
Green Routing Thesis

 44

Term Project Green Routing

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2021

Authors: Jonas Hauser, Pascal Schlumpf

Advisor: Prof. Laurent Metzger

Co-Advisors: Severin Dellsperger, Julian Klaiber

Project Partner: Cisco Systems represented by Francois Clad

Green Routing Thesis

 2

Abstract

Traditional routing protocols and techniques are often used in today's networks, and their basics

were generally established before the millennium. In recent years, the network area has not

experienced the same level of fast transformation as other IT industries. With the development of

the digital world and the introduction of new industries and technologies like 5G and cloud

computing, the volume of data transferred through networks today is massive and will continue to

expand in the future. Modern networks must not only deal with an unprecedented amount of data

transmissions, but many new requirements have emerged in order to meet client demands. In our

time with climate change a new requirement on the energy efficiency of routing was developed.

Ecological aspects are becoming increasingly important in our world. The latest estimates for the ICT

sector indicate emissions of around 1.4Gt of CO2 per year. Internet backbone networks are

responsible for six percent of this ecological footprint. The growing bandwidth creates new

opportunities to consider other metrics and aspects in addition to the traditional ones which mostly

only tend to use more and more bandwidths. A new possibility of this is to measure the energy

consumption of ASR 9000 routers and to draw conclusions for the definition of the path.

This thesis is to look for a solution to implement a green routing approach, where in a network the

most ecological paths are to be computed. The solution should be able to compute paths efficiently

underlying a defined green index based on sensor data from routers. The calculated paths should be

meaningful on the basis of power consumptions on a specified time range to prevent possible route

flapping.

Through the thesis a first approach to the definition of the green index could be defined by setting

paths with the cumulative least electricity consumption over the whole route from the source to the

destination router. The overlying calculation of the best paths based on the green index could be

implemented by a Green SR-App software in form of a REST-API. This backend API, which is written

in modern Golang, can synchronize all network data via the Jalapeño API Gateway, process it, store it

optimally in the sense of statistical purposes and then calculate the best path over a predefined

period of sensor data based on Dijkstra's algorithm. The software is designed to be very performant

despite very large networks of up to 1000 routers with many times more links in between. High

Quality, mature scalability and a proven architecture through a Domain Driven Design have been

deliberately written, because this thesis is only the beginning of larger extensions.

Green Routing Thesis

 3

Management Summary

Initial Situation

Traditional routing protocols and techniques are often used in today's networks, and their

specifications were generally established before the millennium. In recent years, the network area

has not experienced the same level of fast transformation as other IT industries. With the

advancement of the digital world and the introduction of new industries and technologies such as

5G and cloud computing, the volume of data transferred through networks today is massive and will

continue to expand in the future. Modern networks must not only deal with an unprecedented

amount of data transmissions, but many new requirements have emerged in order to meet

demands of network users. In times of climate change a new requirement regarding the energy

efficiency of routing was formed.

Ecological aspects are becoming increasingly important in our world. The latest estimates for the ICT

sector indicate emissions of around 1.4Gt of CO2 per year. Internet backbone networks are

responsible for six percent of this ecological footprint. The increasing bandwidth creates new

opportunities to consider other metrics and aspects in addition to the traditional ones which mostly

only tend to use more and more bandwidths. Segment routing gives the possibility to route packages

in new ways, which were not possible before. If we combine the desire to route more environment

friendly with the possibility to define our own routes, we end up with the theme of our green

routing thesis.

This thesis is to prototype a green routing approach, in which the most ecological paths in a network

are computed. The solution should be able to compute paths efficiently by using a defined green

index based on sensor data from routers. The calculated paths should be meaningful on the basis of

power consumption over a specified time range to prevent possible route flapping.

Figure Management Summary 1.1: Green Route example

Procedures and Technologies

In an initial phase, the requirements and use cases were developed together with our supervisors.

This created the context where this project took place in. In regard to non-functional requirements,

many constraints regarding performance, scalability and quality were defined. These had a

significant impact on the overall architectural and design decisions.

Green Routing Thesis

 4

In the elaboration phase we defined the whole architecture and ended up with the domain driven

design approach. Together with the requirement for a cloud native compliant software, the direction

was already clear. In this phase the frameworks were decided on, with a focus on performance. This

was also the reason for the decision for a MariaDB over PostgreSQL. We also defined in what way

the green index would be defined and in what manner the green route would be calculated.

The construction phase was reserved for the implementation of the app. The project was developed

in Golang, with an API built on top of the Gin Web Framework. To get the data from the network, we

also needed an interface to the Jalapeño API Gateway to synchronize the topology and request the

telemetry data for the calculation. The data was stored in the MariaDB with the object relation

mapper gorm. The main function of the backend is to receive an incoming node as well as an

outgoing node and to calculate and return the greenest path between those two nodes.

It was decided that this project would be continued in the bachelor thesis with the consent of the

supervisor. This had an impact on the further development of the application. The focus was set on

more stability and an easier expandability as well as performance to lay a solid foundation for the

continuation of the project.

Results

We were able to fulfill all the mandatory use cases, which include the ability to calculate green

routes based on the synchronized data from the Jalapeño API Gateway. We developed an API which

can verify the stored nodes and links, and allow for the calculation of a path upon request. For a

network with 1000 nodes and 25000 links the synchronization is completed in less than 2.5 seconds

on average.

We also mocked the lowest possible application layer per area to be able to write integration tests

without having an in-memory or local database running. Furthermore, we wrote a router message

faker to send telemetry data to Jalapeño, since we could not get access to real router data to test

our app.

To decrease the development time, we build a local docker image with all the pipeline functionalities

imitated to get faster results during local development for the linter, test and code analysis stage.

Outlook

The base of our app is provided with a stable, performant and easy to expand code. This allows us to

focus on enhancements and new features, such as the installation of the segment list and the

configuration of the routers to work with segments. If there is more than one greenest route, we

want to be able to return multiple paths. We would like to include throughput into the calculation of

the green index and other indicators. Finally, we want to deploy the app to a Kubernetes cluster and

connect it to a frontend.

Green Routing Thesis

 5

Acknowledgments

We would like to thank the following people for their valuable support and or supervision during this

work.

Laurent Metzger is the initial idea carrier for this work and made us aware that this work is an

important part for the future in internet backbone networks. This motivated us strongly during the

whole project. Additionally for the always pleasant and enriching support during our work as main

supervisor.

Severin Dellsperger who was co-supervisor of Laurent Metzger and always supported us with very

valuable feedback and ideas and was always available for questions.

Julian Klaiber who was also co-supervisor of Laurent Metzger and supported us with very valuable

feedback and ideas.

Michel Bongard who has been actively working on the new Jalapeño API gateway simultaneously

with the start of this thesis, providing us with an important base dependency for the development of

our application and for always being available to answer questions from us.

Francois Clad who joined a weekly meeting in the middle of our project construction phase and was

able to provide important feedback from Cisco Systems on our research.

Matteias Collet who helped us with the correction of our English and gave useful feedback on the

content.

Green Routing Thesis

 6

Contents

A. TECHNICAL REPORT ... 10

1 INTRODUCTION ... 11

1.1 THESIS COMPOSITION .. 11

1.1.1 Technical Report ... 11

1.1.2 Project Documentation ... 11

1.1.3 Appendix ... 11

1.2 TECHNIQUES ... 12

1.2.1 Traditional Routing in Networks ... 12

1.2.2 Segment Routing ... 14

1.2.3 SR-Apps ... 18

1.2.4 Telemetry data .. 18

1.2.5 Jalapeño .. 19

1.2.6 Jalapeño API Gateway .. 19

1.3 GOALS AND TASKS .. 21

1.3.1 Problem ... 21

1.3.2 Solution ... 21

2 RESULTS AND DISCUSSION .. 22

2.1 ACCOMPLISHMENTS ... 22

2.1.1 CRUD greenest route .. 22

2.1.2 Calculate paths ... 22

2.1.3 Get ecological metrics of nodes .. 22

2.1.4 Get structured data ... 23

2.1.5 Define stable route.. 23

2.1.6 Gather statistics .. 23

2.1.7 Miscellaneous ... 23

2.2 IMPLEMENTATION .. 23

2.2.1 Architecture .. 23

2.2.2 Backend... 24

2.2.3 Calculation .. 26

2.2.4 Testing .. 27

3 CONCLUSION ... 28

3.1 REQUIREMENTS REVISITED .. 28

3.2 LEARNINGS ... 30

3.3 NEXT STEPS .. 31

3.3.1 Improvements ... 31

3.3.2 Outlook ... 31

B. PROJECT DOCUMENTATION .. 32

1 REQUIREMENT SPECIFICATION .. 33

1.1 USE CASES .. 33

1.1.1 Actors .. 33

1.1.2 Use case diagram .. 33

1.1.3 Use case description ... 34

1.2 NON-FUNCTIONAL REQUIREMENTS ... 39

Green Routing Thesis

 7

1.2.1 Functionality ... 39

1.2.2 Usability .. 39

1.2.3 Reliability .. 39

1.2.4 Performance ... 39

1.2.5 Scalability .. 40

1.2.6 Maintainability.. 40

2 PROJECT MANAGEMENT ... 41

2.1 USED METHODS .. 41

2.2 ORGANIZATION .. 41

2.2.1 Project internal ... 41

2.2.2 Project external ... 41

2.3 SCHEDULING ... 41

2.3.1 Iterations / Sprints .. 42

2.3.2 Estimation and Time Spent ... 42

2.3.3 Timetable .. 43

2.4 MILESTONES ... 44

2.5 RESPONSIBILITIES ... 45

2.6 MEETINGS .. 46

2.6.1 With Supervisors ... 46

2.6.2 Scrum Meetings .. 46

2.7 RISK MANAGEMENT ... 46

2.7.1 Risk Overview .. 48

2.7.2 Dealing with risks .. 48

2.7.3 Occurred risks ... 50

2.8 TOOLING .. 51

2.9 MEETING MINUTES ... 51

3 DEVELOPMENT .. 53

3.1 VERSION MANAGEMENT ... 53

3.2 PRINCIPLES ... 53

3.3 QUALITY ... 53

3.3.1 Definition of Done ... 53

3.3.2 Code reviews ... 54

3.3.3 Testing .. 54

3.3.4 Static code analysis ... 54

3.3.5 Coding Conventions .. 56

3.3.6 Continuous Integration and Deployment .. 56

3.4 ERROR HANDLING .. 58

3.4.1 Input validation and output sanitization .. 58

3.4.2 HTTP status ... 58

3.4.3 Logging ... 58

3.5 ENVIRONMENT .. 59

4 DOMAIN ANALYSIS .. 60

4.1 DOMAIN MODEL DIAGRAM ... 60

4.2 DOMAIN MODEL EXPLANATION .. 60

4.2.1 Node .. 60

4.2.2 NodePowerConsumption .. 61

4.2.3 Segment .. 61

Green Routing Thesis

 8

4.2.4 LogicalLink .. 61

4.2.5 GreenRoute ... 61

5 ARCHITECTURE AND DESIGN SPECIFICATIONS ... 62

5.1 SYSTEM OVERVIEW .. 62

5.1.1 Jalapeño API Gateway .. 64

5.1.2 Frontend .. 64

5.1.3 Backend... 64

5.1.4 Database ... 64

5.2 TWELVE-FACTOR APP METHODOLOGY ... 64

5.2.1 Codebase ... 65

5.2.2 Dependencies .. 65

5.2.3 Config .. 65

5.2.4 Backing services .. 66

5.2.5 Build, release, run ... 66

5.2.6 Processes ... 66

5.2.7 Port binding .. 66

5.2.8 Concurrency .. 67

5.2.9 Disposability .. 67

5.2.10 Dev/prod parity .. 67

5.2.11 Logs .. 68

5.2.12 Admin processes ... 68

5.3 TECHNOLOGIES .. 69

5.3.1 Programming Language ... 69

5.3.2 Web Framework ... 69

5.3.3 Storage .. 70

5.3.4 Development support ... 71

5.4 BACKEND ARCHITECTURE ... 71

5.4.1 Backend... 72

5.4.2 Database ... 74

5.5 REST API ... 74

5.5.1 API responses .. 74

5.6 ENTITY RELATIONSHIP DIAGRAM .. 76

5.7 INFRASTRUCTURE ... 77

5.7.1 INS Lab .. 77

5.7.2 Swisscom Lab .. 79

6 DECLARATION OF INDEPENDENCE ... 80

7 RIGHTS OF USE .. 81

LIST OF FIGURES ... 82

LIST OF TABLES .. 83

GLOSSARY .. 84

ACRONYMS .. 87

REFERENCES ... 89

C. APPENDIX .. 91

1 SYSTEM TEST ... 91

Green Routing Thesis

 9

2 MEETING MINUTES ... 95

3 TASK FORMULATION ... 108

4 PROJECT RELATED CONFIGURATIONS .. 110

Green Routing Thesis

 10

A. Technical Report

Change history

Version Date Changes Responsible

1.0 24.12.2021 Finished the final technical report. Jonas H. and Pascal S.

Green Routing Thesis

 11

1 Introduction
This document is aimed at engineers in the field of computer science. A basic understanding,

especially in networking and software engineering, is necessary.

1.1 Thesis composition

This thesis is written according to the guidelines of the Eastern University of Applied Sciences and is

divided into the following three main areas.

1.1.1 Technical Report

The technical report is divided into three chapters.

The first chapter contains a rough introduction and overview of the work. Techniques used, if any,

are outlined. The goals and tasks are specified based on the problem definition and solution with the

methods used. In the chapter results and discussion, the outcome of this work is discussed and the

implementation reflected in rough form. The third and last chapter contains important parts for the

conclusion. Experiences and lessons learned are analysed for each part of this thesis. In addition,

possible next steps are shown, potential improvements are pointed out and a look into the future is

given.

1.1.2 Project Documentation

The second part documents the whole project, especially how the results were achieved.

In the first chapter, the requirements are presented in the form of use cases and split into functional

and non-functional requirements. The second chapter contains everything about project

management. The methods used and their key data are explained in detail, including milestones,

schedule, meetings, responsibilities, as well as risk management beside additional parts. After the

project management chapter, it is discussed how we want to develop in this thesis. Principles,

version management, quality measures, error handling, development environment and CI/CD are

outlined in detail. Those measures should support the team during development. In the next chapter

the architecture and design specifications as well as a domain analysis are provided.

The last three chapters contain the declaration of independence, the terms of use of this work and

the reference to the meeting minutes.

1.1.3 Appendix

Supporting documents and figures with lower relevance are attached in the appendix.

Green Routing Thesis

 12

1.2 Techniques

1.2.1 Traditional Routing in Networks

Many of today’s networks, which our infrastructure builds on, were created 20 years ago. [1] That is

because the basic principles of the used routing protocols have not changed much over time. In

contrast to the rest of the digital world, the networking area has not made significant advancements

in the last two decades. If you have fast and reliable protocols, there is no big need to change

something. In this chapter we illustrate how networking is done today and we investigate the near

future where segment routing is introduced, which could eventually replace part of the networking

protocols used today.

1.2.1.1 Destination-based Routing

Most networks and network protocols follow the destination-based routing approach. From a high

level perspective it works as follows: When someone wants to transmit a message over a network,

the data is split up into many smaller sized packets. Each of these packets consist of a header, which

contains information such as where the packet should be routed to, as well as the payload

containing the actual data. The field with the information where the packet should be routed to is

called the destination field. Each router who receives a packet inspects its destination field and

routes the packet according to its routing table, which is aware of the shortest path to each

destination. The content of this routing table is calculated by a network protocol.

In Figure Part A 1.1 you can see a small example network. Router R1 receives a packet with

destination A. According to its routing table it knows that it needs to forward the packet to router

R4. R4 forwards the packet over the fastest path to R3. This is repeated until the traffic reaches its

destination.

Figure Part A 1.1: Example destination-based Routing [2]

1.2.1.2 Traditional Approaches

The destination-based routing method is not enough in many networks, especially if they are bigger.

For this reason, some additional concepts were added on top to gain some flexibility in traffic

management. One of these concepts utilizes different labels which tell a router to use a certain rule

when forwarding traffic.

If data had to be conveyed by such networks, the packets would be constructed with a single unique

label. In this scenario, the label reflects the entire path. The packet is transferred from router to

Green Routing Thesis

 13

router over the network after the label has been affixed. Each packet is treated independently, since

each router keeps track of where it should be forwarded to based on its unique label.

Thanks to the labels, it is possible to use different pathfinding algorithms with different

optimizations based on the label of the package. Now you can not only choose the shortest path but

you may want the path with the fewest hops or the least probability of lost packets. This way, a

router can decide which path to take for each individual package. However, there are also some

downsides which will be discussed later.

In Figure Part A 1.2 you can see the same network topology as before with the only difference being

that in addition to the destination address a label is attached to the package. This label instructs the

router to take a specific path, such as the lowest Interior Gateway Protocol (IGP) path.

Two packets with different labels are sent over the network. R1 sends them both to R4 where the

paths split up and label A2 takes the shortest path whereas label 1F takes a different path over

router R5. Both end up at R3 and finally at their destination.

Figure Part A 1.2: Example Routing with Labels [2]

1.2.1.3 Limitations

The techniques outlined above have improved older networks and demonstrated new capabilities

that were a perfect match for networks a few years ago. However, as the digital world evolves and

introduces new technologies such as 5G and Cloud Computing, current networks face new issues.

Traditional approaches no longer satisfy the needs of modern networking and have several

disadvantages.

One of the drawbacks is the fact that the network must maintain a state with all the labels and the

different rules resulting from the labels. This means that there is a lot of intelligence distributed in

the network requiring specialised protocols to ensure that every router always has the newest

information. This leads to many different protocols in use which increases complexity and costs due

to more difficult maintenance and troubleshooting.

Convergence is another problem that older techniques have. The network state must be

recalculated whenever the topology changes, such as when a connection disconnects. This is an

important operation since packets may not be transmitted continuously while the recalculation is

being performed, therefore the recalculation must be completed as quickly as possible to resume

with the package routing. This is referred to as network convergence in network terminology.

Green Routing Thesis

 14

Traditional networks operate on the notion that each router must keep track of the network's

status. In terms of network convergence, this concept has two major drawbacks:

• Changes in the network have to be broadcasted to each router, which then performs the

recalculations. These messages can put a strain on the network and each router's resources,

potentially causing congestion.

• Secondly, after a network topology change, each router must perform recalculations. As a

result, network packets may get lost or fail to transport.

In the past, good network architecture, capacity planning, and protocol enhancements could have

shortened the convergence time. However, in each network, quick rerouting was not always

achievable. As a result, completely new approaches were required.

1.2.2 Segment Routing

Segment routing wants to solve many of the previously described problems with a new concept. The

following sections provide the necessary basics about segment routing that need to be understood

in the context of this thesis. It also contains chapters on the basic segment routing features and

concepts that underlie this project. In addition, it introduces some terms used in segment routing,

which will be used further in this project work. It also has some advantages over traditional routing

concepts and lists why this approach will be used frequently in the future.

1.2.2.1 Concept

Segment Routing is a brand-new routing method based on the source routing concept. The initial

router determines the route the packet should take. This decision might be based on a number of

configurable attributes or rules. After the path has been defined, the path is expressed by including

instructions in the packet header, known as segments. A segment can represent many instructions.

