thesis 

at the end of the thesis duration. 



 

 

 85  

C.8. Risk Management 

This section lists the risk analysis including the risks themselves, which are defined at the begin of this project. The evaluated risks are listed in Table 13 and their 

severity classification can be seen in Table 14. Section C.8.1 shows how the risks were re-evaluated at the end of the Elaboration phase. 

No. Title Description 
Max. 

damage 

Occurrence 

probability  
Prevention 

Behaviour upon 

occurrence 

R1 GitLab failure The GitLab platform of OST is 

temporary not available. Neither the 

Website nor the communication over 

the command line interface (CLI) 

work.  

Slight delay Low GitLab works with git, so 

every developer has its own 

local copy of the source code. 

Due to that, no prevention is 

needed. 

No special behaviour 

needed. 

R2 Local data loss A team member accidentally deletes 

his own local project data, or the hard 

drive of his computer is defect. 

Medium delay Very low Every project member pushes 

his code on a regular basis to 

the GitLab instance. 

Documentation files are 

automatically synchronized to 

the used OneDrive store. 

Rewriting of lost 

documentation parts or 

source code. 

R3 Defect dependencies Used third party libraries have several 

malfunctions (e.g.: Language Server 

Implementations or Parser). 

Large delay Low Usage of dependencies which 

are broadly used, and which 

are well maintained. 

Find a new library/ 

dependency as quickly 

as possible which can 

replace the current one. 

R4 Implementation 

difficulties 

The project team does not have the 

required know-how to fulfil the needed 

tasks. 

Project has 

failed 

High Plan enough time for self-

studying the core topics of the 

ongoing task. 

After unsuccessfully 

trying to solve the 

problem ourselves, 

contact the supervisor 

for further help. 

R5 Underestimated the 

effort 

The project team cannot deliver all 

defined tasks in the given project time. 

Slight delay Low Keep core functionalities 

small, present the project 

state to the supervisor in the 

weekly meetings. 

Contact the supervisor 

and discuss the further 

approach (e.g., shrink 

project scope). 



 

 

 86  

No. Title Description 
Max. 

damage 

Occurrence 

probability  
Prevention 

Behaviour upon 

occurrence 

R6 Incorrect 

communication 

Due to incorrect communication, 

project tasks are done incorrectly or 

not at all. 

Medium delay Low Frequent meetings between 

the team members to identify 

misunderstandings as soon as 

possible. 

If there occur multiple 

communication 

problems, plan meetings 

in fixed intervals and 

hold them more often. 

R7 Editor dependency The API of Visual Studio Code 

changes during the project time. Code 

must be rewritten, or the project's 

requirements could no longer be 

fulfilled. 

Medium delay Very low The occurrence of this 

incident is unlikely. Due to 

predefined usage of LSP, it 

should be possible to change 

the editor without rewriting 

the core functionality of the 

product (e.g., the use of a 

language server). 

Discuss the further 

procedure with the 

supervisor.  

R8 Absence of a team 

member 

A team member is absent for a longer 

period (e.g., disease). 

Medium delay Medium Update the documentation 

frequently and hold meetings 

between the project members 

regularly. 

Discuss the further 

procedure with the 

supervisor. 

Table 13: Evaluated Risks at the Beginning of the Project 

 

Impact  

Probability 

Slight delay Medium delay Large delay Project has failed 

Very low  R2, R7   

Low R1, R5 R6 R3  

Medium  R8   

High    R4 

Table 14: Risk Matrix at the Beginning of the Project 



 

 

 87  

C.8.1 Reassessment at the End of Elaboration 

To ensure that at the end of the Elaboration phase all risks have been identified and critical risks have 

been eliminated, the specified risks were revaluated. 

No. Title Reassessment Justification 

R1 GitLab failure No After the evaluation of LLVM, GitLab is no longer this 

project's code repository and is only used for 

administrative purposes. Because the impact 

classification is already at the lowest, no reassessment 

is necessary. 

R2 Local data loss No Although working with GitLab changed to using 

GitHub as code repository, this risk is still present and 

unchanged. 

R3 Defect 

dependencies 

Yes The thesis team decided to use LLVM as the 

infrastructure to use, which is a well-renowned project. 

During the implementation of the first check, no 

malfunction of any important component occurred. 

The probability that a severe defect in LLVM would 

emerge was assessed as very low.  

R4 Implementation 

difficulties 

Yes The elaborated infrastructure was tested and a first 

check for LLVM's clang-tidy was successfully 

implemented. Therefore, the project was no longer seen 

as being at risk. However, implementing checks for 

such a large project is still complex. Therefore, the 

risk's impact was downgraded to medium delay. 

R5 Underestimated 

the effort 

No Because a first version of a check could be successfully 

developed, and further checks are incrementally 

evaluated, it was decided not to change this risk's 

already low classification. 

R6 Incorrect 

communication 

Yes As expected, the project team is well-established and 

communicates daily with each other during the 

working week. No communication problem occurred 

until this reassessment, so the probability was set to 

very low. 

R7 Editor 

dependency 

No No reassessment is needed. This risk's probability is 

still very low and the usage of LSP is set, which 

mitigates this risk. 

R8 Absence of a team 

member 

Yes Although the COIVD-19 pandemic is still present, due 

to the measures of the federal government and 

constantly working on the thesis from home, this risk's 

probability was be downgraded to low. 

Table 15: Reassessment of the Defined Risks at the End of Elaboration 

  



 

 

 88  

Impact  

Probability 

Slight delay Medium delay Large delay Project has failed 

Very low  R2, R6, R7 R3  

Low R1, R5 R8   

Medium  R4   

High     

Table 16: Risk Matrix at the End of Elaboration 

Conclusion: Because no risk was evaluated to be project-critical, the project’s success is not at risk 

anymore. 

C.9. Time Statistics 

  

 

 
 



 

 

 89  

D. Comparison of Clang-Tidy and Cevelop Checks 

As part of elaborating different design approaches for this thesis, a comparison of existing clang-tidy checks and existing Cevelop checks was conducted. The existing 

Cevelop checks originate from the two Cevelop features "C++ Ctylechecker" and "GSLator". The results from these comparisons are visible in Table 17 to Table 

18. 

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

CC* Cin Cout Problem - - • Feasibility: provided AST matchers 

can be used, not much extra logic 

needed → simple 

• Likeliness: this rule is probably new to 

most OST students visiting the C++ 

module of OST, iostreams are 

regularly used for testates and 

exercises → high 

• Error impact: only influences 

testability of a program → low 

- Dynamic Style Problem 

(naming conventions) 

 

readability-identifier-naming Yes (already implemented) 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 90  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

- Dynamic Style Problem for Files - - Creation of the Dynamic Style Problems 

checks in Cevelop was covered by a whole 

bachelor thesis on its own. [67] It would 

not be feasible to implement this as a part 

of this thesis [67]. Therefore, this check is 

not considered for implementation as part 

of this thesis. 

I.2 Global Non Const Variable Problem cppcoreguidelines-avoid-non-const-global-

variables 

No Since no fix was provided, it was assessed 

as well: 

• Feasibility: variable type needs to be 

extracted and cleanly printed, high 

effort is estimated → moderate 

• Likeliness: const can easily be 

forgotten by novice programmers, 

who might not be aware of the impact 

this causes → high 

• Error impact: error prone since non-

const global variables are subject to 

unpredictable changes → medium 



 

 

 91  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

SF.8 Include Guard Missing - - • Feasibility: clang-tidy utility 

Utils/HeaderGuard exists which does 

most of the work. However, it would 

have to be analysed how it can be 

utilized. A new dependency would be 

introduced to an evaluated clang-tidy 

module → hard 

• Likeliness: concept is new to novice 

C++ programmers. Although taught 

in OST's C++ module, it might be 

forgotten → high 

• Error impact: error prone, program 

might not compile if One Definition 

Rule is violated because of missing 

include guards → medium 

 

Worth noting: a similar check was 

already pushed to Phabricator but has 

not been merged yet [68]. 

II* Iostream Include Problem - - Is strongly related to the "Cin Cout 

Problem", the same categorisation 

thoughts apply as above. 

C.49 Member Initializer Not Used in 

Constructor 

cppcoreguidelines-prefer-member-initializer Yes (already implemented) 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 92  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

SF.5 Missing Include to Own Header - - • Feasibility: pre-processor call-backs 

would be needed; existing checks 

could be helpful for implementing 

this. However, no known AST 

matchers can be used →  moderate 

• Likeliness: is an important concept 

taught in OST's C++ module, 

students are regularly confronted with 

this issue → high 

• Error impact: error prone; possible 

inconsistencies between function 

return types in header files and its 

implementations can only be noticed 

during link-time if own header file is 

not included, and not earlier, e.g., in 

an IDE or during compile-time → 

medium 



 

 

 93  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

MSI* Missing Standard Include - - • Feasibility: based on the existing 

Cevelop check, it would need a great 

effort to implement this 

[69](cevelop/CevelopProject/bundles

/com.cevelop.ctylechecker/src/com/c

evelop/ctylechecker/checker/includes

/MissingStandardIncludeChecker.jav

a) → hard 

• Likeliness: it is seen as likely that 

novice C++ programmers might 

forget includes and do not know what 

includes are needed → high 

• Error impact: error prone, the 

compilation will fail because no 

declaration is provided → medium 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 94  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

MACT* Multiple Asserts in Cute Test - - • Feasibility: Existing AST matchers 

could use to implement this check. 

Also, a list of possible assert function 

names is needed → simple 

• Likeliness: Writing CUTE tests 

during OST’s C++ module is 

common practice. So, a student will 

likely forget this OST own rule → 

high 

• Error impact: It improves readability 

of CUTE test code → low 

C.46 Non-'explicit' Single Argument 

Constructor 

google-explicit-constructor Yes (already implemented) 

 

Note: in Table 18, a similar Cevelop check 

is listed with no corresponding clang-tidy 

check. This is because the google-explicit-

constructor check does not cover the 

corresponding guideline completely. Since 

this check is not part of Cevelop's 

GSLator plugin. Thus, it does not 

demand implementing rule C.46 exactly 

and the google-explicit-constructor is seen 

as sufficient. 

- Redundant Access Specifier Problem readability-redundant-access-specifiers Yes (already implemented) 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 95  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

SIP* Self-Include Position - - • Feasibility: possible with pre-

processor call-backs offered by clang, 

but very different to checks using 

AST matchers → moderate 

• Likeliness: if no attention is paid to 

this issue, it is likely to include the 

source file's header file in the wrong 

position → high 

• Error impact: worse readability of 

source files. Furthermore, if not 

placed in first position, it is harder to 

distinguish if the header file is self-

contained. No errors if done wrong → 

low 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 96  

C++ Core 

Guideline 
C++ Style Checker Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

SSI* Superfluous Standard Include - - • Feasibility: would require to extended 

analysis of all used names and to keep 

a list of names with their needed 

includes, AST matchers are only 

slightly helpful for this → hard 

• Likeliness: can happen to novice and 

more experienced programmers. 