The network packet header contains a list of instructions (segment list) that ensures the packet

follows the path that the source node intended. The packet can then be sent across the network

after being built with its segment list. Each node examines the packet's outermost portion and

follows its instructions. Because each intermediate node knows exactly which instruction to follow if

a packet containing a specified section is received, the notion works. The outermost segment is

deleted after an instruction is completed, and the next segment is evaluated and processed. For

each segment in the segment list, the mechanism is repeated. After all segments of the segment list

have been removed, the packet should have arrived at its intended destination, if the segment list

was followed as intended. This also indicates that all scheduled instructions were processed and

executed successfully.

1.2.2.2 Example

The example below in Figure Part A 1.3 should clear things up. Two packets, purple and pink, from

different source networks and types must be forwarded to network A behind router R3.

Green Routing Thesis

 15

Figure Part A 1.3: Concept of Segment Routing [2]

The purple packet indicates significant business traffic that must be transmitted to the target

network via the quickest path possible. As a result, the source node R1 adds the segment 16003,

which instructs all intermediate routers to send the packet to router R3 using the shortest path.

After the packet has allocated its segment list, which in this example is made up of one instruction,

the packet will deliver the shortest path to R3. The router R4 is the initial link in the chain. This

router examines the segment, identifies the instruction, and passes it on to router R3. The

destination router, R3, examines the outermost segment and recognizes that the packet is for itself.

It can also delete the outermost packet and send it to the end destination since the packet has no

further segments assigned to it. The empty segment list, as previously stated, verifies that the packet

was routed appropriately.

Voice traffic is represented by the pink packet, which must be routed over the most sensitive delay

traffic path. This path is different from the shortest path in this scenario. The router R1 adds two

segments to the packet, 17005 and 17003, to express this path. Two new instructions have been

added to the segment list. They can be translated as "send the packet to R5 on the least delay path

possible" and “Forward the packet to R3 on the least delay path", respectively. As a result, these two

segments can express the whole path from source router to destination router.

The packet can be transmitted on the specified path after the segment list is appended to the packet

header. R4 is the first intermediate node once more. R4 examines segment 17005 and determines

that the packet has to be transmitted to R5. R5 pops the outermost segment after receiving the

packet since the first segment of the route has been completed. The packet is then forwarded to the

target router R3 through the path with the smallest delay. R3 examines the top segment, interprets

its orders, and strips down the last section. The last step is to forward the packet to the intended

recipient. As a result, the packet was transmitted from source to destination along the path with the

shortest delay.

1.2.2.3 Terminology

The terminology is based on the RFC standard RFC8402 - Segment Routing Architecture [3] and is

kept as simple as possible while still containing the important information.

Node

Green Routing Thesis

 16

A Node is a device that understands and participates in the segment routing protocol's operations.

This is usually a router, but it may also be other devices that can direct a packet through the network

based on segments.

In Figure Part A 1.3, for example, are the Router R1-R5 Nodes.

Segment

An instruction is expressed by a segment. The context of such an instruction might be topological or

service based. A segment can have either a local or a global significance. Within a limited topological

context, a segment can mean "advance the packet on a certain outgoing interface". In a global

topological context, a segment might be thought as "forwarding the packet on a defined path

through the network". This path then might follow specific metrics, such as the delay, IGP, or Traffic

Engineering (TE) metric.

In Figure Part A 1.3, 16003, 17005, 17003 are segments.

Segment Identifier

A Segment Identifier, often known as a Segment ID or SID, is a number that acts as a segment’s

unique ID.

Segment List

The segment list is a list of distinct segments that expresses the set of instructions that need to be

followed to traverse across the segment routing domain. It is made up of one or more parts.

In Figure Part A 1.3 you can find a segment list in both routes, green and purple. It is in the coloured

boxes.

Prefix Segment

A prefix segment, also known as an IGP-Prefix segment, refers to the instruction to forward the

packet through a calculated path to the node that has the prefix with the interior gateway protocol

advertised. The route may be calculated using a variety of algorithms, each of which uses distinct

metrics/characteristics to do so.

For example, in Figure Part A 1.3, 16003 or 17003 may relate to Network A's prefix if it was

promoted from router 3 using IGP and alternative methods. The first algorithm was used to compute

the shortest IGP total weight path in this case. The overall path with the smallest delay was

calculated using the second algorithm, which was linked to segment 17003.

Segment Routing Domain

The segment routing domain is the collection of devices that engage in the segment routing protocol

actively.

In Figure Part A 1.3 the segment routing domain is the set containing the nodes R1-R5.

Green Routing Thesis

 17

Ingress

The Ingress, also known as the ingress router, is the nearest node to the source. The interface

between external (customer) networks and the segment routing domain is this unique device. This

router receives a certain packet, determines its path, and appends the segment list to the packet

header. Policies that impact how packets are routed over the network must be written to the

ingress. Provider edges are routers that perform the ingress function. As a result, several routers in

the network might act as ingress nodes.

In Figure Part A 1.3 the Router R1 is the ingress node for both packet flows.

Egress

The egress, also known as the egress router, is the nearest node to the destination. It is the last node

in the segment routing domain and the final segment will lead up to this node. As a result, this

router must strip down the last segment and forward the packet to the target endpoint, which is tied

to a certain packet flow.

In Figure Part A 1.3 the Router R3 is the egress router for both packet flows.

1.2.2.4 Advantages

State in the Packet

Segment routing presents a number of novel ways that alter certain fundamental concepts:

Previously, each router was responsible for maintaining the state. As a result of these methods,

several protocols were developed to ensure that per-path information was communicated between

nodes. This might quickly result in a network that is too complex and has too much overhead.

In segment routing, the whole path may now be specified as a segment list within the packet header.

As a result, the network nodes must simply obey and carry out these instructions. Following that,

nodes are no longer required to keep state information.

This fundamental alteration has several benefits. First, because the protocol for sharing per-flow

information can be eliminated, it gets a lot easier. In addition, the network implementation becomes

easy to comprehend, which simplifies troubleshooting and component replacement. Second, the

entire path is decided at the ingress. This approach enables the introduction of whole new ways to

direct traffic across the network, which are both simple and scalable.

Traffic Engineering

Segment routing improves traffic engineering (TE), which is the particular guiding of packets. TE is

simplified and becomes more powerful than ever before since the ingress router has complete

control over which way should be chosen. With the advancements achieved in the new technique,

packet steering is also improved. Not only may topological choices be made today, but services can

also be included in the packet flow. Furthermore, criteria can be programmed, such as avoiding a

certain path or service. Following the new methods adds additional levels of scalability and capability

to the system. On top of that, networks become more intelligent and may interact more closely with

applications.

Green Routing Thesis

 18

Convergence

We already covered how traditional methodologies struggled with convergence and re-routing. As a

result, segment routing was used to address and enhance this issue. In the traditional system, all

routers were involved in computing new pathways and keeping per-flow information, but this is no

longer the case in segment routing. As shown in Figure Part A 1.4, if a path is broken, the avoidance

router must detect it and notify the ingress. The ingress can then swiftly adapt and redirect the

packet to the target through the backup path. This strategy is known as Topology Independent Loop-

Free Alternate (TI-LFA), and despite not being covered in this project thesis, it is an important benefit

of segment routing.

Figure Part A 1.4: Convergence in Segment Routing [2]

1.2.3 SR-Apps

Soon after the first draft of segment routing was released, the Institute for Network Solutions

started developing apps which use the new possibilities segment routing opens. Most of these new

apps are based around the premise that you can change the path packets use based on some

metrics or characteristics of the network. Another common factor is the requirement, that all apps

must be cloud native and easily scalable in a Kubernetes cluster.

1.2.4 Telemetry data

Our app relies heavily on the collection and usage of telemetry data. In our case we focus on the

ASR9000 routers of Cisco with the IOS-XR software which makes selecting the needed resources very

convenient. The concept Cisco uses for the selection of sensor data is called yang models [4] and is a

descriptive way to group sensor data and request them over a path. If the path can be resolved, it

delivers one or more groups of sensor data in a pre-configured time interval.

As an example, we want to receive the data to power consumption. For the ASR9000 router with

version 7.4.1 we need the path Cisco-IOS-XR-sysadmin-asr9k-envmon-ui. This path contains not

only power data but also some other sensor groups we do not need. Therefore, we specify the

container, which is a different name for group in the yang world, we want. A container can contain

other containers. In our case we want the container oper which is contained in the container

environment to get our power data. The whole path we need to configure is Cisco-IOS-XR-

sysadmin-asr9k-envmon-ui:environment/oper. The router knows now exactly what we want and

starts delivering the configured telemetry data to the defined address in the network. There the data

can be collected and stored in a time series database, which is optimized for telemetry data. [5]

Green Routing Thesis

 19

1.2.5 Jalapeño

In the previous chapter we talked about telemetry data which gets sent to a specific address, where

it is collected, processed and stored. One software which can handle this is Jalapeño from Cisco. It

consists of a InfluxDB time series database and a GraphDB, to store the topology data, called

ArangoDB.

Figure Part A 1.5: Overview of Jalapeño [6]

In Figure Part A 1.5 you can see that data is delivered from the network to two processors. For the

telemetry data, Telegraf is used which has a plugin from Cisco to decode the data received from the

routers. For the topology data, Jalapeño uses GoBMP to process the received data. Both processors

publish their results to Kafka, which in turn provides topics which consumers can subscribe to. One

of the consumers is another Telegraf processor who prepares the data for the InfluxDB. Another is

the Topology processor which does the same for the ArangoDB.

1.2.6 Jalapeño API Gateway

Once the data is stored in both databases, there needs to be a way to access said data. To help with

this, the INS started developing the Jalapeño API Gateway which provides a well-defined interface

for SR-Apps to access the collected data. The API Gateway provides two main services. One is the

request service, through which one can request data on demand. The other is the subscription

service which one can subscribe itself to the service to get notified on topology changes.

This way, SR-Apps can request time ranges from the time series database and get notified on

topology changes to recalculate the path based on the new information.

Green Routing Thesis

 20

Figure Part A 1.6: Jalapeño with API Gateway [6]

Green Routing Thesis

 21

1.3 Goals and Tasks

1.3.1 Problem

In our world, where we work against climate change, every part counts. Especially if this part

contributes around 6% of the total global CO2 emissions. We are talking about the steady growing

backbone networks handling our everyday traffic. With around 1.4Gt CO2 per year, it is worth

investigating potential improvements [7]. One idea which came up, was to manage traffic over these

networks with the new-found possibilities of segment routing. This way one could analyse the power

consumption of routers in a network over a certain timespan and then route the traffic over those

routers which require the least amount of electrical energy in relation to their throughput.

Generally, it can be defined that newer is better. If you compare a router from a decade ago with e

new router of today, there is a 95% decrease in consumed power per Gbps [8]. With this in mind, it

should be possible to find the most efficient router per Gbps and route the big heaps of traffic over

these routers. In the best case you would take the source of the energy into consideration,

prioritizing routers with electricity from a renewable source.

1.3.2 Solution

In our thesis we want to tackle a part of this problem. Namely the part where we analyse the power

consumption of routers to create a green index based on the findings. For this we need to analyse

how power consumption of a router behaves under load. If we see that the power to Gbps ratio

increases or decreases, we need to take that into account. It is also useful to know over what

timespan we need to average the data to create stable paths but still get a useful result.

In a first step, we need to know each node with its corresponding average of power consumption

over a pre-defined time period. In a second step we set this calculated value on all incoming links of

each node. This allows us to calculate the green route on these values and therefore to calculate the

path with the lowest power consumption.

To be able to calculate these values, we need an interface to the Jalapeño API Gateway which

provides the topology data as well as the telemetry data with the actual values of the used amount

of electrical energy.

All this is in vain if you cannot access the produced data. Therefore, we will also need an API which

allows us to output and use the calculated greenest path. It should be possible to request a

calculation of a path between two nodes.

Conclusion

In the beginning, research is necessary to give us enough information to collect useful data which we

then can use in our calculations.

Green Routing Thesis

 22

2 Results and Discussion
This chapter outlines the results of our thesis. We showcase everything we produced and also give

insight into the hidden recognitions we achieved. In the chapter Accomplishments we explain what

we have achieved. And in the chapter Implementation we describe how the results have been

realized.

2.1 Accomplishments

During the development of this thesis, a backend application and a definition for a green index was

developed and defined. This was the foundation for the greenest path calculation between a

specified ingress and an egress node through a REST-API. All use cases for the prototype were

fulfilled and one additional use case could also be fulfilled.

2.1.1 CRUD greenest route

A user can request the calculation of a new green route via a HTTP POST method to the API. They

can specify the ingress and egress node key to start a new calculation. In turn, they will receive a

JSON object with the green route containing the overall metric as well as all the links, which together

build the route. Additionally, the user can request all previous calculations of all green routes or a

specific green route by either its id or by its corresponding ingress or egress node, each identified by

their respective the node key.

Figure Part A 2.1: Endpoint green-routes

2.1.2 Calculate paths

The backend receives the request to calculate a new green route. To perform the calculation, it first

needs to synchronize the topology and load the telemetry data. As soon as the synchronization is

completed the calculation is started, which provides an existing Dijkstra algorithm with the

necessary data, including all the nodes as well as the corresponding links. Subsequently, the

calculation is started, and the result returned to the user.

2.1.3 Get ecological metrics of nodes

After the data from Jalapeño has been converted into entities, it will calculate the average power

consumption over the last 10 minutes for each node. This timespan can be overridden environment

variables. The calculated value will then be set on the incoming link, which enables us to use the

Dijkstra shortest path algorithm over the power consumption metric.

We decided that for this project thesis we will only consider the power consumption without any

other metrics, such as throughput. Future ideas regarding which additional metrics we could

consider are described in chapter Next Steps.

Green Routing Thesis

 23

2.1.4 Get structured data

After the topology data and the telemetry data has been retrieved from the Jalapeño API Gateway

service, we need to convert the data into our internal entity types. The resulting data is stored in the

database for further use. As part of this thesis, the synchronization is executed manually on demand

to keep the solution simpler in comparison to an implementation of the subscription service. In the

future, it is planned to use the subscription service from the Jalapeño API Gateway to get notified on

topology changes and only perform a synchronization if something has changed. This process is

described in more detail in chapter Next Steps.

2.1.5 Define stable route

To prevent routes from changing too quickly, we introduced an environment variable which controls

the interval in which the telemetry data is obtained and over which the average power consumption

is calculated. The current pre-defined value for this variable is 10 minutes. This way, spikes in power

consumption are not going to have a big impact and thus the long-term value provides the more

interesting metric of the node.

2.1.6 Gather statistics

For researching purposes, it is of interest to have some statistical data over the course of the power

consumption of a node or an entire network. This was solved with the introduction of the node

power consumption entity, which stores all the calculated averages of all nodes with the timestamp

of its calculation.

2.1.7 Miscellaneous

To be able to write unit tests we had to mock the repository and the synchronization part of the

service layer. This was solved with an interface for the repository which contained all the methods

which had to be mocked. This method also allowed the use of a fail repository to return specific

errors the API should handle. This increased the code coverage noticeably and led to an overall very

solid test coverage based on the view of application functionalities and error handling and

prevention.

Additionally, we created a separate tool to generate telemetry messages based on the yang models

we expect. This was necessary because we had no access to real telemetry data. The tool is named

“Jalapeño Yang Model Mocker”, is written in Golang to keep the technology stack simple and works

from an experimental point of view. However, it needs some improvements if we want to use it with

our app further. Currently, the generated message is sent to Jalapeño where it is processed and

stored in the InfluxDB.

2.2 Implementation

In this section we will explain how we achieved our solution. Additionally, we want to show the key

decisions and thoughts we made to realise the final product.

2.2.1 Architecture

Two major components influenced the way we designed the architecture. One component was the

requirement to build a cloud native application and the other was the decision to follow a domain

driven design principle.

Green Routing Thesis

 24

To be able to deploy the app in the Kubernetes cluster of the INS, it was necessary to develop the

app according to the Twelve-Factors methodology. [9] This led to the decision to not use a cache to

reduce complexity and to only store the topology in the database. Essentially, this means that every

instance of the app shares the same data without synchronization.

The decision to base our architecture around the domain driven design principle was, that Jonas had

already gained some experience in developing APIs following the DDD principle. The key takeaways

are that it helps keeping a clean project structure as well as understanding the underlying business

problems and converting them into business logic. This was very important for us, due to the

complexity of segment routing, and we needed a way to turn the theoretical concepts into well

defined data structures. The implementation of entities which were used by the repository layer and

the internal logic of the service layer provided a solid base on which the whole business logic could

be built on. The use of data transfer objects (DTO) for the incoming and outgoing data of the API

provides a clear separation between internal and external properties. It guarantees that only the

data we want leaves the API to avoid exposing private data or data structures that do not match our

API specification.

We also wanted the possibility to replace the database with a document store or a different kind of

database. For this reason, among others, we introduced a repository layer which handles the

database specific queries. This strategy also made it possible to easily mock the whole repository

layer for integration tests, without having to set up an in-memory database.

2.2.2 Backend

The backend is the most important component and handles all the requests, network

synchronizations as well as the path calculations. It is responsible for the input validation and returns

standardized and encapsulated responses for each case.

For the API we used the Gin Web Framework [10], which is currently the most popular web

framework for Go. [11] It claims to be up to 40 times faster than its competitors. The deciding

factors were the relatively big user base, that it is being maintained actively and that it is very

performant.

All endpoints are defined in the controller package. During the start-up of our application all

endpoints are registered in the api package in Gin to be able to handle incoming requests with its

API router. The endpoints listed below are provided by our app.

The base endpoint returns a greeting message and the URL to the generated OpenAPI specification

with Swagger. Due to the fact that the OpenAPI specification 3 is not officially offered yet by Go, the

version 2 of the specification was used.

Figure Part A 2.2: Endpoint base

The green route endpoints provide the possibility to calculate a new green route by providing both

the ingress node key and the egress node key. If some calculations have been requested, it is

possible to get the previously created green routes after an initial request was made.

Green Routing Thesis

 25

Figure Part A 2.3: Endpoint green-routes

The Jalapeño endpoints provide an easy way to get a list of either all nodes or all links from the

attached network to Jalapeño. In addition, a new synchronization of the topology data can be

requested. Furthermore, it is possible to request telemetry data of a specific node, by providing the

respective node name.

Figure Part A 2.4: Endpoint Jalapeño

The node endpoint is for statistical purposes and allows the consumer to access the calculated

power consumptions over time in form of a history table.

Figure Part A 2.5: Endpoint nodes

After the controller has received the request, it calls the corresponding function in the service

package. Here lies the whole business logic and the logic for the synchronization with the Jalapeño

API Gateway. The calculation, which is also done in the service layer, is described in more detail in

the next chapter.

If any data from the database is needed, the corresponding function in the repository package is

called. In this package the queries are defined and executed via the OR mapper Gorm. We used

Gorm because it is the most widely used OR mapper for Go and is being maintained actively.

Green Routing Thesis

 26

Another important aspect is the fact that it provides a good documentation on its features and

usage. [12]

The Twelve-Factor methodology requires the app to implement log levels. This responsibility is

handled by the library zap. The decision to use zap as the log manager for our app was based on two

key factors. The first one being that this library has been used by many other developers and

projects and is being maintained actively. The second highly prioritized factor was, that the

performance is significantly better compared to similar libraries in Go. The used log level is

configurable in the environment file. The initialization of the logger is done in the logger package

which itself is part of the infrastructure package.

2.2.3 Calculation

The calculation of the greenest route takes place in the service package since it is part of the

business logic. Before the calculation is performed, the topology is synchronized to ensure that the

proper data is used. The calculation initially loads all the nodes and logical links from the database.

We decided against an own implementation of a Dijkstra shortest path algorithm, as there are

already various implementations available, which are both more mature and have been compared

against each other regarding performance. We therefore decided to use the Dijkstra implementation

from RyanCarrier. [13] It is very fast and saved us a lot of time needed to improve the surrounding

logic to provide the Dijkstra with the correct data. In a first step, all nodes get fed into the algorithm.

Then, in a second step, all the links with the “from node”, the “to node” and the power consumption

are fed into the algorithm. If this was successful, a function with the ingress and egress node as

parameters can be called to retrieve the path with the lowest power consumption.

The result the database and then be converted to a DTO to be returned over the API.

Green Routing Thesis

 27

Figure Part A 2.6: Application flow of green route calculation

2.2.4 Testing

Testing was a time-intensive part of our project, especially in regard to automated integration tests.

We decided against test driven development, due to the lack of possibilities to mock the database

and the Jalapeño API Gateway in early phases of the project. Without these preconditions fulfilled, it

was not possible to write integration tests in an efficient manner. We however manged to mock the

repository layer as well as the part of the service layer which receives data from the Jalapeño API

Gateway. This way we reached a test coverage of over 60%. To get a higher coverage we would have

had to mock the database itself. This idea was explored at one point, but it turned out to be very

tedious with the provided tools hard to maintain. We also decided against a in memory database for

testing, since it would have added even more complexity to the development setup and the CI

pipeline.

Green Routing Thesis

 28

3 Conclusion
We examine our work in depth and critically in the following chapter. We also take a look at the

optional use cases that have not been completed and discuss why they were not completed within

the scope of this project. This is followed by a discussion section in which suggested improvements

to the project's next phase are discussed. This part should be motivating and informative about

potential adjustments and features that could be addressed in a subsequent project.

3.1 Requirements revisited

In this chapter, we go through each use case and explain if it was fulfilled or not and why. The

mandatory use cases are marked with a blue colour . And the optional use cases are marked with

a brown colour .

UC01: CRUD greenest route

“As a User, I can get the greenest route over an API, so that I can lower my energy

consumption.”

This use case is fulfilled completely. It is possible to access all the nodes, links and node-

edges over a REST API. It is possible to trigger, process and store a synchronization with

Jalapeño API Gateway. Most importantly, a calculation can be started, by providing an

egress and ingress node, to receive the path with all the links and hops.

UC02: Calculate paths

“The Green SR-App can calculate the greenest (most energy efficient) route through a

network.”

This use case was completed during the project thesis. It is possible to calculate the

greenest path through a network with the two parameters ingress node and egress node.

The calculation is quite fast and manages to find a path in a network with 1000 nodes and

25000 links in less than 2.5 seconds on average.

We have some improvements planned in the Outlook about this use case.

UC03: Get ecological metrics of nodes

“The algorithm needs to know the ecological aspect of all the nodes to be able to calculate

the most ecological path.”

This use case was the foundation for the previous use case. Without it, it would have been

impossible to calculate a green route. Therefore, we can say that it is fulfilled as well. The

calculation of the metrics happens during the synchronization and currently takes the last

10 minutes of telemetry data into account to calculate the average.

This value could change in the future and is configurable via environment variables. There

currently is a limit to the time range caused by transfer limitations of gRPC. The amount of

data that needs to be sent over the network is too big for a single message and would have

Green Routing Thesis

 29

to be split up into smaller parts, which is currently not possible on either side. Neither the

Green SR-App nor the Jalapeño API Gateway can handle such a requirement.

UC04: Get structured data

“The algorithm needs the necessary fields from the Jalapeño API Gateway to calculate the

most efficient route.”

This use case is also fulfilled, because otherwise the previous use case would not have

been possible. It is possible to synchronize the whole topology and all telemetry data and

store the results in a database. The synchronization with the Jalapeño API Gateway is quite

performant and manages to sync a network with 7000 nodes and 100’000 links in 10s. The

necessary data for this test was provided directly via a data file and not the network itself.

Currently the synchronization gets started and synced on demand over the API or if a

calculation is started. This is not necessary, because the Jalapeño API Gateway offers a

subscription service, which sends live notifications if the topology changes. This allows us

to synchronize only when it is necessary because of a change in the topology.

UC05: Define stable route

“As a User, I expect that the calculated most efficient path stays stable for the duration I

define.”

This use case is also fulfilled. It is currently solved by setting the time range for the

obtained telemetry data, which then forms the base for the average calculation. It is

possible that this range will increase when we have the ability to observe the power

consumption of a network over time.

UC06: View routes

“As a User, I want a simple web interface to see the chosen path and be able to recalculate

the routes.”

This additional use case could not be fulfilled, because the time needed would have

exceeded the time budget, and we prioritized investing more time improving the

performance and quality of our product over implementing the feature to visually see the

generated graph.

This will definitely change in the future. We plan to use the newly developed frontend of

the INS, which allows to display graphs in a network. This was also realised in a project

thesis that was done in parallel to ours.

UC07: Login

Green Routing Thesis

 30

“As a User, I want to prevent unauthorized access to the application and only allow a

restricted group to access the settings.”

This use case was not fulfilled, since there are already enough security measures to protect

the app and its API from malicious intent. This justifies that we do not invest time for a

login. We will re-evaluate this decision in the bachelor thesis and implement this use case

if we consider it to be necessary.

UC08: Gather statistics

“As a User, I want to create statistical reports to visualise certain patterns of the system

over a timeframe.”

This additional use case was fulfilled. It was solved by storing the calculated metrics of

each node, for every calculation. In addition, a history of power consumption values from

each individual node is stored per synchronization. This way it is possible to observe the

change over time of the power consumption.

It is possible that in the future, additional metrics will follow.

3.2 Learnings

In this chapter we reflect and talk about the things we would do differently if we had to do it again.

A major challenge was the lack of access to real telemetry data. This forced us to implement our own

ways to generate the needed telemetry data for testing purposes. We invested a lot of time into

replicating the messages, the router sends to Jalapeño. We would rather have spent this time on the

application internal mocking to enable us to write unit tests faster and therefore find errors quicker.

The time spent on the external telemetry data generator was not in vain though, if it turns out that

we cannot work with the data Swisscom provides over their routers, we can re-utilize this method

instead.

The runners for the CI/CD pipelines from the INS work with Kaniko images and not with Docker. This

led to some confusion at first, as we set up our pipeline. We were not accustomed to Kaniko with its

possibilities and characteristics and thus created some potentially suboptimal behaviour which we

still do not fully understand. We managed to fill up the whole diskspace with our generated images

which prevented us from using the pipeline for a few days until it was cleaned out again. We do not

know if we could have prevented this issue, if we invested some more time into learning more about

the characteristics of Kaniko. It is also possible that some faults were made while configuring the

runners by the INS, but this was not evaluated further.

Furthermore, we could have benefitted from multistage builds, which allow for the reuse of already

built components to save time and space. This was taken into consideration, but due to the

unknown amount of effort required to implement this strategy we decided to postpone this to the

bachelor thesis.

Green Routing Thesis

 31

3.3 Next Steps

In this chapter we will show the points, which could be improved in the actual implementation. In

the outlook we will take a look at the features we want to add or improve and give an insight into

what we have planned.

3.3.1 Improvements

In the current state of the app, we synchronize the whole topology with every executed calculation.

This is the biggest part of the whole request and is redundant if the topology has not changed in the

meantime. The Jalapeño API Gateway offers a subscription service which sends a notification if the

topology has changed. This is also a greener solution as it leaves out a calculation heavy part and

only initiates it when necessary.

Right now, it is only possible to get one route at a time even if there are multiple equally green

paths. This prevents that the traffic could be split up over multiple paths to keep the overall load

lower. Therefore, we want to implement the possibility to calculate and return multiple paths, if

there are more than one equally green paths.

We already have a sufficient error handling practice but there are still some areas with potential for

improvements. The sooner we improve this, the more it will assist us in our further development.

We still have some couplings between our packages which we possibly could decrease. This also

helps with further development and saves us time in the long run. This is also something we intend

to address early on.

In the pipeline there is potential for improvement, such as using multistage builds and caching to

improve the build times as well as finding a solution to prevent the filling of the disk space with old

images.

And last but not least we need to deploy our app in the Kubernetes environment.

3.3.2 Outlook

Right now, we do not have a SR-App because the defining part of an SR-App is to tell routers with

the segment lists added to the packages, what they need to do. Therefore, it will be the first goal in

the bachelor thesis to implement segments and to configure the routers to handle these segments.

We also want to improve the algorithm with the addition of the throughput metrics which we want

to combine with the power metrics to detect the more efficient routers. If we only take the power

consumption into account, an old router with a low throughput will be preferred over a new router

with a very high throughput and a much better Gbps per watt metric.

In a second step we want to include the possibility of utilizing more kinds of metrics in the

calculation. Maybe even the source of the electricity. If we could favour routers which are powered

with renewable energies, this would be a big step forward.

Green Routing Thesis

 32

B. Project Documentation

Change history

Version Date Changes Responsible

1.0 10.10.2021 Finished the initial project plan. Jonas H. and Pascal S.

1.1 17.10.2021 Finished the initial requirements specification. Jonas H. and Pascal S.

1.2 22.10.2021 Converted risk table to hours and percentage

values.

Jonas H.

1.3 31.10.2021 Finished development concept and most parts

of architecture and design specifications.

Revalidated and updated risks and risk graph.

Jonas H. and Pascal S.

1.4 21.11.2021 Risk Ri9 is considered as occurred.

Risks Ri6 and Ri7 have occurred in a trivial way.

Risks Ri1 and Ri8 have been eliminated or can

no longer occur.

Jonas H.

1.5 19.12.2021 Backend architecture, Domain Model and 12-

Factor Methodology updated to the latest

findings and optimizations.

Jonas H. and Pascal S.

1.6 22.12.2021 Create API Documentation, entity relationship

diagram and SonarQube Quality Gate Status

parts.

Jonas H. and Pascal S.

1.7 24.12.2021 Final small changes due to proofreading

everything.

Jonas H. and Pascal S.

Green Routing Thesis

 33

1 Requirement specification
This chapter contains all the requirement specifications which were defined in the inception phase

and in the beginning of the elaboration phase of our project. We defined the functional

requirements in the form of use cases and user stories. Non-functional requirements are defined

later in the chapter.

1.1 Use cases

We divided the use cases and user stories into prototype use cases and additional use cases.

 The green colour marks the use cases of the prototype.

The orange colour marks the additional use cases.

1.1.1 Actors

Actor Description

Anonymous Anonymous describes an unauthorized entity who has read access but does

not have the privilege to change any settings.

User The user is an authorized entity and has read as well as write access. Users

can change the settings for the algorithm.

Jalapeño API

Gateway

The API Gateway is the provider of all the data the application needs. It can

notify the subscribed services whenever the topology has changed.

Table Part B 1.1: Actors

1.1.2 Use case diagram

Figure Part B 1.1: Use case diagram

Green Routing Thesis

 34

1.1.3 Use case description

For each use case we defined a user story. The user stories follow the Connextra template, stated

below [14, pp. 205-222].

"As a <role> I can <capability>, so that <receive benefit>" [14].

Where the “so that” clause is optional and is only added if it gives an additional value. Thanks to the

template all user stories have the same format and therefore provide a quick overview in an easy-to-

read format.

For the more complex use cases we decided to use fully dressed use cases according to Larman [15].

This format was also taught at the University of Applied Science of Eastern Switzerland. We only

used the fields considered to provide additional value. Larman describes the following fields which

we omitted:

Scope, Level, Success Guarantee, Special Requirements, Technology and Data Variations List and

Miscellaneous.

UC01: CRUD greenest route

“As a User, I can get the greenest route over an API, so that I can lower my energy consumption.”

Primary Actor User

Overview The User can access the Green SR-App over an API where he

inputs the source node and destination node and receives the

greenest route.

Stakeholders and Interests The User wants an easy access over an API.

Preconditions The SR-App is running. The Jalapeño API Gateway is delivering

data.

Main Success Scenario 1. The User wants to know the greenest path and makes a

request with the inputs source and destination.

2. The application validates the inputs and starts the

calculation.

3. If a path has been found it returns the path.

Extensions 2. The User inputs one or two nodes which cannot be found in

the network.

1. The User wants to know the greenest path and makes a

request with the inputs source and destination.

2. The application validates the inputs but cannot find the

nodes.

3. It returns an error code with the information that the

input nodes do not exist.

Green Routing Thesis

 35

3. The application is not able to calculate a path.

1. 1 and 2 are the same as the main success scenario.

3. The application is for some reason not able to calculate the

greenest path and returns this reason as an error code.

Frequency of Occurrence As often as required

Table Part B 1.2: UC01: CRUD greenest route - Fully dressed use case

UC02: Calculate paths

“The Green SR-App can calculate the greenest (most energy efficient) route through a network.”

Overview The path calculations take the two parameters source and

destination and calculate the most energy efficient path

between those two nodes.

Stakeholders and Interests User wants to use the most energy efficient route.

Preconditions The necessary data has been delivered from the Jalapeño API

Gateway.

Main Success Scenario 1. The two parameters have been received.

2. Based on Dijkstra's shortest path algorithm[16], one or

more greenest paths are calculated. How exactly the

algorithm will work is part of our research.

3. If only one path has been found, it will be returned.

Extensions 3. If multiple equivalent paths have been found, the

application takes the best path defined by metrics.

4. If there are still multiple remaining paths with the same

speed, all the paths will be returned with the intention

to spread the load over all of them.

Frequency of Occurrence The User defines the frequency.

Table Part B 1.3: UC02: Calculate paths - Fully dressed use case

UC03: Get ecological metrics of nodes

“The algorithm needs to know the ecological aspect of all the nodes to be able to calculate the most

ecological path.”

Overview For us to be able to calculate the lowest power consumption, we

need to know how big the energy consumption is for each node.

Green Routing Thesis

 36

Stakeholders and Interests It is of interest for the User to know how much power a router

consumes under a certain load.

Main Success Scenario We can get the current power consumption for each node and

can calculate the power consumption under load.

Frequency of Occurrence As often as required.

Table Part B 1.4: UC03: Get ecological metrics of nodes - Fully dressed use case

UC04: Get structured data

“The algorithm needs the necessary fields from the Jalapeño API Gateway to calculate the most

efficient route.”

Primary Actor Jalapeño API Gateway

Overview Get all the metrics over the Jalapeño API Gateway to calculate the

best route.

Main Success Scenario All the data has been sent and the backend is able to calculate the

power consumptions of the different routes.

Frequency of Occurrence As soon as data is received.

Table Part B 1.5: UC04: Structure data - Fully dressed use case

UC05: Define stable route

“As a User, I expect that the calculated most efficient path stays stable for the duration I define.”

Primary Actor User

Overview The User can define the frequency at which the paths get

recalculated. The data is collected continuously but the paths will

be calculated after the defined time has passed.

Stakeholders and Interests The User needs to rely on a certain stability of the routes.

Additionally, if the paths get changed to often, the overhead will

be too much.

Preconditions The frequency needs to be set. The data needs to be ready for

consumption.

Main Success Scenario 1. After an event has been triggered the calculation of the

greenest path will be executed.

2. The result will be logged into a database or caching

service.

Green Routing Thesis

 37

3. If the User defined time has passed or a certain threshold

is breached the active path will be updated.

Frequency of Occurrence The calculation will repeat after the defined duration.

Table Part B 1.6: UC05: Define stable route - Fully dressed use case

UC06: View routes

“As a User, I want a simple web interface to see the chosen path and be able to recalculate the

routes.”

Primary Actor User

Overview A web interface for the User to calculate the path, see the results

and configure the algorithm.

Stakeholders and Interests The User will be happy to see the algorithm in action.

Preconditions The MVP is completed.

Main Success Scenario The User has a web interface to access the Green SR-App.

Table Part B 1.7: UC06: View routes - Fully dressed use case

UC07: Login

“As a User, I want to prevent unauthorized access to the application and only allow a restricted

group to access the settings.”

Primary Actor User

Overview To make sure that only authorized Users can access the app and its

settings, a login is necessary.

Stakeholders and Interests The login makes sure that only the Users, which the client has

defined, gain access to the application. This prevents tampering

with the settings by unauthorized persons.

Preconditions The web interface is finished and working.

Main Success Scenario It is only possible to access the application via the login. The

settings are protected.

Table Part B 1.8: UC07: Login - Fully dressed use case

Green Routing Thesis

 38

UC08: Gather statistics

“As a User, I want to create statistical reports to visualise certain patterns of the system over a

timeframe.”

Primary Actor User

Overview The User can create reports based on the data the Green SR-App

gathers. This enables him to observe the change of paths over the

day or how much power the system consumes at all times.

Stakeholders and Interests The User can make decisions based on the results of the reports.

Preconditions To draw a graph with the variety, the path calculation must have

been run a few times.

Main Success Scenario 1. Every few seconds or minutes the greenest path is

calculated and stored in the database.

2. The telemetry data is continuously collected. The service

reduces it to the relevant fields and enriches the data

with some calculated information before it is also written

to the database or the caching service.

Frequency of Occurrence Multiple times per defined number of seconds or minutes.

Table Part B 1.9: UC08: Gather statistics - Fully dressed use case

Green Routing Thesis

 39

1.2 Non-Functional Requirements

The non-functional requirements were defined according to the FURPS+ model. [15, pp. 56-57]

1.2.1 Functionality

1.2.1.1 Security

The application will not be accessible from the internet and is therefore protected by the existing

security measures from the private network. It will not be necessary to implement additional

security measures.

1.2.1.2 Interoperability

The Green SR-App needs to work together with the Jalapeño API Gateway which provides the

necessary data for the calculations. The latest version available will be used as long as the version

upgrades do not imply any limitations. If such limitations are found, the previously used version will

be fixed fur further development and use.

1.2.1.3 Accuracy

The application should return the path with the lowest power consumption with an accuracy of 99%.

1.2.2 Usability

1.2.2.1 Understandability

The user should understand how the path was calculated. This will be achieved with statistics over

the network.

1.2.2.2 Operability

The system should behave in a predictable and secure way to prevent invalid configurations which

could lead to a breakdown of the network.

1.2.3 Reliability

1.2.3.1 Availability

The system should be available 99% of the time.

This requirement is tried to be achieved in the sense of this term project, but it is not mandatory,

because it is influenced by too many factors that cannot be directly controlled or influenced.

1.2.3.2 Recoverability

The application should be developed with the Cloud Native Standard[9] in mind, which includes a

simple redeployment.

1.2.3.3 Fault Tolerance

To detect a faulty router sending data, we implement boundaries to detect data which would lead to

an invalid path, according to “Patterns for Fault Tolerant Software”[17, p. 8]. Additionally, with

multiple reflector routers, we can compare the results of the router to detect faulty data.

1.2.4 Performance

1.2.4.1 Capacity

The application should be able to calculate paths in a network of up to 1000 nodes.