However, the contrary (forgetting 

needed includes) is estimated as much 

more likely → medium 

• Error impact: introduces unnecessary 

includes, leading to larger translation 

units, does not lead to errors → low 

- System Include Before Own Include llvm-include-order Yes (already implemented) 

SF.7 Using in Header Problem google-global-names-in-headers 

 

No (already implemented) 

Table 17: Cevelop C++ Style Checkers and Their LLVM Counterparts 

 

 

 

* This check does not cover a C++ Core Guideline, so the project team defined its own alias for identification purposes. 



 

 

 97  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

ES.9 AvoidALLCAPSnamesChecker - - • Feasibility: own AST matchers 

needed for caps check, every 

statement needs to be checked, could 

be very noisy → moderate 

• Likeliness: macros are barely used in 

OST's C++ module → low 

• Error impact: no Undefined Behavior 

but hard to find bugs → high  

ES.20 AlwaysInitializeAnObjectChecker cppcoreguidelines-pro-type-member-init 

cppcoreguidelines-init-variables 

Yes (already implemented) 

ES.26 DontUseVariableForTwoUnrelatedPurpo

sesChecker 

- - • Feasibility: dependencies between 

every variable declaration and 

declaration reference expression needs 

to be analysed if they are related, 

"unrelated purposes" is hard to 

interpret and to implement → hard 

• Likeliness: likely to run into for 

beginners → high 

• Error impact: leads to bad 

readability, could lead to security 

issues when using buffers multiple 

times → medium 

ES.46 AvoidLossyArithmeticConversionsCheck

er 

cppcoreguidelines-narrowing-conversions  

bugprone-narrowing-conversion (alias) 

No (already implemented) 

ES.49 IfMustUseNamedCastChecker cppcoreguidelines-pro-type-cstyle-cast 

google-readability-casting 

Yes (already implemented) 

ES.50 DontCastAwayConstChecker cppcoreguidelines-pro-type-const-cast Yes (already implemented) 



 

 

 98  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

ES.74 DeclareLoopVariableInTheInitializerChe

cker 

- - • Feasibility: loop through all 

declRefExpr is needed to check if its 

variable is declared outside the loop, 

some effort needed → moderate 

• Likeliness: for-statements are often 

used by beginners instead of STL 

algorithms, likely to run into this 

problem. Use of for-statements is 

discouraged in OST's C++ module → 

high 

• Error impact: bad readability, 

prevents optimizations → low 

ES.75 AvoidDoStatementsChecker - - • Feasibility: AST matcher for do 

statements exists, not much effort → 

simple 

• Likeliness: is a basic language feature 

and possibly known to novice 

programmers → high  

• Error impact: according to C++ Core 

Guidelines, this leads to bugs, and 

bad readability → medium 

ES.76 AvoidGotoChecker cppcoreguidelines-avoid-goto 

hicpp-avoid-goto (alias) 

No  (already implemented) 

C.20 RedundantOperationsChecker - - Together with the thesis's supervisor, it 

was assessed that this check would 

require a unproportionally high effort for 

only low benefit for students. 

• Feasibility: hard 

• Likeliness: low 

• Error impact: low 



 

 

 99  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

C.21 MissingSpecialMemberFunctionsChecker cppcoreguidelines-special-member-

functions 

hicpp-special-member-function (alias) 

No (already implemented) 

C.31 NoDestructorChecker 

DestructorHasNoBodyChecker 

DestructorWithMissingDeleteStatement

Checker 

- - • Feasibility: simple enforcement would 

be doable but would likely require a 

complex AST matcher → moderate 

• Likeliness: since usage of gsl::owner 

and explicit memory management is 

not taught in OST's first C++ 

module, students of this module 

would not profit much → low 

• Error impact: memory leaks → 

medium 

C.35 BaseClassDestructorChecker 

 

- - • Feasibility: AST matcher is estimated 

as simple, however, implementing a 

fix could be complex → moderate 

• Likeliness: something that novice 

C++ might not be aware of. However, 

only affects variables which have a 

dynamic type (new, make_unique), 

which is not the majority of use-cases 

for novice C++ students → medium 

• Error impact: could lead to Undefined 

Behavior [40] → high 



 

 

 100  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

C.37 DestructorShouldBeNoExceptChecker Not implemented, but worth mentioning:  

bugprone-exception-escape 

- • Feasibility: AST matcher could be 

realised as 

cxxDestructorDecl(unless(isNoThrow

())). Only matches if throwing class 

is used → simple 

• Likeliness: program would only not 

terminate if destructor thrown 

exceptions are "catched". Throwing 

destructors are probably rare in 

beginner's code. Furthermore, use of 

destructors is not taught in-depth in 

OST's C++ module [67] → low 

• Error impact: could lead to memory 

leaks and in the worst-case to 

Undefined Behavior → high 

Because of the high error impact, this 

rule's benefit for students would result in 

a medium rating. However, since in-depth 

destructors are not part of OST's C++ 

module, the target audience would not 

profit much and would probably be 

irritated by warnings of this check. Thus, 

it was decided to override this rating to 

low. 