Green Routing Thesis

 40

1.2.4.2 Time behaviour

A new calculation of the greenest path should not take more than 10 seconds.

1.2.5 Scalability

The backend should be scalable and always fit to the according environment need. If a lot of

requests are made, an additional backend-pod should be started.

1.2.6 Maintainability

1.2.6.1 Analysability

It should be possible to change the log level of the application. If the log level is set to debug mode,

the application should write information about important events to the standard output.

Green Routing Thesis

 41

2 Project Management

2.1 Used Methods

We based our process around the Rational Unified Process (RUP) with the four phases: inception,

elaboration, construction, and transition. The inception phase is about finding out what to build and

performing initial research. The elaboration phase is understanding the requirements in detail,

perform additional research work and defining the software architecture. The construction phase is

about the implementation of the defined requirements. Finally, the transition phase is about

validating and releasing the project results.

In addition, we will proceed with Scrum and thus iterations. The combination of RUP and Scrum is

called Scrum+ at the Eastern University of Applied Sciences and is supposed to combine advantages

of the agile approach through Scrum with the classic approach of phases and milestones to best plan

and execute the project. We will also use a Scrum Board to track the state of each work item.

2.2 Organization

2.2.1 Project internal

Name Job Email

Pascal Schlumpf Software Developer pascal.schlumpf@ost.ch

Jonas Hauser Software Developer jonas.hauser@ost.ch

Table Part B 2.1: Project internal organization

2.2.2 Project external

Name Position Email

Prof. Laurent Metzger Supervisor laurent.metzger@ost.ch

Severin Dellsperger Co-Supervisor severing.dellsperger@ost.ch

Julian Klaiber Co-Supervisor julian.klaiber@ost.ch

Michel Bongard Developer of the Jalapeño

API Gateway (INS contractor)

michel.bongard@ost.ch

Francois Clad Cisco Systems liason fclad@cisco.com

Table Part B 2.2: Project external organization

2.3 Scheduling

The semester project is marked with eight ECTS and therefore requires approximately 240 hours of

study per person. Since we carry out this project in pairs, this results in a targeted total effort of

about 480 hours. As we work according to an agile setup, we will use all the time we approximated.

The project kick-off meeting took place relatively late in the first week of the semester. Due to the

relatively late start in the first week of the semester, the project was compressed to 13 weeks with

an average weekly working time of 18.5 hours per student, so that working time does not have to be

planned and made up afterwards.

mailto:pascal.schlumpf@ost.ch
mailto:jonas.hauser@ost.ch
mailto:laurent.metzger@ost.ch
mailto:severing.dellsperger@ost.ch
mailto:julian.klaiber@ost.ch
mailto:michel.bongard@ost.ch
mailto:fclad@cisco.com

Green Routing Thesis

 42

2.3.1 Iterations / Sprints

We normally work in two-week sprints except in the elaboration phase where we have a three-week

sprint because this seems to be the most reasonable approach. Longer sprints are suboptimal due to

the limited project duration of fourteen weeks, and shorter iterations would tend to lead to too

much management overhead.

The sprints start on Monday and end on Sunday unless the team defines a different time slot due to

absences or work limitations.

2.3.2 Estimation and Time Spent

In sprint planning, we estimate the workload for each work item and record it on the tickets in our

YouTrack tool.

The time spent is recorded on the tickets according to the categories in the timetable chapter and

provides a transparent overview of how many hours were spent on which categories of work and

tasks.

Figure Part B 2.1: YouTrack estimation and time spent

Green Routing Thesis

 44

2.3.3 Timetable

Based on the nature of the project, seven categories were defined for tasks to be completed. For each category, a rough time estimate was made to get an

overview, which can then be tracked on YouTrack based on the time booked. The milestones mentioned are defined and described in the milestones

chapter.

Figure Part B 2.2: Timetable

Green Routing Thesis

44

2.3.3.1 Project management time composition

Description Effort per person (hours) Total effort (hours)

Sprint Refinement and Planning 1.25 2.5

Sprint Review 0.5 1

Sprint Retrospective 0.25 0.5

Meeting with Supervisors 2 4

Administration and further Meetings 1 2

Total per two-week sprint 5 10

Total per three-week sprint 7.5 15
Table Part B 2.3: Project management time composition

2.4 Milestones

In the next table, all seven milestones are defined, and the associated main objectives are described.

They were created in the Inception phase, which means that there may still be changes due to the

requirements still to be worked out up to M2 and the ongoing Elaboration phase, which mainly

includes extended research. The changes are shown in a change history located in the beginning of

the project management part.

ID Date Title Goals

M1 10.10.2021 End of Inception Creation of the project plan with the parts

project management and development

concepts. Setup of all project management

related tools (YouTrack, MS Teams and MS

OneNote). Creation of a documentation

template with the planned parts and

chapters.

M2 17.10.2021 Requirements Finalization of the requirements in form of

fully dressed use cases, functional and non-

functional requirements including a use case

diagram.

M3 31.10.2021 End of Elaboration Focus on research, capturing results and

decision making on the following topics:

• Router telemetry data mocking

• How to send data from the router

deflectors to the Jalapeño API

Gateway

• Jalapeño API Gateway itself

• Existing demo SR-App

• Definition of the green index

• Proof of concept for the most

ecological path calculation algorithm

Green Routing Thesis

45

The future architecture and design of the

Green SR-App is defined as an initial

theoretical proof of concept.

General definition of the development

concept.

The initial project base for the development

is created and the environment is set up

including the first version of the CI/CD

pipelines.

M4 14.11.2021 Data collector /

processor prototype

Use of an existing or self-developed and

working prototype of a telemetry data

collector and processor via the Jalapeño API

Gateway. The results are documented.

M5 28.11.2021 Path calculator CRUD

backend

A developed and working prototype of the

CRUD backend of the Green SR-App including

the implementation of the greenest path

calculation algorithm as prototype. The

results are documented.

M6 12.12.2021 Green SR-App beta

release

Consolidation of the data collector /

processor and path calculator CRUD backend

to the final Green SR-App.

General improvements, refinements and

finalization of the Green SR-App for a beta

release.

M7 24.12.2021 Project delivery The main goal is to finish the project and

deliver all products which were constructed.

The documentation must be fully completed

and in a finalized state.

Table Part B 2.4: Milestones

2.5 Responsibilities

Both students are ultimately equally responsible, and both have equal decision-making rights in all

parts of the project. However, in order to define the division of work more clearly and be more

efficient, we have assigned focuses to each of us. Both have been equally involved in the overall

development.

Jonas’ primary focus entails the project management, such as the coordination of meetings, and

infrastructure related work, including the work with GitLab CI, Docker and the cloud-native

application environment. In addition, he is the primary idea carrier for the architecture and design of

the application, because he has much experience in the development of web applications including

API’s.

Pascal's focus is on the requirements engineering for functional and non-functional requirements

Green Routing Thesis

46

and definition of implementation of our applications. He is the main actor in the field of research on

our topics and uses this knowledge in the implementation of mock services or applications.

Both students have been involved in all parts of the project and medium to large decisions have

always been made bilaterally by both parties.

2.6 Meetings

Due to the ongoing Corona pandemic and the fact that both students study part-time, the meetings

are conducted online via Microsoft Teams.

2.6.1 With Supervisors

Regular weekly meetings with one or more supervisors place on Thursday at 10 a.m. to discuss the

current work progress, to clarify questions and to solve problems. Occasionally, the industry

partners of the work are also present to gain insight and to place requests.

If necessary, additional meetings are held with INS staff on an individual basis.

2.6.2 Scrum Meetings

The team generally finishes the sprints and the associated milestones at the end of the week.

Accordingly, the respective Scrum meetings are held on Sunday evening.

Scrum Event Timeboxing

Sprint Review 0.50 hours*

Sprint Retrospective 0.25 hours*

Backlog Refinement and

Sprint Planning

1.25 hour*

Table Part B 2.5: Scrum Meetings

*The timeboxing for longer sprints as in the elaboration phase are multiplied according to the

additional weeks added. In the case of a three-week sprint this means a multiplicator with one and a

half.

2.7 Risk Management

In this area of project management, risks to the project are listed and classified. Preventive and

reactive measures are evaluated for each risk. The risks are re-evaluated in each sprint and, if

necessary, reclassified or deleted if risks have been eliminated.

The maximum damage potential is roughly estimated in hours based on ordinary working days (eight

hours). A team member will generally work based on workload and sprint planning between 16 and

21 hours per week. Rough percent values for the probability of occurrence are used.

In the following list, all identified risks are described and evaluated with a weighed damage potential

result in hours. The weighed damage potential is always rounded to the next full number.

Green Routing Thesis

47

ID Description Damage

potential

Probability of

occurrence

Weighted damage

potential

Ri1 The newly developed

Jalapeño API Gateway from

INS will not be ready in time

with all functionalities

needed.

63 hours

30 percent

20 percent

19 hours

13 hours

Ri2 The Jalapeño API Gateway

from INS has unexpected

breaking changes.

21 hours 5 percent 1 hours

Ri3 The Jalapeño API Gateway

from INS has unexpected

bugs or limited use of

functionalities.

63 hours

42 hours

40 percent

20 percent

25 hours

8 hours

Ri4 Connecting to the necessary

network components at the

INS (and partly OST) is not

possible.

105 hours

84 hours

20 percent

15 percent

21 hours

13 hours

Ri5 A student absence due to

illness (most likely due to the

Coronavirus) or an accident.

42 hours

20 percent

8 hours

Ri6 The lack of knowledge in the

still unfamiliar technologies

used is so high that the

project is severely delayed.

84 hours

63 hours

30 percent

20 percent

25 hours

13 hours

Ri7 The used platforms, tools or

frameworks do not work

properly as expected and are

limiting the work progress.

63 hours

42 hours

20 percent

10 percent

13 hours

4 hours

Ri8 Bad project planning and

organization of the project.

42 hours 10 percent

5 percent

4 hours

2 hours

Ri9 It is not possible for us to

obtain the necessary data

when we need them, because

we are not provided with any

physical devices.

21 hours 60 percent

70 percent

13 hours

15 hours

Table Part B 2.6: Risk management

Green Routing Thesis

48

2.7.1 Risk Overview

Figure Part B 2.3: Risk overview graph

2.7.2 Dealing with risks

ID Prevention Behaviour upon occurrence

Ri1 The status is regularly discussed with the

developer of the API at the INS.

The developer has already announced

the completion in like two up to three

weeks at the beginning of the term

project.

If there is indeed such a large delay in finishing

of the Gateway, the data will be temporarily

mocked completely in the data collector of the

SR-App.

Ri2 Again, close contact is maintained with

the developer to prevent such a

scenario. In addition, a strict versioning is

required in order to be able to deploy an

older version in case of need.

If an irreparable breaking change occurs, an

attempt is made to put an older version of the

gateway into operation. If this is not possible,

the data will be mocked as it is described in Ri1.

Ri3 Here, the close contact with the

developer is also a preventive measure

to be able to fix occurring bugs as quickly

as possible.

First and foremost, attempts are made to

bypass the error without further ado or not to

use this part with the error at present.

In case of urgency, time is invested by team

Green Routing Thesis

49

members from this project to support solving

the bugs in the API together with the INS.

Ri4 Known tools for accessing network

devices are used and, if defined, those

recommended by the INS or the OST.

It is possible to get to the equipment on site by

a more direct route. If necessary, all data can

also be provided by a second virtual network or

the data can be specified statically on the

application side.

Ri5 The students strictly follow the

prescribed measures to prevent infection

with the coronavirus. The hygienic

actions are implemented in the best

possible way.

If a student is absent, the next steps in the

project will be discussed with the supervisors

and the project will either be shortened or

rescheduled based on the amount of time lost.

Ri6 An early start is made on acquiring

knowledge in all the technologies used.

Unsolvable ambiguities are discussed

with the co-supervisors at an early stage,

because they already have sound

experience in all technologies.

Due to the iterative approach, more time

can be calculated for the knowledge

development per sprint.

In case of even small delays in the progress of

the work due to knowledge gaps, measures are

taken to solve the problem before major delays

can occur.

If necessary, students can invest additional time

for knowledge gaps outside of the project,

because the learning process in this profession

is part of it.

Ri7 Well-known tools are used like JetBrains

IDE's, GitLab, YouTrack and Microsoft

products.

Unknown technologies like Python and

Django are learned and explored early

on. Both students are well versed in

development and its core components.

For GitLab CI we used our own runners

from INS, because the standard runners

in the engineering project crashed again

and again and had to less performance.

In case of complete failure of tools and

platforms in general are switched to

alternatives. This is especially meant for used

platforms.

The other technologies and frameworks used

are very widespread and it is therefore

extremely unlikely that problems occur there.

Ri8 A clear structure for planning based on

experiences from previous projects and

guidelines is used for this work from the

beginning. Work steps and planned

activities are discussed and validated in

regular steps with the supervisors.

Profound experiences in project

management from the working

environment at the employers of the

students are included.

The project plan is adjusted in case of

emergency and completely revalidated so that

the project can get back on track. The

organization is constantly improved as soon as

individual difficulties arise, both internally and

externally.

Green Routing Thesis

50

Students conduct a Sprint Review and

Retrospective in each Sprint to address

issues and continuously improve in

organization and execution.

Ri9 It is currently being clarified with

Swisscom whether they have a

corresponding laboratory with real

routers.

We mock the data as close to the real system as

possible and simulate their behaviour.

Table Part B 2.7: Dealing with risks

2.7.3 Occurred risks

The occurred risks are marked with the font colour red in the risk overview above.

ID Extent of occurrence Reaction and further steps Estimated damage

Ri6 Online communities exist for

our used technologies and

libraries/extensions, but still

the experience levels are

relatively low. The

implementation of the Domain

Driven Design, some 12-Factor

Methodology related parts,

testing and all parts of mocking

took longer than initially

planned.

Due to the high experiences in

software development and

especially in web development by

the authors, the early difficulties

could be absorbed relatively well.

The software could be completed

successfully without any relevant

limitations or a time delay.

16 hours1

Ri7 During the project, it became

constantly apparent that the

used version control and CI/CD

system GitLab, which is

provided by the OST, shows

strong performance reductions

at certain times of the day. In

some cases, these performance

degradations even led to

situations in which the loading

times were so long that active

use was unthinkable.

The work on times of the day with

performance issues were avoided

as much as possible after the

finding of the consistence in the

performance reductions.

In addition, towards the end of the

construction phase, the CI/CD

pipeline was completely recreated

locally with Docker so that work

could be done more efficiently

without the dependence on GitLab.

8 hours1

Ri9 Completely occurred, because

the Swisscom Lab was not

finished converting to the

After entry, the estimated time was

put into implementing mocking

services. The data was faked as

18 hours1

1 Estimation based on the risk related time booking on YouTrack work items and noticeable time implications
in other work items.

Green Routing Thesis

51

Jalapeño needs in time and

therefore not usable for our

application.

deep down in the application layers

as possible. The mocking could

additionally be used to perform

real integration tests with big data

sets.

Table Part B 2.8: Occured risks

2.8 Tooling

The tool YouTrack from the manufacturer JetBrains is used for coordination of tasks. This tool had

already proven itself in other projects and offers exactly all necessary functionalities. The platform is

used to plan, record the status of the work via a scrum board, and to book working time. A short

overview of the scrum board in action is shown in the figure below.

Figure Part B 2.4: YouTrack Scrum Board

Microsoft Teams is used to communicate both within the team and with the external parties

involved. The storage capability by Microsoft OneDrive is used to securely store all data produced.

The team uses Microsoft OneNote to write quick notes, meetings minutes, prototype

documentation parts, and store other information that is not directly included in the

documentation.

Finally, both team members are equipped with several personal and very powerful computers with

the necessary peripherals for professional work.

2.9 Meeting minutes

Brief minutes are taken for each meeting with the following content. The date is not in the content

because it is already present in the chapter title and the location is always online via Microsoft

Teams as already described earlier:

• Time

• Participants

• Agenda

• Notes on each agenda item discussed

Green Routing Thesis

52

If necessary for a meeting, the content is adjusted to provide the best possible benefit for the

reader.

The minutes are not sent to all participants after each meeting, as agreed with the supervisors.

However, everyone may request see the protocols at any time during the project.

Green Routing Thesis

53

3 Development

3.1 Version Management

For the administration of the source code and the project documentation we use GitLab provided by

the OST, including the provided continuous integration solution.

We have defined various guidelines for dealing with Git to achieve a professional and simple

cooperation in the software development process in the team. See Code reviews

The branches are created and used with the concepts and tooling of Git Flow (AVH Edition)[18]. We

use feature, bugfix, release and hotfix branches with the two main branches develop for the

development environment and master for the production environment. We do not need support

branches in this project. All branches are named in kebab-case, unless the release and hotfix

branches, which are written in semantic version numbers without a prefix.

All commits must follow the Conventional Commits[19] guidelines. This ensures that the commit

messages are uniform, describe the extensions and adjustments exactly and the change history is

quickly traceable.

3.2 Principles

To ensure maintainability and quality of the code basis, common software engineering principles are

always considered. These include as a basis KISS, YAGNI, DRY, BDUF and S.O.L.I.D. Further we adhere

to the clean code principles.

3.3 Quality

3.3.1 Definition of Done

We work with different DoD's for development tasks. For quality assurance, the issues can be

populated a corresponding DoD. The Definition of Done serves the developers as a guide for the

implementation. We define standardized DoD's for the backend and frontend. These can be

supplemented individually for each issue.

3.3.1.1 Backend

• Coding Conventions were respected

• No linter errors

• New potential unit tests introduced2

• All unit tests passed successfully

• Continuous Integration went through without errors

• All findings from the code review have been fixed

• The documentation was expanded or adapted if necessary2

3.3.1.2 Frontend

• Coding Conventions were respected

• Continuous Integration went through without errors

• All findings from the code review have been fixed

2 The developer of the new or adapted code is responsible to decide if unit test and documentation changes or
expansions are necessary directly.

Green Routing Thesis

54

• The documentation was expanded or adapted if necessary2

3.3.2 Code reviews

No changes are incorporated into the Git repositories, which have not been validated and confirmed
at least by the other team member in a review. Exceptions to this are trivial configuration work and
bug fixes, which must be introduced immediately.
We always create pull requests that are checked by the other team member. We always work with

support branches and only after the code review, the merge to a main development branch is

performed.

3.3.3 Testing

Unit tests are used as a first test strategy for our backend application to be developed and its

potential surrounding systems. Unit tests are a common way to test functionalities of an application

with different scenarios and can easily be included in the Continuous Integration (see chapter

Continuous Integration and Deployment).

If a frontend is developed, only manual frontend tests are performed by the developers, because

automated tests are not worthwhile for a potential frontend of this small size and necessity.

As a second test strategy, a complete system test will be performed near to the end of the

construction phase and recorded in the appendix of this document.

In addition to the two test strategies, manual tests are also carried out repeatedly during

development in order to guarantee the correct functioning of the automated tests themselves.

3.3.4 Static code analysis

In order to be able to statically check our code, a SonarQube instance was setup on our server at the

INS. SonarQube can analyse static code from many common programming languages and detect

errors, weaknesses as well as ugliness’s and visualize them on a dashboard.

This tool will also consolidate in our Continuous Integration system so that all code is automatically

analysed during the development workflow.

The code metrics we use and our goal for each metric are described in the next chapter.

3.3.4.1 Code Metrics

By choosing to use SonarQube as a static code analysis tool, we limit ourselves to the most

important metrics that are used by this tool. The main metrics are explained below and our goals for

each are defined as well.

Name Explanation Goal

Bugs Bugs are errors in the code that can cause

the application to stop working.

0

Vulnerabilities An application vulnerability is a flaw or

weakness in the system that can be

exploited to jeopardize the program's

security.

0

Green Routing Thesis

55

Security Hotspots Code which needs manual checks to ensure

that there are no security flaws.

0

Code Smells Parts in the code which are hard read and

understand.

0

Test coverage Defines in percent how much code is tested

by unit tests.

min. 80%

Duplications Defines in percent how much lines of code

are duplicated over the whole application.

max. 1%

Table Part B 3.1: SonarQube code metrics

The next screenshot shows the final Quality Gate status on the platform. SonarQube has been

reconfigured so that a code coverage value of 60 percent is accepted and marked as “Passed”.

This has the origin that due to missing real data from Jalapeño and the attached network, single

mocking’s had to be implemented on the service application layer. In addition, for the integration

tests, the deepest application layer, namely the repository layer, also had to be mocked so that the

tests could run through all application layers without a real or in-memory database.

Green Routing Thesis

56

3.3.5 Coding Conventions

We use the coding guidelines of the CockroachDB which describes a wide variety of different

guidelines for style, performance and best practices. [20]

To ensure good code quality, we rely on two tools. One is golangci-lint [21] which applies a large set

of rules through different single linters every time a file is saved and also enforces these rules when

committing with Git. We have some control over which rules are applied and in what manner. We

can add linters if we think they help improve the code quality and we can remove linters if we think

that the overhead is too much or if the linter runs into problems.

The second tool is gofmt [22], which also formats the entire document according to standard

formatting rules every time it is saved. This tool ensures that the code is easy to read, which leads to

potential less bugs.

3.3.6 Continuous Integration and Deployment

For the complete CI/CD we use the GitLab integrated CI/CD feature with custom runners from the

INS to have better performance and all access needed to the infrastructure.

Figure Part B 3.1: SonarQube Guality Gate Status

Green Routing Thesis

57

The pipeline is separated into three Docker image strategies. For linting, testing and SonarQube

scanner there is a build only image used with the source code and configs included. The two other

strategies are for development and production deployment builds only and do not include source

code (only the executable) and have their specific environment configs included in the lightest way

possible.

In the following table all stages are shown chronologically and described.

Stage Description Fail level Execution Target

build Builds the backend based on the

build only image3 with optional use

of the cached Docker image with tag

“develop” and tags it with the latest

commit hash.

Build failure Every commit

lint Executes the complete linting for

the build image and displays the

results.

Linting errors (not

warnings or

information’s)

Develop, feature,

bugfix, release,

hotfix and merge

requests

test Executes all unit tests from the

backend.

If at least one test fails Develop, feature,

bugfix, release,

hotfix and merge

requests

sonar-

scanner

Executes the SonarQube check

through sonar-scanner.

If a code metric is not

met as expected

(described in chapter

code metrics)

Develop, feature,

bugfix, release,

hotfix and merge

requests

build-dev* Builds and tags the development

deployment build image4 with

“develop”.

No directly associated

fail level

Develop

build-prod* Builds and tags the production

deployment build image4 with

“latest” and the specific version for

the application (semantic version).

No directly associated

fail level

Master (implicit

only tags)

deploy-dev* Deploys the development

deployment image to the

development environment server.

If deployment is not

successful

Develop

3 Dockerfile name: «Dockerfile»
4 Dockerfile name: «Dockerfile.deploy»

Green Routing Thesis

58

deploy-

prod*

Deploys the production deployment

image to the production

environment server.

If deployment is not

successful

Master (implicit

only tags)

Table Part B 3.2: CI/CD pipeline stages

*Due to prioritization on more important topics, the deployment stages in the context of this work

were waived in the construction phase with the supervisors approval.

3.4 Error Handling

3.4.1 Input validation and output sanitization

In order to generally avoid considered errors inside the application, all data objects for creation or

editing via the API endpoints are validated with the help of clearly defined data fields and data types

on predefined data transfer objects, or in short DTO’s. The API works for ingress and egress data

only with DTO’s and so entities5 will strictly never leave the application. This prevents also exposing

or allowing incoming data, which is not intended to leave the API to the consumer.

3.4.2 HTTP status

Whenever possible, the backend responds with a suitable HTTP status code with an error message if

this is available. Special errors in exceptional cases are handled by default with the code 500 Internal

Server Error.

The application itself only crashes completely in case of fatal errors. All other errors that are not

explicitly handled and the so-called Go panics are implicitly handled by the Gin Web Framework

without resulting in crashing the application. These are then also handled with the standard Internal

Server Error code.

In the next table, a simple example is shown in reference to the previously mentioned points.

Request Response Header Response Body

GET /node/1 HTTP 404 Not Found

Content-Type: application/json

Content-Length: 28

{

 "error": "element(s) not found"

 "identifier": "example"

}

Table Part B 3.3: HTTP Status example

3.4.3 Logging

To meet the eleventh point of the Twelve-Factor Methodology and to have a well-founded logging

possibility, an extended logger was implemented instead of Go's own and registered on all other

included frameworks and libraries as the main logger. This logger supports the following seven log

levels, listed from the most serious to the most marginal level: fatal, panic, dpanic, error, warn, info,

debug. As also described in the previous chapter HTTP status, only fatal errors will cause the

application to stop. All other log types will not stop the backends runtime and are handled through

the Gin Web Framework. The log service writes its output directly to the stdout event stream of the

5 Entities are also called models and they define how the data must be stored on the database.

Green Routing Thesis

59

operating system it runs on. The level used can be set at application startup via the environment

variables.

3.5 Environment

The IDE’s from JetBrains are used with additional plugins from the JetBrains marketplace depending

on the needs by the developer itself. Depending on the technology used, the appropriate IDE from

JetBrains is used. GoLand IDE is the product which is used for Golang development.

In addition, all required services, such as databases, are provided with Docker and defined in the

repositories via docker compose files, so that a fast setting up of the development environment on

any device can be made possible.

The development is supported by the version control system remote server GitLab, which also offers

additional functionalities. Additional functionalities used are GitLab CI/CD, merge requests and

integrations with Kubernetes and YouTrack (described in chapter tooling).

Green Routing Thesis

60

4 Domain Analysis

4.1 Domain Model Diagram

4.2 Domain Model Explanation

4.2.1 Node

A Node is an ASR 9000 router in the segment routing domain which actively participates in segment

routing. For this thesis we limit ourselves only to the ASR 9000 router from Cisco with the IOS-XR

software.

The router has several logical links connected. In segment routing the source Node is called ingress.

This is the point where the packets enter the segment routing domain. The other end is called egress

and this is the point where the packets leave the domain again. It is also the destination Node.

Because of the attributes we explained above, an ingress and egress Node must be included in the

GreenRoute to know the start and the end of the path.

Figure Part B 4.1: Domain Model

Green Routing Thesis

61

4.2.2 NodePowerConsumption

Due to the additional use case UC08, gather statistics, it is necessary to not only store the current

node power consumptions, but also to keep a history of the values synced.

Each Node has a history of power consumptions associated. The power consumption with the latest

CreatedAt timestamp is the most recent synced value from the network.

4.2.3 Segment

An essential part of segment routing is the Segment itself. Each Segment describes a different

operation, telling a Node which action it has to execute when a packet with a certain Segment is

received. Depending on the context the Segments can lead to different actions. A Segment belongs

to a particular Node and may be available in zero or more GreenRoutes.

4.2.4 LogicalLink

A LogicalLink is a connection between two Nodes. Relevant information is stored on such a type of

link, for example in which direction the data traffic flows and what metrics are present on it.

LogicalLinks is an important part of the green route calculation and can therefore be found in the

GreenRoute.

4.2.5 GreenRoute

A GreenRoute contains the greenest path as well as the Segment list or so called SIDList.

The greenest path describes the path which consumes the least amount of energy and packets

should therefore follow this defined route. It needs at least one LogicalLink to be a working result.

To achieve a correct list of Segments, it needs at least one Segment in the GreenRoute, if segment

routing is enabled. Normally there will be more than one Segment in the SIDList.

Green Routing Thesis

62

5 Architecture and design specifications

5.1 System Overview

To give the readers a visual overview over the existing software and the newly developed app,

several diagrams according to the C4 model [23] were created.

Because the API Gateway notifies the Green SR-App on topology changes and new telemetry data

The Green SR-App does not need a special cache to handle the current data. It is possible to request

the needed data and process it just in time. This way it is possible for multiple instances to have the

same results for the calculation because all instances request and get the same data.

The following C4 system context diagram shows the user, as well as the Green SR-App in

development and the Jalapeño API Gateway which accesses Jalapeño from Cisco Systems.

Figure Part B 5.1: C4 model System Overview

Green Routing Thesis

63

The following C4 container diagram shows how the different containers interact with each other and which protocols are used. In addition, the diagram

shows how the user communicates with the software system. The external System Jalapeño API Gateway is not visualized in detail, since we only use the

provided services of the gateway.

Figure Part B 5.2: C4 container System Overview

Green Routing Thesis

64

5.1.1 Jalapeño API Gateway

The Jalapeño API Gateway enables the Backend to access the stored date of Jalapeño in an easy and

standardized way over a gRPC API. Additionally, the Gateway API notifies the Backend on changes in

the topology or on new telemetry data. This way the application can react on changes and can

calculate a new path if necessary.

Jalapeño is a software from Cisco which collects and processes telemetry data and topology data of

the connected network and stores them in an InfluxDB for telemetry data and in an ArangoDB for

topology data.

5.1.2 Frontend

A user who uses the Green SR-App will access the app via the frontend, in which it is possible to view

the chosen route, which represents the most energy efficient way. It is also possible to trigger a new

calculation if necessary. In the settings there will be an option through which the user can define the

duration in which the route does not change under the condition that the topology stays the same.

This part is optional and will only be part of this thesis if there is enough time left after the

mandatory use cases have been fulfilled.

5.1.3 Backend

The backend is the heart piece of the whole application. Here, the data from the API Gateway is

evaluated and prepared for path calculation. When the data is in the required form, the path

calculation is executed, and the most efficient path is evaluated. The result will be sent to the

frontend and will just be stored in the database for later statistical analysis.

The path calculation gets triggered when a change in the topology occurred or when the defined

duration has passed. To keep energy costs low, the calculation is only executed when needed. To get

a reliable reading of the power consumption of the routers the application takes the average power

consumption over 24 hours. If the available time range is smaller than 24 hours, the application

calculates the average over the available time range. If possible, we want to know how much energy

a router needs to process a certain number of packages. This way more efficient routers will be

considered.

5.1.4 Database

In the Database the calculated routes will be stored for future statistical analysis. The application

also stores other potentially interesting metrics to create reports on. The reports will not be part of

this thesis. It was decided to use a MariaDB because it offers the possibility to store graph data as

well as relational data. It works well with go and it is possible to run it in memory if we need the

performance boost. This way we can store the chosen route as a graph and the power data in a

relational table.

5.2 Twelve-Factor App Methodology

For the application to be truly cloud native standard compliant, it will be built using the methods of

the 12-factor methodology. [9]

The entire application with its environment and services is analysed step by step using this

methodology in the following subchapters.

Green Routing Thesis

65

5.2.1 Codebase

“One codebase tracked in revision control, many deploys” [9]

GitLab is used as the version control system, which also allows the direct use of an integration for

CI/CD and connections to YouTrack.

The backend and the potential frontend are created in individual repositories with completely

seperated code and have deployments to a strictly separated development and production

environment on a server with different accessing definitions (i.e. different URLs). We will not use a

direct staging environment because based on our concepts, the development environment behaves

similarly.

The backend and the frontend could each be verified completely independently using the 12-factor

methodologies.

Evaluation: fulfilled

5.2.2 Dependencies

“Explicitly declare and isolate dependencies” [9]

The application consists classically of a frontend and a backend, which serves as an API. It is not yet

completely clear whether there is enough time for a frontend as we are working in iterations and

therefore only the backend is described here.

Go implemented with version 1.12 a new dependency management system, which describes every

dependency used with their peer dependencies in a file called go.mod. This file also includes

definitions for which version should be used including for the peer dependencies.

With version 1.12 also the possibility for modules was introduced which we use in the backend to

separate the code clearly and in a structured way. Each package includes apart from the domain

driven design.

Evaluation: fulfilled

5.2.3 Config

“Store config in the environment” [9]

Environment variables are used to define all the static configurations for the application for the

backend and the potential frontend.

They are set locally by the developer based on default environment files per possible environment

and injected in the pipeline from the environment configuration for the pipeline with additional

sensitive config variables provided by GitLab.

The library GoDotEnv is used to fully reach this in the Golang context. Every dynamic variable which

differs between environments is set in a specific environment file, e.g. in the file .env-local for local

development usage. The application loads the environment variables on startup which then can be

consumed by the application.

Evaluation: fulfilled

Green Routing Thesis

66

5.2.4 Backing services

“Treat backing services as attached resources” [9]

The MariaDB is connected via URL which is composed of different values from the environment file.

It is possible to change the underlying database as long as it is still a MySQL database provider. It is

even possible to change the whole repository layer to use a different kind of database, if necessary.

If you want to use a different MySQL provider, no changes to the code are required.

Evaluation: fulfilled

5.2.5 Build, release, run

“Strictly separate build and run stages” [9]

The backend CI/CD has eight clearly separated stages defined. They are fully described in the chapter

continuous integration and deployment. In summary, there is one build stage for checking purposes,

three quality stages composed by linting, unit testing and static code analysis, two build stages for

development and production and finally two deployment stages for each environment.

The pipeline clearly separates build, release and run from each other and traversing the path in the

other direction is not possible or not foreseen after following the correct workflow.

A clearly defined path is achieved through the three major steps GitLab, GitLab CI and Kubernetes

deployment. One is for version control and the other ones for continuous integration and

deployment. The running part then takes place on the server with Kubernetes.

Evaluation: fulfilled

5.2.6 Processes

“Execute the app as one or more stateless processes” [9]

The app must act stateless. This means that it must not save any states at runtime, except for a short

period of time, such as during further processing of data. However, data stored for a short time must

never be intended for a future request. All data to be stored for a long time must be stored in

associated services, such as databases.

The app is completely stateless since we always calculate based on the telemetry information which

is currently available from Jalapeño. This could be one or more telemetry entries based on the

specified time range or the network uptime until now. All data intended for long-term storage use is

stored in the relational and synchronized database. Short-term data is only stored on a per-request

basis.

Evaluation: fulfilled

5.2.7 Port binding

“Export services via port binding” [9]

Each service offered must be mandatorily bound to a port. It must not build on runtime injection

from a webserver. The web app must provide HTTP as a service by binding to a port and listen to

ingress traffic on that port.

Green Routing Thesis

67

This is achieved in Go by direct port binding, which is also fully provided also by the Gin Web

Framework. The application only requires one port for handling HTTP traffic.

Evaluation: fulfilled

5.2.8 Concurrency

“Scale out via the process model” [9]

Each running program is represented by one or more processes. Web applications have a variety of

different forms of process execution as a possibility.

The computation-heavy work, consisting of the synchronization of Jalapeño and the subsequent

computation of the green path, was achieved by a parallelization with semaphores and mutexes. Go

has inherently very powerful parallelization capabilities. All other parts of the application are already

fast enough without parallelization, even with very large amounts of data.

Go also inherently offers vertical scaling of the processors, which is also compatible with the Green

SR-App.

Evaluation: fulfilled

5.2.9 Disposability

“Maximize robustness with fast startup and graceful shutdown” [9]

The app processes should be disposable. This means that they must be able to be started and

stopped in very short time. By defining this short time period, it is meant for only a few seconds and

not longer. Additionally, it must be possible to gracefully turn off the application.

The processes were designed to be very sleek and lightweight, allowing for a very quick startup and

shutdown. However, it is not ensured that ongoing requests and calculations have been completed

when a shutdown request is incoming.

Evaluation: partly fulfilled

5.2.10 Dev/prod parity

“Keep development, staging, and production as similar as possible” [9]

This point requires that the environments used should be as similar as possible. In this project, the

environments development and production are used.

In the next table, you can see the comparison of traditional developed apps to twelve factor apps

with an additional assessment for the Green SR-App developed in this term.6

6 The idea and parts of the content for this table was taken from the 12-Factor Methodology website [9].

Green Routing Thesis

68

 Traditional app Twelve-factor app Green SR-App

Time between deploys Weeks Hours Hours to days

Code authors versus code

deployers

Different people Same people Same people

Development versus

production environment

Divergent As similar as possible As similar as possible

Table Part B 5.1: Dev/prod parity comparison

The dependent services, such as databases, are kept the same and the build differences are reduced

to a minimum.

Evaluation: fulfilled

5.2.11 Logs

“Treat logs as event streams” [9]

A twelve-factor app should never itself manage the forwarding or storage of generated logs. Every

running process must send its logs as event streams directly to stdout without any intermediate

steps.

The developed app writes all logging information directly to the output stream (including stdout and

stderr) without any intermediate steps. It is possible to set the log level via the environment

variables.

Evaluation: fulfilled

5.2.12 Admin processes

“Run admin/management tasks as one-off processes“ [9]

Here it is about single tasks to be executed, which are needed on the productive system, for example

to start database migrations. These tasks must always be executed on systems that are as similar as

possible.

By using containers for all application parts, such tasks are not directly necessary. In the event of

changes or adaptions, the container is easily redeployed. Migration scripts are sometimes necessary

for certain services used, but these are always tested first in the development system that is as

similar as possible to the production environment.

Evaluation: fulfilled

Green Routing Thesis

69

5.3 Technologies

Component Technologies and

Frameworks

Libraries/Extensions

Backend • Golang

• Gin Web Framework

• Jalapeño API

Gateway

• RyanCarrier/dijkstra

• Gin-contrib/zap

• Jinzhu/Copier

• Joho/GoDotEnv

• Stretchr/Testify

• Swaggo

• Zap

• gRPC

• Zapgorm2

Database • MariaDB • Gorm

• Gorm MySQL driver

Development

support

• Golang

• Docker and Docker

Compose

• Go run, build, fmt, test, clean and mod

• GoDotEnv

• Golangci-lint

• Swaggo

Table Part B 5.2: Technologies overview

5.3.1 Programming Language

It was primarily decided on three possible programming languages for this term project. These

include Node.JS, Python and Golang. Each of these three programming languages offers its own

advantages for the project as well as from the perspective of the INS and the team members.

Node.JS is very well known by the team members, whereas the know-how on Python and Golang is

very basic. Python as well as a little less Golang have already been used in the INS.

Tailored to this project and the associated calculation of paths in networks, Go is in comparison up

to three times as fast as Node.JS and up to eight times as fast as Python [24].

The Jalapeño system from Cisco and the Jalapeño API Gateway of the INS use Go as programming

language.

Due to the very good performance and the widespread use in peripheral systems, the decision was

made in favour of Go, although this means increased effort for the project members to become

familiar with it. The performance and extensive use in existing systems were conscious considered as

major factors.

5.3.2 Web Framework

To facilitate the handling of an API for developers, an additional framework is used. The choice went

to the most popular web framework for Go with the largest online community to support it.