 

 

 101  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

C.44 NoexceptDefaultCtorChecker - - • Feasibility: AST matcher is expected 

to be simple (isNoThrow())→ simple 

• Likeliness: this topic is not taught in 

OST’s C++ module [67] and is thus 

not relevant for the target audience → 

low  

• Error impact: hardens error-handling 

and reasoning about move operations, 

but does not result in errors itself → 

low 

C.45 InClassInitializeChecker - - • Feasibility: should be possible with 

existing AST matchers → simple 

• Likeliness: for beginners, it may be 

reasonable to initialize member 

variable with default values in the 

initializer list. It probably is not 

obvious why this should not be done 

→ high    

• Error impact: only has an impact on 

performance and readability → low 

C.46 DeclareSingleCtorExplicitChecker - - • Feasibility: enforcement does not 

demand much → simple 

• Likeliness: unintended conversions are 

not obvious and can happen easily if 

a programmer is not aware of this → 

high  

• Error impact: bug prone if done 

wrong, leads surprising conversions 

which are not easy to detect → 

medium 



 

 

 102  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

C.47 InitializeMemVarsInRightOrderChecker clang(-Wreorder-ctor)  Yes (already implemented in clang) 

C.48 PreferInClassInitializerToCtorInitChecke

r 

cppcoreguidelines-pro-type-member-init Yes (already implemented) 

C.49 NoAssignmentsInCtorChecker cppcoreguidelines-prefer-member-initializer Yes (already implemented) 

C.60 CopyAssignmentNonVirtualChecker 

CopyAssignmentParameterByConstRefC

hecker 

CopyAssignmentReturnByNonConstRef

Checker 

cppcoreguidelines-c-copy-assignment-

signature 

No (already implemented) 

C.63 MoveAssignmentNonVirtualChecker 

MoveASsignmentReturnByNonConstRef

Checker 

cppcoreguidelines-c-copy-assignment-

signature 

No (already implemented) 

C.66 MoveOperationsShouldBeNoExceptChec

ker 

performance-noexcept-move-constructor 

hicpp-noexcept-move (alias) 

Yes (already implemented) 

C.83 ValueLikeTypesShouldHaveSwapChecke

r 

- - • Feasibility: no direct AST matcher for 

swap functions available, new AST 

matcher would have to be created → 

moderate 

• Likeliness: again, this topic is not part 

of OST's C++ module [67]. The 

target audience (module visitors) 

would more likely be irritated by this 

check's warnings than they would 

profit from it [67] → low 

• Error impact: only affects 

performance and efficiency, no errors 

result from doing this wrong → low 

C.84 MakeSwapNoExceptChecker - - Covers the same topic as C.83, the same 

categorisation thoughts apply as above. 



 

 

 103  

C++ Core 

Guideline 
GSLator Plugin Corresponding Clang-Tidy Check 

Fix 

available? 
Categorisation Comments 

C.85 NamespaceLevelSwapFunctionChecker - - Covers the same topic as C.83, the same 

categorisation thoughts apply as above. 

C.164 AvoidConversionOperatorsChecker 

 

google-explicit-constructor Yes (already implemented) 

Table 18: Cevelop GSLator Plugin and Their LLVM Counterparts 



 

 

 104  

E. System Tests 

This chapter documents the conducted tests of the non-functional requirements defined in Section 3.2 and their results. These tests were conducted after the solution 

strategy of extending clang-tidy was selected. Since this thesis's work had little to no impact on the LLVM project's non-functional properties, it was decided that 

it would not make sense to conduct a second test on its NFRs at the project's end. 

E.1. Test of Non-Functional Requirements 

Responsible: Marco Gartmann 

Execution time: 23.03.2021 

Visual Studio Code Environment: 

• Code: 1.56.2 (054a9295330880ed74ceaedda236253b4f39a335) 

• OS: win32(10.0.19042) 

• CPUs: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz(8 x 1992) 

• Memory(System): 15.85 GB(8.16GB free) 

• Memory(Process): 191.70 MB working set(166.75MB private, 0.90MB 

shared) 

E.1.1 Usability 

Scenario Description Test Execution Expected Result Effective Result 

#1 Automatic 

extension activation 

Opened Visual Studio Code, ran the VS Code 

"Developer: Show Running Extensions" command, 

verified that clangd is not active, opened a C++ 

file and verified that clangd is now listed in the 

activated extensions. 

Clangd VS Code extension is 

started as soon as a user opens a 

C++ file. 

Passed.  

Is started after a C++ file is 

opened. Is ensured with the 

extension's  
"activationEvent": 
"onLanguage:cpp" 

setting. 

Table 19: Test of Usability NFRs 

  



 

 

 105  

E.1.2 Performance 

Scenario Description Test Execution Expected Result Effective Result 

#1 Diagnosis does not 

affect IDE runtime 

behaviour 

Opened Visual Studio Code, opened the following 

C++ file: llvm-project\clang-tools-extra\ 

clang-tidy\google\AvoidCStyleCastsCheck.cpp 

(190 lines of code). Started adding new code 

fragments by hand. 

Time between user input and 

displaying of the entered character 

in the IDE: 

Minimal: 0.2s, delay noticeable 

Target: 0.1s, no delay 

Passed (outstanding).  

No delay on user input was 

noticeable. 

#2 Start-up time of 

IDE extension 

Opened Visual Studio Code, opened a C++ file, ran 

the VS Code "Developer: Show Running 

Extensions" command, inspected clangd's 

displayed activation time. This was done ten times 

and the runs average was calculated. 

Time between opening a C++ file 

and the moment the clangd 

extensions starts communicating 

with its language server: 

Minimal: < 2 seconds 

Target: < 1 second 

Outstanding: < 0.5 seconds 

Passed (target).  

Average activation time was 

713ms. 

#3 Quickness of Style 

Checker Feedback 

With all clang-tidy checks activated, Visual Studio 

Code was run, the following C++ file was opened 

(having the defined 22'000 SLOC with its headers 

included, see 3.2.2), which is part of clang-tidy 

itself: 

 
C:\HSR\Semester6\BA\llvm-
project\lld\unittests\MachOTests\ 
MachONormalizedFileYAMLTests.cpp 
 

This triggers several clang-tidy checks.  

In VS Code's Output window of clangd, the time 

between the "didOpen" LSP message to the 

language server and the first received diagnostic 

was assessed. To see these times, in the VS Code 

settings of the clangd extension, "-log=verbose" 

was added to the "Clangd: Arguments" setting. 

Time between a user input that 

triggers a diagnostic and the 

moment this diagnostic is received 

in VS Code: 

Minimal: < 5 seconds 

Target: < 4 seconds 

Outstanding: < 2 second 

Passed (target). 

 

Time of "didOpen" LSP message: 

14:02:32.264 

 

Time of first received diagnostic: 

14:02:35.321 

 

Delta: 3.06s 

 

It should be noted that in this 

time, Clang also loaded lld's 

complete compile commands 

database to resolve all includes 

and symbols. Analysis of C++ 

files like those created for OST's 

C++ course exercises usually take 

less than 100ms. 



 

 

 106  

Table 20: Test of Performance NFRs 

E.1.3 Supportability 

Scenario Description Test Execution Expected Result Effective Result 

#1 Installation of the 

language server and 

language client 

On a computer which did not have the clangd 

extension installed, opened Visual Studio Code, 

installed the clangd extension from the VS Code 

marketplace and assessed that communication 

between client and server happens (visible in clangd 

output log in VS Code). 

When a user installs the extension 

(language client), its corresponding 

language server does not need to be 

installed separately.  

Passed.  

While installing the Visual Studio 

Code extension "clangd", the 

corresponding language server 

"clangd" is also installed. 

Table 21: Test of Supportability NFRs 



 

 

 107  

F. Developer Guide 

This guide should help future developers working on clang-tidy checks or create new ones. This includes 

insight on how to setup a working environment with LLVM on Windows with Visual Studio. 

Furthermore, this chapter also contains a contribution workflow which describes how clang-tidy checks 

and fixes can be implemented and contributed to the LLVM project. Moreover, some pitfalls, which the 

thesis team encountered during creating the workflow, are documented as well. 

F.1. LLVM General 

F.1.1 Documentation / Community 

If any questions during the development process should occur, help may be found in the following sources. 

Name Link 

Clang-tidy documentation https://clang.llvm.org/extra/clang-tidy/ 

Clangd documentation https://clangd.llvm.org 

LLVM's Discord Server https://discord.com/invite/xS7Z362 

Forum https://llvm.discourse.group/ 

F.1.2 GitHub / Phabricator 

LLVM’s complete source code is hosted on GitHub. Special about the project is how it handles 

contributions. LLVM uses a tool called Phabricator to review and discuss contributions. When a 

contribution is accepted by the community, it is manually merged into the GitHub repository. 

Name Link 

LLVM GitHub Repository https://github.com/llvm/llvm-project 

LLVM Phabricator https://reviews.llvm.org/ 

LLVM Phabricator - How to Use https://llvm.org/docs/Phabricator.html 

F.2. Setup Development Environment for Clang-Tidy 

F.2.1 GitHub Fork 

Since the LLVM project is hosted on GitHub, its recommended to fork the repository with an own 

GitHub account. It should be mentioned that LLVM is a very actively maintained project so the forked 

repository will be deprecated soon. Regularly fetching the newest changes from the upstream repository 

helps to prevent merge conflicts in Phabricator's pre-merge tests when local changes are contributed to 

Phabricator. 

F.2.2 LLVM for Visual Studio 

To work on clang-tidy, which is a part of clang-extra-tools which is again a part of LLVM, it is necessary 

to setup a certain development environment. The recommended way to do that is described on the 

official documentation page: 

 https://clang.llvm.org/get_started.html 

The thesis team worked on Windows 10 with Visual Studio (without Ninja). During this setup, it was 

found that a command must be changed to get the right development environment for clang-tidy. At 

https://clang.llvm.org/extra/clang-tidy/
https://clangd.llvm.org/
https://discord.com/invite/xS7Z362
https://llvm.discourse.group/
https://github.com/llvm/llvm-project
https://reviews.llvm.org/
https://llvm.org/docs/Phabricator.html
https://clang.llvm.org/get_started.html


 

 

 108  

the time of writing this thesis, the documentation recommended generating build files without clang-

tools-extra, which is needed to get build files for clang-tidy. Also, the Visual Studio version was outdated. 

The correct command to generate the needed build files is as follows: 

 cmake -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra" -G "Visual Studio 16 2019" -Thost=x64 ..\llvm 

As described in the official documentation, the above listed command will generate a Visual Studio 

solution file inside your build folder (which is created during the mentioned setup above) called 

LLVM.sln. This solution is structured in several sub-projects which can be used to build executables for 

a variety of LLVM tools, including a test suite that executes written clang-tidy tests. 

➔ Beware: The first build of an executable like clang-tidy could take between one to two hours, 

depending on the computer’s system resources! 

➔ The build folder could take up to 20 GB of space! 

 

Name LLVM.sln Project 

Clang-tidy build project Clang executables\clang-tidy 

Clangd build project Clang executables\clangd 

Clang-extra-tools test suite Clang extra tools’ tests\check-clang-tools 

F.2.3 Visual Studio Code 

Within mind of not writing clang-tidy checks only to use them with clang-tidy as standalone tool, its 

recommended installing LLVM’s language server clangd. This can be done by downloading Visual Studio 

Code and installing the clangd plugin from the Visual Studio Code Marketplace. The installation can be 

used to test if a clang-tidy check already exists or if a developed check works as it should. 