Gin Web Framework is a framework for Go, which follows a Martini like API, but is up to 40 times

faster than Martini itself. Gin is suitable for API's where performance plays a big role.

In addition, this web framework also offers middleware’s and supports a crash-free API. It can

Green Routing Thesis

70

therefore catch and recover from panics that occur in the Go context. Thus, the server always

remains available. In addition to the functionalities already mentioned, Gin can also easily validate

JSON and improve routes [10].

5.3.3 Storage

5.3.3.1 Long-term

5.3.3.1.1 Relational or document oriented

In order to ensure more flexibility during the development for the storage of the calculated paths

and the related statistics, a relational database is used. After this term project and the experiences

made, it must be revalidated whether a document store database could be used for simplification

and additional performance increasement.

5.3.3.1.2 Database management system

The relational database services PostgreSQL, MySQL and MariaDB were included for detailed

selection.

Golang supports all three in somewhat equal measure, so this criterion can be excluded. PostgreSQL

is widely used at the OST. MySQL, on the other hand, has no direct advantages over PostgreSQL for

this project, except for the downside that it is used less. MariaDB, on the other hand, offers more

database engines than MySQL and PostgreSQL, including a secondary engine for Graph DBMS, which

can be an advantage when storing paths in networks. MariaDB is also a very modern and high-

performance database system for small to medium-sized databases [25].

Due to the described advantages and disadvantages MariaDB is used for this project.

5.3.3.1.3 Object relation mapper

In order to ensure a clean transition from the application to the database and to automate database

migrations, an ORM system must also be used. Here, too, an ORM library was chosen that is most

widely used in the Go world and supports our relational database technology.

Gorm is the most popular ORM system for GO, which also supports MySQL and therefore also

MariaDB [12].

5.3.3.2 Short-term

Consideration was given to whether additional short-term storage could provide a direct benefit. It is

possible to provide the calculated paths faster in the cache and to keep telemetry data for the

calculation in the cache for a short time.

Since Jalapeño writes the telemetry data directly to the TSDB at a predefined interval and the

Jalapeño API gateway can deliver either a live subscript or a query request for a defined period, no

dedicated short-term storage is required on the Green SR-App.

This term project is only about providing the interface, relating the data, and calculating the paths,

but not yet about setting the new paths on the routers. Because of this, a cache for the calculations

brings no significant benefit from this point of view.

As a result of the main facts described before, no dedicated cache is used in this project.

Green Routing Thesis

71

5.3.4 Development support

5.3.4.1 Linter’s runner

For go, there are many different linters, all of which cover certain parts or some of which are for a

single purpose. So that not all of them must be integrated and executed individually, the golangci-

lint Go linters runner is used in this project. This linters runner offers the possibility to execute all

available linters and to configure them individually if needed [21].

All go own linters and recommended linters are used at least. The exact list of the used linters and

checkers can be seen in the appendix (chapter Golangci-lint linters).

5.3.4.2 Testing

Since the execution of tests is not carried out via the linter’s runner, the unit tests must be executed

separately. This is achieved by the command "go test" included in Go.

In addition, a library called Testify is used to simplify the definition of unit tests. Testify mainly offers

the advantage of wounding assertion checks, which are widely used in unit tests [26].

5.4 Backend Architecture

This chapter contains an overview over the backend architecture and shows the connections

between the used components. We differentiate between the frontend, which we do not cover in

more detail, the backend with the whole business logic and API’s and the database.

We follow the domain driven development concept with the three layers application, domain model

and infrastructure. Where in the application layer we find our controllers which form the API. In the

domain we manage the models in different entities files as well as the data transfer objects (DTO).

And finally, we have the infrastructure layer where we have the services and the repository.

Additionally, we placed the logger and the environment (config) also in the infrastructure layer. We

have a go specific Cmd container which is the entry point into the application.

The common container handles migrations and seeds which are not used during the normal runtime

but rather to handle changes in the database and to provide a set of default data in the database.

Green Routing Thesis

72

The frontend receives all its data over the API. The API gets the necessary data via the data transfer

objects from the services. The services get the data over the database handler which manages the

database connection. All config data is provided over the environment files and all container which

use config data therefore access the environment container. The same goes for the logger. All

containers which need to log information access the logger.

5.4.1 Backend

The Green SR-App backend consists of the API, domain, infrastructure and common sub-modules.

Each of these sub-modules has at least one, but usually several packages in it. In the following

chapters the sub-modules including their packages are described.

Figure Part B 5.3: Backend Architecture Overview

Green Routing Thesis

73

5.4.1.1 API

The sub-module API consists of only one package, in which all controllers of the application are

defined as a single file per available endpoint.

The controllers are the first point of contact for an incoming request and therefore also define how

the endpoints look like and what functionalities and operations they offer. In addition, they are

responsible for defining the input and output and for validating the input. HTTP error codes are also

defined here based on the results from the services and other individual factors.

5.4.1.2 Domain

In the sub-module domain at least two packages are to be found and optionally even more, which

are not yet to be defined in this high-level architecture and are created during the development.

The package DTO contains all data transfer objects which are used by the controllers and the

services as transfer data objects. These DTO’s are simply said the objects that live between the

layers and they transport their produced data between each other.

Models is the package that contains various entities. Entities define what the data for the persistent

storage should look like. They also implicitly define how the database schema should look like.

5.4.1.3 Infrastructure

In the infrastructure sub-module, most of the packages explained so far are present. In the setup

there are five packages, most of which are only intended for the internal application part.

The most important package called Services contains the entire business logic for each functionality.

The services receive requests from the controller and returns the computed result. This practically

always includes communication with the repositories in order to access the persistent data. They

also very often do not pass on the data directly but add the desired business logic including various

needed calculations. The individually used Mock Services include the same logic than the normal

services, but simply with realistic mock data.

Probably the second most important package in this sub-module besides the services is the

repositories package. The repositories take care of the direct database queries. They are defined by

default via the ORM library and offer the most important CRUD queries to the database by default

without any additional definition. As soon as non-standard defined queries are needed, the

additional repository definition files with raw queries or a query language are created. The

individually used Mock Repositories include the same logic than the normal repositories, but simply

with realistic mock data.

In the third package called Database the connection to the database is initiated and set up. It makes

an active database connection available to the repositories.

The fourth package in the bundle is called Environment and takes care of loading and providing the

environment variables defined in an environment file or directly from the environment variables of

the system.

Green Routing Thesis

74

Finally, the package logger is a small heart of the application. It takes care of the complete logging of

the application into the stdout and the stderr. It offers different log levels for different purposes and

environments. This level can be set via an environment variable.

5.4.1.4 Cmd

This sub-module does not have a directly existing package in it. Because of the chosen programming

language Go it is common to place the start of the application in a package called Cmd. There is no

further program logic in this package and so it is often called “main”-function in other programming

languages.

5.4.1.5 Common

In this container we place all the packages which do not belong into the DDD context and are not

used in the normal runtime. The migration handles changes of the database schema and the seed

populates the database with initial data or test data in a test or development environment. It is

possible that additional packages will follow.

5.4.2 Database

This container houses the database which is a relational MariaDB. It stores all the calculated paths as

well as other statistical data. It gets accessed via gorm which is a ORM library for go which is located

in the repositories package.

5.5 REST API

The API was built according to standards and best practices known in API development and does not

deviate from them. These standards and best practices are well known by both developers and

therefore no further external source was consulted to fulfil the API definition.

It was a major concern at development time to make the API endpoints as feasible and simple as

possible.

Special mention should be made about the definition of the POST request for the calculation of the

greenest path. It was intentionally decided by the developers to specify the resource to be created in

the path of the request. The alternative passing of the information via the body was not chosen

because the data to be created is fully calculated by the backend and not by user creating the

request.

5.5.1 API responses

In the following table all possible responses of the API are defined in detail. In the default success

scenario, the requested resources are sent as a DTO object(s) back or in specific cases an empty

response is also valid.

Following individual DTO objects are provided:

• GreenRouteDTO

• NodeDTO

• NodePowerConsumptionDTO

• LogicalLinkDTO

For more detailed information the source code of the Green SR-App backend should be

consolidated.

Green Routing Thesis

75

Definition Status type HTTP status

code

Response object with fields

Default Success 200 Individual DTO (object)

or empty response

Base Success 200 BaseResponse

• Message7 (string)

OpenAPIDocs (string)

Telemetry data Success 200 TelemetryDataResponse

• FakedData (bool)

• TelemetryData

(array of EnvmonUI)

o Time (time)

PowerConsumed (integer)

Not found Failure 404 NotFoundResponse

• Error8 (string)

Identifier (string)

Internal Server

Error

Failure 500 ErrorResponse

• Error (string)

Not Implemented Failure 501 ErrorResponse

• Error9 (string)

Table Part B 5.3: API responses

7 Response String: «Hello from the Green-SR App API»
8 Response string: «element(s) not found»
9 Response string: «Not supported due to FAKE_ALL_DATA activated»

Green Routing Thesis

76

5.6 Entity relationship diagram

This following entity relationship diagram, or ERD, was generated with MySQL Workbench 8.0 CE

based on the realized database schema. More information about the ERD display style by MySQL

Workbench can be obtained from the referenced source. [27]

For readability reasons, all table names, fields, field data types and foreign key contraints are

displayed, but not the indexes on the individual tables.

Figure Part B 5.4: Entity relationship diagram

Green Routing Thesis

77

5.7 Infrastructure

5.7.1 INS Lab

A server was set up in the INS network using Kubernetes, which provides all the necessary services

for this project through various Kubernetes pods. As explained in the Technical Report, the following

environment has been set up:

• Webserver (Nginx)

• Jalapeño API Gateway

o Request and Subscription Service

o Cache and Cache Service (Redis)

• Jalapeño

o Time Series Database (InfluxDB)

o Graph Database (ArangoDB)

o Telegraf ingress

o Gobmp ingress

o Event streaming (Kafka)

• SonarQube

o Web Platform

o Relational Database (PostgreSQL)

The latest versions of the new Green SR-App are also always deployed to this server.

In order to obtain the router (Cisco ASR 9000) configuration and data relevant to this study, a virtual

lab was set up by the INS. All devices are accessible by SSH over Port 22. The lab consists of the

following virtual devices in the next table.

Name Type Intended use

XR-1 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

XR-2 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

XR-3 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

XR-4 Router reflector Special ASR 9000 like router reflector which

listens on all other router updates. Main data

source for Jalapeño.

XR-5 Router reflector Special ASR 9000 like router reflector which

listens on all other router updates. Main data

source for Jalapeño.

XR-6 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

XR-7 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

Green Routing Thesis

78

XR-8 Router Base ASR 9000 like router that routes traffic on

the network with segment routing.

Cust-A-ZRH Customer Network entry Sample private customer network on one side of

the whole network.

Cust-B-ZRH Customer Network entry Sample private customer network on one side of

the whole network.

Cust-A-BSL Customer Network entry Sample private customer network on one side of

the whole network.

Cust-B-BSL Customer Network entry Sample private customer network on one side of

the whole network.

Cust-A-ZRH-PC1 Customer PC (Ubuntu) Computer within the customer's private network.

Its main purpose is to generate traffic on the

network.

Cust-B-ZRH-PC1 Customer PC (Ubuntu) Computer within the customer's private network.

Its main purpose is to generate traffic on the

network.

Cust-A-BSL-PC1 Customer PC (Ubuntu) Computer within the customer's private network.

Its main purpose is to generate traffic on the

network.

Cust-B-BSL-PC1 Customer PC (Ubuntu) Computer within the customer's private network.

Its main purpose is to generate traffic on the

network.

Table Part B 5.4: INS virtual lab devices

It turned out that the virtual routers did not have any sensor data to power consumption. This

limited our possibilities in terms research and testing of our app.

Green Routing Thesis

79

The next picture shows the exact composition of all devices and their network configuration.

5.7.2 Swisscom Lab

The INS had several exchanges with Swisscom to get a realistic test network with physical data,

because the virtual network from INS, as pointed out in the previous chapter, cannot implement the

Yang Models we need to have power consumption telemetry data. At the first contact with

Swisscom in the early construction phase of the project, we were there ourselves for an

introduction. The test network looked promising, but unfortunately it has not been converted until

then and therefore couldn’t be used for our Jalapeño instance.

During the project construction phase, this conversion could not be completed. This is the reason

why the final product of this work defines and generates all data in the lowest application layer

itself.

As long as the Swisscom lab is not fully compatible with our needs, it isn’t described further in the

context of this project documentation.

Figure Part B 5.5: INS virtual lab overview

Green Routing Thesis

80

6 Declaration of independence
I hereby declare,

• that I have carried out the present work myself and without outside help, except for that

which is explicitly mentioned in the assignment or agreed upon in writing with the

supervisor.

• that I have mentioned all sources used and cited them correctly according to common

scientific rules of citation.

• that I have not used any material protected by copyright in this work in an unauthorized

way.

Pascal Schlumpf Jonas Hauser

Place and Date:

Place and Date:

Signature:

Signature:

Green Routing Thesis

81

7 Rights of use

7.1 Agreement

7.1.1 Subject of the agreement

This agreement regulates the rights over the use and further development of the results of the

student research project Green Routing by Jonas Hauser and Pascal Schlumpf under the supervision

of Prof. Laurent Metzger.

7.1.2 Copyrights

The student is entitled to the copyrights.

7.1.3 Usage

The results of the work may be used and further developed by both students, the OST and Cisco
Systems after completion of the work.

Student

Pascal Schlumpf

Student

Jonas Hauser

Supervisor

Prof. Laurent Metzger

Place and Date:

Place and Date: Place and Date:

Rapperswil, 23.12.2021

Signature:

Signature: Signature:

Green Routing Thesis

82

List of Figures

FIGURE MANAGEMENT SUMMARY 1.1: GREEN ROUTE EXAMPLE .. 3

FIGURE PART A 1.1: EXAMPLE DESTINATION-BASED ROUTING [2] .. 12

FIGURE PART A 1.2: EXAMPLE ROUTING WITH LABELS [2] .. 13

FIGURE PART A 1.3: CONCEPT OF SEGMENT ROUTING [2] .. 15

FIGURE PART A 1.4: CONVERGENCE IN SEGMENT ROUTING [2] ... 18

FIGURE PART A 1.5: OVERVIEW OF JALAPEÑO [6] ... 19

FIGURE PART A 1.6: JALAPEÑO WITH API GATEWAY [6]... 20

FIGURE PART A 2.1: ENDPOINT GREEN-ROUTES .. 22

FIGURE PART A 2.2: ENDPOINT BASE .. 24

FIGURE PART A 2.3: ENDPOINT GREEN-ROUTES .. 25

FIGURE PART A 2.4: ENDPOINT JALAPEÑO ... 25

FIGURE PART A 2.5: ENDPOINT NODES .. 25

FIGURE PART A 2.6: APPLICATION FLOW OF GREEN ROUTE CALCULATION ... 27

FIGURE PART B 1.1: USE CASE DIAGRAM ... 33

FIGURE PART B 2.1: YOUTRACK ESTIMATION AND TIME SPENT ... 42

FIGURE PART B 2.2: TIMETABLE ... 43

FIGURE PART B 2.3: RISK OVERVIEW GRAPH ... 48

FIGURE PART B 2.4: YOUTRACK SCRUM BOARD .. 51

FIGURE PART B 3.1: SONARQUBE GUALITY GATE STATUS ... 56

FIGURE PART B 4.1: DOMAIN MODEL ... 60

FIGURE PART B 5.1: C4 MODEL SYSTEM OVERVIEW... 62

FIGURE PART B 5.2: C4 CONTAINER SYSTEM OVERVIEW ... 63

FIGURE PART B 5.3: BACKEND ARCHITECTURE OVERVIEW ... 72

FIGURE PART B 5.4: ENTITY RELATIONSHIP DIAGRAM ... 76

FIGURE PART B 5.5: INS VIRTUAL LAB OVERVIEW .. 79

https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253372
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253373
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253374
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253375
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253376
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/SA-Green-Routing_Hauser_Schlumpf.docx#_Toc91253378

Green Routing Thesis

83

List of Tables

TABLE PART B 1.1: ACTORS .. 33

TABLE PART B 1.2: UC01: CRUD GREENEST ROUTE - FULLY DRESSED USE CASE .. 35

TABLE PART B 1.3: UC02: CALCULATE PATHS - FULLY DRESSED USE CASE .. 35

TABLE PART B 1.4: UC03: GET ECOLOGICAL METRICS OF NODES - FULLY DRESSED USE CASE .. 36

TABLE PART B 1.5: UC04: STRUCTURE DATA - FULLY DRESSED USE CASE ... 36

TABLE PART B 1.6: UC05: DEFINE STABLE ROUTE - FULLY DRESSED USE CASE ... 37

TABLE PART B 1.7: UC06: VIEW ROUTES - FULLY DRESSED USE CASE .. 37

TABLE PART B 1.8: UC07: LOGIN - FULLY DRESSED USE CASE .. 37

TABLE PART B 1.9: UC08: GATHER STATISTICS - FULLY DRESSED USE CASE ... 38

TABLE PART B 2.1: PROJECT INTERNAL ORGANIZATION ... 41

TABLE PART B 2.2: PROJECT EXTERNAL ORGANIZATION ... 41

TABLE PART B 2.3: PROJECT MANAGEMENT TIME COMPOSITION .. 44

TABLE PART B 2.4: MILESTONES .. 45

TABLE PART B 2.5: SCRUM MEETINGS .. 46

TABLE PART B 2.6: RISK MANAGEMENT ... 47

TABLE PART B 2.7: DEALING WITH RISKS .. 50

TABLE PART B 2.8: OCCURED RISKS .. 51

TABLE PART B 3.1: SONARQUBE CODE METRICS .. 55

TABLE PART B 3.2: CI/CD PIPELINE STAGES ... 58

TABLE PART B 3.3: HTTP STATUS EXAMPLE ... 58

TABLE PART B 5.1: DEV/PROD PARITY COMPARISON .. 68

TABLE PART B 5.2: TECHNOLOGIES OVERVIEW .. 69

TABLE PART B 5.3: API RESPONSES .. 75

TABLE PART B 5.4: INS VIRTUAL LAB DEVICES ... 78

Green Routing Thesis

84

Glossary

ArangoDB ArangoDB is a free and native open-source database system with multiple

models. It supports three data models (key/value, documents and graphs)

with a database core and a unified query language called AQL (ArangoDB

Query Language).

Container Processes running on the host system or hypervisor, but in a strictly

delimited context. Often used in the context of Docker or Kubernetes.

Database

Management

System

A software system that facilitates the creation and maintenance and use of

an electronic database

Data transfer

object

A data transfer object (DTO) is an object that carries data between

processes and application layers.

Dijkstra Mathematical algorithm that solves the shortest path problem for a defined

starting to endpoint in a graph full of interlinked nodes.

Docker Docker is free software for isolating applications using container

virtualization.

Domain Driven

Design

Domain Driven Design is an approach to modelling complex software. The

modelling of the software is significantly influenced by the technicalities to

be implemented in the application domain.

ECTS European Credit Transfer System to accumulate study achievements.

Engineering

Project

A project that took place the semester before this Term Project as practice.

Gbps Gigabits per second

Gin Gin Web Framework

GoBMP Is basically an implementation of Open BMP (RFC 7854) protocol's collector

in Golang.

Golang A statically typed, compiled programming language designed at Google

Gorm Object Relation Mapper for Go

Graph Database A graph database is a database that uses graphs to represent and store

heavily interconnected information.

gRPC gRPC is a modern open-source high performance Remote Procedure Call

(RPC) framework that can run in different environments. It can efficiently

connect services for multiple purposes.

Green Routing Thesis

85

Interior Gateway

Protocol

A distance vector routing protocol produced by Cisco.

InfluxDB InfluxDB is an open-source database management system, specifically for

time series concepted. It is developed and distributed by the company

InfluxData.

Insomnia Simple and open-source API Client. Insomnia is an alternative for the well-

known tool Postman, which is also an API client.

Jalapeño System developed by Cisco, which collects and processes data from

attached networks, including telemetry data.

JetBrains YouTrack Issue tracking and project management system from the manufacturer

JetBrains. Alternative for other brands like Atlassian Jira.

Kafka Kafka, developed by Apache, is an open-source distributed event streaming

platform used for high-performance data pipelines, streaming analytics,

data integration, and mission-critical applications.

Kaniko Kaniko is a tool to build container images from a Dockerfile

Kubernetes Is a professional open-source system for automating the deployment,

scaling and management of container applications.

Martini API Martini creates standards-compliant APIs with native OpenAPI 3.0 support

to improve API discoverability and management. Basically, it is a set of tools

to build and consume web APIs for this standard.

Merge Requests Also known as Pull Request. Workflow in a version control system to make

source code changes and review them.

Metric A standard of measurement

Network Topology Describes the arrangement of systems on a computer network.

Object-relational

mapping

Object-relational mapping (ORM) is a programming technique for converting

data between incompatible type systems using object-oriented

programming languages.

OpenAPI

specification

Defines a standard interface to RESTful APIs for both humans and computers

Panic In Golang, panic is just like an exception in other known languages. It arises

at runtime. In other words, panic means an unexpected condition occurred

in a Go program due to which the execution of the program is terminated.

Protocol A protocol is a standard set of rules that allow electronic devices to

communicate with each other.

Green Routing Thesis

86

Rational Unified

Process

Procedure model for software development projects divided in four main

phases.

Redis Is an open source, in-memory data structure store, used as a database,

cache and message broker.

Scrum Board Is one of the tools used when applying the Scrum project method. Basically,

a board filled with work items.

Standard Error

Stream

Via standard error a program can output error data via error stream. This is

often used to display error logs in a command line interface.

Standard Output

Stream

Via standard output a program can output data via data stream. This is often

used to display logs in a command line interface.

Static Code

Analysis

Static code analysis (SAST) is a static software testing procedure performed

at translation time of software. The source code is subjected to a series of

formal checks that can detect certain types of errors.

Swagger Widely used documentation method and user interface for Web API

documentations. Supports multiple versions of the OpenAPI Standard.

Telegraf Telegraf is a plugin-driven server agent for collecting and sending metrics

and events from databases, systems, and sensors.

Time Series

Database

A time series database (TSDB) is a database optimized for storing and

analysing time series such as sensor or telemetry data.

Traffic Engineering Technique used to control and steer traffic to optimize the network

utilization and performance.

Green Routing Thesis

87

Acronyms

BDUF Big Design Up Front

DBMS Database management system

Glossary: Database management system

DDD Domain driven design

Glossary: Domain driven design

DRY Don’t repeat yourself

DTO Data transfer object

Glossary: Data transfer object

Go Golang

Glossary: Golang

IGP Interior Gateway Protocol

Glossary: Interior Gateway Protocol

KISS Keep it simple stupid

OR Object relation

ORM Object-relational mapping

Glossary: Object-relational mapping

OST Short form for the Eastern University of Applied Sciences

PR / MR Pull Request / Merge Request

RUP Rational Unified Process

Glossary: Rational Unified Process

S.O.L.I.D S - Single-responsibility principle

O - Open-closed principle

L - Liskov substitution principle

I - Interface segregation principle

D - Dependency Inversion Principle

SAST Static Application Security Testing

Glossary: Static Code Analysis

SR Segment Routing

SR-App Segment Routing Application

Stderr Standard Error Stream

Glossary: Standard Error Stream

Green Routing Thesis

88

Stdout Standard Output Stream

Glossary: Standard Output Stream

TE Traffic Engineering

Glossary: Traffic Engineering

TSDB Time Series Database

Glossary: Time Series Database

YAGNI You aren’t gonna need it

Green Routing Thesis

89

References
[1] T. Keary, Types of Routing Protocols – The Ultimate Guide. [Online]. Available: https://

www.comparitech.com/net-admin/routing-protocol-types-guide/ (accessed: Dec. 19 2021).

[2] S. Dellsperger and J. Kleiber, “Service Chaining Path Calculation,” Project Thesis, Departement

of Computer Science, OST - University of Applied Sciences, Campus Rapperswil-Jona, 2020.

[3] Segment Routing Architecture, IETF RFC8402, Internet Engineering Task Force (IETF). [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8402

[4] YangModels, YangModels. [Online]. Available: https://github.com/YangModels/yang (accessed:

Dec. 21 2021).

[5] F. Cuiller, IOS-XR power consumption monitoring: an ephemeral telemetry stack use case.

[Online]. Available: https://xrdocs.io/telemetry/tutorials/ios-xr-telemetry-power-consumption-

docker-compose/ (accessed: Oct. 2 2021).

[6] M. Bongard, Jalapeño API Gateway: A simple, light-weight, cloud-native API Gateway for

Jalapeño. [Online]. Available: https://jalapeno-api-gateway.github.io/jagw-docs (accessed: Dec.

21 2021).

[7] L. Metzger, New Semester Thesis - SR-App: Green Routing. [Online]. Available: https://

www.segment-routing.ch/articles/article-20210823-01/ (accessed: Dec. 21 2021).

[8] Cisco SP Routing Team, Optimize Power Consumption. [Online]. Available: https://xrdocs.io/

asr9k/blogs/2018-09-06-power/#:~:text=In%20less%20than,on%20power%20savings

(accessed: Dec. 21 2021).

[9] A. Wiggins, The Twelve-Factor App. [Online]. Available: https://12factor.net/ (accessed: Sep. 29

2021).

[10] Gin Team, Gin Web Framework. [Online]. Available: https://gin-gonic.com/ (accessed: Oct. 31

2021).

[11] mingrammer, Top Go Web Frameworks. [Online]. Available: https://github.com/mingrammer/

go-web-framework-stars (accessed: Dec. 23 2021).

[12] Jinzhu, The fantastic ORM library for Golang. [Online]. Available: https://gorm.io/ (accessed:

Oct. 31 2021).

[13] R. Carrier, dijkstra. [Online]. Available: https://github.com/RyanCarrier/dijkstra

[14] REFSQ; International Working Conference on Requirements Engineering: Foundation for

Software Quality, Requirements engineering: foundation for software quality: 22nd

International Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016 :

proceedings. Cham, s.l.: Springer International Publishing, 2016.

[15] C. Larman, Applying UML and patterns: An introduction to object-oriented analysis and design

and iterative development, 3rd ed. Upper Saddle River, NJ: Pearson; Prentice Hall, 2005.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., vol. 1, no. 1,

pp. 269–271, 1959, doi: 10.1007/BF01386390.

[17] R. S. Hanmer and R. Hanmer, Patterns for Fault Tolerant Software, 1st ed. s.l.: Wiley, 2013.

[18] D. Vincent, A successful Git branching model. [Online]. Available: https://nvie.com/posts/a-

successful-git-branching-model/ (accessed: Oct. 12 2021).

[19] Conventional Commits. [Online]. Available: https://www.conventionalcommits.org/en/v1.0.0/

(accessed: Oct. 12 2021).

[20] Raphael 'kena' Poss, Go (Golang) conding guidelines. [Online]. Available: https://wiki.crdb.io/

wiki/spaces/CRDB/pages/181371303/Go+Golang+coding+guidelines (accessed: Nov. 1 2021).

Green Routing Thesis

90

[21] Golangci-lint is a Go linters aggregator. [Online]. Available: https://golangci-lint.run/ (accessed:

Oct. 31 2021).

[22] Code formatting and naming convention tools in Golang. [Online]. Available: https://

www.golangprograms.com/code-formatting-and-naming-conventions-in-golang.html

(accessed: Oct. 6 2021).

[23] S. Brown, C4 Model. [Online]. Available: https://c4model.com/ (accessed: Sep. 29 2021).

[24] H. Cheung, Shortest Path Algorithm Revisit with Golang. [Online]. Available: https://www.e-

tinkers.com/2019/06/shortest-path-algorithm-revisit-with-golang/ (accessed: Oct. 31 2021).

[25] solid IT gmbh, Vergleich der Systemeigenschaften MariaDB vs. PostgreSQL. [Online]. Available:

https://db-engines.com/de/system/MariaDB%3BPostgreSQL (accessed: Oct. 31 2021).

[26] Stretchr, Inc., Testify - Thou Shalt Write Tests. [Online]. Available: https://github.com/stretchr/

testify (accessed: Oct. 31 2021).

[27] Oracle Corporation, MySQL Workbench 8.0 CE. [Online]. Available: https://www.mysql.com/de/

products/workbench/ (accessed: Dec. 22 2021).

Green Routing Thesis

91

C. Appendix

1 System Test
The system test was done manually with the open source API client Insomnia10 during the end of the

construction phase of the project. During development, requests were continuously created for all

API endpoints and methods, which are fully suitable for system test requirements.

Prerequisite for the test is that the entire Jalapeño system and especially the Jalapeño API Gateway

request service are working, and the network data is consistent. Without this prerequisite a system

test is not feasible.

The test was performed on a powerful machine of one of the developers. The application ran the

same as it would if it were deployed on a real server environment with a connection to the Jalapeño

API gateway in the provided INS Lab. An exception for that are the non-functional requirement tests,

which are performed using a big data set of mock data loaded from a network specification file. All

telemetry data for the power consumptions of the nodes were faked due to no real data being

accessible during the time this system test took place.

1.1 Based on functional requirements

The system tests for functional requirements are based on use cases defined in the chapter Use

Cases in the project documentation (part B).

1.1.1 Jalapeño data

ID Request Expected result Fulfilled

TF-1 GET /jalapeno/sync

Base tests are JD-1-A up to D.

Processing and storing data:

• Calculating average power

consumption for every node

• Setting node links based on

node edges

• Storing all received and

processed data into the

database

Http status code: 200

Body: empty

Yes

TF-1-A GET /jalapeno/nodes

Receiving all nodes from Jalapeño

Http status code: 200

Body: nodes array

Yes

TF-1-B GET /jalapeno/links

Receiving all links from Jalapeño Yes

10 Website: https://insomnia.rest/

https://insomnia.rest/

Green Routing Thesis

92

Http status code: 200

Body: links array

TF-1-C GET /jalapeno/node-edges

Receiving all node edges from

Jalapeño

Http status code: 200

Body: node edges array

Yes

TF-1-D GET /jalapeno/telemetry/:name

Parameter name with a specific

node name identifier

Receiving power consumption

telemetry data from Jalapeño about

the node name given

Yes

1.1.2 Green routes

ID Request Expected result Fulfilled

TF-2 GET /green-routes

All previously calculated green routes

for all nodes available

Http status code: 200

Body: green routes array

Yes

TF-3 GET /green-routes?:nodeKey

Query nodeKey with a specific

node key identifier

All previously calculated green routes

for the specific node (ingress or egress)

Http status code: 200

Body: green routes array

Yes

TF-4 GET /green-routes/:id

Parameter id with a specific

previously calculated green

route identifier

Get calculated green route by a

specific identifier

Http status code: 200

Body: green route

Yes

TF-5 GET /green-routes/calculate/

:ingressNodeKey/:egressNodeKey

Parameters with specific node

key identifiers

Receiving and processing Jalapeño

network data as described in T-1 and

calculating the greenest route based

on the new data.

The green route must be defined

based on an average power

consumption and not a single power

consumption snapshot.

Http status code: 200

Body: green route

Yes

Green Routing Thesis

93

1.1.3 Statistic purposes

ID Request Expected result Fulfilled

TF-6 GET /nodes

All previously received nodes from

Jalapeño with a power consumption

history

Http status code: 200

Body: nodes array

Yes

TF-7 GET /nodes/:nodeKey

Parameter nodeKey for a specific

node key identifier

Get received node from Jalapeño with

a power consumption history

Http status code: 200

Body: node

Yes

1.2 Based on non-functional requirements
The system tests for non-functional requirements are based on the definition in the chapter Non-

Functional Requirements in the project documentation (part B).

1.2.1 Functionality

There are no tests needed based on the definition for the topic’s security and interoperability

(defined in chapter Functionality).

ID Based on Conclusion

TNF-1 Accuracy It is not possible to test the accuracy since the

power consumption telemetry data had to be

faked for this system test.

1.2.2 Usability

ID Based on Expected behaviour and possibilities Fulfilled

TNF-2 Understandability The green route and node objects provide data

about the power consumption of link between

nodes involved and a cumulated value for the

whole route path.

It is possible to see a power consumption

history of the nodes.

Yes

TNF-3 Operability No possibility to test this now. -

Green Routing Thesis

94

1.2.3 Reliability

ID Based on Conclusion

TNF-4 Availability No possibility to test this now.

TNF-5 Recoverability No possibility to test this now.

TNF-6 Fault Tolerance Not implemented in the scope of the term

project.

1.2.4 Performance

ID Based on Expected behaviour and possibilities Fulfilled

TNF-7 Capacity The application can handle a green route

calculation for a network with 1000 nodes.

Yes

TNF-8 Time behaviour The application should perform a complete

Jalapeño data sync and a calculation for a green

path in less than 10 seconds.

The reached value is about 2.5 seconds with

1000 nodes on powerful desktop systems inside

the docker build environment.

Prerequisite is, that the Jalapeño API Gateway is

running in normal workload and normal

response times.

Yes

1.2.5 Scalability

This could not be tested since the project team (including supervisors) decided to omit a deployment

in the scope of this term project.

1.2.6 Maintainability

ID Based on Expected behaviour and possibilities Fulfilled

TNF-9 Analysability The application must have multiple log levels

which could be set over the environment

variables. The log events must vary as defined

and available.

Yes

Green Routing Thesis

95

2 Meeting minutes

23.09.2021, Project Kick-Off

Time 10:00 to 11:00

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Project Kick-Off prepared by the supervisors

Notes on each agenda item discussed

1. The Thesis was presented and various key points on existing system informations were

given. The main expectations and requirements for the project are the following:

o To be able to calculate greenest path (at least theoretically), lowest energy

consumption

o How to bring the data from the network into Jalapeno with own or extended

processor

o Find and compare existing products

o How to do it so that the paths are stable (no flapping)

o How to collect and store the telemetry data

o Write simple application to display the data

o Existing Jalapeno API Gateway under construction by Michel Bongrad

o Application should be cloud native with Kubernetes environment

o Optional nice visualization (frontend)

o Processor and Jalapeno are written in GoLang

o Backend in Python and frontend in React

o IOS XR and Cisco ASR 9000 routers used

o Cisco liason is Francois Clad, a research engineer and graph theory expert

o Requirements definition as Use Cases in the next weeks

30.09.2021, Weekly exchange

Time 10:00 to 11:00

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Green Routing Thesis

96

Agenda

1. Discuss task formulation

2. Access to server, network and Jalapeno

3. Update on current work progress and planned organization of the project

4. Working time of each participant and stakeholder of this term project

5. Open questions

a. How to define the rout lifetime (topic flapping)

b. Must the app also configure the paths or only calculate them

c. How to generate traffic in a network to analyse the telemetry data

Notes on each agenda item discussed

1. Severin agrees with the task formulation and finds it good as it is. Laurent has not yet had

time to look at it.

2. They will order a VPN access for us to the INS network. They also will setup a virtual lab with

routers and virtual machines and a working Jalapeno instance deployed on our server.

3. We showed the current decisions and progress and told everyone that we will organise this

project like the Engineering Project we’ve had last semester. Everything looks fine till now.

4. Pascal and Jonas are normally working at their school days (Tuesday and Wednesday) and on

Sunday for this project. Julian and Severin are working only on Thursday and Friday for the

INS, but they try to support us also on other weekdays. Michel is available every weekday.

5. Answers

a. A compromise must be found here. Possibly changed every 10 minutes, but

individually adaptable and set by the customer.

b. Only calculation of the paths is necessary for this term project.

c. We can use the tool IPerf for that.

07.10.2021, Weekly exchange

Time 10:00 to 11:00

Participants • Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Discussion of the use cases suggestion

2. Introduction to our server with Kubernetes

3. Introduction to the virtual lab

4. No sensors and physical data on the virtual routers

5. Open questions

a. Should we create our own SonarQube instance?

b. How to access the Grafana instance?

c. Status about the Jalapeno API Gateways and the Jalapeno instance?

d. What are the Non-Functional requirements?

Green Routing Thesis

97

Notes on each agenda item discussed

1. The use cases are looking good as far.

a. The naming’s are not optimal and UC04 should be reconsidered.

b. A use case should also start with a verb all the time.

c. We also must describe how use cases work.

d. We will provide a new use case suggestion until the next day to Severin. He will

discuss them with the other supervisors.

2. Access to every service on the server with the server address and the port. Severin sent us

multiple information’s about the server and Kubernetes and how to use them.

3. Severin sent us various information during the introduction that is beyond the scope of

these minutes.

4. We need to configure the telemetry models on the routers properly to implement real

mocked data.

5. Answers

a. The INS will setup an instance of SonarQube for us on our server.

b. Server address and port 30300.

c. Both are deployed on our server since this morning.

d. Our application should work properly up to 1000 nodes (routers). We will discuss

this again separately in the next weekly exchange together with the other

supervisors to finalize those requirements.

11.10.2021, Use cases exchange

Time 10:00 to 10:30

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Discussion about the adjusted use cases

Notes on each agenda item discussed

1. In general, the use cases are too technical (everybody should understand them). The main

success scenarios are mostly to fixed on one solution. A new use case for statistics (variance

of routes) must be created additionally. Some further points must be changed according to

the following notes:

a. UC2: Actor is missing, do not write “I can”. Main success scenario not scaled not

enough. Also add an alternative scenario if possible.

b. UC3: Title is confusing. Get ecological metric of nodes not very understandable.

Generalize the main success scenario. The preconditions are not optimal.

c. UC4: The preconditions are also not optimal here.

Green Routing Thesis

98

d. UC5: Overview; recalculation constantly, set paths frequently. Statement for

Stakeholders and interests are to vague described (only overhead)

e. Everything else is fine and mostly the content is good defined.

14.10.2021, Weekly exchange

Time 09:00 to 10:00

Participants • Prof. Laurent Metzger (only first 15
minutes)

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Info: Please cancel meetings early if participation is not possible to better plan our work

2. Discussion of the revised use cases

3. Discuss NF-Requirements again

4. Presentation of project plan and general documentation

5. Problem from Jalapeno API GW:

a. Topology data works, but telemetry data does not

b. Further procedure/solution?