To include a clangd language server that was self-built, change the Clangd: Path setting inside the 

clangd plugin to the build folder of your LLVM project, e.g., C:\llvm-

project\build\Release\bin\clangd.exe. Thus, every time a clangd executable is built with Visual 

Studio, it is immediately active inside Visual Studio Code. 

Tools which are used by clangd such as clang-tidy can be configured how they should perform with 

clangd. Clangd’s documentation website describes how different tools can be configured. To activate all 

available checks and remove some noisy ones, the following configuration can be used. By doing so, this 

can help to verify if a check, which is to be implemented, not already exists. 

# %LOCALAPPDATA%\clangd\config.yaml 

CompileFlags: 

  Add: [-xc++, -Wall] # treat all files as C++, enable more warnings 

 

Diagnostics: 

  ClangTidy: 

    Add: '*' # enable all possible clang-tidy checks 

    Remove: [altera-unroll-loops, llvm*, fuchsia*] 

 

 

Name Link 

Visual Studio Code https://code.visualstudio.com/ 

https://code.visualstudio.com/


 

 

 109  

Name Link 

Clangd Extension https://marketplace.visualstudio.com/items?itemName=llvm-

vs-code-extensions.vscode-clangd 

Clangd Documentation https://clangd.llvm.org/ 

F.2.4 Installation of LLVM Tools 

During the development of new checks, using LLVM tools could be helpful, e.g., to generate an AST of 

a given source file. Download the latest LLVM-X.X.X-win64.exe executable which includes a lot of pre-

built binaries. After running the mentioned executable, a folder C:\Program Files\LLVM\bin is created. 

The folder should be available inside the Path environment variable so that the pre-built binaries are 

available from the command line. 

Name Link 

LLVM Pre-Built Binaries https://github.com/llvm/llvm-project/releases/ 

F.3. Contribution Workflow for Clang-Tidy 

This is a step-by-step manual to create a clang-tidy check. Prerequisite for this is that the steps specified 

in section Setup Development Environment for Clang-Tidy were followed. This is a finer structured 

workflow than the original documentation from https://clang.llvm.org/extra/clang-

tidy/Contributing.html. It is also enriched with experience from the thesis team and includes steps which 

could speed up the development process. 

1) Make sure the check does not already exist. 

a) Go through the official documentation of clang-tidy checks and make sure the check you want 

to implement does not already exist. 

i) https://clang.llvm.org/extra/clang-tidy/checks/list.html 

b) To verify this, create a C++ test file in Visual Studio Code (clangd extension enabled) with 

code that should trigger the check you want to implement. 

c) Enable all possible checks in clangd’s configuration file (the provided configuration file from 

above is sufficient) and verify that your code example is not flagged by an existing check. 

2) Add a new git branch. 

a) Add a new git branch to be able to generate an exact diff between LLVM's main branch and 

the new check. 

i) git checkout -b branch-name 

b) To push this branch to the forked GitHub repo, change its upstream. 

i) git push --set-upstream origin branch-name 

3) Run a script to generate all needed files for creating a check. 

a) First, define in which clang-tidy folder/module the check belongs. Decide between one of the 

given folders from: llvm-project\clang-tools-extra\clang-tidy\ 

b) Define a proper name for the check. This name should be carefully selected, since changing it 

afterwards can be troublesome (see Section F.4 Pitfalls). 

c) Execute the script add_new_check.py inside llvm-project\clang-tools-extra\clang-tidy: 

i) .\add_new_check.py <module> <check-name> 

ii) E.g.: .\add_new_check.py cppcoreguidelines declare-loop-variable-in-the-initializer 

https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
https://clangd.llvm.org/
https://github.com/llvm/llvm-project/releases/
https://clang.llvm.org/extra/clang-tidy/Contributing.html
https://clang.llvm.org/extra/clang-tidy/Contributing.html
https://clang.llvm.org/extra/clang-tidy/checks/list.html


 

 

 110  

d) Be aware of the pitfalls which occur by running this script (see Section F.4 Pitfalls)! 

4) Build Visual Studio Solution. 

a) To integrate the new created files in the current Visual Studio LLVM solution, regenerate the 

solution file. Execute the following command inside \llvm-project\build: 

i) cmake -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra" -G "Visual Studio 16 

2019" -Thost=x64 ..\llvm 

b) After regenerating the solution, the implementation files could be found inside the Visual Studio 

Solution under the Object Libraries folder. 

i) Object Libraries/obj.clangTidy<module>Module 

5) Find the right nodes within clang’s AST. 

a) To understand which node of the AST should be matched by a check, it is useful to display 

Clang’s AST generated from a source file with code examples that shall be flagged by the check 

in the future. There are different ways to display an AST. The most proven variant was using 

clang-check, another LLVM tool: 

i) clang-check -ast-dump C:\users\test\desktop\test.cpp -- 

ii) More information about clang-check: https://clang.llvm.org/docs/ClangCheck.html 

b) Introduction to Clang’s AST: https://clang.llvm.org/docs/IntroductionToTheClangAST.html 

6) Find a matcher query with clang-query. 

a) Clang-query, another LLVM tool, makes it possible to execute AST matcher-queries on a given 

C++ source file. The provided sources include a complete list of such matchers and how they 

can be used. This tool is useful to experiment with AST matcher queries to match the node 

which should be flagged by the new check. This approach's advantage is that it is not required 

to build clang-tidy to test matcher queries, what saves build-time. 

b) Sources: 

i) AST matcher reference: https://clang.llvm.org/docs/LibASTMatchersReference.html 

ii) How to use: https://clang.llvm.org/docs/LibASTMatchers.html 

c) Usage: 

i) Open clang-query command line: clang-query.exe C:\users\test\desktop\test.cpp -- 

ii) Run AST matchers on the given file, e.g.: match forStmt(unless(has(declStmt()))) 

7) Implement the check. 

a) Once a satisfactory matcher query was found in the previous step, the check can now be 

implemented inside the check's previously generated .ccp/.h files. They are stored inside the 

folder you have chosen in step 3) and visible in Visual Studio as described in step 4). 

b) If an already existing check from Cevelop should be re-implemented, its source code may serve 

as an inspiration: 

i) https://github.com/Cevelop/cevelop/tree/develop/CevelopProject/bundles/ 

c) Test the check's implementation by regularly building the clangd or clang-tidy executable. After 

this is done as described in F.2.2, the executable can be used as described below. 

i) Clangd: Use your Visual Studio Code installation from F.2.3. Open a test file in the editor 

to verify if a code snippet, which should trigger the check, is flagged. 

ii) Clang-tidy: Run the following command to test your check: 

(1) llvm-project\build\Release\bin\clang-tidy.exe test.cpp --checks=<module>-<check-

name> 

(2) With * every check is enabled, so the new create one should also be visible. 

https://clang.llvm.org/docs/ClangCheck.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchers.html
https://github.com/Cevelop/cevelop/tree/develop/CevelopProject/bundles/


 

 

 111  

(3) Source: https://clang.llvm.org/extra/clang-tidy/ 

8) Write tests for the created check. 

a) Write a test file with code snippets that should trigger the created check and others that should 

not. The add_new_check.py script generated the needed test file already. Clang-tidy's test files 

can be found in the following directory: 

i) llvm-project\clang-tools-extra\test\clang-tidy\checkers\ 

b) Section 6.5 Testing from the thesis's main part describes how checks can be tested. 

9) Write documentation. 

a) Add a short description about the check to clang-tools-extra's release notes: 

i) \llvm-project\clang-tools-extra\docs\ReleaseNotes.rst 

b) Add the same description as written in the release notes into the header file of the check. The 

header file can be found in the same folder as the check itself. 

c) Add a description about what the check does to the check's documentation file. If reasonable, 

add code examples as well. This file also forms the basis of LLVM's website 

https://clang.llvm.org/extra/clang-tidy/checks/list.html, listing any existing clang-tidy check. 

The checks documentation file can be found in the following location: 

i) llvm-project\clang-tools-extra\docs\clang-tidy\checks 

d) Format C++ statements like while, for, do etc. with double ticks as ``for`` inside 

documentation texts. 

e) An online RST viewer (e.g., http://rst.ninjs.org) might be helpful to check the appearance of 

written .rst files and to detect any formatting errors.  

10) Merge fresh main branch. 

a) LLVM is a frequently updated project. Because of this, its main branch is updated often. To 

prevent merge conflicts while contributing a new check to Phabricator, it is recommended to 

fetch the current version of LLVM’s main branch and to merge the updated main branch into 

the check's specific branch before contributing. If this is not done, Phabricator's pre-merge tests 

might fail in their "setup" phase. The following documentation describes how to sync the local 

LLVM fork: 

i) https://docs.github.com/en/github/collaborating-with-pull-requests/working-with-

forks/syncing-a-fork 

11) Format your written code. 

a) Before committing to Phabricator, make sure every file is formatted correctly. 

b) In Visual Studio, the shortcuts Ctrl + k and Ctrl + d can be used inside the LLVM solution to 

automatically format source files according to LLVM style guidelines. 

c) To format an entire git commit, clang-format could be used inside the local LLVM repository: 

i) git clang-format HEAD~1 

ii) Increase the number after HEAD~ by 1 and execute the command again. 

iii) Do that for the number of commits which were created to implement the check. 

12) Run the test suite. 

a) It is important to run the test suite after formatting the code, because this could have an impact 

on the test results. 

b) Open the Visual Studio LLVM.sln solution and build the test project:  

Clang extra tools’ tests\check-clang-tools 

13) Create a patch file. 

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/list.html
https://docs.github.com/en/github/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://docs.github.com/en/github/collaborating-with-pull-requests/working-with-forks/syncing-a-fork


 

 

 112  

a) Create a diff/patch file between the main branch and the check’s branch. This file is needed to 

commit to LLVM's Phabricator. 

i) Inside the llvm-project folder, run this command: git diff main -U9999999 > patch.txt 

14) Commit to LLVM over Phabricator. 

a) Source: https://llvm.org/docs/Phabricator.html 

i) During this thesis, requests were created with Requesting a review via the web interface. 

b) Helpful YouTube video: https://youtu.be/C5Y977rLqpw?t=707 

c) Go to https://reviews.llvm.org/ and register a new user account. 

d) Open https://reviews.llvm.org/differential/diff/create/ to upload a diff. 

i) Raw Diff: Use Raw Diff, this proofed to be the most reliable option during the thesis. Enter 

the content of the previous generated patch.txt file. 

ii) Repository: rG LLVM Github Monorepo 

iii) Visible To: Public 

iv) Click: Create Diff 

e) On the next side, review the submitted code and choose Create new Revision. 

f) On the next side, fill out the given fields and submit. 

i) Title: [clang-tidy] <module>-<check-name>: a new check 

ii) Summary: A short description of what the check does. 

iii) Reviewers: 

(1) One possible reviewer for clang-tidy is its code owner, listed in the following file: llvm-

project\clang-tools-extra\CODE_OWNERS.TXT 

(2) It was found that often, the active reviewers were different from the ones mentioned in 

the CODE_OWNERS.TXT file. To find currently active maintainers, search through 

https://reviews.llvm.org/source/llvm-github/history/main/clang-tools-extra/clang-

tidy/ and note which users are the ones with recent review comments. 