6. Exchange about programming languages and frameworks

7. Questions

Notes on each agenda item discussed

1. Acknowledged

2. Use Cases everything io (revise red marked parts in the documentation, afterwards finished)

3. NF requirements are good (revise red marked parts in the documentation, afterwards

finished)

4. Specify damage potential in a damage time unit. “How many hours it could cost in the worst

case?” Do it in the same course as revalidation of risks. Question “Can we start the

construction phase?” should be clear after that. All the risks should be near the green

marked fields in the risk graph

a. Otherwise, everything is fine. They are very satisfied with the documentation till

now.

5. We stay with SRv6 (IPv6) because it is the future. Adaptations on the Jalapeno API Gateway

will be implemented iteratively by Michel starting next week. We need to look at the

telemetry models as soon as possible and afterwards talk to Michel.

6. Processor must be written in Golang.

a. SR-App could also be Go, but it doesn't have to be.

b. Go does not know generics so far

7. No explicit questions this week

Green Routing Thesis

99

21.10.2021, Weekly exchange

Time 10:00 to 11:00

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Decision for data mocking of Router telemetry data due to not existing physical devices

a. Generator script/app simulating multiple routers with simple telemetry metrics

2. No data collector and data processor needed in planned setup

3. Ecological aspect: path with summed power consumption is basically already the greenest

one, or not?

a. Potential metrics for defining the green index

i. Pure power consumption summation (per example 400 Watt)

ii. Router efficiency index (example with 3 value scale: low, medium and high)

4. No data found for load to power efficiency ratio while research

a. Real world research on this is not possible currently because no physical devices are

available

b. Hypothesize based on marginal information to start with?

5. Server availability and performance is not very good now

a. It was very slow on 20.10.21 and completely not usable after 21:30

6. Questions

a. When will the exchange with Francoise take place?

7. Show shortly the current work progress

8. General feedback round from supervisors to students and vice versa

Notes on each agenda item discussed

1. Mocking to be followed up

a. Swisscom will give us access to their lab where they have several physical IOS XR

routers, date not yet known

b. Supervisors are looking to get an example from Swisscom or Cisco of a response

using the Yang model

2. We definitely won't build a separate data collector and processor for this term project

a. We need to look at telegraf to identify where the messages timestamp is coming

from

3. Ecological aspects

a. Power origin would be interesting but not feasible

b. Only wattage is possible and sufficient for the term project

c. Link has taken value from next hop

d. Use only one type of router (ASR 9000)

e. Look at one period and look at average

Green Routing Thesis

100

4. Nothing to say here due to decisions before

5. They will try to fix the problem on the server as soon as possible

6. Laurent is still in contact with Francoise and will give us an update as fast as possible

7. They are happy with the work progress, nothing more to say here

8. Most important feedbacks

a. Certain things were taken for granted in the beginning, which has not been for us

since we are software engineers and had no contact to network related topics in the

last couple of years

b. We had some difficulties in the beginning, but these were tackled professionally and

so everything is now running well

c. They like our professional approach and organization and think that they too can

learn something from us during this time

d. In conclusion, everyone is very happy with how it works currently

26.10.2021, Exchange with Swisscom

Participants • Prof. Laurent Metzger

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Project presentation for Francoise
2. Update Exchange Swisscom
Notes on each agenda item discussed

1. Presentation for Francois
a. Is a researcher
b. Wants to see research aspects

i. Power Consumption
ii. Efficiency Index

c. Just briefly about how we organize
d. How to make routing greener?
e. What do we use Jalapeno for?

2. Swisscom
a. They do an onboarding (pre-production, 10 routers)

i. We get a VPN and a Linux machine
ii. We also have the possibility to simulate data

b. Switching to SR throughout Swisscom, strategy busy
i. 2 out of 20 networks are already on SR-MPLS

ii. All are already configured, but not yet activated
3. Configuration aspect only plays a role when we are going to configure routes ourselves.

28.10.2021, Weekly Exchange

Participants • Francois Clad (only for the presentation)

• Prof. Laurent Metzger

• Severin Dellsperger

Green Routing Thesis

101

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Presentation term project to Cisco partner
a. Introduction with the Jalapeño API Gateway diagram
b. Telemetry data, existing yang model on Cisco Router for Power consumption

i. Cisco-IOS-XR-sysadmin-envmon-ui:environment/oper
c. No new data collector or processor needed

i. Direct subscription through Jalapeno API GW to Time Series DB
d. Ecological aspects of routing: Path with summed power consumption is basically

already the greenest, this is enough for the term project context
i. Outlook: there is another potential metric beside the pur power

consumption (e.g. 400 Wats)
1. "Efficiency-Index" (Relation throughput to power consumption)
2. Downside different routers
3. Example: Generation 4 of ASR 9000 routers compared to Generation

1 are up to 95% more efficient
ii. Outside context for term project:

1. Router environment, power source (green or not), cooling,
geographical location

e. Until now no information found on the load to power efficiency ratio for those
routers

i. Research on this was not possible until now because we do not have
physical devices available

ii. We will become access to Swisscom Lab with real routers in the next couple
of weeks

f. Short overlook to use cases diagram
g. Show project milestones shortly
h. Current status: In the end of elaboration phase

i. Technology decisions
1. Why did we select Go as our language?

1. It is very performant
2. There are already a number of Djikstra implementations

2. Our thoughts to caching
3. Persistent database for long term statistics

ii. Architecture and System Overview under construction
i. Questions / Discussion

 . https://www.segment-routing.ch/articles/article-20210823-01/
j. Closing presentation, switching to discussion with supervisors (project internal)

2. Architecture
a. Do we want to implement a cache Yes or No?
b. Based on 12 Factor Methodology we would need to
c. https://12factor.net/de/processes#:~:text=Der%20RAM%20oder,und%20Dateisyste

m)%20l%C3%B6schen.
3. Can we use the GitLab runner from INS
4. Current work progress / Outlook

https://www.segment-routing.ch/articles/article-20210823-01/
https://12factor.net/de/processes#:~:text=Der%20RAM%20oder,und%20Dateisystem)%20l%C3%B6schen
https://12factor.net/de/processes#:~:text=Der%20RAM%20oder,und%20Dateisystem)%20l%C3%B6schen

Green Routing Thesis

102

Notes on each agenda item discussed

04.11.2021, Weekly Exchange

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Elaboration phase completed
a. Was close at the end, but well reached
b. From now on reduce some time because elaboration needed a little more than

originally planned
c. A lot of research done
d. Especially a lot in mocking

i. Estimated remaining effort approx. 6h
2. Elaboration documentation

a. Development concept
i. How we use Version Management

ii. Our use of Definition of Done
iii. Our inputs to Unit tests

1. Seems to be very hard with GO
2. 80% will be hard

iv. SonarQube
v. Describe steps of CI/CD shortly

1. The migration to Kaniko is planned
b. Domain Analysis (Pascal)
c. Architecture and Design specifications

i. System Overview (Pascal)
d. Work in progress (Prototype) of the 12 Factor Methodology
e. Technologies

i. Go as the programming language
ii. Only MariaDB and no cache as persistence store

iii. The use of a linter
f. Backend Architecture

i. We decided to follow Domain Driven Design principles
ii. Some Go specific informations

iii. We have no Architecture for the frontend planned currently
1. Current Works / Planned for Early Construction phase

a. The introduction to the Swisscom Lab
b. Maybe we are going to complete the telemetry data mocking
c. Base Project improvements
d. ORM
e. Controllers
f. Entities
g. CI/CD Pipeline to Kaniko
h. Finish 12 Factor Methodology

Green Routing Thesis

103

2. Outlook
a. Project is fully on track
b. Time saved due to processor, but time needed for mocking
c. Start with implementation of the calculation in middle construction phase

3. Maybe insight into the code?
4. Michel Update regarding API GW adjustments

a. Need the changes on 15.10 at the earliest

Notes on each agenda item discussed

1. GreenRoute and GreenRouteCalculation
2. The team expressed interest in the domain driven design approach
3. Using scratch container in a Multistage build
4. View environment file solution
5. All good, except that multistage Docker files should be used (example sent)

18.11.2021, Weekly Exchange

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Julian Klaiber

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Status Green SR-App
a. DDD Implementation
b. Logging and environment variables v2
c. ORM / Database
d. Jalapeno API GW Service v1
e. Network sample (Database data)
f. Entity to DTO conversion
g. API definition v1 and demonstration
h. Current:

i. Implementation algorithm v1
i. Database Mocking and more Unit Tests

ii. API definition v2
iii. Migrations and Seeds
iv. Swagger

2. Status Mocking (Pascal)
3. In general

a. Everything is going according to plan so far
4. Outlook

a. Swisscom Lab Jalapeno Integration
b. Algorithm v1
c. Prototype Green SR-App
d. Fine-tuning and documentation

Green Routing Thesis

104

Notes on each agenda item discussed

1. DTO is good, maybe a little overkill, but separation makes sense
2. Mixture of integration test and module test
3. Michel adds a security mechanism to avoid overloading the gateway
4. For the algorithm should be a first version presentable next week
5. There is an interest in the Mocker, but current focus on Swisscom
6. The possibility to configure grpc on the router will be discussed on Friday

25.11.2021, Weekly Exchange

Participants • Severin Dellsperger

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. UUID as identifiers
a. ... bad performance for relational databases (native use as string)
b. ... id and uuid in database with uuid_hash for index is complicated and an overhead
c. ... the benefit in our use case for this project is not big enough
d. ... the solution with UUID_TO_BIN is a to big overhead compared to the benefit

2. The first version of the Jalapeño API Gateway data synchronizer and processor is still in
progress

3. Some insights into the first version of the shortest path algorithm
4. The OST GitLab now much faster after the software update
5. Outlook

a. Current Sprint
i. Finish Jagw data processing and storing

ii. Repository Mocking for Testing
iii. Integration & Unit Tests
iv. Finish API definition

b. End Construction
i. Database Migrations & Seeds improvement

ii. Swagger
iii. Refactoring / Improvements / Cleanup
iv. Maybe deployment

c. Transition
i. Focus on documentation

ii. No more big things in the code or otherwise in the products

Notes on each agenda item discussed

1. They also don't see a use case for UUID
2. Why is there a LogicalLink entitiy and why do we not work with the provided LsLink structs.

a. The LogicalLink entitiy has more information and is needed for mapping with the
nodes

0. The LsEdge table on the ArangoDB takes a long time to update.
a. This can lead to inconsistencies
b. It is also possible to match the links and the nodes via the igpRouterId

Green Routing Thesis

105

1. To view the mocker telegraf logs use the following command “kubectl logs influx-0 -n
jalapeno –follow”

2. We need to explain why we have implemented the algorithm this way
a. Why did we decide to not implement Dijkstra ourselves?
b. Looks good otherwise

3. Would the concurrent querying of telemetry data also be possible?
4. A deployment is not necessary for the project thesis, as the data basis is also not available

a. Maybe this will be possible in the bachelor thesis

09.12.2021, Weekly Echange

Participants • Prof. Laurent Metzger (arrived 25mins later)

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Green SR app completion underway
a. The API is now final
b. Our implementation of Swagger
c. Some information to the nodes history
d. How we parallelized our prototype
e. Some insights into our testing

i. We show how we mocked the whole repository layer
ii. With the mocked repository layer it was possible to write integration tests

f. Our use of migrations
g. How we implemented seeds
h. We did some restructuring of our code base

2. Update Mocker @Pascal
3. The OST GitLab is in a very poor condition

a. It is often the case in the evening that timeouts occur when the platform is used,
because the requests take so long

4. Some clarification questions regarding the final submission of the project thesis
a. Many informations can be found in the documentation
b. Do we need to create a poster for the project thesis? What is the expected form of

this poster?
5. Outlook

a. We are working on some optimizations to meet our nonfunctional requirements
(1000 nodes in a network)

b. We are also working on the final code polish
c. Finish of the backend
d. The transition phase is only for documentation and the final submission

Notes on each agenda item discussed

1. SR-APP
a. No comments were given
b. Is good. Returns only GET and no POST requests

i. Why is green-routes/calculate not a POST, this would be cleaner
c. For Insomnia the config can be loaded to create all endpoints

Green Routing Thesis

106

i. For BA SR should also work -> SR workshop should be possible
d. We are still on the analysis of our performance problems
e. They would still have scripts for the Jalapeno Mocking

i. We have already solved this ourselves
f. No remarks were given
g. Code coverage of 80% may not be achieved

i. But this is not severe
h. It is important that we document well what we have achieved and what belongs to

the product
2. Will no longer be treated in the project thesis

a. Status now is not yet complete but would not need much more time
3. They have no control over GitLab and the situation does not improve

a. Maybe a CRON job runs at 10 o'clock, maybe they can postpone it to a later time
4. It is desired that it be done according to requirements

a. No remarks to this topic
b. Poster should be made as an exercise for the bachelor thesis. It can then also be

taken over for the bachelor thesis
i. It's enough if it's digital

c. How do they plan to correct the thesis?
i. Described in the guide in Chapter 6

d. Project thesis will be published in a magazine
5. There will be an appointment about the status of the project thesis
6. The team stays tuned with Swisscon and telemetry data

16.12.2021, Weekly Exchange

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Software finished with Version 0.2.0
a. Some remarks to the functional requirements testing

i. All mandatory use cases achieved
ii. From the optional use cases only the "gather statistics" use case was

achieved
1. It provides a green routes history
2. Also the nodes history & nodes power consumption history will be

saved per request
iii. Optional target "Login" and "Frontend" made no sense for the project

thesis.
b. Information regarding our nonfunctional requirements testing with a big amount of

data
i. We have faked all data on lowest layer

ii. We tested our software with 986 nodes and 24'852 links and 10 telemetry
data entries per node

iii. We created a local Docker environment where we copied the pipeline steps
(go alpine image as base)

Green Routing Thesis

107

iv. The network synchronization, processing and storing into the database takes
less than 2.0 seconds.

v. If we only look at the green route calculation, we measured a time of less
than 0.5 seconds

c. nonfunctional requirements testing with topology data of the virtual network where
we only had to fake the telemetry data

i. The nodes and the logical links were loaded from the Jalapeño API Gateway.
The telemetry data needed to be faked

ii. We tested our software with 8 nodes and 26 links and 10 telemetry data
entries per node. The whole network synchronization, processing and
storing into the database took less than 0.5 seconds which is strongly
dependent on the connection to the Jalapeño API Gateway. The minimum
value measured was 0.07 seconds

iii. If we only look at the green route calculation, we measured a time of less
than 0.05 seconds

d. Nothing implemented in terms of segments, but basis is optimally prepared for it
1. Miscellaneous for finish

a. Software License? Closed Source
b. Submission of reports digitally or also printed?
c. Poster definitely only digital

2. Feedback round on the student thesis / exchange project (optional)
3. Outlook

Notes on each agenda item discussed

1. Finish
1. Deployment will not be done in the SA

a. Post parameters in the body
i. No need to adapt for SA

ii. Explain why we implemented it with url parameters
b. Mocker should also be handed in
c. SID List are only implemented in the BA. But the foundations have been laid
d. Stable paths can be defined but will be revised in the BA

2. Various
a. No license required. Use rights of use the latest, as already done
b. Submission in the team as Zip in a folder Submissions
c. Poster only digital
d. For presentation is expected about 20m, stand, challenges as we solved it, review

positive and negative points

Green Routing Thesis

108

3 Task formulation

3.1 Supervisors

The Green Routing student research project is being conducted in partnership with Cisco Systems.

3.1.1 Supervisor

Prof. Laurent Metzger, Institute for Networked Solutions (INS), laurent.metzger@ost.ch

3.1.2 Co-Supervisors

Severin Dellsperger, Institute for Networked Solutions (INS), severin.dellsperger@ost.ch

Julian Klaiber, Institute for Networked Solutions (INS), julian.klaiber@ost.ch

3.1.3 Partner from Cisco Systems

Cisco Systems represented by Francois Clad

3.2 Initial situation

Ecological aspects play more and more a role in all areas of science nowadays. It is tried in each area

not only to get the best for the consumer, but also to include aspects to further improve the

ecological aspects.

The Internet today consumes a lot of electricity and is therefore partly responsible for our huge Co2

emissions around the world. Routers often run all around the clock, consuming a significant amount

of power due to potential inefficiencies at higher workload.

In today's approach, the fastest available path from A to B is usually chosen in a network. However,

with today's availability of high bandwidth, other metrics can now be used to select routing in a

network. This is where the green routing approach comes into play. It should be made possible to

find the most ecological route by including different metrics and information from network

components, especially routers.

3.3 Expectations and goals

The main goal is to make research on the idea for green routing and use or develop a data processor

and algorithm(s) for the most ecological paths for routing inside a network.

Expected minimum work results:

• A result for how to become the green index.

• It must be analysed through research if there is an existing well-suited processor for

processing the data from routers in our use case. There are the possibilities to use an

existing one or develop an own.

• The implementation of a data processor based on the decision from the work result listed

before.

• One or more algorithms to calculate the most ecological routing path in a network

(theoretical or implemented as a Segment Routing application Backend).

Optional work results:

• Development of a simple Frontend Application to visualize the calculated paths.

mailto:laurent.metzger@ost.ch
mailto:severin.dellsperger@ost.ch
mailto:julian.klaiber@ost.ch

Green Routing Thesis

109

Additional goals for success:

• All calculated paths must be stable. This means no flapping between paths should occur.

• The newly developed Cisco Jalapeño API by Michel Bongard must be used.

• The data processor must be written in GoLang and the Backend in Python or another used

language in the technology stack. This is the current used Stack for the Green Routing API

and frameworks inside the Institute of Network Solutions and Cisco Systems.

• The optional Frontend must be written in React. This must be defined in the project planning

phase in the first couple of weeks of this project.

• Infrastructure should base on Kubernetes and all apps must be developed for cloud native

environments.

As usual for software projects, the newly developed code should follow best practices known in

software engineering. It must be extendable and well designed.

3.4 Definition of implementation

Meetings between students and supervisors are held every week. Further meetings are held at the

request of the students. The students will take minutes from each meeting and send them to the

supervisors in the same week where the meeting was held. Decisions should be clear and

comprehensible in the minutes.

The work progress should be transparent and continuous. The time invested must be roughly

tracked.

The task formulation is created by the students and confirmed by the supervisors. Requirements

Engineering is done by the persons implementing the student research project.

A project plan must be created in the first weeks of the project with milestones and a definition for a

Minimal Viable Product and Optional Features.

3.5 Documentation

For this student research project is a documentation necessary based on the regulations of the

department of computer science at the OST university of applied sciences. All documents should be

fully finished on the time of submission. Since this project is of international interest, it should be

written in English. All other not relevant papers for the public could be written in English, but it is not

mandatory to do so.

3.6 Important dates

KW 39, Start of student research project

KW 51, Submission of student research project

3.7 Additional notes

This assignment was created based on the oral assignments by the supervisors and confirmed by

them after the written definition by the involved students.

Green Routing Thesis

110

4 Project related configurations

4.1 Golangci-lint linters

• goconst

• gocritic

• gofmt

• goimports

• gomnd

• Gocyclo

• goprintffuncname

• gosec

• gosimple

• govet

• bodyclose

• deadcode

• depguard

• dogsled

• dupl

• errcheck

• errorlint

• exportloopref

• exhaustive

• ineffassign

• misspell

• nakedret

• prealloc

• predeclared

• revive

• staticcheck

• structcheck

• stylecheck

• thelper

• tparallel

• typecheck

• unconvert

• unparam

• unused

• varcheck