iv) Repository: rG LLVM Github Monorepo 

v) Visible To: Public 

vi) Editable By: All Users 

vii) Tags: clang-tools-extra 

viii) Subscribers: cfe-commits (Mailing List) 

15) Observe the contribution. 

a) After fulfilling step 14), Phabricator redirects to the created differential's page. Note that 

LLVM's term for "pull-request" is "differential". On this page, the selected reviewers comment 

their feedback and improvement suggestions. Furthermore, from this page, the uploaded patch 

can be updated with a newer version after feedback was incorporated.  

b) For an overview of all created differentials and their status, visit: 

https://reviews.llvm.org/differential/ 

c) Also, if a LLVM reviewer comments on a differential, an email is sent to the email address of 

the used Phabricator account. 

F.4. Pitfalls 

 add_new_check.py: When generating all needed source files for a clang-tidy check with the given 

llvm-project\clang-tools-extra\clang-tidy\add_new_check.py script, it was found that some 

https://llvm.org/docs/Phabricator.html
https://youtu.be/C5Y977rLqpw?t=707
https://reviews.llvm.org/
https://reviews.llvm.org/differential/diff/create/
https://reviews.llvm.org/source/llvm-github/history/main/clang-tools-extra/clang-tidy/
https://reviews.llvm.org/source/llvm-github/history/main/clang-tools-extra/clang-tidy/
https://reviews.llvm.org/differential/


 

 

 113  

unwanted changes were made. Inside the llvm-project\clang-tools-extra\docs\clang-

tidy\checks\list.rst file, nearly all lines are deleted. What should happen is that only one new line 

for the documentation file of the new check is created, leaving all existing lines untouched. To 

overcome this problem, the changes made in list.rst should be reverted and a new line should be 

created manually. The already existing lines help doing this correctly. 

 rename_check.py: clang-tidy offers a Python script to rename a check. During this thesis, upon 

using it, it was found that it does not work as expected: 

 Under llvm-project\clang-tools-extra\docs, the check must be renamed by hand inside 

ReleaseNotes.rst. The script does not do this automatically.  

 In the folder llvm-project\clang-tools-extra\docs\clang-tidy\checks, the checks file name must 

be renamed by hand. Also, inside the check’s file, the old name has to be replaced with the new 

one. Inside the file list.rst, the checks name must be adjusted with the new name. Again, this is 

not done by the script. 

 The test file of the check in folder llvm-project\clang-tools-extra\test\clang-tidy\checkers also 

needs manual modifications. Its first line and every CHECK-MESSAGE comment must be 

adjusted so that they include the check’s new name. Also, the file name itself must be changed. 

 The check's header file and the check's registration need to be added to the llvm-project\clang-

tools-extra\clang-tidy\<ModuleName>\<ModuleName>TidyModule.cpp file. 

 Under llvm-project\clang-tools-extra\clang-tidy\ModuleName\CMakeLists.txt, the name of the 

check's .cpp file must be added. The already existing lines should serve as a good template for 

this. 

 

  



 

 

 114  

G. Clangd Configuration File for Students 

This clangd configuration file enables all checks which already exist inside clang-tidy from the comparison 

made in Appendix D, Comparison of Clang-Tidy and Cevelop Checks. Beside from that, also the ones 

created or altered in this thesis are listed. Please note: They currently work only with the self-built 

clangd server, which was submitted with this thesis, as they are not merged into the official clang-tidy 

code base yet. 

The file can be used as documented on: https://clangd.llvm.org/config 

 Global: %LOCALAPPDATA%\clangd\config.yaml 

 Project scope: .clangd 

# %LOCALAPPDATA%\clangd\config.yaml 

#  

# The first 8 lines are checks which already existed in clang-tidy, covering Cevelop checks 

# The last 6 lines are checks which were created or altered in this thesis 

# cppcoreguidelines-avoid-non-const-global-variables -> is redunant because a fix was implemented 

# cppcoreguidelines-explicit-constructor-and-conversion -> is an alias for google-explicit-
constructor 

# 

# To enable a fix for cppcoreguidelines-avoid-init-default-constructors, 

# activate additionally: modernize-use-default-member-init 

 

CompileFlags: 

  Add: [-xc++, -Wall] # treat all files as C++, enable more warnings 

 

Diagnostics: 

  ClangTidy: 

    Add: [readability-identifier-naming, cppcoreguidelines-avoid-non-const-global-variables, 

          cppcoreguidelines-prefer-member-initializer, google-explicit-constructor, 

          readability-redundant-access-specifiers, llvm-include-order, 

          google-global-names-in-headers, cppcoreguidelines-pro-type-member-init, 

          cppcoreguidelines-init-variables, cppcoreguidelines-narrowing-conversions, 

          cppcoreguidelines-pro-type-cstyle-cast, cppcoreguidelines-avoid-goto, 

          cppcoreguidelines-special-member-functions, cppcoreguidelines-c-copy-assignment-signature, 

          performance-noexcept-move-constructor, 

 

          misc-avoid-std-io-outside-main, cppcoreguidelines-virtual-class-destructor, 

          cppcoreguidelines-avoid-init-default-constructors,  

          cppcoreguidelines-explicit-constructor-and-conversion, 

          cppcoreguidelines-declare-loop-variable-in-the-initializer,  

          cppcoreguidelines-avoid-do-while, 

          cppcoreguidelines-avoid-non-const-global-variables] 

 

 

https://clangd.llvm.org/config

